Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
AN OIL PUMP ASSEMBLY FOR A VEHICLE LUBRICATION SYSTEM
Document Type and Number:
WIPO Patent Application WO/2016/055082
Kind Code:
A1
Abstract:
The invention provides an oil pump assembly for a vehicle lubrication system comprising a pump body (3) housing a pumping device (301), the pump body (3) presenting an outlet (302) leading from the pumping device (301), and an inlet (303) leading to the pumping device (301), the oil pump assembly further comprising a relief valve (5) presenting a valve chamber (501) arranged to communicate via an outlet relief passage (502) with the outlet (302), and to communicate via a relief deposit passage (503) with a relief deposit location (504), the relief valve (5) further comprising a plunger (505) located in the valve chamber (501), the plunger (505) being movable between a closed position, in which communication between the outlet relief passage (502) and the relief deposit passage (503) is prevented, and an open position, in which communication between the outlet relief passage (502) and the relief deposit passage (503) is provided, the oil pump assembly further comprising a control valve (4) for controlling the relief valve (5), and a control passage (401) providing a communication between the outlet (302) and the control valve (4) via the valve chamber (501).

Inventors:
BODÉN ROGER (SE)
Application Number:
PCT/EP2014/025007
Publication Date:
April 14, 2016
Filing Date:
October 09, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOLVO TRUCK CORP (SE)
International Classes:
F04B53/18; F04B49/035
Domestic Patent References:
WO2012100344A12012-08-02
Foreign References:
US20020172604A12002-11-21
DE10051131A12001-05-23
US20100192898A12010-08-05
DE102012112879A12014-06-26
Attorney, Agent or Firm:
JÖNRUP, Emil (Volvo Corporate Intellectual PropertyDept.BF1410, M1.7 Göteborg, SE)
Download PDF:
Claims:
CLAIMS

1. An oil pump assembly for a vehicle lubrication system comprising a pump body (3) housing a pumping device (301), the pump body (3) presenting an outlet (302) leading from the pumping device (301), and an inlet (303) leading to the pumping device (301), the oil pump assembly further comprising a relief valve (5) presenting a valve chamber (501) arranged to communicate via an outlet relief passage (502) with the outlet (302), and to communicate via a relief deposit passage (503) with a relief deposit location (504), the relief valve (5) further comprising a plunger (505) located in the valve chamber (501), the plunger (505) being movable between a closed position, in which communication between the outlet relief passage (502) and the relief deposit passage (503) is prevented, and an open position, in which

communication between the outlet relief passage (502) and the relief deposit passage (503) is provided, the oil pump assembly further comprising a control valve (4) for controlling the relief valve (5), characterised in that it comprises a control passage (401) providing a communication between the outlet (302) and the control valve (4) via the valve chamber (501).

2. An assembly according to claim 1, wherein the control valve (4) is configured to

communicate with a control pressure deposit location (508), whereby the control valve (4) is arranged to control a communication between the outlet (302) and the control pressure deposit location (508) via the valve chamber (501).

3. An assembly according to claim 2, wherein the control pressure deposit location (508) is provided in the inlet (303).

4. An assembly according to claim 2, wherein the control pressure deposit location (508) is provided in an oil sump (201) of the lubrication system.

5. An assembly according to any of the preceding claims, wherein the outlet relief

passage (502) and the control passage (401) are configured to communicate with the valve chamber on opposite sides of the plunger (505).

6. An assembly according to any of the claims 1-4, wherein the relief valve (5) is configured so that the plunger (505) can be urged from the closed position to the open position by pressure in the control passage (401).

7. An assembly according to claim 6, wherein the control passage (401) is configured to communicate with the valve chamber on opposite sides of the plunger (505).

8. An assembly according to any of the preceding claims, wherein the relief valve (5) is arranged so that a communication (401b) is provided in the valve chamber (501) between opposite sides of the plunger (505).

9. An assembly according to claim 8, wherein the communication in the valve chamber (501) between opposite sides of the plunger (505) is provided by a bore (401b) in the plunger.

10. An assembly according to any of claims 6-9, wherein the outlet relief passage (502) is provided by the control passage (401).

11. An assembly according to any of the preceding claims, wherein the plunger presents a recessed portion between two end portions of the plunger so as to provide with the valve chamber an intermediate space between the end portions.

12. An assembly according to any of the preceding claims, wherein the relief valve

comprises an elastic element (507), which elastic element (507) is configured to exert a closing force on the plunger (505) towards the closed position.

13. An assembly according to claim 12, wherein the control passage (401) presents an outlet control passage portion (401a) connecting the outlet (302) with the valve chamber (506), the relief valve (5) being arranged so that a pressure via the outlet control passage portion (401a) and/or the outlet relief passage (502) can exert an opening force against the closing force of the elastic element.

14. An assembly according to any of claims 12-13, wherein the plunger (505) is configured to delimit a subspace (506) of the valve chamber (501), in which subspace (506) the elastic element (507) is located.

15. An assembly according to claim 14, wherein the control valve (4) is configured to communicate with a control pressure deposit location (508), and the control valve (4) is arranged to control a communication between the outlet (302) and the control pressure deposit location (508) via the subspace (506).

16. An assembly according to any of the preceding claims, wherein the control valve (4) is not arranged to isolate the outlet (302) from the valve chamber (501).

17. An assembly according to any of the preceding claims, wherein the relief deposit location (504) is provided in the inlet (303).

18. An assembly according to any of the preceding claims, wherein the control valve (4) is a proportional valve.

19. An assembly according to any of the preceding claims, wherein the control valve (4) is spatially located externally of the pump body (3).

20. An internal combustion engine system comprising an internal combustion engine and an oil pump assembly according to any of the preceding claims, wherein the control valve (4) is mounted externally on the internal combustion engine (1) comprising lubricated devices (101) served by the oil pump arrangement.

21. A method of controlling an oil pump assembly according to any of the claims 1-19, comprising determining (SI) a value of a lubrication parameter indicative of the operation of the vehicle lubrication system, and controlling (S2), at least partly based on the determined lubrication parameter value, the control valve (4) so as to control the communication between the outlet (302) and the control pressure deposit location (508) via the subspace (506).

22. A computer program comprising program code means for performing the steps of claim 21 when said program is run on a computer.

23. A computer readable medium carrying a computer program comprising program code means for performing the steps of claim 21 when said program product is run on a computer.

24. A controller (6) being configured to perform the steps of the method according to claim 21.

Description:
AN OIL PUMP ASSEMBLY FOR A VEHICLE LUBRICATION SYSTEM TECHNICAL FIELD The invention relates to an oil pump assembly for a vehicle lubrication system comprising a pumping device and a relief valve arranged to communicate with a pump outlet and with a relief deposit location. The invention also relates to an internal combustion engine system comprising an internal combustion engine and an oil pump assembly, a method of controlling an oil pump assembly, a computer program, a computer readable medium, and a controller.

BACKGROUND

Traditional vehicle oil pumps may be driven via a belt or a gear assembly by the crankshaft of the vehicle internal combustion engine. Such oil pumps might in some operational situations deliver more pressure than is required by the devices served by the pump. For example, at cold starts a primary object of an engine lubrication system could be for the oil to increase its temperature, and hence its efficiency as quickly as possible. Therefore, at cold starts it might be desirable for oil to reside longer than usual at the lubricated devices, such as engine bearings, and to not be replaced at a relatively high rate by cold oil from the pump. Delivering more pressure than is required by the lubricated devices, e.g. at certain engine speeds and loads, also entails excessive energy consumption by the oil pump.

Systems have been developed to vary the pressure of the oil provided to the lubricated devices of the engine. For example, US5339776 discloses an oil pump which draws oil from an oil sump, and a valve which can divert oil supplied by the oil pump back into the oil sump without routing the oil to the lubricated devices.

US6488479 suggests that where high pressure oil is dumped back into the sump, aeration of the oil may occur, and the oil dumped back to the sump might experience significant heat loss. Said US6488479 discloses a pressure release valve which has a spring loaded plunger, and can redirect a portion of the flow that exits an outlet port of an oil pump back to an inlet port of the pump. A plunger adjustment mechanism is provided in the form of a solenoid subassembly that includes a housing and a solenoid winding. When the solenoid winding is energized, the plunger moves so as to provide communication between the outlet and inlet ports. Such a solenoid winding needs to work against the spring force, and introduces an undesired increase of complexity of the oil pump. Said US6488479 alternatively suggests, with reference to fig. 4, providing the plunger adjustment mechanism similar to a hydraulic actuator, with a "head" serving as an actuation piston, which is provided in a housing, forming a seal with the piston. On opposite sides of the piston the housing is provided with apertures for fluid communication for the piston actuation. Also in this alternative the plunger adjustment mechanism needs to work against the spring force, and therefore needs to be sized therefore. Further, the hydraulic actuation needs an arrangement which is relatively complex and sensitive to wear, e.g. due to the seal between the piston and the housing.

SUMMARY

It is an object of the invention to provide an energy efficient, yet simple and reliable manner of varying the pressure of oil provided to the lubricated devices of a vehicle engine.

This object is reached with an oil pump assembly for a vehicle lubrication system comprising a pump body housing a pumping device, the pump body presenting an outlet leading from the pumping device, and an inlet leading to the pumping device, the oil pump assembly further comprising a relief valve presenting a valve chamber arranged to communicate via an outlet relief passage with the outlet, and to communicate via a relief deposit passage with a relief deposit location, the relief valve further comprising a plunger located in the valve chamber, the plunger being movable between a closed position, in which communication between the outlet relief passage and the relief deposit passage is prevented, and an open position, in which communication between the outlet relief passage and the relief deposit passage is provided, the oil pump assembly further comprising a control valve for controlling the relief valve, characterised in that it comprises a control passage providing a communication between the outlet and the control valve via the valve chamber.

The pumping device can be provided in any suitable form, for example as a gear pump, a gerotor pump or a rotary vane pump. As understood, the pump body outlet allows oil pumped by the pumping device out of the pump body, e.g. to an oil filter before proceeding to lubricated engine devices and an oil sump. As also understood, the inlet of the pump body can allow oil to the pumping device, e.g. from the oil sump. It should be noted that in the closed position, the plunger might block the outlet relief passage and/or the relief deposit passage. Also, in the open position, the outlet relief passage and the relief deposit passage may be exposed to the valve chamber.

Thus, the invention provides for a control passage providing a communication between the outlet and the control valve via the valve chamber. The control passage extending via the valve chamber of the relief valve provides in a simple manner the possibility of using the pressure in the pump outlet to adjust the actuation of the plunger and thereby control the relief valve. Compared to known art this provides a simplified and more durable relief valve control arrangement with fewer parts. Thus an effective oil pump output pressure control is provided with only a small increase of the complexity of the lubrication system. Further the invention can be implemented on a traditional oil pump of any sort, so that a simple and durable pump can be used.

Preferably, the control valve is configured to communicate, e.g. via a control pressure deposit passage, with a control pressure deposit location, whereby the control valve is arranged to control a communication between the outlet and the control pressure deposit location via the valve chamber. Preferably, the control pressure deposit location is provided in the inlet.

Thereby, oil used for control of the relief valve will be transported back to the inlet of the oil pump, which reduces the energy consumed by the pump. Alternatively, the control pressure deposit location can be provided in an oil sump of the lubrication system.

In some embodiments, the outlet relief passage and the control passage are configured to communicate with the valve chamber on opposite sides of the plunger. This means that a pressure in the outlet can be, when the control valve prevents communication between the valve chamber and the control pressure deposit location, distributed to one side of the plunger via the outlet relief passage and to the opposite side of the plunger via the control passage. The interface between the valve chamber and the relief deposit passage can be provided laterally to the direction of movement of the plunger. For example, where the valve chamber is cylindrical, the interface between the valve chamber and the relief deposit passage can be provided in the cylindrical surface of the valve chamber. Thereby, in the closed position the plunger can block the relief deposit passage. Further, the interface between the valve chamber and the outlet relief passage can be provided in an end portion of the valve chamber. Thereby, the relief valve is arranged so that a pressure via the outlet relief passage can exert an opening force on the plunger towards the open position thereof. In the open position the relief deposit passage can be exposed to the valve chamber.

In some embodiments, the relief valve is configured so that the plunger can be urged from the closed position to the open position by pressure in the control passage. Thereby, the control passage can present an outlet control passage portion connecting the outlet with the valve chamber. The interface between the valve chamber and the outlet control passage portion can be provided in an end portion of the valve chamber. Thereby, the plunger is configured to be urged from the closed position to the open position by pressure in the outlet control passage portion.

The control passage can be configured to communicate with the valve chamber on opposite sides of the plunger. Thereby, when the control valve prevents communication between the outlet and the control pressure deposit location, the outlet pressure will be provided on both sides of the plunger by the control passage, when the plunger is in the closed position. On the other hand, when the control valve allows communication between the outlet and the control pressure deposit location, and the pressure in the control pressure deposit location is lower than in the outlet, the pressure will fall at a side of the plunger which is then in

communication with the control pressure deposit location. Thereby a pressure difference will occur across the plunger so that it is moved towards the open position.

In some embodiments, the relief valve is arranged so that a communication is provided in the valve chamber between opposite sides of the plunger. Thereby, a portion of the control passage can be provided in the valve chamber and provide a communication between opposite sides of the plunger. This provides for other portion of the control passage to communicate with the valve chamber on opposite sides of the plunger, as suggested above. Thus, in such embodiments, at least a part of the communication provided by the control passage between the outlet and the control valve, is provided in the valve chamber between opposite sides of the plunger.

The communication in the valve chamber between opposite sides of the plunger can be provided by a bore in the plunger. For example, where the plunger has a cylindrical external surface, the bore could be centrally located in the plunger and straight in the direction of movement of the plunger between the closed and open positions. Alternative arrangements are possible for providing the communication in the valve chamber between opposite sides of the plunger. For example, a groove could be provided in the external surface of the plunger or in the surface of the valve cavity. In some embodiments, the outlet relief passage is provided by the control passage. Thereby, the outlet relief passage and the control passage can be provided together in a joint conduit, which simplifies the design of the oil pump assembly. The interface between the valve chamber and the combined outlet relief passage and control passage is advantageously provided in an end portion of the valve chamber.

In some embodiments, the plunger presents a recessed portion between two end portions of the plunger, so as to provide with the valve chamber an intermediate space between the end portions. The two end portions is preferably aligned in the direction of movement between the open and closed positions. Where the relief valve is configured so that the plunger can be urged from the closed position to the open position by pressure in the control passage, the interface between the valve chamber and the outlet relief passage can, similarly to the interface between the valve chamber and the relief deposit passage, be provided laterally to the direction of movement of the plunger. For example, where the valve chamber is cylindrical, the interface between the valve chamber and the outlet relief passage, as well as the interface between the valve chamber and the relief deposit passage, can be provided in the cylindrical surface of the valve chamber. Thereby, the relief valve may be configured so that in the closed position, the plunger blocks, with one or both of the end portions, the outlet relief passage and/or the relief deposit passage, and in the open position, the outlet relief passage and the relief deposit passage may be exposed to the intermediate space.

Preferably, the relief valve comprises an elastic element, which may be provided as a spring. The elastic element can be configured to exert a closing force on the plunger towards the closed position. Thereby, the plunger is biased by the elastic element towards the closed position. The relief valve can be arranged so that a pressure via the outlet relief passage and/or the outlet control passage portion can exert an opening force against the closing force of the elastic element, (the outlet control passage portion being a part of the control passage connecting the outlet with the valve chamber). Thereby, said pressure can tend to move the plunger towards the open position. For example, the elastic element and an interface between the valve chamber and the outlet control passage portion and/or the outlet relief passage can be located on opposite sides of the plunger.

Preferably, the plunger is configured to delimit a subspace of the valve chamber, in which subspace the elastic element is located. It is understood that the size of the subspace varies due to plunger movement. Preferably, where the control valve is configured to communicate with a control pressure deposit location, the control valve is arranged to control a

communication between the outlet and the control pressure deposit location via the subspace. The control passage extending via the relief valve subspace, which is delimited by the plunger, and in which the elastic element is located, provides an effective and simple manner of using the pressure difference between the pump outlet and the control pressure deposit location to adjust the actuation of the plunger and thereby control the relief valve. As stated, the control pressure deposit location is advantageously provided in the pump inlet. When the control valve is controlled so as to isolate the control pressure deposit location from the subspace, the pressure in the subspace will be that of the outlet. As a result, the pressure on both sides of the plunger will be equal, and when there is an over-pressure in the outlet, this will assist the elastic element in urging the plunger to the closed position. By selective control by the control valve, the control passage can provide the communication between the outlet and the control pressure deposit location via the subspace. This will decrease the pressure in the subspace, and as a result, the opening force from the outlet pressure can move the plunger against the closing force of the spring towards the open position.

Where the elastic element is provided in the form of a spring, with a given spring strength, it is possible to regulate the relief valve with a higher pressure than in said fig. 4 solution in US6488479. This is because the pump outlet pressure acts on the spring side of the relief valve plunger when the control valve is closed. To accomplish this in said solution in

US6488479, the spring has to be increased, which will require that the energy needed to regulate a reduction of the pressure of the pump outlet needs to be increased.

Preferably, the control valve is not arranged to isolate the outlet from the valve chamber. Thus, where the control passage presents an outlet control passage portion connecting the outlet with the valve chamber, preferably the control valve is not located along the outlet control passage portion. Preferably, the relief deposit location is provided in the inlet. Thereby, the recirculated oil will be transported back to the inlet of the oil pump, which substantially reduces the energy consumed by the pump. It should be noted however that the invention is applicable to lubrication systems where the relief deposit location is provided elsewhere, for example in the oil sump.

Preferably, the control valve is a proportional valve. This further simplifies and increases the reliability of the solution for controlling the relief valve.

Preferably, the control valve is spatially located externally of the pump body the control valve. In many lubrication systems the oil pump is located in or at the oil sump, which can provide a harsh environment with high temperatures, oil mist, etc. When locating the control valve externally of the pump body, or even remotely from the pump body, the pump body can be located in or at the oil sump, and the control valve can be located externally of the oil sump. This makes it possible to provide a location for the control valve at which it is not subjected to the environment of the oil sump. In turn, this makes it possible to use a valve without consideration for it having to withstand said environment, which simplifies and reduces the cost for the assembly.

It should be noted that the relief valve is preferably located in the pump body. However, alternatively, the relief valve can be located externally of the pump body.

The object is also reached with an internal combustion engine system comprising an internal combustion engine and an oil pump assembly according to any embodiment of the invention, wherein the control valve is mounted externally on a vehicle engine comprising lubricated devices served by the oil pump assembly. This makes it possible to provide the control valve at a location in which it is easy to access, for example for service or replacement. The object is also reached with a method of controlling an oil pump assembly according to any embodiment of the invention, comprising determining a value of a lubrication parameter indicative of the operation of the vehicle lubrication system, and controlling, at least partly based on the determined lubrication parameter value, the control valve so as to control the communication between the outlet and the control pressure deposit location via the subspace. The object is also reached with a computer program comprising program code means for performing the steps of said method of controlling an oil pump assembly when said program is run on a computer. The object is further reached with a computer readable medium carrying a computer program comprising program code means for performing the steps of said method of controlling an oil pump assembly when said program product is run on a computer. In addition, the object is reached with a controller being configured to perform the steps of said method of controlling an oil pump assembly. DESCRIPTION OF DRAWINGS

Below embodiments of the invention will be described with reference to the drawings in which

- fig. 1 shows a vehicle with an oil pump assembly according to an embodiment of the invention,

- fig. 2 is a partly sectioned side view of an internal combustion engine system in the vehicle in fig. 1, with some hidden parts indicated with broken lines,

- fig. 3 shows the oil pump assembly and devices with which it is adapted to interact with,

- fig. 4 shows the oil pump assembly in fig. 3 with a shifted position of a control valve therein,

- fig. 5 depicts steps in an embodiment of a method according to the invention, and

- fig. 6 shows an oil pump assembly according to an alternative embodiment of the invention, and devices with which it is adapted to interact with

- fig. 7 and fig. 8 show a further embodiment of an oil pump assembly, and devices with which it is adapted to interact with,

- fig. 9 and fig. 10 show additional embodiments of oil pump assemblies, and devices with which they are adapted to interact with,

- fig. 11 shows a perspective view of parts of the internal combustion engine system in fig. 2,

- fig. 12 shows a partial cross-section of the parts in fig. 11, with the section oriented in a plane indicated with the broken lines XII-XII in fig. 11 ,

- fig. 13 shows a perspective view from above of an oil sump and parts of an oil pump assembly according to yet another embodiment of the invention, and fig. 14 is a perspective sectioned view of a part shown in fig. 13.

DETAILED DESCRIPTION Fig. 1 shows a vehicle in the form of a truck comprising a lubrication system described below. As can be seen in fig. 2, an internal combustion engine system of the vehicle comprises an internal combustion engine 1 and a lubrication system with an oil sump 201 located at the lower part of the engine 1. An oil pump assembly for the lubrication system comprises an oil pump 33, located in the oil sump 201, and a control valve 4, closer described below. The oil pump 33 is arranged to receive oil from the oil sump via a distribution conduit 205, and to supply oil via a supply conduit 202 and an oil filter 203 to lubricated devices 101 of the engine 1, such as bearings at a crankshaft and camshafts of the engine. From the lubricated devices 101 the oil is returned to the oil sump 201 as indicated by the arrows A. The oil pump 33 is configured to be driven by the crankshaft via a gear arrangement 331.

As described closer below, the control valve 4 is mounted to the exterior of the engine 1, relatively far up along the engine, so that it can be easily accessed for service or replacement. As also described closer below, a control passage 401 and a control pressure deposit passage 402 connects the oil pump body and the control valve 4.

Reference is made to fig. 3. The oil pump 33 comprises a pump body 3 houses a pumping device 301. The pump body 3 presents an outlet 302 leading from the pumping device, and an inlet 303 leading to the pumping device. The pumping device 301 can be a gear pump, a gerotor pump, a rotary vane pump, or of any other suitable pump type. The distribution conduit 205 provides oil from the oil sump 201 to the inlet 303. The outlet 302 guides oil to the supply conduit 202, which as stated leads via the oil filter 203, to the lubricated devices 101 of the engine 1. From the lubricated devices 101 one or more return conduits 204 may guide the oil to the oil sump 201. The oil pump assembly further comprising a relief valve 5 hosed in the pump body 3. The relief valve 5 presents a valve chamber 501 arranged to communicate via an outlet relief passage 502 with the outlet 302. The valve chamber 501 is also arranged to communicate via a relief deposit passage 503 with a relief deposit location 504 in the inlet 303. The relief valve 5 further comprises a plunger 505 located in the valve chamber 501, the plunger 505 being movable between a closed position and an open position. The valve chamber 501 and the plunger 505 have cylindrical shapes. In the closed position of the plunger 505, shown in fig. 3, communication between the outlet relief passage 502 and the relief deposit passage 503 is prevented. In the open position, the plunger 505 is moved to the right as illustrated in fig. 4, and communication between the outlet relief passage 502 and the relief deposit passage 503 is provided.

The plunger 505 delimits a subspace 506 of the valve chamber 501. In the subspace an elastic element in the form of a compression helical spring 507 is located. The spring 507 exerts a closing force on the plunger 505 towards the closed position. The relief valve 5 is arranged so that a pressure in the outlet relief passage 502 can exert an opening force against the closing force of the spring. The control passage 401 provides a communication between the outlet 302 and the control valve 4 via the subspace 506. Further, the control valve 4 communicates with a control pressure deposit location 508, in this embodiments provided in the inlet 303. Thus, the control valve 4 is arranged to control a communication between the outlet 302 and the inlet 303 via the subspace 506. In this embodiment, the control valve 4 is provided in the form of a proportional valve 4. It should be noted that the control valve 4 is not located along an outlet control passage portion 401a of the control passage 401, connecting the outlet 302 with the subspace 506.

The engine comprises an electronic control unit 6 arranged to control various actuators in the engine based on inputs, e.g. from sensors, on various operation parameters, such as the engine speed and the engine load. In the supply conduit 202 of the lubrication system, there is an oil temperature sensor and an oil pressure sensor, commonly indicated in fig. 3 with the reference numeral 601. As understood, the oil temperature and the oil pressure are lubrication parameters indicative of the operation of the vehicle lubrication system. As indicated with the broken line 602, the control unit 6 receives from the temperature and pressure sensors 601 values of the oil temperature and pressure. Based at least partly on these values, the control unit 6 controls, as indicated with the broken line 603, the control valve 4 so as to control the communication between the outlet 302 and the inlet 303 via the subspace 506. In fig. 3 the control valve 4 in a position in which communication between the control passage 401 and the control pressure deposit passage 402 is blocked. This means that the pressure in the subspace 506 is equal to that of the outlet. As a result, the pressure on both sides of the plunger 505 is equal, and when there is an over-pressure in the outlet 302, the spring will add an extra force to the plunger 505 towards the closed position.

In fig. 4 the control unit 6 has controlled the control valve 4 so that it is shifted in a position in which communication between the control passage 401 and the control pressure deposit passage 402 is allowed. It is understood that in the closed position the plunger blocks the relief deposit passage 503, while in the open position the relief deposit passage 503 is exposed to the valve chamber 501. This control action of the control unit 6 of shifting the control valve position may have been done upon a determined value of a lubrication parameter passing a threshold value; for example, the oil pressure sensed by the sensor 601 might be above a threshold value for the oil pressure.

As can be seen in fig. 4, since communication between the control passage 401 and the control pressure deposit passage 402, and thereby communication between the outlet 302 and the inlet 303 via the subspace 506 is allowed, the pressure in the subspace 506 is decreased, and as a result, the opening force from the outlet pressure in the outlet relief passage 502 moves the plunger 505 against the closing force of the spring 507 towards the open position. It can be seen that the size of the subspace 506 varies due to plunger movement.

In other words, when the outlet 302 has a higher pressure than the inlet 303, opening with the control valve 4 the connection between the subspace 506 and the inlet 303 will provide a pressure difference across the plunger 505, which will urge it to move to the open position.

Fig. 5 depicts an example of a method according to the invention. In step SI it is determined whether the oil pressure is above a threshold value. If the oil pressure is below the threshold value, the control valve 4 is left in a position in which it prevents communication between outlet 302 and the control pressure deposit location 508 via the subspace 506. If on the other hand the oil pressure is above the threshold value, the control valve 4 is shifted, S2, to a position in which it provides communication between outlet 302 and the control pressure deposit location 508 via the subspace 506. Fig. 6 shows an alternative embodiment in which the control pressure deposit location 508 is provided in the oil sump 201. Thus, the control pressure deposit passage 402 provides a communication between the control valve 4 and the oil sump 201. Thereby, the control valve 4 controls the communication between the outlet 302 and the oil sump 201. When the outlet 302 has a higher pressure than the oil sump 201, opening with the control valve 4 the connection between the subspace 506 and the oil sump 201 will provide a pressure difference across the plunger 505, which will urge it to move to the open position.

Fig. 7 shows an oil pump assembly according to a further embodiment of the invention. In this embodiment, the relief valve 5 is arranged so that a communication is provided in the valve chamber 501 between opposite sides of the plunger 505. Said the communication is provided by a bore 401b in the plunger 505. The plunger 505 has a cylindrical external surface, and the bore 401b is provided centrally and straight in the direction of movement of the plunger 505 between the closed and open positions.

Further, the control passage 401 presents an outlet control passage portion 401a connecting the outlet 302 with the valve chamber 501, on a side of the plunger 505 which is opposite to the subspace 506. When the control valve 4 blocks the communication between the subspace 506 and the inlet 303, the outlet pressure is provided to the subspace via the bore 401b, and therefore the pressure is equal on both sides of the plunger 505, assisting the spring 507 in keeping the plunger in the closed position.

The plunger 505 presents a recessed portion 505a between two end portions 505b of the plunger. In the recessed portion 505a the plunger is narrowed, and provides with the valve chamber 501 an intermediate space 509 between the end portions. As can be seen in fig. 7, in the closed position the plunger 505 blocks, with one of the end portions 505b, the relief deposit passage 503. However, it can also be seen that the outlet relief passage 502 communicates with the intermediate space 509 in the closed position of the plunger 505. Fig. 8 shows the oil pump assembly in fig. 7 when the control valve 4 is shifted so as to allow communication between the subspace 506 and the inlet 303. If the pressure in the inlet 303 is lower than in the outlet 302, the pressure in the subspace 506 will decrease upon said control valve shift, and the plunger 505 is urged from the closed position to the open position by pressure in the outlet control passage portion 401a. In the open position, the outlet relief passage 502 and the relief deposit passage 503 are both exposed to the intermediate space 509, and thereby, communication is allowed between them.

Fig. 9 shows an embodiment where the outlet control passage 401 is configured to

communicate with the valve chamber 501 on opposite sides of the plunger 505. More specifically, the control passage 401 presents an outlet control passage portion 401a connecting the outlet 302 with the subspace 506. The control passage 401 also presents an outlet control passage branch 401c which is parallel to the outlet control passage portion 401a. The outlet control passage branch 401c connects the outlet 302 with the valve chamber on the side of the plunger 505 which is opposite to the subspace 506.

As in the example in fig. 7 and fig. 8, the plunger 505 presents a recessed portion 505a between two end portions 505b, thus providing with the valve chamber 501 an intermediate space 509 between the end portions. In the closed position the plunger 505 blocks, with one of the end portions 505b, the relief deposit passage 503, but in the open position, the outlet relief passage 502 and the relief deposit passage 503 are both exposed to the intermediate space 509 so that communication is allowed between them.

When the control valve 4 in fig. 9 blocks the communication between the subspace 506 and the inlet 303, the outlet pressure is provided to the subspace via the outlet control passage portion 401a, and therefore the pressure is equal on both sides of the plunger 505, assisting the spring 507 in keeping the plunger in the closed position. When the control valve 4 is shifted so as to allow communication between the subspace 506 and the inlet 303, if the pressure in the inlet 303 is lower than in the outlet 302, the pressure in the subspace 506 will decrease upon said control valve shift, and the plunger 505 is urged from the closed position to the open position by pressure in the outlet control passage branch 401c.

Fig. 10 shows an embodiment where the outlet relief passage 502 is provided by the control passage 401. In other words, the outlet relief passage 502 and the control passage 401 share the same conduit. Similarly to the embodiment in fig. 7, a bore 401b in the plunger 505 provides communication between opposite sides of the plunger 505. When the control valve 4 blocks the communication between the subspace 506 and the inlet 303, the outlet pressure is provided to the subspace via the bore 401b, and therefore the pressure is equal on both sides of the plunger 505, assisting the spring 507 in keeping the plunger in the closed position. Thereby, the plunger 505 blocks the relief deposit passage 503.

When the control valve 4 in fig. 10 is shifted so as to allow communication between the subspace 506 and the inlet 303, if the pressure in the inlet 303 is lower than in the outlet 302, the pressure in the subspace 506 will decrease upon said control valve shift, and the plunger 505 is urged from the closed position to the open position by pressure in the combined outlet relief passage 502 and control passage 401. In the open position, the relief deposit passage 503 is exposed to the valve chamber 501, and thereby communication is allowed between the relief deposit passage 503 and the combined outlet relief passage 502 and control passage 401.

A particular embodiment of the invention is indicated in fig. 2, fig. 11 and fig. 12. In fig. 11, a part of an engine block 102 of the internal combustion engine in fig. 2. The oil pump 33, located in the oil sump 201, (not shown in fig. 11), is mounted to a bottom side of the engine block 102. Fig. 11 also shows a part of the gear arrangement 331, via which the oil pump 33 is driven by the crankshaft, which protrudes through an opening 103 in a vertical face of the engine block 102. Fig. 11 also shows the control valve 4 of the oil pump assembly, located remotely from the oil pump 33, and mounted to the exterior of the engine block 102. As suggested in this location it can be easily accessed for service or replacement.

In fig. 12 the control valve 4, provided as a proportional valve, is shown in a sectioned view. A part of the connection 603 to the control unit 6, (see e.g. fig. 3), of the control valve 4 is shown. Also, the control passage 401 and the control pressure deposit passage 402 are provided as conduits in the engine block 102, and ends of these conduits are shown in fig. 12.

Fig. 13 illustrates an alternative location of the control valve 4, mounted externally on the oil sump 201. The pump body of the oil pump, containing outlet 302, the inlet 303 and the relief valve 5, is shown. The part of the control passage 401 connecting the relief valve 5 with the control valve 4 is also shown. In this embodiment, similarly to the as shown in fig. 6, the control pressure deposit location 508 is provided in the oil sump 201. Thus, the control pressure deposit passage 402 provides a communication between the control valve 4 and the oil sump 201. Fig. 14 is a sectioned view of the pump body shown in fig. 13. The relief valve 5 works with the same principle as the one described above with reference to fig. 7 and fig. 8. Thus, the relief valve 5 is arranged so that a communication in the valve chamber 501 between opposite sides of the plunger 505 is provided by a bore 401b in the plunger 505. Further, an outlet control passage portion 401a connects the outlet 302 with the valve chamber 501, on a side of the plunger 505 which is opposite to the subspace 506. When the control valve 4 blocks the communication between the subspace 506 and the oil sump 201 (fig. 13), the outlet pressure is provided to the subspace via the bore 401b, and therefore the pressure is equal on both sides of the plunger 505, assisting the spring 507 in keeping the plunger in the closed position.

As in fig. 7, the plunger 505 presents a recessed, narrowed portion 505a between two end portions of the plunger, providing with the valve chamber 501 an intermediate space between the end portions. In the closed position the plunger 505 blocks, with one of the end portions 505b, the relief deposit passage 503. When the control valve 4 is shifted so as to allow communication between the subspace 506 and the oil sump 201, if the pressure in the oil sump 201 is lower than in the outlet 302, the pressure in the subspace 506 will decrease upon said control valve shift, and the plunger 505 is urged from the closed position to the open position by pressure in the outlet control passage portion 401a. In the open position, the outlet relief passage 502 and the relief deposit passage 503 are both exposed to the intermediate space provided by the narrowed portion 505a of the plunger, and thereby, communication is allowed between them.