Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
OSTEOGENIC BIORESORBABLE MATERIAL FOR THE REPLACEMENT OF BONE DEFECTS AND METHOD FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2014/058343
Kind Code:
A1
Abstract:
The invention relates to the art of medicine, and more particularly to injectable bioresorbable compositions of biocomposite materials for treating diseases of and damage to the human skeletal system as a material that is capable of fully biodegrading in the body and being replaced by new bone tissue for the regeneration of bone cells, and as an osteoconductive and osteoinductive biological scaffold for the regeneration of bone tissue, and can be used in traumatology, orthopedics, maxillofacial surgery and neurosurgery. The injectable biocomposite material contains biological hydroxyapatite, calcium hydrophosphate, an amino acid, namely arginine, and also a phosphoprotein (casein) isolated from nonfat milk, and glutaric aldehyde as a curing agent. The technical result is a bioresorbable material which exhibits biocompatibility and pronounced osteoconductive and osteoinductive properties.

Inventors:
POLEZHAEVA LYUBOV KONSTANTINOVNA (RU)
Application Number:
PCT/RU2013/000072
Publication Date:
April 17, 2014
Filing Date:
February 01, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OBSHCHESTVO S OGRANICHENNOY OTVETSTVENNOSTYU STALVEK (RU)
International Classes:
A61L27/54; A61K31/198; A61K38/16; A61L27/12; A61L27/58; A61P41/00
Foreign References:
US5782971A1998-07-21
RU2342162C12008-12-27
RU2325170C12008-05-27
Attorney, Agent or Firm:
OBSHCHESTVO S OGANICHENNOY OTVETSTVENNOSTIU ''PATENT-GARANT'' et al. (RU)
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТ“ПАТЕНТ-ГАРАНТ” (RU)
Download PDF:
Claims:
Формула изобретения

1. Остеогенный биорезорбируемый материал для замещения дефектов костной ткани, обладающий биосовместимостью, биоактивностью, остеоиндуктивными и остеокондуктивными свойствами, выполненный из композиции, включающей в качестве наполнителя порошок биологического гидроксиапатита с размером частиц 1-40 мкм, фосфорнокислый кальций, аминокислоту, казеин в виде аммиачного раствора, отвердитель глутаровый альдегид, при следующем соотношении исходных компонентов в масс%: порошок биологического гидроксиапатита - 13,9-14,1

с размером частиц 1-40 мкм

фосфорнокислый кальций ' - 7,5-8,5

аминокислота - 0,9-1 ,1

казеин в виде аммиачного раствора - 65-75

глутаровый альдегид - 1,9-2,1

2. Способ получения биорезорбируемого материала для замещения дефектов костной ткани по п.1, заключающийся в том, что сначала получают порошок биологического гидроксиапатита с размером частиц 1-40 мкм из деминерализованных костей крупного рогатого скота, который перемешивают с 1%-ным водным раствором аминокислоты-аргинином, далее готовят связующее на основе фосфопротеина-казеина путем растворения порошка его в 5%-ном водном растворе аммиака при соотношении их 1 :4 и смешение полученной гомогенной вязкой массы с 3%-ным раствором гидрофосфата кальция в 10%-ном водном растворе ортофосфорной кислоты, взятым в количестве 125мл на 1л растворенного казеина, после этого смешивают полученное связующее на основе казеина со смесью гидроксиапатита с аргинином при интенсивном перемешивании их и к полученной вязкой массе фосфатного цемента добавляют отвердитель глутаровый альдегид непосредственно перед использованием биорезорбируемого материала.

Description:
Остеогенный биорезорбируемый материал для замещения костных дефектов и способ его получения.

Изобретение относится к области медицины, а именно к инъекционным биорезорбируемым составам биокомпозиционных материалов, предназначенных для лечения заболеваний и повреждений костной системы человека, в качестве: материала, способного в организме полностью биодеградировать и заменяться новой костной тканью, для регенерации костных клеток, остеокондуктивного и остеоиндуктивного биологического опорного каркаса для регенерации костной ткани и может найти применение в травматологии, ортопедии, челюстно-лицевой хирургии, нейрохирургии.

Кальций фосфатные цементы получают на основе реакционно- твердеющей порошковой смеси (РПС) двух и более фосфатов кальция и затворяющей жидкости (ЗЖ). Исходный порошок представляет смесь кислых и основных фосфатов. При добавлении в смесь ЗЖ компоненты начинают взаимодействовать между собой через жидкую фазу по механизму растворения-осаждения с образованием нейтральных (рН7) фосфатов. В качестве исходной смеси (S.Tagaki, L.C.Chow, К. Ishikawa, «Formation of hydrohyapatite in new calcium phosphate cements», Biomaterials, 19 (1998), pp 1593-1599) использовали трикальций фосфат в сочетании с гидроксидом кальция или карбонатом кальция, аморфный фосфат кальция с гидроксидом кальция, дикальций фосфат с гидроксидом кальция или карбонатом кальция. В качестве ЗЖ применяли водные растворы гидроксида натрия или двухзамещенного ортофосфата натрия. При смешении смеси порошков фосфата кальция с ЗЖ образуется тестоподобная масса, которая со временем схватывается до образования прочного гидроксиапатитового цементного камня, состоящего из кристаллического гидроксиапатита (ГА).

Предложенные материалы могут быть использованы в качестве цементных паст для заполнения костных челюстно-лицевых и стоматологических дефектов. Недостатком данных материалов является низкая прочность- менее 8МПа.

Известен, в частности, фосфатный цемент (В,В Самускевич, Н.Х. Белоус, Л.Н. Самускевич, А.А.Дорышевская водного затворения на основе гидроксиапатита термообработанного дигидрофосфата кальция. Неорганические Материалы, 2000, т.36, N°9, с.1148-1 152), состоящий из смеси порошков гидроскиапатита (ГА) и термообработанного дигидрофосфата кальция, в качестве ЗЖ используется вода. При добавлении затворяющей жидкости компоненты смеси реагируют друг с другом с образованием аморфной массы, которая в процессе схватывания превращается в кристаллический ГА.

Существенным недостатком данного материала является низкая прочность - не более 30 МПа и быстрое время схватывания-2-3 мин. Быстрое схватывание и низкая прочность не позволяют формировать костные имплантанты сложной конфигурации, залечивать костные дефекты большой площади и объема.

Из RU 2292867, 10.02.2007 известен кальций фосфатный цемент, обладающий повышенной прочностью. Известный цемент (материал) используется для заполнения костных челюстно-лицевых и стоматологических дефектов из реакционно-твердеющей смеси, содержащей порошок гидроксиапатита, дикальций фосфат, трикальций фосфат, а в качестве затворяющей жидкости содержит раствор фосфатов магния и фосфатов калия в фосфорной кислоте, при этом содержание компонентов в реакционно-твердеющей смеси составляет, мас.%:

Гидроксиапатит - 15,0-75,0

Дикальций фосфат - 10,0-60,0

Трикальций фосфат - 15,0-75,0

содержание компонентов в затворяющей жидкости составляет, мас.%:

Фосфат магния - 15,0-75,0

Фосфат калия - 3,5-25,0 Количество затворяющей жидкости (ЗЖ) (мл) к количеству реакционно-твердеющей смеси (РПС) (г) должно быть в пределах 0,25-0,65 (ЗЖ(мл)/ (РПС(г)=0,25-0,65. Время схватывания изменяется от 6 до 35 мин.

Однако данный материал не обладает необходимой биоактивностью, остеоиндуктивными и остеокондуктивными свойствами.

Технической задачей данного заявленного изобретения является получение биодеградируемого материала для замещения дефектов костной ткани, обладающей необходимой биосовместимостью и выраженными остеокондуктивными и остеоиндуктивными свойствами.

Многолетний клинический опыт применения костнозамещающих материалов определил основные предъявляемые к ним требования:

-имплантационные материалы должны быть биосовместимыми с организмом реципиента;

- по химическому составу структуре и свойствам должны быть близки к составу костных тканей;

- материал не должен изменять химический состав в зоне контакта с организмом;

-обладать способностью замещения дефектов в жидком или вязкотекущем состоянии сложной анатомической формы, неоднородных по строению и структуре;

Инъекционный биокомпозиционный материал по изобретению содержит биологический гидроксиапатит, фосфорнокислый кальция, аминокислоту-аргинин, а также фосфопротеин (казеин), выделенный из обезжиренного молока, а в качестве отвердителя глутаровый альдегид.

Поставленная техническая задача достигается группой изобретения, в которую входит остеогенный биорезорбируемый материал и способ получения его.

Итак, поставленная техническая задача достигается остеогенным биорезорбируемым материалом для замещения дефектов костной ткани, обладающий биосовместимостью, биоактивностью, остеоиндуктивными и остеокондуктивными свойствами, выполненный из композиции, включающей в качестве наполнителя биологический гидроксиапатит с размером частиц 1-40 мкм, фосфорнокислый кальций, аминокислоту, казеин в виде аммиачного раствора, отвердитель глутаровый альдегид, при следующем соотношении исходных компонентов, в масс.%:

порошок гидроксиапатита с размером частиц 1-40 мкм - 13,9-14, 1 фосфорнокислый кальций

аминокислота

казеин в виде аммиачного раствора

глутаровый альдегид

Экспериментально было доказано, что размер частиц наполнителя не более 40 мкм играет решающую роль в скорости растворения компонентов, а, следовательно, оказывает влияние на время затвердевания материала. Размер порошка нужно регулировать для того, чтобы минимизировать различия в скорости растворения, а именно, порошок с размерами частиц более 40 мкм и с площадью удельной поверхности порядка 40-50 м 2 /г растворяется медленно, тогда как порошок с размерами частиц менее 40 мкм и с площадью удельной поверхности порядка 70-90 м /г растворяется быстро. Кроме того было установлено,что при использовании порошков с размерами частиц менее 40 мкм полученная пластичная масса при добавлении аммиачного раствора казеина и глутарового альдегида характеризуется однородностью и временем схватывания от 6 до 35 мин, тогда как при использовании порошков с размерами частиц более 40 мкм, полученная пластичная масса неоднородна и время схватывания составляет более 40 мин.

Предлагаемые интервалы соотношения компонентов фосфорнокислого кальция и аминокислоты определяются областью гомогенизации апатитной фазы и вариациями элементного состава костной ткани.

Применение аммиачного раствора казеина в соотношениях 65-75 масс.% необходимо для получения инжектируемой пасты, соотношение менее 65 масс.% не дает возможности получения однородной инжектируемой массы. Соотношение более 75% приводит к низкой устойчивости материла к вымыванию телесной жидкостью.

Использование глутарового альдегида в соотношении менее 1 ,9 масс.% в качестве отвердителя не приводит к быстрому затвердеванию материала, поскольку полученный материал характеризуется вязко-текучим состоянием. Использование же глутарового альдегида в соотношении более 2,1 масс.% не возможно, поскольку полученный материал рассыпается и теряет пластичность.

Поставленная техническая задача достигается также и способом получения биорезорбируемого материала для замещения дефектов костной ткани.

Способ получения биорезорбируемого материала для замещения костной ткани заключается в следующем, сначала получают порошок биологического гидроксиапатита с размером частиц 1-40 мкм из деминерализованных костей крупного рогатого скота, который перемешивают с 1%-ным водным раствором аминокислоты-аргинином, далее готовят связующее на основе фосфопротеина-казеина путем растворения порошка его в 5%-ном водном растворе аммиака при соотношении 1 :4 и смешения полученной гомогенной вязкой массы с 3%-ным раствором гидрофосфата кальция в 10%-ном водном растворе ортофосфорной кислоты, взятым в количестве 125 мл на 1 л растворенного казеина, после этого смешивают полученное связующее на основе казеина с приготовленной смесью порошка гидроксиапатита с аргинином при интенсивном перемешивании их и к полученной вязкой массе фосфатного цемента добавляют отвердитель глутаровый альдегид непосредственно перед использованием его.

В качестве биологического гидроксиапатита для приготовления биорезорбируемого материала по изобретению используют биологический гидроксиапатит (порошок) из деминерализованных костей крупного рогатого скота (например в 1М растворе соляной кислоты с последующим осаждением, например 5М раствором гидроксида натрия, фильтрованием и термической обработкой при температуре, в частности 830°С. Получают порошок с размером частиц не более 40 мкм (1-40мкм).

В качестве аминокислоты, в частности используют 2-амино-5- гуанидиновалериановую кислоту (аргинин).

Казеин, относящийся к группе фосфопротеинов, получается в результате взаимодействия обезжиренного молока с 5% аскорбиновой кислотой при непрерывном помешивании; протеин осаждается в виде глобул. Температура осаждения 37°-39°; кислотность массы должна соответствовать рН=4,6— 4,8. Кислоту добавляют в течение 8— 10 мин. После осаждения выпавший осадок перемешивают 10— 15 мин. Для лучшего уплотнения промывают 3— 4 раза дистиллированной водой при температуре 25-30°.

Полученный осадок высушивается при температуре 25-30° в течение 24 часов и измельчается. Далее для применения фосфопротеина (казеин) в качестве связующего в цементе готовится 5% водный раствор аммиака для его растворения при следующих соотношениях компонентов: 1 вес. ч. фосфопротеина и 4 вес.ч. аммиака. После его растворения и получения гомогенной вязкой массы далее добавляется 3% раствор гидрофосфата кальция, растворенного в 10% растворе ортофосфорной кислоты, в количестве 125 мл СаНР0 4 на 1 л растворенного фосфопротеина.

Подготовка исходных компонентов для наполнителя включала в себя получение фракций порошка гидроксиапатита с размерами частиц от 1-40 мкм. Эта операция заключалась в просеивании порошка через сита соответствующих размеров. Далее в порошок гидроксиапатита добавлялся раствор аргинина (% масс, приведены выше) при интенсивном перемешивании. Далее смесь высушивалась при температуре 40-60°С в течение 10-15 минут. Это приготовление наполнителя. Сушка наполнителя при температуре ниже 40°С приводит к более длительному времени обработки, а при температуре выше 60°С идет разложение аминокислоты. К полученной порошковой массе добавляется раствор фосфопротеина при интенсивном перемешивании, а далее 2-8% раствор глутарового альдегида в соотношении 0,5: 1 :0,2 соответственно. Материал схватывается через 3 минуты и застывает через 15-20 минут. При добавлении полимерного протеина меньше 1 порошок цемента не проявляет эластичных свойств и рассыпается. Добавление же более 1 приводит к длительному времени схватывания порядка 40 минут и расслаиванию системы.

Изобретение иллюстрируется следующим примером, не ограничивающим объем притязаний.

Пример.

Для получения образцов цемента, состав которых приведен выше, порошок гидроксиапатита с размером частиц 1-40 мкм и 1% раствор аргинина перемешивают в шаровой мельнице в течение 60 минут. Для формирования цемента непосредственно перед употреблением к полученному порошку добавляют смесь аммиачного раствора фосфопротеина (казеина) с раствором гидрофосфата кальция в ортофосфорной кислоте и интенсивно перемешивают в течение 1-2 мин, далее к полученному вязкому материалу для быстрого отверждения добавляется глутаровый альдегид при интенсивном перемешивании и материалом сразу же заполняется костный дефект. Время схватывания составляет 3 мин, а отверждения 15-20 мин.

Разработанный инъекционный биорезорбируемый материал для замещения костной ткани, после заполнения дефектов костной ткани образует материал, являющийся аналогом неорганической составляющей натуральной кости, и обладающий биосовместимостью, биоактивностью остеокондуктивными и остеоиндуктивными свойствами, благодаря чему он постепенно замещается натуральной костной тканью, эффективно восстанавливая имеющиеся дефекты. Результаты испытаний показали, что в отличие от известных цементов предлагаемые цементы обладают полной биосовместимостью с костной тканью, биодеградируемостью, создают условия уменьшения в необходимости пересадки костной ткани и общей длительности хирургического вмешательства.

В целях выяснения биодеградирующих свойств материала, его влияния на регенерацию костных клеток, остеокондуктивных и остеоиндуктивных свойств были проведены исследования на 20 крысах женского пола породы «Wistan> в возрасте 3-х месяцев. Был проведен комплекс лабораторных исследований, в том числе определены необходимые биохимические показатели, выполнялись рентгенологические исследования РКТ и также готовились и изучались гистологические препараты окружающих материал тканей.

В ходе исследования материал показал себя как биосовместимый, биодеградируемый, обладающий выраженными остеокондуктивными и остеоиндуктивными свойствами. В конечном итоге материал является мощным стимулятором остеогенеза, что подтверждается рентгенологическими, гистологическими и биохимическими методами исследования.