Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ORAL AND /OR TOPICAL COMPOSITIONS
Document Type and Number:
WIPO Patent Application WO/2005/115170
Kind Code:
A1
Abstract:
Suggested are new advantageous oral and/or topical compositions, comprising (a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols.

Inventors:
RULL PROUS SANTIAGO (ES)
FABRY BERND (DE)
BELL DORIS (DE)
Application Number:
PCT/EP2005/005316
Publication Date:
December 08, 2005
Filing Date:
May 14, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
COGNIS IP MAN GMBH (DE)
RULL PROUS SANTIAGO (ES)
FABRY BERND (DE)
BELL DORIS (DE)
International Classes:
A23L1/00; A23L1/09; A23L1/30; A23L1/308; A23L33/20; A61K31/35; A61K31/702; A61K31/716; A61K31/733; A61K36/16; A61K36/185; A61K36/48; A61K36/63; A61K36/77; A61K36/82; A61K45/06; (IPC1-7): A23L1/30; A23L1/307; A23L1/308; A23L1/09; A61K31/733; A61K31/716; A61K31/702; A61K35/78; A61K31/35; A61K7/48
Domestic Patent References:
WO2003077671A22003-09-25
WO2002047493A22002-06-20
WO2000064282A12000-11-02
WO1996003150A11996-02-08
WO2003013438A22003-02-20
Foreign References:
US6713116B12004-03-30
EP0524484A11993-01-27
US20010018077A12001-08-30
US5071653A1991-12-10
Other References:
DATABASE WPI Section Ch Week 200346, Derwent World Patents Index; Class B03, AN 2003-485823, XP002306600
DATABASE WPI Section Ch Week 200215, Derwent World Patents Index; Class D13, AN 2002-111697, XP002306601
DATABASE WPI Section Ch Week 200347, Derwent World Patents Index; Class B04, AN 2003-498138, XP002306602
DATABASE WPI Section Ch Week 200411, Derwent World Patents Index; Class B04, AN 2004-102946, XP002306603
DATABASE WPI Section Ch Week 200239, Derwent World Patents Index; Class D13, AN 2002-353022, XP002306604
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 12 5 December 2003 (2003-12-05)
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 09 13 October 2000 (2000-10-13)
DATABASE WPI Section Ch Week 200146, Derwent World Patents Index; Class B05, AN 2001-430654, XP002306605
GARLEB K A ET AL: "EFFECT OF FRUCTOOLIGOSACCHARIDE CONTAINING ENTERAL FORMULAS ON SUBJECTIVE TOLERANCE FACTORS, SERUM CHEMISTRY PROFILES, AND FAECAL BIFIDOBACTERIA IN HEALTHY ADULT MALE SUBJECTS", MICROBIAL ECOLOGY IN HEALTH & DISEASE, CHICHESTER, GB, vol. 9, no. 6, 1996, pages 279 - 285, XP008023764
Download PDF:
Claims:
Claims
1. Oral and/or topical compositions, comprising (a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols.
2. Compositions according to claim 1, characterised in that said prebiotics (component a) are selected from the group consisting of fructooligosaccharides, inulins, isomaltooligosaccharides, lactilol, lactosucrose, lactulose, pyrodextrins, soy oligosaccharides, transgalactooligosaccharides, xylooligosaccharides and biopolymers.
3. Compositions according to claims 1 and/or 2, characterised in that said polyphenols are selected from the group consiting of (iso)flavons, (iso)flavonols, (iso)flavonons, (iso)flavonoids, catechins, ginkgolides A, B, C, bilobalides, oliogoprocyanidins and their glycosides.
4. Compositions according to any of the claims 1 to 3, characterised in that said polyphenols are selected from the gropu constsing of (iso)quercitin, kaempferol, isorhamnetin, luteolin, oleuropein, hydroxytyrosol, (epi)catechin(gallate), (epi)gallocatechin(gallate), theaflavin(gallate), daidzein, genestein, formononentin, biochanin A, tricin, proanthocyanidin A2, apigenin. luteolin and their glycosides.
5. Compositions according to any of the claims 1 to 4, characterised in that component (b) represents extracts of Ginkgo biloba, Camellia sinensis, Trifolium pratense, Oleacea europensis, Litchi sinensis, Passiflora incarnata, Medicago sativa and their mixtures.
6. Compositions according to any of the claims 1 to 5, characterised in that they comprise component (a) and (b) in weight ratios of from 99 : 1 to 50 : 50.
7. Compositions according to any of the claims 1 to 5, characterised in that said mixtures are used in amounts of up to 10 % b.w. calculated on the microorganisms being present in the final food composition.
8. Compositions according to any of the claims 1 to 6, characterised in that said mixtures are macro or microencapsulated.
9. Food compositions, comprising (a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols .
10. Use of mixtures, comprising (a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols for stimulating the growth of healthy bacteria and improving the status of the human body.
Description:
Oral and/or topical compositions

Field of the invention

The present invention is related to the area of alimentation and concerns oral and/or topical compositions comprising defined active principles and prebiotics, dietary supplements and food compositions comprising said actives and prebiotics, and the use of mixtures comprising said actives and prebiotics for improving the stimulation of the growth of healthy bacteria.

Background of the invention

Probiotics contain live bacteria and represent an important part of the complex world of foods that are good for health. Its the bacteria and the metabolites which they produce that give these products their health promoting properties. The best known example of a probiotic is yoghurt. The experimental data for yoghurt is still not as conclusive as one would like, however, hu¬ man studies related to the consumption of dietary milk products show increased milk digesti¬ bility, quicker recovery from certain types of diarrhoea, enhanced immune function, relation in certain cancers, and possible lowering of blood cholesterol levels.

Bacteria found in products like yoghurt, kefir or fermented vegetables usually aren't found in the human intestine, hi fact, the intestinal environment is often a hostile one for these foreign bacteria. Because of this, bacteria eaten in probiotic products don't colonise the intestine but are flushed through and eliminated from the body.

The bacteria living in the intestine make up a very large and very diverse population. The numbers of each kind of bacteria change depending on age, diet, health status, and use of drugs and supplements. The effects are linked to the ability of the bacteria to adhere to the intestinal wall and use the semi-digested food that it passing through the intestines. It is not surprising to found that the bacterial population in the intestines of vegetarians is much differ¬ ent compared to that of meat eaters. Because some bacteria have specific nutrient require¬ ments it has been proposed that adding these particular foods or nutrients to the diet could be a way of increasing the numbers of specific bacteria. Such additives are called "prebiotics". Thus, to be effective, prebiotics must escape digestion in the upper gastrointestinal tract and be used by a limited number of the micro-organisms comprising the colonic microflora. In the large intestine prebiotics are converted into short-chain fatty acids like capronic or caprylic acid. Said acids are used by the human body as an energy source. Beside this, the short-chain acids are known to inhibit inflammatories of the intestine, which represents a kind of cancer prophylaxis, hi addition, prebiotics increase the resorption time in the intestine which leads to an improve uptake of minerals. Typical examples for well-known prebiotics are oligosaccha¬ rides, e.g. in 1995 Gibson et al found that oligofructose and inulin, when fed to humans, se¬ lectively stimulated the growth of bifidobacteria without influencing the numbers of lactoba- cillus. Since prebiotics mainly stimulate the growth of bifidobacteria, for which reason the also are referred to as bifidogenetic factors.

Although various types of prebiotics are known from the literature and can be found in the market there is still an increasing need for more active alternatives or additives which support the various activities of existing products in synergistic manner. Therefore, the object of the present invention has been to provide a new system of prebiotic compounds which shows a synergistic stimulation of the growth of healthy bacteria, preferably bifido and lactic bacteria both and improves the health status of the human body.

Detailed description of the invention

The present invention refers to oral and/or topical compositions, comprising

(a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols.

Surprisingly it has been observed that mixtures of various types of polyphenols prepferably of plant origin and prebiotics show a synergistic behaviour with respect to stimulation of growth of bacteria selected from the group consisting of Bifidobacterium breve, Bifidobacterium in- fantis, Bifidobacterium longum and Bifidobacterium adolescentis on one hand, and Lactoba¬ cillus bulgaricus, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum, Streptococcus faecium, and Streptococcus thermophilus on the other. Prebiotics

Prebiotics are defined as non-digestible food ingredients that may beneficially affect the host be selectively stimulating the growth and/or the activity of a limited number of bacteria in the colon. The following describes the various oligosaccharides which can be taken into account as suitable prebiotics (component a) :

• Fructooligosaccharides

Fructooligosaccharides or FOS typically refer to short-chain oligosaccharides comprised of D-fructose and D-glucose, containing from three to five monosaccharide units. FOS, also called neosugar and short-chain FOS, are produced on a commercial scale from su¬ crose using a fungal fructosyltransferase enzyme. FOS are resistant to digestion in the up¬ per gastrointestinal tract. They act to stimulate the growth of Bifidobacterium species in the large intestine. FOS are marketed in the United States in combination with probiotic bacteria and in some functional food products.

• Inulins

Inulins refer to a group of naturally-occurring fructose-containing oligosaccharides. Inu¬ lins belong to a class of carbohydrates known as fructans. They are derived from the roots of chicory (Cichorium intybus) and Jerusalem artichokes. Inulins are mainly comprised of fructose units and typically have a terminal glucose. The bond between fructose units in inulins is a beta-(2-l) glycosidic linkage. The average degree of polymerisation of inulins marketed as nutritional supplements is 10 to 12. Inulins stimulate the growth of Bifido¬ bacterium species in the large intestine.

• Isomaltooligosaccharides

Isomaltooligosaccharides comprise a mixture of alpha-D-linked glucose oligomers, in¬ cluding isomaltose, panose, isomaltotetraose, isomaltopentaose, nigerose, kojibiose, isopanose and higher branched oligosaccharides. Isomaltooligosaccharides are produced by various enzymatic processes. They act to stimulate the growth of Bifidobacterium spe¬ cies and Lactobacillus species in the large intestine. Isomalto oligosaccharides are mar¬ keted in Japan as dietary supplements and in functional foods. They are being developed in the United States for similar uses. • Lactilol

Lactilol is a disaccharide analogue of lactulose. Its pharmaceutical use is in the treatment of constipation and hepatic encephalopathy. Lactilol is also used in Japan as a prebiotic. It is resistant to digestion in the upper gastrointestinal tract and it is fermented by a limited number of colonic bacteria, resulting in an increase in the biomass of bifidobacteria and lactobacilli in the colon. Lactilol is known chemically as 4-0-(beta-D-galactopyranosyl)- D-glucitol. Lactilol is not approved for the treatment of hepatic encephalopathy or consti¬ pation in the U.S., and its use as a prebiotic is considered experimental. Lactilol is used in Europe as a food sweetener.

• Lactosucrose

Lactosucrose is a trisaccharide comprised of D-galactose, D-glucose and D-fructose. Lac¬ tosucrose is produced enzymatically by the enzymatic transfer of the galactosyl residue in lactose to sucrose. Lactosucrose is resistant to digestion in the stomach and small intes¬ tine. It is selectively utilized by intestinal Bifidobacterium species resulting in significant induction of growth of these bacteria in the colon. Therefore, under physiological condi¬ tions, lactosucrose acts on the intestinal microflora as a growth factor for Bifidobacterium species. Lactosucrose is also known as 4G-beta-D-galactosylsucrose. It is widely used in Japan as a dietary supplement and in functional foods, including yoghurt. Lactosucrose is being developed in the United States for similar uses.

• Lactulose

Lactulose is a semi-synthetic disaccharide comprised of the sugars D-lactose and D- fructose. The sugars are joined by a beta-glycosidic linkage, making it resistant to hy¬ drolysis by human digestive enzymes. Lactulose is, however, fermented by a limited number of colonic bacteria. This can lead to changes in the colonic ecosystem in favour of bacteria, such as lactobacilli and bifidobacteria, which may confer some health bene¬ fits. Lactulose is a prescription drug in the United States for the treatment of constipation and hepatic encephalopathy. It is marketed in Japan for use as a dietary supplement and in functional foods. Its use in the United States as a prebiotic substance is still experimental. • Pyrodextrins

Pyrodextrins comprise a mixture of glucose-containing oligosaccharides that is derived from the hydrolysis of starch. Pyrodextrins have been found to promote the proliferation of Bifidobacterium species in the large intestine. They are resistant to digestion in the up¬ per gastrointestinal tract. Pyrodextrins are being developed for the nutritional supplement market place.

• Soy oligosaccharides

Soy oligosaccharides refer to oligosaccharides found in soybeans and also in other beans and peas. The two principal soy oligosaccharides are the trisacchari.de raffinose and the tetrasaccharide stachyose. Raffinose comprises one molecule each of D-galactose, D- glucose and D-fructose. Stachyose consists of two molecules of D-galactose, one mole¬ cule of D-glucose and one molecule of D-fructose. Soy oligosaccharides act to stimulate the growth of Bifidobacterium species in the large intestine. They are marketed in Japan as dietary supplements and in functional foods. They are being developed in the United States for similar uses.

• TransRalactooligosaccharides

Transgalactooligosaccharides (TOS) are a mixture of oligosaccharides consisting of D- glucose and D-galactose. TOS are produced from D-lactose via the action of the enzyme beta-galactosidase obtained from Aspergillus oryzae. TOS are resistant to digestion in the upper gastrointestinal tract and stimulate the growth of bifidobacteria in the large intes¬ tine. TOS are marketed in Japan and Europe as dietary supplements and are used in func¬ tional foods. They are being developed for similar use in the United States.

• Xylooligosaccharides

Xylooligosaccharides are comprised of oligosaccharides containing beta (l→ 4) linked xylose residues. The degree of polymerisation of xylooligosaccharides is from two to four. XyIo oligosaccharides are obtained by enzymatic hydrolysis of the polysaccharide xylan. They are marketed in Japan as prebiotics and are being developed for similar use in the United States. • Biopolymers

Suitable biopolymers like e.g. beta-glucans include those originating from plants in¬ cluding cereals such as oats and barley, fungi, yeast, and bacteria. In addition, micro¬ bial cell wall preparations and whole cells rich in beta glucans are also suitable sources for beta glucan preparations useful for the present invention. Monomer residues in glucans can have 1-3 and 1-4, or 1-3 and 1-6 linkages (that is the monomer units are joined through 1,3, 1,4 or 1,6 bonds) and the percent of each type can vary. Preferably, beta glucans derived from yeast, particularly from Saccharomyces, preferably Sac- charomyces cerevisiae, are used for the present invention. It will be appreciated, how¬ ever, that other beta glucans would also be suitable. Further examples for suitable bio¬ polymers are chitin and its derivatives, preferably oligoglucosamin and chitosan which represents a typical hydrocolloid.

Chitosan is obtained by deacetylisation of chitin and shows molecular weights in the range of 50.000 up to 2.000.000.

Polyphenols and plant extracts rich in polyphenols

hi the following examples for polyphenols and plant extracts which are rich in said polyphe¬ nols are given in order to illustrate the invention, but not to limit the invention to the selected species:

• Ginkgo biloba

The active ingredients of the extract are flavonoid glycosides, which among others con¬ tain (iso)quercitin glycosides, kaempferol, kaempferol-3-rhamnosides, isorhamnetin, luteoline glycosides, sitosterol glycosides and predominantly hexacyclic terpene lactones, consisting of ginkgolides A, B, C, J, M and bilobalides.

Isorhamnetin (R1 = H), Kaempferol (R1 = OH), Ginkgolid A (R1 = OMe)

• Oleacea europensis

The main constituent of the leaves of the olive tree {Oleacea europensis) is the antioxi¬ dant oleuropein, which is also the main source for hydroxytyrosol.

Oleuropein

• Camellia sinensis

Polyphenols of the catechin and flavonoid type, so-called ,,tea-tannins" represent the main active principles of extracts of Green Tea {Camellia sinensis) :

Catechols Flavonoids

• Trifolium pratense

The main active principles of red clover (Triflolium pratense) are isofϊavones, like e.g. daidzein, genestein, formononentin and biochanin as well as their glucosides like ononin or sissostrin:

• Litchi sinensis

Extracts of pericarps from Litchi {Litchi sinensis) are well known for its high content of flavon derivatives like e.g. 2-phenyl-4H-l-benzopyrans, flavanen, flavan-3-ols (catechins, catechin oligomeren), flavan-3,4-diols (leucoanthocyaniden), flavons, flavonols and flavonons. The main component, however, represent condensed tannins, so-called procyanodols (OPC). These compounds comprise 2 to 8 monomers of the catechin or epicatechin-type, like e.g. procyanidins, proanthocynidins, procyanidoel, oligoprocyanidins, leucoanthocyanidins, leucodelphinins, leucocyanins and anthocyanogens. OPC, mainly the preferred proanthocyanidin A2 (OPC A2) behave like vitamin P, especially with respect to MMP inhibition.

Oligomeric proanthocyanidin Passiflora incarnata

Extracts of passion flower (Passiflora incarnata) are rich in flavons of the apigenin and luteolin-type and their C-glycosides:

Apigenin Luteolin

hi addition they comprise 2"-B-D-ghιcosides, schaftosides and iso-schaftosides, isovitexin, isoorientin, vicenin-2, incenin-2, daponanin and trace elements like calcium, phosphor und iron.

• Medicago sativa

Extracts of Alfalfa {Medicago sativa) are rich in isoflavons like e.g. daidzein, genestein, formononetin, biochanin A und tricin :

Daidzein Genestein

Formononetin Bioachanin A Tricin

Oral and/or topical compositions

The oral and/or topical compositions according to the present invention may comprise the prebiotics and the polyphenols in a weight ratio of 99 to 1 to 50 : 50 and more particularly 95 : 10 to 75 : 25. The highest synergistic effects, however, are observed at ratios of 92 : 8 to 80 : 20. In general, the compositions can be used in a concentration of up to about 10, particularly 0.5 to 8 and more particularly 1 to 2 % b.w. - calculated on the probiotic micro-organisms being present in the final food composition. One percent, however, has been found to be particularly suitable.

In a special embodiment of the present invention said compositions are macro- or micro¬ encapsulated. "Microcapsules" are understood to be spherical aggregates with a diameter of about 0.1 to about 5 mm which contain at least one solid or liquid core surrounded by at least one continuous membrane. More precisely, they are finely dispersed liquid or solid phases coated with film-forming polymers, in the production of which the polymers are deposited onto the material to be encapsulated after emulsification and coacervation or interfacial po¬ lymerization. In another process, liquid active principles are absorbed in a matrix ("micro- sponge") and, as microparticles, may be additionally coated with film-forming polymers. The microscopically small capsules, also known as nanocapsules, can be dried in the same way as powders. Besides single-core microcapsules, there are also multiple-core aggregates, also known as microspheres, which contain two or more cores distributed in the continuous mem¬ brane material. In addition, single-core or multiple-core microcapsules may be surrounded by an additional second, third etc. membrane. The membrane may consist of natural, semisyn¬ thetic or synthetic materials. Natural membrane materials are, for example, gum arabic, agar agar, agarose, maltodextrins, alginic acid and salts thereof, for example sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shel¬ lac, polysaccharides, such as starch or dextran, polypeptides, protein hydro lyzates, sucrose and waxes. Semisynthetic membrane materials are inter alia chemically modified celluloses, more particularly cellulose esters and ethers, for example cellulose acetate, ethyl cellulose, hy- droxypropyl cellulose, hydroxypropyl methyl cellulose and carboxymethyl cellulose, and starch derivatives, more particularly starch ethers and esters. Synthetic membrane materials are, for example, polymers, such as polyacrylates, polyamides, polyvinyl alcohol or polyvinyl pyrrolidone. Examples of known microcapsules are the following commercial products (the membrane material is shown in brackets) Hallcrest Microcapsules (gelatin, gum arabic), Coletica TIialaspheres (maritime collagen), Lipotec Millicapseln (alginic acid, agar agar), Induchem Unispheres (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose), Kobo GIy- cospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified agar agar), Kuhs Probiol Nanospheres (phospholipids) and Primaspheres or Primasponges (chitosan, anionic polymers). The encapsulation of the compositions according to the present invention is preferred in case the active should be liberated at the same part of the intestine. Therefore, one skilled in the art can easily select the adequate encapsulation system by comparing the stability of the capsules under the pH-conditions of the respective part of the intestine.

Food compositions

A further object of the present invention relates to food compositions, comprising

(a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols. Industrial application

A final object of the present invention is related to the use of mixtures, comprising

(a) prebiotics and (b) polyphenols or plant extracts rich in polyphenols

for stimulating the growth of healthy bacteria, for example in the stomach (if applied oral) or on skin (if administered topical) and for improving the status of the human body, for example with respect to

• reduction of Heliobacter pylon infection, • reduction of allergic symptoms, • relief from constipation, • relief from inflammatory bowel syndrom and inflammatories of the intestine, • beneficial effects from mineral metabolism, particularly bone density and stability (osteoporosis prevention), • cancer prevention, and • reduction of cholesterol and triacylglycerol plasma concentrations. Examples

Examples 1 to 10, Comparative Examples Cl to Cl 8

The stimulation of growth of micro-organisms has been studied by enumerating bifidobacterium and lactobacilli in vitro in the presence of various test substances:

Extract A : Extract of Trifolium pratense (Red clover) Extract B : Extract of Camellia sinensis (Green tea) Extract C : Extract of Oleacea europensis (Olive tree) Extract D : Extract of Ginkgo biloba (Ginkgo tree)

All extracts show an active content of about 20 % b.w. and are commercially available from Cognis Deutschland GmbH & Co. KG.

Aliquots (1 niL) of human faecal homogenates (1O g per 100 niL diluent) were added to diluted WC broth (diluted 50:50 with 0.05M phosphate buffer) to which were added the test mixtures and a lactobacillus or bifidobacterium strain. For each of the combinations, parallel tubes were prepared with one set being inoculated with Bifidobacterium spp or Lactobacillus spp. All mixtures were then incubated for up to 24 hours and bacterial numbers enumerated. The results are presented in Tables 1 and 2 (amount of extract calculated on active content):

Table 1 Effect of 1 % prebiotic, plant extracts and prebiotic/plant extract mixture on Bifidobacterium

Starting from a control of 1.0 106 CFU/ml (0) the addition of 1 % b.w. of various prebiotics (Comparative Examples C1-C4) increases the CFU by a factor of 10, while the addition of the plant extracts does only have a weak effect on the stimulation of cell growth (Comparative Examples C5-C8). Adding however mixture of prebiotics and plant extracts to the samples, the CFU numbers were multiplied by a factor of about 40 (Inventive Examples 1 to 5). The highest synergistic effect can be seen at a relation prebiotic : polyphenols of about 90 : 10.

Table 2 Effect of 1 % prebiotic, plant extract and prebiotic/plant extract mixture on Lactobacterium

Starting from a control of 2.8 105 CFU/ml (0) the addition of 1 % b.w. of various prebiotics (Comparative Examples C9-C12) increases the CFU by a factor of 4, while the addition of the plant extracts does only have a weak effect on the stimulation of cell growth (Comparative Examples C 13-Cl 6). Adding however, mixture of prebiotics and plant extracts to the samples, the CFU numbers were multiplied by a factor of about 15 (Inventive Examples 6 to 10). The highest synergistic effect can be seen again at a relation prebiotic : polyphenols of about 90 : 10. Example 11 Yoghurt composition

Soy milk is added to 15-75 parts by volume of cow milk to make 100 parts of the mixture. The mixture is then pasteurised at about 90 °C. for 15 seconds and then cooled. The cooled, pasteurised mixtures are then inoculated with 3 to 5 percent by volume of a yoghurt culture having 1:1 ratio of Lactobacillus bulgaricus and Bifidobacterium adolescentis. The incubation is carried out at about 42 0C. In about 2 hours thickening will occur. The fermentation is carried out for about 5.5 hours. The yoghurt compositions thus obtained is treated with 1 % - calculated on the amount of micro-organisms being present - of a 9:1 mixture of inulin and an extract of Green Tea. The products firm consistency and have a flavour like or substantially indistinguishable from that of a corresponding yoghurt composition using 100 percent of fresh cow milk. A small amount of citric acid can be added to the fermentation mixture to enhance the flavour of the final yoghurt composition. A suitable amount of citric acid is 0.5 percent based on the weight of the composition.