Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OSCILLATORILY DRIVEN MACHINE TOOL
Document Type and Number:
WIPO Patent Application WO/2015/071304
Kind Code:
A1
Abstract:
Disclosed is an oscillatorily driven machine tool comprising a tool spindle (34) that is mounted so as to be pivotable about its longitudinal axis (35), a driving motor (14) that is coupled to a hydraulic generator (22) for generating an oscillating fluid flow which drives a hydraulic motor in the form of a rotor motor (30). Said rotor motor (30) drives the tool spindle (34) in such a way that the tool spindle (34) oscillatorily rotates about its longitudinal axis (35). The rotor motor (30) comprises symmetrically arranged rotor blades that are disposed at regular angular distances from each other.

Inventors:
NOACK STEFFEN (DE)
VOIGT TOBIAS (DE)
Application Number:
PCT/EP2014/074366
Publication Date:
May 21, 2015
Filing Date:
November 12, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FEIN C & E GMBH (DE)
International Classes:
B21F5/00; B23D47/12; B23Q5/027; B24B23/04; B24B47/12; B24B47/14; B24B47/16; B26D5/12; F15B15/12
Domestic Patent References:
WO2002003779A12002-01-17
Foreign References:
GB567549A1945-02-20
EP0248986A11987-12-16
DE202008013877U12009-01-08
Other References:
See also references of EP 3077135A1
Attorney, Agent or Firm:
WITTE, WELLER & PARTNERPATENTANWÄLTE MBB (DE)
Download PDF:
Claims:
Patentansprüche

Oszillierend antreibbare Werkzeugmaschine, mit einer um ihre Längsachse (35) schwenkbar gelagerten Werkzeugspindel (34), mit einem Antriebsmotor (14), der mit einem Hydraulikgenerator (22) zur Erzeugung eines oszillierenden Fluidstroms gekoppelt ist, der einen Hydraulikmotor in Form eines Drehflügelmotors (30) antreibt, um die Werkzeugspindel (34) um ihre Längsachse (35) drehoszillierend anzutreiben.

Werkzeugmaschine nach Anspruch 1 , bei der der Drehflügelmotor (30) symmetrisch angeordnete Drehflügel (38) aufweist.

Werkzeugmaschine nach Anspruch 1 oder 2, bei der die Drehflügel (38) als Drehkolbenfinger an der Werkzeugspindel (34) ausgebildet sind.

Werkzeugmaschine nach einem der vorhergehenden Ansprüche, bei der die Werkzeugspindel (34) in einer als Gegenstück geformten Buchse (32) läuft.

Werkzeugmaschine nach Anspruch 3 und 4, bei der beidseits eines jeden Drehkolbenfingers (38) mit der Buchse (32) Fluidräume (40, 41 ) gebildet sind, die mit entgegengesetzt druckpulsierenden Anschlüssen (42, 43) des Hydraulikgenerators (22) gekoppelt sind.

Werkzeugmaschine nach Anspruch 4 oder 5, bei der die Buchse (32) aus einer Bronzelegierung besteht und die Werkzeugspindel (34) vorzugsweise aus Stahl besteht.

Werkzeugmaschine nach einem der vorhergehenden Ansprüche, bei der der Drehflügelmotor (30) vier Drehkolbenfinger (38) aufweist, die winkelmäßig um jeweils 90° zueinander versetzt angeordnet sind.

8. Werkzeugmaschine nach einem der vorhergehenden Ansprüche, bei der der Hydraulikgenerator (22) als Verdrängerpumpe mit einem Linearkolben (46) ausgebildet ist, der von einer Motorwelle (15) des Antriebsmotors (14) über einen Exzenter (18) angetrieben wird.

9. Werkzeugmaschine nach Anspruch 8, bei der an den beiden Enden des Linearkolbens (46) Druckräume (50, 52) gebildet sind, in denen die entgegengesetzt pulsierende Fluidenergie erzeugt wird.

10. Werkzeugmaschine nach Anspruch 5 und 9, bei jeder der Druckräume (50, 52) über einen Verteiler (42, 43) mit zugeordneten Bohrungen (44, 45) an der Buchse (32) gekoppelt ist, um die Fluidräume (40, 41 ) beidseits der Drehkolbenfinger (38) mit entgegengesetzt pulsierendem Fluid zu versorgen.

1 1 . Werkzeugmaschine nach einem der vorhergehenden Ansprüche, bei der ein mit Druck beaufschlagtes Hydraulikfluidreservoir (66, 67) vorgesehen ist, das über Rückschlagventile (61 , 62) mit dem Hydraulikgenerator gekoppelt ist, um Leckageverluste auszugleichen.

12. Werkzeugmaschine nach einem der vorhergehenden Ansprüche, bei der das

Hydraulikfluidreservoir einen Zylinder (66) umfasst, in dem ein Kolben (67) verschiebbar ist, der mittels eines Federelementes (68) vorgespannt wird.

Description:
Oszillierend antreibbare Werkzeugmaschine

[0001] Die Erfindung betrifft eine oszillierend antreibbare Werkzeugmaschine mit einem Antriebsmotor und mit einer um ihre Längsachse schwenkbar gelagerten Werkzeugspindel, die drehoszillierend um ihre Längsachse antreibbar ist.

[0002] Derartige oszillierend antreibbare Werkzeugmaschinen sind in vielfältiger Ausführung bekannt. Sie werden über ein mechanisches Oszillationsgetriebe angetrieben, das die rotierende Antriebsbewegung eines Antriebsmotors in eine drehoszillierende Antriebsbewegung der Werkzeugspindel um ihre Längsachse umsetzt. [0003] Gemäß der EP 1 428 625 A1 ist hierzu ein Exzenter vorgesehen, der mit einer Exzentergabel zum oszillierenden Antrieb der Werkzeugspindel zusammenwirkt. Der Exzenter wird von einer Exzenterwelle rotierend angetrieben, die parallel zur Werkzeugspindel angeordnet ist.

[0004] Gemäß der EP 2 283 979 A1 weist eine oszillierend antreibbare Werkzeugmaschine einen Antriebsmotor mit einer Motorwelle auf, sowie eine Werkzeugspindel, die um ihre Längsachse drehoszillierend antreibbar ist, wobei ein durch die Motorwelle rotatorisch antreibbares Koppelglied mit einer geschlossenen Führungsfläche vorgesehen ist, die eine Führungsachse umläuft, wobei die Führungsfläche über Übertragungsmittel mit mindestens einem Mitnehmer zu dessen Antrieb gekoppelt ist, wobei der mindestens eine Mitnehmer relativ zur Arbeitsspindel beweglich gehalten ist und in einem Umfangsbereich der Arbeitsspindel angreift, um diese drehoszillierend anzutreiben.

[0005] Derartige mechanische Oszillationsgetriebe gibt es in zahlreichen Ausführungen, um die rotierende Antriebsbewegung einer Motorwelle in die drehoszillierende Bewegung der Werkzeugspindel umzusetzen.

[0006] Wegen der ständig zunehmenden Anforderungen an die Leistungsfähigkeit der Oszillationswerkzeuge werden hierbei an die mechanischen Oszillationsgetriebe hohe Anforderungen gestellt. Sie sind infolge der oszillierenden Belastung einer hohen mechanischen Beanspruchung und damit tendenziell einem Verschleiß im Langzeitbetrieb ausgesetzt. Bei hoher Belastung nimmt außerdem die Geräuschentwicklung zu. Schließlich führen Oszillationsgetriebe je nach Belastung zu mehr oder minder großen Vibrationen, was teilweise vom Benutzer als nachteilig empfunden wird.

[0007] Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine oszillierend antreibbare Werkzeugmaschine gemäß der eingangs genannten Art derart zu verbessern, dass ein drehoszillierender Antrieb der Werkzeugspindel auch bei hoher mechanischer Belastung auf möglichst einfache und zuverlässige Weise ermöglicht ist. [0008] Diese Aufgabe wird durch eine oszillierend antreibbare Werkzeugmaschine gelöst, mit einer um ihre Längsachse schwenkbar gelagerten Werkzeugspindel, mit einem Antriebsmotor, der mit einem Hydraulikgenerator zur Erzeugung eines oszillierenden Fluidstroms gekoppelt ist, der einen Hydraulikmotor in Form eines Drehflügelmotors antreibt, um die Werkzeugspindel um ihre Längsachse drehoszillierend anzutreiben.

[0009] Die Aufgabe der Erfindung wird auf diese Weise gelöst.

[0010] Indem eine Hydraulikeinrichtung zum drehoszillierenden Antrieb der Werkzeugspindel verwendet wird, werden höhere Antriebsleistungen als bei mechanischen Oszillationsgetrieben ermöglicht, wobei teilweise gleichzeitig der Verschleiß reduziert werden kann und die Laufruhe verbessert werden kann. Der Drehflügelmotor ermöglicht eine direkte Umsetzung der pulsierenden Fluidenergie in eine Oszillationsbewegung der Werkzeugspindel, ohne dass hierzu ein mechanisches Getriebe erforderlich ist.

[0011] Ein besonderer Vorteil der obigen Anordnung besteht darin, dass durch die jeweilige Dimensionierung der Hydraulikeinrichtung die wesentlichen Parameter des oszillierenden Antriebes angepasst werden können, also insbesondere der Schwingwinkel, die Winkelgeschwindigkeit, die Winkelbeschleunigung und das erzeugte Drehmoment. Insbesondere lassen sich hohe Drehmomente relativ verschleißarm und vibrationsarm erzielen.

[0012] In bevorzugter Weiterbildung der Erfindung weist der Drehflügelmotor symmetrisch angeordnete Drehflügel auf, die in definierten Winkelabständen zueinander angeordnet sind.

[0013] Auf diese Weise werden einseitige Lagerbelastungen (in Querrichtung) vermieden. Es ergibt sich insgesamt eine gleichmäßige Lagerbelastung und damit ein verringerter Verschleiß. [0014] Gemäß einer weiteren Ausführung der Erfindung sind die Drehflügel als Drehkolbenfinger an der Werkzeugspindel ausgebildet.

[0015] Auf diese Weise ergibt sich ein besonders einfacher Aufbau.

[0016] Gemäß einer weiteren Ausgestaltung der Erfindung läuft die Werkzeugspindel in einer entsprechend als Gegenstück geformten Buchse.

[0017] Hierdurch lässt sich eine spielarme Verbindung gewährleisten.

[0018] Vorzugsweise sind beidseits eines jeden Drehkolbenfingers mit der Buchse Fluidräume gebildet, die mit entgegengesetzt druckpulsierenden Anschlüssen des Hydraulikgenerators gekoppelt sind.

[0019] Durch diese Maßnahmen ergibt sich ein einfacher Aufbau und eine einfache Abdichtung der Fluidräume.

[0020] Gemäß einer weiteren Ausgestaltung der Erfindung besteht die Buchse aus einer Bronzelegierung, und die Werkzeugspindel besteht vorzugsweise aus Stahl.

[0021] Durch eine derartige Werkstoffpaarung ergibt sich eine Minimierung der Gleitreibung, ein verringerter Verschleiß und damit eine dauerhaft niedrige innere Leckage an den Drehkolbenfingern.

[0022] Gemäß einer weiteren Ausgestaltung weist der Drehflügelmotor vier Drehkolbenfinger aufweist, die winkelmäßig um jeweils 90° zueinander versetzt angeordnet sind.

[0023] Hierdurch ergibt sich ein guter Kompromiss zwischen einem geringen Bauraum und einem niedrigen Leerlaufdruck des Hydrauliksystems. [0024] Gemäß einer weiteren Ausgestaltung der Erfindung ist der Hydraulikgenerator als Verdrängerpumpe mit einem Linearkolben ausgebildet ist, der von einer Motorwelle des Antriebsmotors über einen Exzenter angetrieben wird.

[0025] Hierdurch ergibt sich ein besonders einfacher und zuverlässiger Aufbau des Hydraulikgenerators.

[0026] Gemäß einer weiteren Ausgestaltung der Erfindung sind an den beiden Enden des Linearkolbens Druckräume gebildet sind, in denen die entgegengesetzt pulsierende Fluidenergie erzeugt wird.

[0027] Hierbei ist vorzugsweise jeder der beiden Druckräume über einen Verteiler mit zugeordneten Bohrungen an der Buchse gekoppelt ist, um die Fluidräume beidseits der Drehkolbenfinger mit entgegengesetzt pulsierendem Fluid zu versorgen.

[0028] Es ergibt sich so ein einfacher und zuverlässiger Aufbau.

[0029] Gemäß einer weiteren Ausgestaltung der Erfindung ist ein mit Druck beaufschlagtes Hydraulikfluidreservoir vorgesehen, das über Rückschlagventile mit dem Hydraulikgenerator gekoppelt ist.

[0030] Hierbei kann das Hydraulikfluidreservoir etwa als eine Kammer eines Zylinders ausgeführt sein. Die entsprechende Druckbeaufschlagung erfolgt durch eine Feder, die auf den Kolben wirkt, der im Zylinder verschiebbar ist.

[0031] Auf diese Weise ist ein Ausgleich von Leckageverlusten gewährleistet.

[0032] Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale der Erfindung nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen. [0033] Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Zeichnung. Es zeigen:

Fig. 1 einen Teilschnitt einer erfindungsgemäßen oszillierend antreibbaren

Werkzeugmaschine;

Fig. 2 eine Prinzipdarstellung eines erfindungsgemäßen Drehflügelmotors, der gemäß Fig. 1 zur direkten Umsetzung von oszillierender Fluidenergie in eine oszillierende Antriebsbewegung der Werkzeugspindel verwendet wird;

Fig. 3 einen Längsschnitt durch den Vielkammer-Drehkolben gemäß Fig.2;

Fig. 4 eine perspektivische Ansicht des Vielkammer-Drehkolbens gemäß Fig.3;

Fig. 5 einen vereinfachten Schnitt durch den Hydraulikgenerator gemäß Fig. 1 und

Fig. 6 eine Prinzipdarstellung des hydraulischen Gesamtsystems der Werkzeugmaschine gemäß Fig. 1 .

[0034] In Fig. 1 ist eine erfindungsgemäße oszillierend antreibbaren Werkzeugmaschine dargestellt und insgesamt mit der Ziffer 10 bezeichnet.

[0035] Die Werkzeugmaschine 10 weist eine Werkzeugspindel 34 auf, die im Gehäuse mittels zweier Wälzlager 26, 28 um ihre Längsachse 35 verschwenkbar gelagert ist.

[0036] Die Werkzeugspindel 34 ist als Hohlspindel ausgebildet, mit einem darin aufgenommenen, gegen die Kraft einer Feder (nicht dargestellt) verspannten Stößel 25, an dem ein Halteelement 27 festgelegt ist. Der Stößel 25 kann mittels eines Spannhebels 23 über einen auf den Stößel 25 wirkenden Exzenter 24 axial gegen die Vorspannung der Feder verschoben werden, wozu der Spannhebel 23 aus der in Fig. 1 dargestellten Spannstellung nach vorn in eine Lösestellung verschwenkt wird. Dadurch wird ein im Halteelement 27 aufgenommenes Spannelement 37, das mit einer Verzahnung 39 in das Halteelement 7 eingreift, entlastet, so dass das Spannelement 37 abgenommen werden kann, um etwa ein zwischen der äußeren Stirnfläche der Werkzeugspindel 34 und einem Kopf 33 des Spannelementes 37 gehaltenes Werkzeug abzunehmen.

[0037] Zum Spannen wird das Spannelement 37 wieder durch eine zugeordnete Ausnehmung des Werkzeugs hindurch in die Werkzeugspindel 34 gesteckt, bis die Verzahnung 39 in das Halteelement 37 eingreift, und der Spannhebel 23 wieder in seine Spannstellung gemäß Fig. 1 bewegt.

[0038] Die Werkzeugspindel 34 ist um ihre Längsachse 35 mit hoher Frequenz und im Bereich von etwa 5.000 bis 30.000 Oszillationen pro Minute und geringem Ver- schwenkwinkel im Bereich von etwa ± 1 ° bis ± 5° (von Umkehrpunkt zu Umkehrpunkt) antreibbar. Vorzugsweise entspricht die Frequenz der Drehzahl des verwendeten Antriebsmotors 14 und beträgt bei 20.000 Umdrehungen pro Minute etwa 333 Hz. Der Schwenkwinkel von Umkehrpunkt zu Umkehrpunkt liegt vorzugsweise bei ± 2,5°.

[0039] Zur Übertragung einer hohen Leistung auf die Werkzeugspindel 34 wird entgegen einer im Stand der Technik bekannten mechanischen Kopplung mittels eines Oszillationsgetriebes nunmehr ein hydraulisches Getriebe verwendet.

[0040] Hierzu wird vom Motor 14 ein Hydraulikgenerator angetrieben, der in Fig. 1 lediglich mit der Ziffer 22 angedeutet ist. Vom Hydraulikgenerator 22 wird die oszillierende Fluidenergie über einen Hydraulikmotor 30, der mit der Werkzeugspindel 34 gekoppelt ist, in eine drehoszillierende Antriebsbewegung der Werkzeugspindel 34 um ihre Längsachse 35 umgesetzt.

[0041] In Fig. 2 ist der Hydraulikmotor 30 gemäß Fig. 1 schematisch dargestellt. Es handelt sich um einen symmetrisch ausgestalteten Drehflügel-Schwenkflügelmotor (kurz Drehflügelmotor) 30, der vier um jeweils 90° zueinander winkelversetzt angeordnete Drehflügel 38 aufweist, die an der Werkzeugspindel 34 außen angeformt sind. Jedem Drehkolbenfinger 38 sind zwei angrenzende Fluidkammern 40, 41 zugeordnet, die zwischen der Werkzeugspindel 34 und der umgebenden Buchse 32 gebildet sind, in der die Werkzeugspindel 34 in diesem Bereich läuft.

[0042] Es sind somit beidseits jedes Drehkolbenfingers 38 angrenzende Fluidraume 40, 41 gebildet. Insgesamt sind also um den Umfang der Werkzeugspindel 34 in definierten Winkelabständen verteilt acht Fluidräume 40, 41 gebildet. Davon sind die Fluidräume 40 auf der einen Drehseite über einen zugeordneten Verteiler 43 miteinander gekoppelt und an den Hydraulikgenerator 22 angeschlossen. Die anderen Fluidräume 41 auf der anderen Drehseite sind über einen zugeordneten Verteiler 42 miteinander gekoppelt und an einen anderen Ausgang des Hydraulikgenerators 22 angeschlossen. Mittels des Hydraulikgenerators 22 wird ein pulsierender Fluiddruck erzeugt, wobei der Druck alternierend zwischen den beiden Ausgängen, die an die Verteiler 42 bzw. 43 angeschlossen sind, pulsiert. Es ergibt sich also abwechselnd ein Überdruck in den Fluidräu- men 40 und in den Fluidräumen 41 . Auf diese Weise wird pulsierende Hydraulikenergie unmittelbar in eine oszillierende Drehbewegung der Werkzeugspindel 34 umgesetzt.

[0043] Der hierzu verwendete Hydraulikgenerator 22 ist aus Fig. 5 näher zu ersehen.

[0044] Die Motorwelle 15 des Antriebsmotors 14 ist an ihrem Ende, an dem der Lüfter 17 aufgenommen ist, mittels eines Wälzlagers 16 am Gehäuse 12 gelagert. Am Ende der Motorwelle 15 ist ein Exzenter 18 gehalten, auf dem ein Exzenterlager 20 vorgesehen ist. Das Exzenterlager 20 greift in einen Linearkolben 46 ein, so dass dieser bei Rotation der Motorwelle 15 gemäß dem Doppelpfeil 48 in Längsrichtung oszillierend hin und her bewegt wird. Der Linearkolben 46 wirkt an seinen beiden Enden jeweils mit einem Fluidraum 50 bzw. 52 zusammen, so dass in den Fluidräumen 50 bzw. 52 befindliche Hydraulikflüssigkeit durch die Bewegung des Linearkolbens 46 abwechselnd im einen Druckraum 50 und im anderen Druckraum 52 komprimiert wird. [0045] Die so erzeugte pulsierende Hydraulikenergie wird unmittelbar über die Verteiler 42, 43 in die zugeordneten Fluidraume 40 bzw. 41 des Hydraulikmotors 30 eingekoppelt, so dass sich die drehoszillierende Antriebsbewegung der Werkzeugspindel 34 ergibt.

[0046] Der Linearkolben 46 ist gemäß Fig. 5 mittig mit dem Exzenterlager 20 verbunden, damit eine unsymmetrische Lagerbelastung vermieden wird. Hierzu ist das Exzenterlager 20 als geteiltes Lager mit zwei Einzellagern ausgebildet, die symmetrisch am Linearkolben 46 angreifen.

[0047] Aus Fig. 4 ist näher zu ersehen, wie die zwischen der Werkzeugspindel 34 und der Buchse 32 gebildeten Fluidräume 40, 41 über Bohrungen 44, 45 in der Buchse 32 von außen mit den beiden Hydraulikleitungen gekoppelt werden können. Die Hydraulikleitungen (nicht dargestellt) können mit den Bohrungen 44, 45 verschraubt werden. In einer bevorzugten Ausführung sind die Hydraulikleitungen im oberen Gehäuse 12 eingearbeitet und kontaktieren direkt die jeweils zugehörigen Bohrungen 44 bzw. 45.

[0048] Während die Werkzeugspindel 34 bevorzugt aus Stahl besteht, besteht die Buchse 32 bevorzugt aus einer Bronzelegierung.

[0049] Auf diese Weise ergibt sich eine besonders geringe Gleitreibung und damit eine Verschleißminimierung.

[0050] Aus Fig. 3 ist zu ersehen, dass an der Werkzeugspindel 34 beidseitig der Buchse 32 jeweils eine scheibenförmiger Dichtungsring 31 angeordnet ist.

[0051] Das Hydraulikschema der Werkzeugmaschine 10 gemäß Fig. 1 ist schematisch in Fig. 6 dargestellt.

[0052] In der oberen Hälfte von Fig. 6 ist der Hydraulikgenerator 22 dargestellt, der vom Antriebsmotor 14 über die Motorwelle 15 und den davon angetriebenen Exzenter 18 angetrieben wird. Der Exzenter 18 bewegt den Linearkolben 46 innerhalb eines Fluichzylinders 54. In den Druckräumen 50, 52 an den beiden Enden des Linearkolbens 46 ergeben sich somit jeweils Druckpulsationen mit entgegengesetztem Vorzeichen. Die beiden Druckräume 50, 52 des Hydraulikgenerators 22 stehen über Fluidleitungen 42, 43 mit dem Drehflügelmotor 30 in Verbindung. Der Drehflügelmotor 30 weist in der hier gezeigten Ausführungsform zwei einander gegenüber liegende Drehkolbenfinger 56 auf, die unmittelbar an der Werkzeugspindel 34 ausgebildet sind. Das Gegenstück zu den Drehkolbenfingern 56 an der Werkzeugspindel 34 wird durch eine entsprechend geformte Buchse 32 gebildet, die vorzugsweise aus Bronze besteht.

[0053] Beidseits eines jeden Drehkolbenfingers 56 ist zwischen der Werkzeugspindel 34 und der Buchse 32 jeweils ein Fluidraum 57, 58 bzw. 71 , 72 gebildet. Einander gegenüberliegende, im gleichen Drehsinn wirkende Fluidräume 57, 72 bzw. 56, 71 sind jeweils gemeinsam mit der zugehörigen Fluidleitung 42 bzw. 43 gekoppelt.

[0054] Auf diese Weise ergeben die abwechselnden Druckpulsationen in den Leitungen 42, 43 eine Drehschwenkbewegung der Werkzeugspindel 34 um ihre Längsachse 35. In Fig. 6 sind beispielhaft nur zwei Drehkolbenfinger 56 angedeutet, die einander gegenüberliegend angeordnet sind. Es versteht sich, dass vorzugsweise eine größere Anzahl von Drehkolbenfingern verwendet werden kann, so dass es sich um einen Vielkammer-Drehflügelmotor handelt, wie zuvor anhand von Fig. 2 erläutert wurde.

[0055] Um einen Überdruck zu vermeiden, können beide Fluidleitungen 42, 43 mit einem Überdruckventil 64 bzw. 63 in Verbindung stehen. Die Überdruckventile 63, 64 sind rein optional. Wird darauf verzichtet, so kann dem durch eine ausreichende Dimensionierung Rechnung getragen werden. Im Grenzfall wird der Antriebsmotor 14 langsamer und verhindert so einen weiteren Druckanstieg. Durch einen Verzicht auf die Überdruckventile 63, 64 wird einem Driften der Werkzeugspindel 34 aus der Mittellage entgegen gewirkt.

[0056] Ferner ist an beide Leitungen 42, 43 über zugeordnete Rückschlagventile 62 bzw. 61 ein unter Druck stehendes Fluidreservoir 66, 67 über eine gemeinsame Leitung 70 angeschlossen. [0057] Die im Praxisbetrieb unvermeidlichen Fluidverluste können auf diese Weise ausgeglichen werden. Eine geeignete Menge von Hydraulikfluid ist hierzu in einem Fluidzylinder 66 aufgenommen. Dieser ist über einen Kolben 67 mit dem Druck einer geeignet dimensionierten Feder 68 beaufschlagt.

[0058] Somit wird in der Leitung 70 ein bestimmter Fluiddruck eingestellt, der beispielsweise im Bereich von 2,9 bis 5,2 bar liegen kann. Fällt der Druck in einer der beiden Leitungen 42, 43 unter diesen Wert ab, so wird Hydraulikfluid aus dem Fluidzylinder 66 nachgefördert. Die Rückschlagventile weisen hierzu bevorzugt einen Öffnungsdruck von 0,2 bar auf.

[0059] Zwischen den beiden Leitungen 42, 43, die an die Druckräume 50, 52 des Fluidzylinders 54 angeschlossen sind, ist ferner eine Bypass-Drossel 60 angeordnet.

[0060] Mittels der Bypass-Drossel 60 kann die Amplitude der Oszillationsbewegung der Werkzeugspindel 34 kontinuierlich verstellt werden, und die Werkzeugspindel kann bei geöffneter Bypass-Drossel 60 manuell in die Mittellage verstellt werden.