Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ORALLY-ADMINISTERED POISON ADSORBENT AND MANUFACTURING METHOD THEREFOR
Document Type and Number:
WIPO Patent Application WO/2018/227448
Kind Code:
A1
Abstract:
An orally-administered poison adsorbent and a manufacturing method therefor. The adsorbent can be administered per os and is introduced into the body to adsorb an organic poison or an inorganic poison, comprising: heavy metals, phosphorous, and molecules such as uremic toxin that affect liver and kidney functions. The related orally-administered poison adsorbent does not stick to the gastrointestinal tract and can be excreted quickly. Manufacturing steps comprise: a bamboo material (501) is placed in a temperature of 400 °C to 950 °C so as to allow the bamboo material (501) to be carbonized, an inert gas (103) is introduced to prevent the bamboo material from being oxidized, then an activating agent (105) is introduced at a temperature of 750 °C to 1000 °C to activate the bamboo material (501) so as to produce an activated bamboo charcoal (505), and then the activated bamboo charcoal (505) is ground to an appropriate size and mixed with a biodegradable polymer material (102), thus preparing an activated bamboo charcoal microsphere of which the structure is a large amount of activated carbon powder (507) being covered by the biodegradable polymer material (102). The activated bamboo charcoal microsphere is the orally-administered poison adsorbent.

Inventors:
LIN FENG-HUEI (CN)
WU WAN-LIN (CN)
HUANG JIAN-YUAN (CN)
CHEN YU-HUNG (CN)
Application Number:
PCT/CN2017/088373
Publication Date:
December 20, 2018
Filing Date:
June 15, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHI HUA FOUND (CN)
International Classes:
B01J20/20; A61K33/44
Foreign References:
CN101209408A2008-07-02
CN103693642A2014-04-02
CN1229367A1999-09-22
CN106238023A2016-12-21
CN105326858A2016-02-17
US20170143763A12017-05-25
Attorney, Agent or Firm:
BEIJING HC-IP AGENCY CO., LTD. (GENERAL PARTNERSHIP) (CN)
Download PDF:
Claims:
权利要求书

[权利要求 1] 一种口服毒物吸附剂, 其特征在于: 其是由一生物可蜕化高分子材料 包覆一活性竹炭粉末所形成的一活性竹炭微球。

[权利要求 2] 如权利要求 1所述的该口服毒物吸附剂, 其特征在于, 该活性竹炭微 球的粒径为 100-2000微米。

[权利要求 3] 如权利要求 1所述的该口服毒物吸附剂, 其特征在于, 该活性竹炭粉 末与该生物可蜕化高分子材料的混合重量比为 1:2至 1:5。

[权利要求 4] 如权利要求 1所述的该口服毒物吸附剂, 其特征在于, 该活性竹炭微 球经口投予用吸附肠胃道的毒性物质, 通过胃肠道并由肠道排出体外

[权利要求 5] —种口服毒物吸附剂的制造方法, 其特征在于, 其步骤包括:

将一竹材裁切后放入一高温炭化炉中, 真空抽气; 将该竹材置于该高温炭化炉中, 并升温至 400。C至 950。C, 反应 30分 钟至 1小吋, 使该竹材炭化, 并在炭化过程中通入一惰性气体, 使该 竹材在无氧的环境下燃烧, 产生一炭化竹材;

将该炭化竹材持续置于该高温炭化炉中, 将该高温炭化炉的温度调整 在 750。C至 1000。C进行活性化, 并在活性化过程中通入一活化剂, 反 应 1至 2小吋, 进行竹炭活化, 产生一活性竹炭; 将该活化竹炭冷却, 再用一清洗液清洗并使之干燥;

将该活性竹炭通过一研磨组件, 形成一 50微米至 1000微米的一活性竹 炭粉末;

将研磨后的该活性竹炭粉末与一生物可蜕化高分子材料混和; 以及 将混有该生物可蜕化高分子材料的活性竹炭粉末滴到 0.01-10%的交 联溶液中, 即制备出直径大小 100微米至 2000微米一活性竹炭微球, 即为口服毒物吸附剂。

[权利要求 6] 如权利要求 5所述的口服毒物吸附剂制作方法, 其特征在于, 该惰性 气体选自氮气或氩气中的任一种, 并以 lOOml/min至 400ml/min的速度 通入该高温炭化炉中。 [权利要求 7] 如权利要求 5所述的口服毒物吸附剂制作方法, 其特征在于, 该活化 剂选自二氧化碳或水蒸气中的任一种, 并以 lOOml/min至 400ml/min的 速度通入该高温炭化炉中。

[权利要求 8] 如权利要求 5所述的口服毒物吸附剂制作方法, 其特征在于, 该活性 竹炭粉末与该生物可蜕化高分子材料的混合重量比为 1:2至 1:5。

[权利要求 9] 如权利要求 8所述的口服毒物吸附剂制作方法, 其特征在于, 该生物 可蜕化高分子材料选自几丁聚醣、 海藻酸、 玉米淀粉、 甲基纤维素、 明胶、 褐藻胶、 聚糊精等任何天然高分子、 天然高分子改良及任何合 成高分子单一或任意组成的群组。

[权利要求 10] 如权利要求 9所述的口服毒物吸附剂制作方法, 其特征在于, 该生物 可蜕化高分子材料为海藻酸与几丁聚醣, 且其海藻酸或几丁聚醣与竹

Description:
口服毒物吸附剂及其制造方法 技术领域

[0001] 本发明涉及一种具多孔隙结构的活性竹炭微球 , 尤指一种可有效吸附消化道内 的肾毒素, 并可迅速通过肠胃道排出体外的口服毒物吸附 剂及其制造方法。 背景技术

[0002] 由于现代人年齢老化、 意外、 疾病以及职业上的长期接触、 环境污染跟日常饮 食, 肾毒素及重金属离子会通过肠胃道、 呼吸道以及皮肤进入到人体, 进一步 与体内蛋白质产生键结, 而被运送至肾脏过滤清除, 因此肾毒素及重金属离子 易堆积在肾丝球以及肾小管, 造成肾脏受损, 进而降低肾功能, 最后演变为慢 性肾脏病; 慢性肾脏病的患者失去肾功能之后, 身体产生的废物无法排出体外 , 渐渐地累积在体内, 造成各种器官的毒性, 最终需要通过洗肾来将体内毒素 代谢, 可是洗肾患者日常生活中仍会接触到许多肾毒 素, 包括重金属离子、 磷 酸盐类以及尿毒素等, 这些肾毒素会对肾脏造成更进一步的破坏, 因此, 若能 幵发一种口服剂, 能将肾毒素排出体外, 将可加惠肾脏病人, 并照顾现代人的 健康。

[0003] 尿毒素包括中分子尿毒素、 低分子尿毒素以及高分子尿毒素, 尿毒素的产生主 要为人类食入的蛋白质, 被细菌代谢后转换为尿毒素的前驱物, 借由大肠吸收 进入人体内后转换为尿毒素, 累积在体内的尿毒素会引起慢性肾脏病, 对慢性 肾脏病患者而言, 不停累积在体内的尿毒素会引发心血管疾病、 使慢性肾脏病 恶化以及其他并发症产生; 尿毒素又以硫酸吲哚酚 (indoxyl

sulfate)以及对甲酚 (p-cresol)在许多文献中被提及, 其累积在身体内会造成许多并 发症, 间接地使肾功能恶化, 最终变成尿毒症。

[0004] 由于慢性肾脏病患者对体内有害物质的排除以 及过滤能力有限, 而通过食物进 入人体的磷酸盐, 无法通过肾脏过滤清除, 造成高血磷产生, 进一步避免甲状 腺亢进以及肾性骨病变的发生。

技术问题 [0005] 目前, 毒性物质排出体外最普遍的方式是进行血液透 析, 即俗称的"洗肾", 借 由洗肾将尿毒素、 水分排出体外, 以减轻尿毒症状, 并稳定生命征象, 血液透 析虽然具备了良好的过滤废物的能力, 但是对于亲蛋白质的尿毒素效果不佳, 且血液透析在操作上须仰赖医护人员的专业技 术, 并且, 透析过程冗长、 价格 不菲, 在透析治疗中及治疗后, 可能会有抽筋、 恶心、 疲倦感等, 并且, 每次 治疗均有血液流失或血球破坏, 易产生贫血等症状, 导致患者产生身心及经济 上的压力。

[0006] 近年来有人在研发对于慢性肾脏病人吸附体内 毒素的口服药物, 现有两种口服 吸附剂, 其原料主要为沥青与植物炭材, 利用沥青制备口服吸附剂吋, 首先需 去除其内所含有的杂质及重金属等物质, 再加工成球状颗粒, 其制备工程繁复 , 成本高, 因此价格昂贵, 对需长期服用的病人造成经济上的负担; 而借由植 物炭材制备的口服吸附剂, 是将植物炭材研磨成细微粉末, 其难以借由肠胃道 蠕动排出, 而易沾附于肠壁上, 使得吸附毒物的口服药物在体内的停留吋间较 长, 进而刺激肠胃道, 且不利于毒素的排出。

[0007] 因此, 发明人鉴于现有技术的缺点, 幵发一种通过口服, 进入体内吸附重金属 、 尿毒素以及磷, 且具有吸附性良好并快速排出体外的口服毒物 吸附剂, 以解 决目前的问题。

问题的解决方案

技术解决方案

[0008] 本发明的目的在于提供一种口服毒物吸附剂, 其可通过口服投予, 进入肠胃道 吸附有机毒或无机毒, 包括: 重金属、 磷、 尿毒素、 影响肝肾功能的分子、 误 食的毒物或致病原等, 并且可以快速排出体外, 不在胃肠道沾粘; 如此, 不但 可应用于健康人以及慢性肾病患者日常生活的 毒物排除, 更可应用在化学品中 毒病人的紧急治疗药物投予, 借以减缓毒物在体内的扩散。 为达上述的目的, 本发明选用具多孔性及吸附性的竹炭进行口服 吸附剂的制造, 制作方法在于: 先将一竹材裁切, 并清净后放入一高温炭化炉中; 接着将该高温炭化炉升温至 4 00。C至 950。C, 进行炭化程序, 并在炭化过程中通入一惰性气体; 接着持续在该 高温炭化炉中维持其温度在 750。C至 1000。C, 进行竹炭活化, 并在活化过程中加 入一活化剂, 产生一活性竹炭; 将该活性竹炭冷却、 清洗干净并使之干燥; 再 将该活性竹炭研磨成一活性竹炭粉末, 接着将该活性竹炭粉末与一生物可蜕化 高分子材料混合, 进一步将混有该生物可蜕化高分子材料的活性 竹炭粉末滴到 0. 01-10%的交联溶液中, 即制备成结构为该生物可蜕化高分子材料包覆 大量活性 竹炭粉末的一活性竹炭微球, 该活性竹炭微球即为本发明的口服毒物吸附剂 。

[0009] 本发明的另一目的在于避免现有口服药物在肠 胃道沾粘的现象产生, 制作过程 中将该活性竹炭粉末混合天然高分子物质的该 生物可蜕化高分子材料, 如此吸 附肾毒素的口服毒物吸附剂可快速通过肠胃道 并排出体外, 避免肠胃道沾黏, 同吋该生物可蜕化高分子材料的表面具有多个 孔洞, 可加强该口服毒物吸附剂 的吸附能力。

[0010] 本发明提供一种口服毒物吸附剂, 其是由一生物可蜕化高分子材料包覆一活性 竹炭粉末所形成的一活性竹炭微球。

[0011] 其中, 该活性竹炭微球的粒径约为 100-2000微米。

[0012] 其中, 该活性竹炭粉末与该生物可蜕化高分子材料的 混合重量比为 1:2至 1:5。

[0013] 其中, 该活性竹炭微球经口投予用吸附肠胃道的毒性 物质, 通过胃肠道并由肠 道排出体外。

[0014] 其中, 该惰性气体选自氮气或氩气中的任一种, 并以 100ml/min至 400ml/min的 速度通入该高温炭化炉中。

[0015] 其中, 该活化剂选自二氧化碳或水蒸气中的任一种, 并以 100ml/min至 400ml/m in的速度通入该高温炭化炉中。

[0016] 其中, 该活性竹炭粉末与该生物可蜕化高分子材料的 混合重量比为 1:2至 1:5。

[0017] 其中, 该生物可蜕化高分子材料选自几丁聚醣、 海藻酸、 玉米淀粉、 甲基纤维 素、 明胶、 褐藻胶、 聚糊精等任何天然高分子、 天然高分子改良及任何合成高 分子单一或任意组成的群组。

[0018] 其中, 该生物可蜕化高分子材料为海藻酸与几丁聚醣 , 且其海藻酸或几丁聚醣 与竹炭粉末混合重量比为 2: 1至 5: 1。

发明的有益效果

有益效果 [0019] 本发明的有益效果为: 原料取得容易, 制作过程简单, 具有吸附肠胃道的毒素 与快速排出体外的功能。

对附图的简要说明

附图说明

[0020] 图 1为本发明的制作过程方块流程图;

[0021] 图 2为本发明的剖面结构示意图;

[0022] 图 3为本发明的扫描式电子显微镜 (SEM)影像 (27x);

[0023] 图 4为本发明的扫描式电子显微镜 (SEM)影像 (350x);

[0024] 图 5A-图 5B为本发明的 X射线绕射比较图;

[0025] 图 6为本发明对亚甲基蓝水溶液吸附能力的结果 意图;

[0026] 图 7为本发明对碘水溶液吸附能力的结果示意图

[0027] 图 8为本发明的带正电竹炭微球的电子显微镜 (SEM)影像 (30X);

[0028] 图 9为本发明的带负电竹炭微球的电子显微镜 (SEM)影像 (65X);

[0029] 图 10为本发明的实施例 3的流程示意图;

[0030] 图 11A为本发明实施例 3的重金属铅吸附结果;

[0031] 图 11B为本发明实施例 3的重金属铬吸附结果;

[0032] 图 11C为本发明实施例 3的磷酸盐吸附结果;

[0033] 图 11D为本发明实施例 3的尿毒素吲哚吸附结果;

[0034] 图 11E为本发明实施例 3的尿毒素对甲酚吸附结果。

[0035] 附图标记说明

[0036] 501 竹材

[0037] 502 清洗液

[0038] 503 炭化竹材

[0039] 505 活性竹炭

[0040] 507 活性竹炭粉末

[0041] 509 活性竹炭微球

[0042] 509, 正电竹炭微球

[0043] 509, '负电竹炭微球 [0044] 101 高温炭化炉

[0045] 102 生物可蜕化高分子材料

[0046] 103 惰性气体

[0047] 105 活化剂

[0048] 107 研磨组件

[0049] S1-S6 少

盖爭

[0050] T 冃母

[0051] Bl 口腔缓冲溶液

[0052] B2 胃液缓冲溶液

[0053] B3 小肠缓冲溶液

[0054] B4 大肠缓冲溶液。

实施该发明的最佳实施例

本发明的最佳实施方式

[0055] 请参阅图 1、 2所示, 本发明提供一种口服毒物吸附剂及其制造方法 , 依据下列 步骤流程进行:

[0056] 首先, 将一竹材 501裁切成约 10cm x5cm的大小, 清洗干净后放入一高温炭化 炉 101中, 进行步骤 Sl, 真空抽气; 接着进行步骤 S2, 将该高温炭化炉 101的温 度以 5-20。 c /min升温速度升温至 400 至950。C, 其中, 以 600。 c 至 900。 c 为最佳 , 将切割后的该竹材 501置于其中 30至 60分钟, 使该竹材 501炭化, 在升温过程 中以速度 100ml/min至 400ml/min通入一惰性气体 103于该高温炭化炉 101中, 其中 , 以 lOOml/min的速度为最佳, 该惰性气体 103可为氮气或氩气, 使该竹材 501在 无氧的环境下燃烧炭化, 产生一炭化竹材 503 ; 接着进行步骤 S3, 将该炭化竹材 503在高温下进行活化, 将该高温炭化炉 101的温度维持在 750 至1000。

C, 以 900。 c 为最佳温度, 并以 lOOml/min至 400ml/min的速度通入一活化剂 105, 进行竹炭活化, 该活化剂 105可为二氧化碳或水蒸气, 通入速度以 lOOml/min为最 佳, 作用吋间为 1至 2小吋, 即可产生一活性竹炭 505 ; 接着进行步骤 S4, 将该活 性竹炭 505冷却, 用一清洗液 502将其清洗干净并使之干燥; 进行步骤 S5, 利用 一研磨组件 107, 将该活性竹炭 505磨成适当大小, 其中, 该研磨组件 107以 100-2 30 mesh为最佳, 分选出 50微米至 1000微米的一活性竹炭粉末 507 ; 进行步骤 S6, 将研磨后的该活性竹炭粉末 507与一生物可蜕化高分子材料 102混和, 其重量比 为 1 : 2-1: 5, 以 1 :3为最佳, 借由搅拌使该活性炭粉末 507均匀分散于该生物可 蜕化高分子材料 102中, 进一步将混有该生物可蜕化高分子材料 102的活性竹炭 粉末 507滴到 0.01- 10%的交联溶液中, 本发明的交联溶液为 lM NaOH溶液, 即制 备出结构为该生物可蜕化高分子材料 102包覆大量活性竹炭粉末 507的一活性竹 炭微球 509, 该活性竹炭微球 509即为本发明的口服毒物吸附剂, 该活性竹炭微 球 509的直径大小约为 100微米至 2000微米 (请参阅图 2所示)。

[0057] 上述制作过程步骤中, 该竹材 501可为成熟群的孟宗竹、 凤尾竹或淡竹等任何 种类竹子的群体, 本发明选自四年生以上的孟宗竹材; 该清洗液 502可为酸性水 溶液、 碱性水溶液以及有机溶剂等; 该生物可蜕化高分子材料 102可为:

(W/V)的几丁聚醣 (chito San )、 玉米淀粉、 甲基纤维素、 明胶、 褐藻胶、 聚糊精以 及海藻酸 (alginate)等任何天然高分子、 天然高分子改良及任何合成高分子等单一 或任意组成的群组。

[0058] 请参阅图 3、 4所示, 本发明的该活性竹炭微球 509呈现球状, 以 SEM检测该活 性竹炭微球 509的表面形貌, 该 SEM影像 (27x)显示该活性竹炭微球 509外观为表 面粗糙的完整球型, 大小约 1.5毫米, 且表面呈现不规则的粗糙坑洞, 将该活性 竹炭微球 509剖幵, 其 SEM影像显示 (350x)显示该活性竹炭微球 509内部为多孔隙 类海绵状的结构 (请参阅图 4所示)。

[0059] 该活性竹炭微球 509能通过食道, 可经口投进入肠胃道内, 并具有吸附体内有 机毒或无机毒的特性, 其有机毒或无机毒包括: 重金属、 磷、 化学品、 细菌性 病毒、 消化性毒素、 其他有机性废物、 肠内滞留气体的物体、 生理代谢物、 影 响肝肾功能的分子以及误食的毒物或致病原等 , 该活性竹炭微球 509吸附上述物 质后可通过肠胃道蠕动排出体外。

[0060] 使用比表面积分析仪 (BET)测量竹炭活化前后比表面积的差异, 由表一所示, 活化前竹炭 (即炭化竹材 503)的比表面积为 195.82±11.5 m g , 当该炭化竹材 503 在 900。C下, 通入该活化剂 105进行活化后, 其比表面积提高 2.7倍, 为

534.39+32.5 m 2 /g。 [0061] 表一、 比表面积

[0062] 请参阅图 5A-图 5B所示, 利用 X射线绕射 (XRD)观察活化的该活性竹炭 505 (请 参阅图 5A所示)以及未活化的竹炭 (请参阅图 5B所示)的结晶结构, 该活性竹炭 505 与未活化的竹炭相比, 其结晶构造、 显微结构以及孔隙度都未改变, 且经活化 步骤, 该活性竹炭 505相较于未活化的竹炭具有高孔隙及高吸附力 , 且表面具有 官能基, 如此对肾毒素的吸附具有良好的效果。

[0063] 发明人将该活性竹炭微球 509进行吸附能力测验, 如亚甲基蓝、 碘、 金属离子 、 磷酸盐以及尿毒素等。

[0064] 实施例 1

[0065] 请参阅图 6所示, 本实施例进行该口服毒物吸附剂的亚甲基蓝水 溶液吸附测试 , 首先配置浓度 20ppm的亚甲基蓝水溶液, 将 10mg的该活性竹炭微球 509、 未活 化的炭化竹材 503以及市售口服吸附剂 (对照组)加入亚甲基蓝水溶液中浸泡 24小 吋, 之后使用分光亮度计测量亚甲基蓝水溶液浓度 的变化; 24小吋后, 可发现 本发明的该活性竹炭微球 509对亚甲基蓝有良好的吸附能力。

[0066] 实施例 2

[0067] 请参阅图 7所示, 本实施例进行该口服毒物吸附剂的碘吸附测试 , 根据日本工 业规范 JISK1474(19991), 针对活性炭的检测方式进行测量活性炭对碘的 吸附, 首先将该活性竹炭微球 509、 未活化的炭化竹材 503以及市售口服吸附剂 (对照组) 加入测试用标准碘水溶液中, 测量碘被该活性竹炭微球 509所吸附量; 其结果显 示三组都有良好的吸附效果。

[0068] 从实施例 1、 2可知本发明具有与市售的口服吸附剂吸附效 相当, 甚至更佳的 吸附力。

[0069] 实施例 3、 4

[0070] 请参阅图 8、 9所示, 在实施例 3、 4中测试该活性竹炭粉末 507包覆不同的该生 物可蜕化高分子材料 102, 在模拟肠胃道环境测试对肾毒素的吸附能力, 其中, 肾毒素包括: 铅 (Pb)、 铬 (Cr)、 磷酸盐 (P0 4 3 -)、 吲哚 (Indole)以及对甲酚 (p-Cresol) ; 首先将这些活性竹炭粉末 507分别混合添加几丁聚醣 (Chitosan)的该生物可蜕化 高分子材料 102, 形成带正电的一正电竹炭微球 509' (请参阅 8图所示), 以及添加 海藻酸 (Alginate)的该生物可蜕化高分子材料 102, 形成带负电的一负电竹炭微球 509" (请参阅 9图所示), 从第 8以及 9图中可发现, 包覆不同的该生物可蜕化高分 子材料 102的这些活性竹炭微球 509其外形仍为圆形颗粒, 且表面呈现多孔洞的 形貌, 添加几丁聚醣及海藻酸的该生物可蜕化高分子 材料 102使该活性竹炭微球 509表面具有不同官能基; 几丁聚醣的该生物可蜕化高分子材料 102的该正电竹 炭微球 509'的表面具有 NH 官能基, 可与带负电的离子结合 (如磷离子), 接着再 与带正电的离子 (如钙离子)结合后形成结晶, 并通过肠胃道蠕动排出体外; 并且 , 包覆海藻酸的该生物可蜕化高分子材料 102的该负电竹炭微球 509"的表面具有 COO -官能基, 先与带正电的离子 (如钙离子)结合, 再与带负电的离子 (磷离子)结 合, 进一步形成结晶, 通过肠胃道蠕动排出体外。

[0071] 实施例 3-肾毒素吸附测试 1

[0072] 请参阅图 10所示, 首先, 分别取 0.05g的该正、 负电竹炭微球 509'、 509" , 并分 别浸入含有一肾毒素 T的一口腔缓冲溶液 B1中 5分钟, 该口腔缓冲溶液 B 1的 pH质 为 6.5, 5分钟后吸取该口腔缓冲溶液 Bl, 测其吸光值, 检测该口腔缓冲溶液 B1 中该肾毒素 T被吸附量, 接着, 将含有该肾毒素 T的一胃液缓冲溶液 B2加入上述 的该正、 负电竹炭微球 509'、 509"中, 该胃液缓冲溶液 B2的 pH值为 2, 浸泡 2小 吋后取出该胃液缓冲溶液 B2, 测试其吸光值, 接着, 将含有该肾毒素 T的一小肠 缓冲溶液 B3加入上述的该正、 负电竹炭微球 509'、 509"中, 该小肠缓冲溶液 B3 的 pH值为 7.5, 浸泡 5小吋后取出该小肠缓冲溶液 B3, 测试其吸光值, 最后, 将 含有该肾毒素 T的一大肠缓冲溶液 B4加入上述的该正、 负电竹炭微球 509'、 509" 中, 该大肠缓冲溶液 B4的 pH值为 8, 浸泡 24小吋后取出该大肠缓冲溶液 B4, 测 试其吸光值。

[0073] 在本实施例中, 测试尿毒素 -吲哚 (Indole)以及对甲酚 (p-Cresol)吋, 因尿毒素仅 出现在小肠以及大肠中, 因此先将 0.05g的该正、 负电竹炭微球 509'、 509"浸泡 在该口腔缓冲溶液 B1中 5分钟, 5分钟后去除该口腔缓冲溶液 Bl, 接着加入该胃 液缓冲溶液 B2并浸泡 2小吋, 2小吋后去除该胃液缓冲溶液 B2, 接着加入含有该 肾毒素 T的该小肠缓冲溶液 B3, 浸泡 5小吋后取出该小肠缓冲溶液 B3, 测试其吸 光值, 最后加入含有该肾毒素 T的大肠缓冲溶液 B4于上述该正、 负电竹炭微球 50 9'、 509"中, 浸泡 24小吋后取出该大肠缓冲溶液 B4, 测试其吸光值。

[0074] 请参阅图 11A-11E所示, 横坐标为该正、 负电竹炭微球 509'、 509"分别于不同 缓冲溶液中吸收这些肾毒素 T的结果, 而纵坐标为每公克 (g)的该正、 负电竹炭微 球 509'、 509' '所能吸收多少毫克 (mg)的该肾毒素 T; 其中, 重金属铅在 4种缓冲 液的吸引效果都具有统计意义 (请参阅图 11A所示), 重金属铬在该小、 大肠缓冲 液 B3、 B4的吸引效果都具有统计意义 (请参阅图 11B所示), 磷酸盐在该口腔、 胃 缓冲液 Bl、 B2的吸引效果都具有统计意义 (请参阅图 11C所示), 吲哚在该小、 大 肠缓冲液 B3、 B4的吸引效果都具有统计意义 (请参阅图 11D所示), 对甲酚在该小 、 大肠缓冲液 B3、 B4的吸引效果都具有统计意义 (请参阅图 11E所示), 综上所述 , 该正、 负电竹炭微球 509'、 509"对于各种该肾毒素 T都有良好的吸收功效。

[0075] 为达到良好吸附该肾毒素 T功效, 可选自以一种或多种该生物可蜕化高分子材 料 102混合的该活性竹炭微球 509, 混合搭配使用, 其中, 添加海藻酸的该生物 可蜕化高分子材料 102所形成的该负电竹炭微球 509"与添加几丁聚醣的该生物可 蜕化高分子材料 102所形成的该正电竹炭微球 509', 其混合使用比例为 2:1至 5:1, 尤以 3:1为最佳, 如此可提升吸附功效。

工业实用性

[0076] 综上所述, 该活性竹炭微球 509可经口投进入肠胃道内, 因该活性竹炭微球 509 具有多数孔洞, 且因受过活化, 其表面具有多种官能基, 可吸收人体内的毒性 物质, 并且, 在制作过程吋该活性竹炭粉末 507混合不同种类的天然高分子物质 的该生物可蜕化高分子材料 102, 使该活性竹炭微球 509可通过肠胃道的蠕动迅 速排出体外, 并且该活性竹炭微球 509的原料为竹子, 其原料取得容易, 制作过 程简单, 并且具有吸附肠胃道的毒素与快速排出体外的 功能; 反观现有的口服 吸附具有制作过程繁琐, 价格昂贵, 且口服后易沾附于肠胃道壁上, 难以借由 肠胃道的蠕动排出体外等诸多缺点。

上述详细说明是针对本发明的可行实施例的具 体说明, 但是, 该实施例并非用 以限制本发明的专利保护范围, 凡未脱离本发明技艺精神所作的等效实施或变 更, 均应包含于本案的专利范围中。