Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OPTICS FOR PENCIL OPTICAL INPUT COMPUTER PERIPHERAL CONTROLLER
Document Type and Number:
WIPO Patent Application WO/2012/071020
Kind Code:
A1
Abstract:
The invention relates to mechanical construction of the optics for pencil optical input peripheral device for fast and comfortable computer control. The input light reflecting element (2) and at least one convex or aspherical lens (4) is fitted above the input opening (5) aslant to the axis of the longitudinal pencil body (7) in the angled tube (1). There is a scan sensor (10) fitted behind the output opening (8) of the angled tube (1). There is also the light source (6) beside the input opening (5) of the angled tube (1) in the recessed opening (9) of the longitudinal pencil body (7). Axes of the light source (6) and the input opening (5) of the angled tube (1) are at acute angle. The output light reflecting element (3) can be fitted before the scan sensor (10) aslant to the axis of the longidudinal pencil body (7) in the angled tube (1) and the light permeable cover (11) can be fitted before the input opening (5) of the angled tube (1) and / or behind the light source (6). The input light reflecting element (2) and / or the output light reflecting element (3) consist of the plane mirrors or light reflecting prisms.

Inventors:
VALICEK STEFAN (SK)
MIHAL ALEXANDR (CZ)
MIHAL MAREK (CZ)
Application Number:
PCT/SK2011/050019
Publication Date:
May 31, 2012
Filing Date:
November 20, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VALICEK STEFAN (SK)
MIHAL ALEXANDR (CZ)
MIHAL MAREK (CZ)
International Classes:
G06F3/03; G06F3/0354
Domestic Patent References:
WO2005033923A12005-04-14
WO2005033923A12005-04-14
Foreign References:
CN201107746Y2008-08-27
US20100271305A12010-10-28
Other References:
See also references of EP 2643744A1
Attorney, Agent or Firm:
LABUDÍK, Miroslav (Kysucké Nové Mesto, SK)
Download PDF:
Claims:
- 1 -

C L A I M S

1 . The optics for pencil optical input computer peripheral controller consisting of the longitudinal pencil body with the angled tube with at least one reflection area, the scan sensor and the light source, distinguished by the position of the input light reflecting element (2) and at least one convex or aspherical lens (4) which is fitted above the input opening (5) aslant to the axis of the longitudinal pencil body (7) in the angled tube (1 ), the scan sensor (10) which is fitted behind the output opening (8) of the angled tube (1 ) and the light source (6) which is fitted beside the output opening (8) of the angled tube (1 ) in the recessed opening (9) of the longitudinal pencil body (7) and the axes of the light source (6) and the input opening (5) of the angled tube (1 ) create the acute angle.

2. The optics for pencil optical input computer peripheral controller pursuant to the claim 1 being distinguished by the position of the output light reflecting element (3) which is fitted before the scan sensor (10) aslant to the axis of the longitudinal pencil body (7) in the angled tube (1 ).

3. The optics for pencil optical input computer peripheral controller pursuant to the claim 1 or 2 being distinguished by the input light reflecting element (2) and / or the output light reflecting element (3) which consist of plane mirrors or light reflecting prisms.

4. The optics for pencil optical input computer peripheral controller pursuant to the claim 3 being distinguished by the light permeable cover (1 1 ) which is fitted before the input opening (5) of the angled tube (1 ) and / or behind the light source (6).

Description:
OPTICS FOR PENCIL OPTICAL INPUT COMPUTER PERIPHERAL CONTROLLER

FIELD OF THE INVENTION

The invention relates to mechanical construction of the optics for pencil optical input peripheral device for fast and comfortable computer control.

SUMMARY OF THE INVENTION

The peripheral device, so called position indicator „X - Y", informally called the „Mouse" in general, is currently the most widespread peripheral device for easy and fast computer control. It is basically a small box with at least two buttons. The body of such device is of longitudinal shape, resolved economically to be handheld by the user from the upper side so that the user can move it by hand along with the computer keyboard on a clean and even surface, e.g. on a reference material or on a special pad. The mouse movement is transferred to the cursor movement on computer monitor using special sensors. Classic mechanical / optical mouse allowing the input of two-dimensional information using the position sensor in form of a ball placed in the bottom mouse part in a rotating manner with resolution of cca. 200 - 2400 dpi is well-known. However, optical mouse with the position sensor inside which consists of a light transmitter and receiver, e.g. infrared (based on LED diodes) or laser, etc., is the most popular.

The optical module used for motion detection of the optical mouse on the reference material according to the patent CN 201 107746 (Y) consists of a transparently covered opening in the body of the mouse with a light source, e.g. LED diode, light bulb, laser generator, etc. placed on the upper side of the opening. The light source directly illuminates the scanned reference material. The reference material reflects the light beams into a detector, e.g. CMOS photosensor, which is placed slantwise on the other side of the opening of the body of the mouse and inclined in such way so that the light beams strike the detector at the right angle. CMOS sensor scans the surface (frame count relates to mouse frequency) and these "images" of the surface are constantly compared. The principle that no surface of the reference material is perfectly smooth is applied here , i.e. not even a small section of the illuminated surface of the reference material is smooth, e.g. two millimetres of the surface are not identical. The scan sensitivity of the surface directly relates to mouse detection data in the range 800 - 3000 dti (dot per inch). When images do not match the device shows the correspondent direction of movement on the computer screen.

The optical mouse according to patent US 2010271305 (A1 ) with aspherical lenses and sensor placed in the body of the mouse which can be transparently covered is also well known. The first aspherical lens is placed on one side above the transparent opening cover of the body and under the light source, e.g. LED diode, light bulb, etc., so that the entire space of the opening of the body or its prevailing part is equally illuminated. The photosensor of the reflected light is fitted aslant to the reference material on the other side of the opening. The second aspherical lens above the transparent cover of the body is fitted in such way that the sensor detects the entire surface of the reference material or at least the prevailing part of it.

The present optical mouse solutions for PC require a large space for fitting the photo sensor which are not suitable to install into a small-diameter longitudinal case (e.g. pen- shaped, pencil-shaped, cylinder-shaped, etc.). For this reason the attempts to fit all the necessary optical mouse components for PC into a thin longitudinal case (e.g. pen-shaped, pencil-shaped, cylinder-shaped, etc.) under 28 mm in diameter which is too bulky for pencil optical input computer peripheral controller. Such solutions have due to their construction low sensitivity to scanned surface, i.e. if the surface is not structurally distinct enough the sensitivity to image modification is very low.

THE BASIS OF THE INVENTION

The above mentioned disadvantages are substantially eliminated by the optics for the pencil optical input computer peripheral controller according to the invention consisting of the longitudinal pencil body in which a angled tube is fitted, with at least one reflection area, scan sensor and light source. The invention essence is that an input light reflecting element and at least one convex or aspherical lens is fitted above the input opening into the axis of the longitudinal pencil body in the angled tube. The scan sensor is fitted behind an output opening of the angled tube. The light source is fitted beside the input opening of the angled tube in the recessed opening of the body. Axes of the light source and the input opening of the angled tube are at acute angle.

It is helpful if there is the output light reflecting element fitted aslant to the axis of the longitudinal pencil body in the angled tube.

Furthermore, it is helpful if the input light reflecting element and / or the output light reflecting element consist of the plane mirrors or light reflecting prisms.

It is also helpful if there is a light permeable cover fitted before the input opening of the angled tube and / or behind the light source.

The device according to the invention is intended for fitting and installing the photosensor into small-diameter longitudinal case (e.g. pen-shaped, pencil-shaped, cylinder- shaped, etc.) under 14 mm in diameter which is suitable for pencil optical input computer peripheral controller. Such solution due to its construction also proves a higher sensitivity to scanned surface compared to present state of invention, i.e. it is more sensitive to motion on the reference material of less distinct structure.

BRIEF DESCRIPTION OF THE DRAWINGS

A particular example of invention implementation is diagrammatically represented on the attached drawings. Fig. 1 illustrates an implementation example of the optics for pencil optical input peripheral device for fast and comfortable computer control. The input light reflecting element and the output light reflecting element are fitted aslant to the axis of the longitudinal pencil body in the opposite ways in the angled tube.

DETAILED DESCRIPTION

The particular example of the pencil optical input peripheral device for fast and comfortable computer control according to the invention displayed in fig. 1 consists of the longitudinal pencil body 7 which contains the angled tube 1_, the input light reflecting element 2, the output light reflecting element 3, the scan sensor 1_0 and a the light source 6, e.g. light bulb or infrared source (on LED diode basis), or laser source, etc. The input light reflecting element 2 consisting of the plane mirror is placed aslant to the axis of the longitudinal pencil body 7. The input light reflecting element 2 and convex lens 4 are placed above the input opening 5 in the angled tube 1_. There is the scan sensor 1_0, e.g. CMOS, fitted behind the output opening 8 of the angled tube 1_. There is also the light source 6 beside the output opening 8 of the angled tube 1 in the recessed opening 9 of the longitudinal pencil body 7. Axes of the light source 6 and the input opening 5 of the angled tube 1 are at acute angle. The output light reflecting element 3 which consists of the plane mirror is fitted before the scan sensor 1_0 aslant to the axis of the longitudinal pencil body 7 in the angled tube 1_. There is also a light permeable cover V\_ against impurity contamination fitted before the input opening 5 of the angled tube 1 and the light source 6.

The user holds the longitudinal pencil body in his/her hand in a well-known not displayed manner under appropriate inclination grasping the longitudinal pencil body as if writing with thicker common pencil so that the tip (by a firm grasp or using a microswitch button) can move in various directions on a clean and even surface of the reference material 12, e.g. on a table, a paper or at best on the commonly used mousepad. The needed distance between the light permeable cover V\_ and the surface of the reference material 2 continuously illuminated by the light source 6 is thus kept. The light beams from the light source 6 shine on strike the scanned surface of the reference material 12 and also ensure this optical system's resistance against different light sources while operating the computer. Light beams emitted by the light source 6 are first reflected from the surface of the reference material 12, pass through the light permeable cover V\_ of of the input opening 5 of the angled tube 1_, strike the input light reflecting element 2 which reflects the light beam into the axis of the longitudinal pencil body 7. The light beams in the angled tube 1 are compressed and reinforced by the convex lens 4 and reflected with great sharpness from the output light reflecting element 3 onto the surface of the scan sensor 1_0. The scan sensor 1_0 scans the surface of the reference material 12 in a well-known not displayed manner (frame count relates to mouse frequency) and these "images" of the surface are constantly compared. The principle that no surface of the reference material is perfectly smooth is applied here, i.e. not even a small section of the illuminated surface of the reference material is smooth. The scan sensitivity of the surface directly relates to mouse detection data in the range 800 - 3000 dti (dot per inch). When images do not match device shows the correspondent direction of movement on the computer screen.

The described and depicted implementation is not the only possible solution according to the invention. The scan sensor 10 according to this solution can be placed directly behind the convex lens 4 in the axis of the angled tube 1 without using the output light reflecting element 3. Lens 4 can be aspherical. The input light reflecting element 2 and / or the output light reflecting element 3 can exist in a form of the light reflecting prism. The light source 6 does not require the light permeable cover 1 1 .

INDUSTRIAL APPLICABILITY

Optics for pencil optical input peripheral device is intended for fast and comfortable computer control using the thin longitudinal pencil input peripheral device. It can be used as the simple computer scanner, too.