Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OPHTHALMOLOGICAL LASER SYSTEM AND OPERATING METHOD
Document Type and Number:
WIPO Patent Application WO/2009/146906
Kind Code:
A2
Abstract:
It is known for the analysis of the eye lens, particularly in case of presbyopia, to couple the detection optical path into the processing optical path by means of a beam splitter in order to detect the laser light scattered back in the eye lens. Said detection is inaccurate, since the intensity of the light scattered back in the eye lens is very low due to the inherent properties of the eye lens. The invention seeks to enable the detection of the light scattered back in the eye lens at a higher level of accuracy. The use of a polarization beam splitter that selectively decouples the detection light onto the detector such that the same has a polarization direction that differs from the emitted illumination light, enables the detection of the light scattered back in the eye lens at a high level of accuracy, since stray light from reflections at optical components of the light path is suppressed. In the generating of photo disruptions or other incisions, the ray exposure of the retina may be reduced in that the incisions being furthest away from the laser are induced first such that laminar gas inclusions with an exposure time of at least 5 seconds result. In this manner the laser radiation propagated in the direction of the retina in further incisions are scattered and partially reflected such that the influence impinging upon the retina is reduced.

Inventors:
REICH MATTHIAS (DE)
GREBNER DIETER (DE)
KOCH ANDREAS (DE)
LEDERMANN JUERGEN (DE)
DICK MANFRED (DE)
HANFT MARCO (DE)
Application Number:
PCT/EP2009/003980
Publication Date:
December 10, 2009
Filing Date:
June 04, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ZEISS CARL MEDITEC AG (DE)
REICH MATTHIAS (DE)
GREBNER DIETER (DE)
KOCH ANDREAS (DE)
LEDERMANN JUERGEN (DE)
DICK MANFRED (DE)
HANFT MARCO (DE)
International Classes:
A61F9/008; A61B3/117
Domestic Patent References:
WO2008017428A22008-02-14
WO2003070090A22003-08-28
WO1999044491A11999-09-10
Foreign References:
EP0983757A22000-03-08
Attorney, Agent or Firm:
BECK, BERNARD (DE)
Download PDF:
Claims:

Patentansprüche

1. Ophthalmologisches Lasersystem (1 ), insbesondere zur Diagnose der Augenlinse (2) und/oder Therapie einer Presbyopie, mit einem Laser (4), dessen Strahlung als Beleuchtungslicht über einen Beleuchtungsstrahlengang (B), der einen Strahlteiler (5), eine Scannereinheit (7) und eine Fokussieroptik (8) aufweist, in einem Untersuchungsbereich fokussierbar ist, wobei Strahlung, die den Strahlteiler (5) aus Richtung des Untersuchungsbereichs erreicht, durch eine konfokale Aperturblende (11 ) als Detektionslicht auf einen Detektor (12) gelangt, dadurch gekennzeichnet, dass der Strahlteiler (5) ein Polarisationsstrahlteiler ist, der das Detektionslicht selektiv so auf den Detektor (12) auskoppelt, dass es eine von dem emittierten Beleuchtungslicht verschiedene Polarisationsrichtung aufweist.

2. Ophthalmologisches Lasersystem (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass im Beleuchtungsstrahlengang (B) zwischen der Fokussieroptik (8) und dem Untersuchungsbereich ein optisches Phasenverzögerungssystem (9) so angeordnet ist, dass das hindurchfallende Beleuchtungslicht eine mit dem ausgekoppelten Detektionslicht korrespondierende Polarisationsrichtung erhält.

3. Ophthalmologisches Lasersystem (1) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Steuereinheit (14), welche folgende Schritte ausführt:

- Bestrahlen einer im Untersuchungsbereich angeordneten Augenlinse (2) mittels des Lasers (4) bei einer Beleuchtungs-Laserleistung und Aufnehmen von Detektionslicht mittels des Detektors (12), wobei die Steuereinheit (14) die Augenlinse (2) dreidimensional abtastet, indem sie an mehreren Punkten bestrahlt und Detektionslicht aufnimmt

- Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse (2) anhand des Detektionslichtes.

4. Ophthalmologisches Lasersystem (1) nach Anspruch 3, dadurch gekennzeichnet, dass die Steuereinheit (14) von aufgenommenem Detektionslicht einen Dunkelfeldwert abzieht.

5. Ophthalmologisches Lasersystem (1 ) nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Steuereinheit (14) zum Ermitteln von Form und/oder Lage der Augenlinse (2) Grenzflächen der Linse (2) identifiziert.

6. Ophthalmologisches Lasersystem (1 ) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass die Strahlung des Lasers (4) neben der Beleuchtungs- Laserleistung auf eine chirurgische Therapie-Laserleistung einstellbar ist.

7. Ophthalmologisches Lasersystem (1 ) nach Anspruch 6, dadurch gekennzeichnet, dass die Steuereinheit (14) nach dem Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse (2) folgende Schritte ausführt:

- Ermitteln von Bestrahlungssteuerdaten für eine chirurgische Therapie, wobei die Steuereinheit (14) ein Grundmuster der Augenlinse (2) an die ermittelte Form und/oder Lage der Augenlinse (2) anpasst

- Bestrahlen der Augenlinse (2) bei einer chirurgischen Therapie-Laserleistung gemäß den ermittelten Bestrahlungssteuerdaten.

8. Ophthalmologisches Lasersystem (1 ), insbesondere nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinheit (14) zum Bestrahlen mit Therapie- Laserleistung eine Pulsenergie von maximal 0,5 μJ einstellt.

9. Ophthalmologisches Lasersystem (1 ), insbesondere nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Steuereinheit (14) die Bestrahlungssteuerdaten so ermittelt, dass eine am weitesten vom Laser (4) entfernte Inzision zuerst induziert wird, wobei diese Inzision so induziert wird, dass flächenhafte Gaseinschlüsse mit einer Verweildauer von mindestens

5 Sekunden resultieren.

10. Ophthalmologisches Lasersystem (1 ) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinheit (14) ein die Augenlinse (2) enthaltendes Auge (3) vor dem Bestrahlen mit Beleuchtungs- Laserleistung mittels einer Fixiervorrichtung (17) fixiert und nach dem Ermitteln

von Form und/oder Struktur und/oder Lage der Augenlinse (2) oder nach einem chirurgischen Therapieren die Fixierung des Auges (3) löst.

11. Ophthalmologisches Lasersystem (1 ) nach einem der vorhergehenden Ansprüche, gekennzeichnet durch einen mit dem Laser (4) gekoppelten Lock-In- Verstärker (13) für den Detektor (12).

12. Ophthalmologisches Lasersystem (1 ) zur Presbyopietherapie einer Augenlinse (2) mittels eines gepulsten Lasers (4), insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass seine optischen Komponenten eine Eigendispersion von intraokularen Medien bezüglich der Pulslängenänderung und eine eigenfokussierende Wirkung einer Gradientenlinsenstruktur der Augenlinse (2) vorkompensieren.

13. Betriebsverfahren für ein ophthalmologisches Lasersystem (1), dessen Laser (4) zwischen einer Beleuchtungs-Laserleistung und einer Therapie-Laserleistung umschaltbar ist und dessen Laserlicht dreidimensional variabel in einer Augenlinse (2) fokussierbar ist, insbesondere nach einem der vorhergehenden Ansprüche, wobei folgende Schritte durchgeführt werden:

- Fixieren eines die Augenlinse (2) enthaltenden Auges (3) mittels einer Fixiervorrichtung (17),

- Bestrahlen einer im Untersuchungsbereich angeordneten Augenlinse (2) mittels des Lasers (4) bei einer Beleuchtungs-Laserleistung und Aufnehmen von Detektionslicht mittels des Detektors (12), wobei die Augenlinse (2) dreidimensional abtastet wird, indem an mehreren Punkten der Augenlinse (2) bestrahlt und Detektionslicht aufgenommen wird,

- Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse (2) anhand des Detektionslichtes an den Abtastpunkten (P),

- Ermitteln von Bestrahlungssteuerdaten für eine chirurgische Therapie, wobei ein Grundmuster der Augenlinse (2) an die ermittelte Form und/oder Lage der Augenlinse (2) anpasst wird,

- Bestrahlen der Augenlinse (2) mittels des Lasers (4) bei einer chirurgischen Therapie-Laserleistung gemäß den ermittelten Bestrahlungssteuerdaten und

- Lösen der Fixierung des Auges (3).

14. Betriebsverfahren nach Anspruch 13, wobei zwei aufeinanderfolgende Abtastpunkte (P) sich in allen drei Raumkoordinaten unterscheiden.

15. Betriebsverfahren nach Anspruch 13 oder 14, wobei eine Pulsfrequenz des Laserlichts in Abhängigkeit der Bewegungsgeschwindigkeit eines Fokuspunkts des Laserstrahls relativ zur Augenlinse (2) eingestellt wird.

16. Betriebsverfahren nach einem der vorhergehenden Verfahrensansprüche, wobei von aufgenommenem Detektionslicht einen Dunkelfeldwert abgezogen wird.

17. Betriebsverfahren nach einem der vorhergehenden Verfahrensansprüche, wobei zum Ermitteln von Form und/oder Lage der Augenlinse (2) Grenzflächen der Linse (2) identifiziert werden.

18. Betriebsverfahren nach Anspruch 17, wobei die Grenzflächen identifiziert werden, indem ein Anstieg einer Intensität des Detektionslichtes zwischen einer ersten Fokustiefe und einer zweiten Fokustiefe und ein Abfall der Intensität des Detektionslichtes zwischen einer dritten Fokustiefe und einer vierten Fokustiefe ermittelt werden.

19. Betriebsverfahren für ein ophthalmologisches Lasersystem (1), insbesondere nach einem der vorhergehenden Verfahrensansprüche, wobei zum Bestrahlen mit Therapie-Laserleistung eine Pulsenergie von maximal 0,5 μJ verwendet wird.

20. Betriebsverfahren für ein ophthalmologisches Lasersystem zur Presbyopietherapie, insbesondere nach einem der vorhergehenden Verfahrensansprüche, wobei die Bestrahlungssteuerdaten so ermittelt werden, dass eine am weitesten vom Laser entfernte Inzision zuerst induziert wird, wobei diese Inzision so induziert wird, dass flächenhafte Gaseinschlüsse mit einer Verweildauer von mindestens 5 Sekunden resultieren.

21. Verwendung eines ophthalmologisches Lasersystems (1 ) nach einem der Ansprüche 1 bis 12 zur Diagnose und/oder refraktiver Chirurgie der Kornea

und/oder zur Diagnose und/oder anschließenden Therapie im Rahmen einer Korneatransplantation und/oder zur Korrekturbehandlung und/oder Nachbehandlung einer refraktiven Chirurgiebehandlung.

Description:

Ophthalmoloαisches Lasersvstem und Betriebsverfahren

Die Erfindung betrifft ein ophthalmologisches Lasersystem, insbesondere zur Analyse und/oder Therapie einer Presbyopie, mit einem Laser, dessen Strahlung als Beleuchtungslicht über einen Beleuchtungsstrahlengang, der einen Strahlteiler, eine Scannereinheit und eine Fokussieroptik aufweist, in einem Untersuchungsbereich fokussierbar ist, wobei Strahlung, die den Strahlteiler aus Richtung des Untersuchungsbereichs erreicht, durch eine konfokale Aperturblende als Detektionslicht auf einen Detektor gelangt. Die Erfindung betrifft darüber hinaus ein Betriebsverfahren für ein ophthalmologisches Lasersystem.

Die Akkommodation ist die Fähigkeit des Auges, ein in beliebiger Entfernung befindliches Objekt auf der Netzhaut scharf abzubilden. Die dabei erforderliche Einstellung des Brechwerts des optischen Systems erfolgt im wesentlichen durch die elastische Verformung der Linse. Die maximal mögliche Brechkraftänderung wird als Akkommodationsbreite bezeichnet. Sie kann bis zu 16 dpt betragen und nimmt mit zunehmendem Alter ab.

Die Presbyopie oder Alterssichtigkeit, also die reduzierte Akkomodationsbreite der Augenlinse, entsteht durch eine Verhärtung und/oder Verdickung der Augenlinse mit zunehmendem Lebensalter. Als presbyop wird eine Augenlinse typischerweise bezeichnet, wenn ihre Akkommodationsbreite unter 3 dpt absinkt. Die Presbyopie ist kein pathologischer Prozess sondern eine natürliche Alterserscheinung, die ab dem 40. Lebensjahr beginnt.

In der Ophthalmologie ist vorgeschlagen worden, eine erhärtete Linse durch geeignete Schnitte oder Blasenfelder mittels einer refraktiv-chirurgischen Therapie, insbesondere durch Photodisruption oder andere Inzisionen, wieder in einen Zustand der besseren Verformbarkeit zu versetzen. Damit soll die Akkomodationsfähigkeit der Linse teilweise regeneriert werden.

Im Stand der Technik wurden bereits ophthalmologische Lasersysteme für die Presbyopietherapie beschrieben. Beispielsweise offenbart WO 2008/017428 A2 eine Navigationsvorrichtung zur optischen Analyse und Bearbeitung der inneren Struktur

der Augenlinse. Die Navigationsvorrichtung ist mit einer Detektionseinrichtung und einer Bearbeitungseinrichtung versehen, wobei die Detektionseinrichtung einen konfokalen Detektor und/oder einen konfokalen Laserscanner umfassen kann. Als Detektor wird ein Photovervielfacher (engl, „photomultiplier", PMT) oder eine Lawinenphotodiode (engl, „avalanche photodiode", APD) vorgeschlagen. Sowohl für die Analyse der inneren Struktur als auch für die Bearbeitung ist derselbe Laser vorgesehen, indem der Detektionsstrahlengang mittels eines Strahlteilers in den Bearbeitungsstrahlengang eingekoppelt ist. Dabei wird für die Analyse das in der Augenlinse rückgestreute Laserlicht detektiert, um die Position, Geometrie und Struktur der Augenlinse zu ermitteln. Anhand der detektierten inneren Struktur und der individuellen geometrischen Form der Augenlinse werden die bei der Bearbeitung zu erzeugenden Schnittgeometrien bestimmt. Zu diesem Zweck wird ein Grundmuster an die detektierte individuelle Geometrie angepasst.

Problematisch ist, dass die Intensität des in der Augenlinse rückgestreuten Lichts aufgrund der inhärenten Eigenschaften der Augenlinse - für eine hohe Abbildungsqualität muss die Streuung möglichst gering sein - sehr niedrig ist. Als Folge ist die Detektion mit relativ großen Fehlern behaftet.

Der Erfindung liegt die Aufgabe zugrunde, ein ophthalmologisches Lasersystem der eingangs genannten Art zu verbessern, so dass die Detektion des in der Augenlinse rückgestreuten Lichts mit höherer Genauigkeit möglich ist. Eine weitere Aufgabe der Erfindung ist es, die refraktiv-chirurgische Therapie der Augenlinse mit höherer Genauigkeit zu ermöglichen.

Die Aufgabe wird gelöst durch ein ophthalmologisches Lasersystem, welches die in Anspruch 1 angegebenen Merkmale aufweist, und durch ein Betriebsverfahren, welches die in Anspruch 13 angegebenen Merkmale aufweist.

Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.

Erfindungsgemäß ist vorgesehen, dass der Strahlteiler ein Polarisationsstrahlteiler ist, der das Detektionslicht selektiv so auf den Detektor auskoppelt, dass es eine von dem emittierten Beleuchtungslicht verschiedene Polarisationsrichtung aufweist. Ein

großer Teil des vom Untersuchungsbereich auf den Strahlteiler treffenden Lichts stammt aus Reflexionen an den optischen Komponenten des Strahlengangs, beispielsweise den Oberflächen der Fokussieroptik, und weist daher dieselbe Polarisationsrichtung auf wie das Beleuchtungslicht. Indem der Strahlteiler nur Licht einer davon verschiedenen Polarisationsrichtung als Detektionslicht zum Detektor leitet, wird solches Störlicht zurückgehalten. In der Augenlinse rückgestreutes Licht hingegen weist eine veränderte Polarisationsrichtung auf. Die Detektion des in der Augenlinse rückgestreuten Lichts ist dadurch mit im Vergleich zum Stand der Technik höherer Genauigkeit möglich.

Ein noch größere Signalstärke kann erzielt werden, indem im Beleuchtungsstrahlengang zwischen der Fokussieroptik und dem Untersuchungsbereich ein optisches Phasenverzögerungssystem so angeordnet ist, dass das hindurchfallende Beleuchtungslicht eine mit dem ausgekoppelten Detektionslicht korrespondierende Polarisationsrichtung erhält. Auf diese Weise hat das Störlicht dieselbe Polarisationsrichtung wie die den Laser verlassende Strahlung, während das im Phasenverzögerungssystem modifizierte Beleuchtungslicht, das die Augenlinse erreicht, eine definierte andere Polarisationsrichtung erhält. Durch die Selektion des Lichts dieser Polarisationsrichtung als Detektionslicht mittels des Polarisationsstrahlteilers wird nahezu ausschließlich solches Licht detektiert, das in der Augenlinse rückgestreut wurde. Störlicht, das aus Reflexionen an optischen Komponenten stammt, wird noch effektiver vom Detektor ferngehalten.

Vorzugsweise weist das Lasersystem eine Steuereinheit auf, welche eine im Untersuchungsbereich angeordnete Augenlinse mittels des Lasers bei einer Beleuchtungs-Laserleistung dreidimensional abtastet, indem sie sie an mehreren Punkten bestrahlt und mittels des Detektors an Detektionslicht von diesen Punkten aufnimmt und anschließend eine Form und/oder Struktur und/oder Lage der Augenlinse anhand des Detektionslichtes ermittelt. Dadurch kann die Form und/oder Struktur und/oder Lage der Augenlinse mit hoher Genauigkeit ermittelt werden.

Die Lage der Augenlinse umfasst im Sinne der Erfindung neben der Position der Linse auch ihre Orientierung im Raum. Die Information über die Orientierung kann auch in der Form der Augenlinse enthalten sein. Die Struktur beschreibt den inneren

Aufbau der Linse, beispielsweise Einschlüsse oder lokale Veränderungen, beispielsweise aus altersabhängigen Gewebemodifizierungen oder einer früheren Presbyopietherapie.

In einer bevorzugten Ausgestaltung zieht die Steuereinheit von aufgenommenem Detektionslicht einen Dunkelfeldwert ab. Es kann sich dabei um einen gemeinsamen Dunkelfeldwert für alle Abtastpunkte oder um mehrere, punktspezifische Dunkelfeldwerte handeln. Diese Ausgestaltung ermöglicht eine höhere Genauigkeit der Aufnahme des in der Augenlinse rückgestreuten Lichts.

Vorteilhafterweise identifiziert die Steuereinheit zum Ermitteln von Form und/oder Lage der Augenlinse eine oder beide Grenzflächen der Linse. Anhand des Abfalls der Rückstreuintensität zwischen der vorderen und der hinteren Grenzfläche können die Grenzflächen und damit die Form und/oder Lage der Linse mit hoher Genauigkeit festgestellt werden. Alternativ oder zusätzlich kann ein Bilderkennungsalgorithmus zur Identifikation verwendet werden. Auch ist es möglich, die Grenzflächen manuell durch Bedienpersonal festlegen zu lassen. Darüber hinaus können vorteilhafterweise Gewebestrukturen innerhalb der Linse identifiziert werden. Beispielsweise kann der Kernbereich (Nukleus) und/oder der Randbereich (Kortex) detektiert werden.

Die Grenzflächen werden vorzugsweise identifiziert, indem ein Anstieg einer Intensität des Detektionslichtes zwischen einer ersten Fokustiefe und einer zweiten Fokustiefe und ein Abfall der Intensität des Detektionslichtes zwischen einer dritten Fokustiefe und einer vierten Fokustiefe ermittelt werden. Die vordere und hintere Grenzfläche zeichnen sich dadurch aus, dass die Rückstreuung bei Fokussierung eines Abtastpunkts in der Grenzfläche signifikant höher ist als bei Fokussierung von Abtastpunkten außerhalb oder innerhalb der Linse. Die Grenzflächen sind daher durch Ermitteln eines Anstiegs und Abfalls der Intensität des Detektionslichtes mit geringem Aufwand zu identifizieren.

In einer besonderen Ausführungsform ist die Strahlung des Lasers neben der Beleuchtungs-Laserleistung auf eine refraktiv-chirurgische Therapie-Laserleistung einstellbar. Dadurch ist derselbe Laser sowohl für die Beleuchtung bei der Ermittlung von Form/Struktur/Lage der Linse als auch bei der Therapie verwendbar.

In dieser Ausführungsform ermittelt die Steuereinheit nach dem Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse vorzugsweise Bestrahlungssteuerdaten für eine refraktiv-chirurgische Therapie der Augenlinse, wobei sie ein Grundmuster der Augenlinse an die ermittelte Form und/oder Lage der Augenlinse anpasst, und bestrahlt die Augenlinse bei einer refraktiv-chirurgischen Therapie-Laserleistung gemäß den ermittelten Bestrahlungssteuerdaten. Analyse der Form/Struktur/Lage und Therapie bilden so eine unmittelbare Einheit. Dadurch ist die Therapie mit hoher Genauigkeit möglich, da Fehler durch eine Bewegung der Augenlinse oder des Patienten minimiert werden können.

Zweckmäßigerweise fixiert die Steuereinheit ein die Augenlinse enthaltendes Auge vor dem Bestrahlen mit Beleuchtungs-Laserleistung mittels einer Fixiervorrichtung und löst nach dem Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse oder nach dem chirurgischen Therapieren die Fixierung des Auges. Dadurch werden mögliche Veränderungen der Lage der Linse durch den Patienten verringert, was die Genauigkeit der Analyse und gegebenenfalls Therapie erhöht.

Für das erfindungsgemäße Betriebsverfahren für ein ophthalmologisches Lasersystem, dessen Laser zwischen einer Beleuchtungs-Laserleistung und einer Therapie-Laserleistung umschaltbar ist und dessen Laserlicht dreidimensional variabel in einer Augenlinse fokussierbar ist, ist entsprechend vorgesehen, folgende Schritte durchzuführen: Fixieren eines die Augenlinse enthaltenden Auges mittels einer Fixiervorrichtung; Bestrahlen einer im Untersuchungsbereich angeordneten Augenlinse mittels des Lasers bei einer Beleuchtungs-Laserleistung und Aufnehmen von Detektionslicht mittels des Detektors, wobei die Augenlinse dreidimensional abtastet wird, indem an mehreren Punkten der Augenlinse bestrahlt und Detektionslicht aufgenommen wird; Ermitteln von Form und/oder Struktur und/oder Lage der Augenlinse anhand des Detektionslichtes an den Abtastpunkten; Ermitteln von Bestrahlungssteuerdaten für eine refraktiv-chirurgische Therapie, wobei ein Grundmuster der Augenlinse an die ermittelte Form und/oder Lage der Augenlinse anpasst wird; Bestrahlen der Augenlinse mittels des Lasers bei einer refraktiv- chirurgischen Therapie-Laserleistung gemäß den ermittelten Bestrahlungssteuerdaten; Lösen der Fixierung des Auges.

Im Vergleich zur refraktiven Chirurgie an der Kornea besteht bei der Augenlinse das Problem, dass eine Fixierung der Augenlinse nicht möglich ist. Es kann nur das Auge insgesamt fixiert werden. Dieses Problem löst das erfindungsgemäße Betriebsverfahren, indem zunächst das Auge insgesamt fixiert und anschließend die aktuelle Form/Struktur/Lage der Linse ermittelt wird. Da der Therapieschritt unmittelbar anschließend folgt und beide Schritte in kurzer Zeit abgeschlossen werden können, wird im Therapieschritt unmittelbar die Form/Struktur/Lage der Linse zur Bestimmung der Bestrahlungssteuerdaten verwendet, so dass eine Fixierung der Linse nicht notwendig ist. Dennoch ist eine hohe Genauigkeit bei der Therapie möglich.

Besonders bevorzugt sind Ausgestaltungen des Lasersystems, in denen ein mit dem Laser gekoppelter Lock-In-Verstärker für den Detektor vorgesehen ist. Dies ermöglicht die Aufnahme der Detektorsignale mit hoher Genauigkeit, so dass auch eine eventuelle Therapie mit hoher Genauigkeit durchgeführt werden kann.

In einer speziellen Ausführungsform erfolgt der Abtastvorgang so, dass sich zwei aufeinanderfolgende Abtastpunkte in allen drei Raumkoordinaten voneinander unterscheiden. Durch diese Art der Abtastung kann ein repräsentatives Modell der Augenlinse hinsichtlich Form/Struktur/Lage in kurzer Zeit gewonnen werden. So kann die Ungenauigkeit durch Bewegungen der Linse durch den Patienten verringert werden. Technisch besonders vorteilhaft ist eine Ansteuerung der Scanner in Form einer Sinus-Funktion. Bei einer Ansteuerung der x-y-Scanner in der Form, dass der eine Scanner mit genau der doppelten Frequenz des anderen angesteuert wird, ergibt sich eine Lissajous-Figur, die einer 8 ähnelt.

Vorteilhafterweise wird eine Pulsfrequenz des Laserlichts in Abhängigkeit der Bewegungsgeschwindigkeit eines Fokuspunkts des Laserstrahls relativ zur Augenlinse eingestellt. Dadurch kann bei der Analyse und/oder insbesondere bei der Therapie die Strahlenbelastung der Linse und des Auges insgesamt verringert werden.

Ein weiterer Aspekt der Erfindung betrifft die Reduktion der Strahlungsbelastung der Retina bei der Generierung von Photodisruptionen oder anderen Inzisionen. Zunächst werden erfindungsgemäß ein oder mehrere flächenhafte Schnitte im rückwärtigen Abschnitt der Augenlinse 2 derart ausgeführt, dass flächenhafte Gaseinschlüsse erzeugt werden, die mindestens 5 Sekunden lang bestehen bleiben. Diese Gaseinschlüsse oder Blasen können durch eine geeignete Wahl der Laserparameter, insbesondere des Abstandes zwischen den Bestrahlungspunkten und der Laserenergie, gezielt erzeugt werden. Durch diese flächenhaften Gaseinschlüsse wird die Laserstrahlung, die bei der anschließenden Generierung weiterer Inzisionen im vorderen Teil der Augenlinse 2 in Richtung Retina propagiert, gestreut und teilweise reflektiert, so dass die auf die Retina auftretende Energie pro Fläche (Fluenz) reduziert wird.

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen näher erläutert.

In den Zeichnungen zeigen:

Fig. 1 ein ophthalmologisches Lasersystem zur Analyse der Augenlinse,

Fig. 2 ein ophthalmologisches Lasersystem zur Analyse und Bearbeitung der Augenlinse,

Fig. 3 ein Ablaufdiagramm eines Betriebsverfahrens und

Fig. 4 eine Raumkurve für die Abtastung der Augenlinse.

In allen Zeichnungen haben übereinstimmende Teile gleiche Bezugszeichen.

Fig. 1 zeigt ein beispielhaftes ophthalmologisches Lasersystem 1 zur Analyse einer Presbyopie einer Augenlinse 2 eines Auges 3. Das Lasersystem 1 umfasst einen Laser 4, einen Polarisationsstrahlteiler 5, eine Scanoptik 6, eine Scannereinheit 7, eine Fokussieroptik 8 und ein optisches Phasenverzögerungssystem 9, die zusammen einen Beleuchtungsstrahlengang B bilden, sowie einen Umlenkspiegel 10, eine konfokale Aperturblende 11 und einen Detektor 12, die einen

ausgekoppelten Detektionsstrahlengang D bilden, und einen Verstärker 13 und eine Steuereinheit 14. Zwischen dem Lasersystem 1 und dem Auge 3 ist ein Kontaktglas 17 mit einer Fixiervorrichtung für das Auge 3 angeordnet, hinter dem der Untersuchungsbereich liegt. Andere Ausführungsformen zur Realisierung der erfindungsgemäßen Lösung sind möglich (nicht abgebildet).

Der Laser 4 ist beispielsweise als gepulster TiSa-Infrarot-Laser mit einer Pulslänge zwischen 100 fs und 1000 fs ausgebildet. Er emittiert Laserstrahlung bei einer augensicheren Beleuchtungs-Laserleistung im Bereich von 100 mW. Die Scannereinheit 7 umfasst beispielsweise eine Anzahl von galvanometrischen Spiegeln zur Ablenkung der Laserstrahlung in x- und y-Richtung über die Augenlinse 2. Die Fokussierung der Laserstrahlung in z-Richtung entlang der optischen Achse gelingt beispielsweise durch eine bewegliche Linse oder Linsengruppe innerhalb der Scanoptik 6 oder der Fokussieroptik 8 oder alternativ durch eine bewegliche Tubuslinse (nicht abgebildet). Das optische Phasenverzögerungssystem 9 ist beispielsweise als λ/4-Platte ausgebildet, die einen Abschluss des Lasersystems bildet. Der Detektor 12 ist beispielsweise als Photomultiplier oder als APD ausgebildet, da die aufzunehmenden Lichtintensitäten niedrig sind. Der Verstärker 13 ist als Lock-In-Verstärker ausgebildet und sowohl mit dem Detektor 12 als auch mit dem Laser 4 verbunden.

Die gepulste IR-Laserstrahlung tritt aus dem Laser 4 aus und durchläuft zunächst unverändert den Polarisationsstrahlteiler 5. Sie wird anschließend über die Scanoptik 6, die Scannereinheit 7 und die Fokussieroptik 8 als Beleuchtungslicht auf einen Abtastpunkt P in der Augenlinse 2 fokussiert. Dieser Abtastpunkt P kann mittels der Scannereinheit 7 und einer beweglichen Linse oder Linsengruppe innerhalb der Scanoptik 6 oder der Fokussieroptik 8 in x-, y- und z-Richtung in der Augenlinse 2 verschoben werden. Das optische Phasenverzögerungssystem 9 bewirkt dabei eine definierte Veränderung der Polarisationsrichtung des hindurchfallenden Beleuchtungslichts.

An den Grenzflächen G1 , G1 der Augenlinse 2 und an inhomogenen Schichten der Augenlinse (nicht abgebildet) kommt es zur Streuung/Reflexion der IR-Strahlung, wobei die Strahlung im Auge 3 teilweise depolarisiert wird.

Rückgestreutes/reflektiertes Licht fällt auch in den Beleuchtungsstrahlengang B und läuft dort den Weg zurück bis zum Polarisationsstrahlteiler 5. Die Strahlungsanteile mit unverändertem Polarisationszustand fallen durch den Polarisationsstrahlteiler 5 hindurch auf den Laser 4. Dies betrifft insbesondere Reflexe, die von der Scanoptik 6 oder der Fokussieroptik 8 stammen. Solche Strahlungsanteile, die nach Durchlaufen des Phasenverzögerungssystems 9 beziehungsweise durch Depolarisation im Auge 3 in der Augenlinse 2 einen veränderten Polarisationszustand aufweisen, werden von dem Polarisationsstrahlteiler 5 als Detektionslicht in den Detektionsstrahlengang D zum Detektor 12 abgelenkt. Das Detektionslicht fällt über einen Umlenkspiegel 10 durch die konfokale Lochblende 11 auf den Detektor 12. Der Umlenkspiegel 10 kann in einer Ausführungsform entfallen oder durch andere Strahlführungseinheiten ersetzt werden. Die Konfokalblende 11 wirkt als Diskriminator in z-Richtung, so dass ortsaufgelöst nur rückgestreutes Licht aus einem geringen Fokusvolumen detektiert wird. Die Steuereinheit 14 kann durch Ablenken des Beleuchtungslichts in x- und y-Richtung mittels der Scannereinheit 7 und Veränderung der Fokussierung in z-Richtung mittels der Fokussieroptik 8 beliebige Abtastpunkte P innerhalb und außerhalb der Augenlinse 2 mit Beleuchtungslicht bestrahlen und über die Intensität des zugehörigen Detektionslichtes die Stärke der Rückstreuung an diese Punkten ermitteln.

Um in kurzer Zeit eine Information über Form, Struktur und Lage der Augenlinse 2 mit hoher Genauigkeit zu ermitteln, wird eine geeignete räumliche Verteilung von Punkten abgetastet. Aus den dabei gewonnen Werten für die Stärke der Rückstreuung können Form, innere Struktur und Lage der Linse rekonstruiert werden. Dadurch kann eine Presbyopietherapie unter Berücksichtigung der Linseneigenschaften patientenangepasst durchgeführt werden. Neben der Presbyopietherapie kann das Lasersystem 1 auch in anderen ophthalmologischen Anwendungen wie zum Beispiel zur Diagnose der Kornea eingesetzt werden, um Informationen über das Auge 3 zu gewinnen.

In der abgebildeten Ausführungsform bewirkt das optische Phasenverzögerungssystem 9 zwischen dem Auge 3 und der Fokussieroptik 8 eine definierte Drehung der Polarisationsrichtung der hindurchfallenden Beleuchtungslichts, während zuvor an den optischen Komponenten reflektiertes

Störlicht die ursprüngliche Polarisationsrichtung beibehält. Dadurch wird die relative Intensität des Detektionslichtes erhöht, da der Polarisationsstrahlteiler 5 jegliches Licht mit abweichender Polarisationsrichtung als Detektionslicht separiert. In alternativen Ausführungsformen kann auf das optische

Phasenverzögerungssystem 9 verzichtet werden. Alternativ oder zusätzlich können weitere Polarisatoren (nicht abgebildet) in dem Beleuchtungs- und/oder Detektionsstrahlengang angeordnet werden, um die Signalqualität zu verbessern. Das Phasenverzögerungssystem kann in einer Ausführungsform als Depolarisator realisiert werden, so dass über den Strahlquerschnitt die Größe der Phasenverzögerung variiert.

Da die am Detektor 12 registrierten Signale eine sehr geringe Intensität aufweisen, ist der elektronische Verstärker für ein optimiertes Signal-Rausch-Verhältnis angepasst. Eine besonders vorteilhafte Ausführungsform ist der Lock-In- Verstärker, der zeitlich mit der Pulsgenerierung beziehungsweise mit der Folgefrequenz des Lasers 2 synchronisiert ist. Andere Ausführungsformen verwenden beispielsweise sogenannte „Boxcar"-Techniken oder Abtasttechniken (engl, „sampling") mit Aufsummierung oder Mittelung. Vorteilhafterweise weist das gesamte Verstärkersystem des Detektorsignals eine nichtlineare Kennlinie auf.

In Fig. 2 ist ein ophthalmologisches Lasersystem 1 zur kombinierten Analyse und Therapie einer Presbyopie dargestellt. Es entspricht weitgehend dem Lasersystem 1 gemäß Fig. 1, ist aber zusätzlich mit einem in den Beleuchtungsstrahlengang B einklappbaren Abschwächer 15 und einem Modulator 16, beispielsweise einem akustooptischen Modulator, ausgerüstet. Der Abschwächer 15 dient zur Umschaltung zwischen einer Beleuchtungs-Laserleistung und einer Therapie-Laserleistung. Die Beleuchtungs-Laserleistung wird mit in den Beleuchtungsstrahlengang B eingeklapptem Abschwächer 15 erzielt, die Therapie-Laserleistung ohne Abschwächer 15. Die optischen Komponenten, insbesondere die Optiken 6 und 8, sind auf das Ziel einer bestmöglichen Fokusminiaturisierung optimiert, korrigiert und untereinander abgestimmt. Beispielsweise sind ihre optischen Aberrationen hochgradig minimiert, so dass für eine Photodisruption nur ein geringer Energieeintrag erforderlich ist. Die optischen Komponenten sind derart gestaltet, dass die Eigendispersion der intraokularen Medien bezüglich der

Pulslängenänderung und auch die eigenfokussierende Wirkung der Gradientenlinsenstruktur der Augenlinse vorkompensiert werden. Dadurch kann die Größe des Fokusvolumens über die gesamte Fläche der Augenlinse hinweg und über ihre gesamte Tiefe mit einem Fehler von maximal 10% konstant gehalten werden. Insbesondere ist das Fokusvolumen innerhalb eines Volumens von Durchmesser 7mm und Tiefe 10 mm welches zum Apex der Cornea der Augenlinse 2 mit einer Toleranz von +/- 5 mm verschiebbar.

Die Steuereinheit 14 führt das in Fig. 3 dargestellte Betriebsverfahren durch, wobei für eine reine Analyse der Augenlinse 2 nur die durchgezogen umrandeten Schritte S1 , S2, S3 und S6 durchgeführt werden. Für eine Presbyopietherapie werden alle Schritte durchgeführt. Der Laser 4 wird dabei sowohl für die Beleuchtung während der Detektionsphase als auch für die Bearbeitung der Augenlinse 2 während der sich unmittelbar anschließenden Therapiephase verwendet.

Zunächst wird das Patientenauge fixiert, beispielsweise mittels Unterdruck an eine Kontaktglasvorrichtung angesaugt (Schritt S1). Zusätzlich kann der Kopf des Patienten fixiert sein. Der Blick des Patienten kann durch ein geeignetes Ziel möglichst konstant gehalten werden. Dabei ist eine einstellbare Kompensation des Winkels zwischen Geometrie- und Sehachse des Auges möglich.

Entlang einer einstellbaren kontinuierlichen, dreidimensionalen Abtastkurve oder - Struktur wird das Beleuchtungslicht bei Beleuchtungs-Laserleistung mit einer variablen Pulsfrequenz über die Augenlinse 2 geführt und Detektionslicht aufgenommen (Schritt S2). Die Pulsfrequenz wird dabei in Abhängigkeit der Geschwindigkeit der Abtastbewegung so eingestellt, dass bei langsamer Abtastbewegung eine niedrigere Pulsfrequenz resultiert als bei schneller Abtastbewegung. Einzelnen Punkten der Abtastkurve wird das rückgestreute Detektionslicht abschnitts- oder punktweise zugeordnet. Durch die Stetigkeit der Abtastkurve unterscheiden sich aufeinanderfolgende Abtastpunkte in allen Raumkoordinaten. Von den detektierten Signalwerten werden vorteilhafterweise jeweilige Dunkelfeldwerte abgezogen werden, die in einem separaten Kalibrierdurchgang ermittelt werden.

Aus den den Abtastpunkten zugeordneten Intensitäten werden die Form, die Struktur und die Lage der Augenlinse 2 als Modell rekonstruiert (Schritt S3). Dazu können insbesondere ihre Grenzflächen identifiziert werden, beispielsweise die vordere oder hintere Grenzfläche und/oder innere Flächen wie der übergang zwischen Kortex und Nukleus. Das Modell kann beispielsweise die Augenlinse 2 als Gradientenlinse, also mit einem inneren Verlauf der Brechzahl des Linsenmediums, darstellen. Das Modell kann insbesondere eine Verkippung der Augenlinse 2 zur optischen Achse des Systems 1 wiedergeben.

Diese Informationen werden verwendet, um ein Grundmuster der Augenlinse und der zuvor vom Bediener vorgegebenen Schnitte an den tatsächlichen, individuellen Zustand der Augenlinse 2 anzupassen, um anhand des angepassten Grundmusters die Bestrahlungssteuerdaten zu bestimmen (Schritt S4). Grundmuster können beispielsweise Kugeloberflächen, Ellipsoide oder Kegelschnitte sein, die an das rekonstruierte Modell angepasst werden, beispielsweise durch Verschiebung, Verkippung, Beschneidung der Grenzen, Vergrößerung oder Dehnung des Musters, um eine Zentrierung des Musters in Bezug auf die reale Lage der Linse im Raum sowie eine Einhaltung von Sicherheitszonen zu ermöglichen. Die Bestrahlungssteuerdaten umfassen beispielsweise Ansteuersignale für die Achsen der Scannereinheit beziehungsweise für die interne z-Fokussierung und für die Laserstrahlquelle und den Leistungsmodulator 16.

Unmittelbar anschließend wird der eigentliche refraktiv-chirurgische Eingriff bei Therapie-Laserleistung anhand der Bestrahlungssteuerdaten durchgeführt (Schritt S5). Dabei werden beispielsweise durch die Laserstrahlung bei einer Pulsfrequenz von 100 kHz bis 1 MHz und einer Pulslänge von weniger als 1 ps, insbesondere von 300 fs, eine oder mehrere Photodisruptionsblasen mit einer Pulsenergie von vorzugsweise maximal 0,5 μJ erzeugt. Die Strahlenbelastung der Netzhaut kann dabei reduziert werden, indem die Therapie im hinteren Bereich der Augenlinse 2, beispielsweise mit der hintersten Inzision, begonnen wird, bevor im mittleren und vorderen Bereich der Augenlinse 2 weitere therapeutische Inzisionen erzeugt werden. Schließlich wird die Fixierung der Linse 2 gelöst (Schritt S6).

Durch den identischen Strahlengang für Analyse und Therapie ist das System 1 selbstkalibrierend. Da die Bestrahlungssteuerdaten anhand der mit dem identischen Strahlengang ermittelten Informationen über Form/Struktur/Lage der Linse bestimmt werden, ist die Therapie mit hoher Genauigkeit möglich.

Durch den Einsatz angepasster Abtastkurven (Scanmuster), beispielsweise in Form von Lissajous-Figuren, ist der kombinierte Vorgang zudem in kurzer Zeit möglich, beispielsweise innerhalb von maximal 30 Sekunden, was einerseits Bewegungsungenauigkeiten reduziert und andererseits zu einer höheren Akzeptanz beim Patienten führt.

In Fig. 4 ist eine beispielhafte Abtastkurve in form räumlich versetzter Achten gezeigt, die als Lissajous-Figur mittels der Scannereinheit 6 realisiert werden kann Sie hat den Vorteil, dass in kurzer Zeit repräsentative Daten für die Rekonstruktion eines Linsenmodells mit hoher Genauigkeit ermittelt werden können.

Andere beispielhafte Formen der Abtastung beziehungsweise Abrasterung können sein (nicht abgebildet): zwei gekreuzte Rechtecke im Raum; zwei Zylinderoberflächen; ein zylindrischer Körper mit Querschnitt in Form einer acht oder vier; mehrere Abtastungen längs eindimensionaler Linien. Möglich ist auch das Abrastern des Volumens eines Zylinders oder eines Würfels. Die Volumina beziehungsweise Oberflächen können kontinuierlich oder auch lediglich teilweise, also mit Zwischenräumen zwischen den einzelnen Abtastpunkten, abgerastert werden. So können zwischen einzelnen Zeilen größere Abstände auftreten. Die Abrasterungsstruktur erstreckt sich vorteilhafterweise von den Grenzen her über einen Bereich von mindestens 2,5 mm bis 5 mm axial hinter dem Kontaktglas und von mindestens 0 mm bis 4 mm im Durchmesser lateral in Bezug auf die optische Achse der Bearbeitungsoptik.

Das erfindungsgemäße Betriebsverfahren kann auch mit anderen Lasersystemen eingesetzt werden. Beispielsweise kann eine interferometrische Vermessung der Augenlinse anstelle der konfokalen Detektion vorgesehen werden.

Bezuqszeichenliste

1 Ophthalmologisches Lasersystem

2 Augenlinse

3 Auge

4 Laser

5 Polarisationsstrahlteiler

6 Scanoptik

7 Scannereinheit

8 Fokussieroptik

9 Optisches Phasenverzögerungssystem

10 Umlenkspiegel

11 Konfokale Aperturblende

12 Detektor

13 Verstärker

14 Steuereinheit

15 Abschwächer

16 Modulator

17 Kontaktglas

B Beleuchtungsstrahlengang

D Detektionsstrahlengang

P Abtastpunkt