Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PARTICLE TRAP WITH COATED FIBRE LAYER
Document Type and Number:
WIPO Patent Application WO/2004/050219
Kind Code:
A1
Abstract:
The invention relates to a high-temperature resistant fibre layer (1), made from metal fibres, for an open particle trap (2), for the purification of exhaust gases from mobile internal combustion engines (13), characterised in that the fibre layer (1), at least in a section (3), comprises a catalytically-active and/or adsorbent coating (4), in particular, for an oxidation catalyst and/or a three-way catalyst and/or a SCR catalyst.

Inventors:
BRUECK ROLF (DE)
Application Number:
PCT/EP2003/012455
Publication Date:
June 17, 2004
Filing Date:
November 07, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EMITEC EMISSIONSTECHNOLOGIE (DE)
BRUECK ROLF (DE)
International Classes:
B01D39/20; B01D53/88; B01D53/94; B01J35/04; B01J35/06; B01J37/02; F01N3/022; F01N3/035; (IPC1-7): B01D53/94; F01N3/022; F01N3/035
Domestic Patent References:
WO2001092692A12001-12-06
WO2002000326A22002-01-03
WO2001092692A12001-12-06
Foreign References:
EP0798452A11997-10-01
EP0035053A11981-09-09
DE3545762A11987-07-02
DE20117873U12002-02-14
DE20117659U12002-01-10
Other References:
See also references of EP 1567247A1
Attorney, Agent or Firm:
Kahlhöfer, Hermann (Düsseldorf, DE)
Download PDF:
Claims:
Patentansprüche
1. l.
2. Hochtemperaturfeste Faserlage (1) aus Metallfasern für eine offene Partikelfalle (2) zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen (13), dadurch gekennzeichnet, dass die Faserlage (1) zumindest in einem Abschnitt (3) eine katalytisch aktive Beschichtung (4) aufweist, insbesondere wie die eines Oxidationskatalysators und/oder eines 3WegeKatalysators und/oder eines SCRKatalysators.
3. Hochtemperaturfeste Faserlage (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung (4) Washcoat (5) umfasst.
4. Hochtemperaturfeste Faserlage (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Faserlage (1) einen porösen Sinterund/oder Faserwerkstoff umfasst.
5. Hochtemperaturfeste Faserlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Faserlage (1) Fasern (6) mit einem mittleren Durchmesser (7) aufweist, der kleiner als 0, 082 mm ist, insbesondere in einem Bereich von 0,01 bis 0,05 mm liegt.
6. Hochtemperaturfeste Faserlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Faserlage (1) eine Porosität hat, die mindestens 50 % beträgt, insbesondere mindestens 75 %, bevorzugt mindestens 85 % und vorzugsweise sogar mindestens 95 %.
7. Hochtemperaturfeste Faserlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Faserlage (1) in einem Längsschnitt (8) im wesentlichen parallel zur größten Außenfläche (9) Öffnungen (10) hat, die im Mittel eine Ausdehnung (11) von 0, 01 mm bis 0,5 mm haben, insbesondere von 0,05 mm bis 0,25 mm.
8. Hochtemperaturfeste Faserlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Faserlage (1) eine Dicke (12) hat, die kleiner 3 mm beträgt, insbesondere kleiner 1,5 mm, bevorzugt kleiner 0,5 mm und vorzugsweise kleiner 0,1 mm.
9. Partikelfalle (2) zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen (13), dadurch gekennzeichnet, dass diese zumindest eine, teilweise strukturierte Metallfolie (14) und zumindest eine hochtemperaturfeste Faserlage (1) nach einem der Ansprüche 1 bis 7 hat, wobei bevorzugt mehrere strukturierte Metallfolien (14) und mehrere Faserlagen (1) abwechselnd zueinander und insbesondere miteinander gewunden in einem Gehäuse (15) angeordnet sind.
10. Partikelfalle (2) nach Anspruch 8, dadurch gekennzeichnet, dass im wesentlichen parallel zu einer Achse (16) der Partikelfalle (2) verlaufende Kanäle (17) gebildet sind, wobei Leitflächen (18), vorzugsweise Leitflächen (18) der Metallfolien (14), in zumindest einen Teil der Kanäle (17) hineinragen und eine Umlenkung von durch die Kanäle (17) durchströmende Gasströme hin zur Faserlage (1) bewirken.
11. Partikelfalle (2) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Partikelfalle (2) ein Volumen (20) hat, und die Beschichtungsmenge in Bezug auf dieses Volumen im Bereich von 20 bis 300 g/1 (Gramm pro Liter) beträgt, bevorzugt sogar zwischen 50 und 120 g/1 liegt.
12. Partikelfalle (2) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die mindestens eine zumindest teilweise strukturierte Metallfolie (14) Durchbrüche (19) aufweist, die sich über mindestens eine Strukturweite (36) erstreckt, vorzugsweise sogar über zwei, insbesondere sogar drei Strukturweiten (36).
Description:
Partikelfalle mit beschichteter Faserlage Die Erfindung betrifft eine hochtemperaturfeste Faserlage für eine Partikelfalle zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen bzw. eine solche Partikelfalle selbst.

Betrachtet man die Reinigung von Abgasen, insbesondere von Dieselmotoren, so lassen sich Kohlenwasserstoffe (HC) wie auch Kohlemnonoxide (CO) im Abgas in bekannter Weise oxidieren, indem diese beispielsweise mit Komponenten in Kontakt gebracht werden, die ggf. eine katalytisch aktiven Oberfläche aufweisen.

Die Reduktion von Stickoxiden (NOX) unter sauerstoffreichen Bedingungen ist allerdings schwieriger. Ein Drei-Wege-Katalysator, wie er beispielsweise bei Otto-Motoren eingesetzt wird, bringt allein für Dieselmotoren nicht die gewünschten Effekte. Aus diesem Grunde wurde beispielsweise das Verfahren der Selektiven Katalytischen Reduktion (SCR :"selective catalytic reduction") entwickelt.

Weiterhin wurden Speicherkatalysatoren auf ihren Einsatz im Hinblick auf die Stickoxid-Reduktion erprobt. Die Beschichtung eines Speicherkatalysators enthält außer den üblichen Edelmetall-Komponenten noch Bariumkarbonat oder-oxid.

Dadurch ist es möglich, dass bei Sauerstoffüberschuss NOX gespeichert werden kann. Auf den Edelmetallkomponenten wird das Stickstoffmonoxid (NO) aus dem Abgas zu Stickstoffdioxid (NO2) oxidiert. Dieses wird dann unter Bildung von Bariumnitrat auf den Katalysator gespeichert. Bei dieser Speicherung bildet sich auf dem Barium-Korn eine Nitrat-Schicht, die die Speicherung verlangsamt, weil N02 für eine weitere Speicherung durch diese Schicht hindurchdringen muss. Da die Speicherkapazität also begrenzt ist, muss der Katalysator in regelmäßigen Abständen regeneriert werden. Dies geschieht beispielsweise durch kurzes Anfetten des Abgases, d. h. durch eine kurze Periode mit unterstöchiometrischen Bedingungen. In reduzierter Atmosphäre wandelt sich das Nitrat wieder zu (z. B.)

Karbonat um und Stickstoffmonoxid wird frei. Dieses wird sofort zu Stickstoff reduziert. Da die Regeneration schneller abläuft als die Speicherung, können die Regenerationsperioden wesentlich kürzer sein als die Speicherperioden.

Zur Reduktion von Partikel-Emissionen sind Partikelfallen bekannt, welche aus einem keramischen Substrat aufgebaut sind. Diese weisen Kanäle auf, so dass das zu reinigende Abgas in die Partikelfalle einströmen kann. Benachbarte Kanäle sind wechselseitig verschlossen, so dass das Abgas auf der Eintrittsseite in den Kanal eintritt, durch eine keramische Wand hindurchtritt und durch einen benachbarten Kanal auf der Austrittsseite wieder entweicht. Derartige Filter erreichen eine Effektivität von ca. 95 % über die gesamte Breite der auftretenden Partikelgrößen.

Zusätzlich zu chemischen Wechselwirkungen mit Additiven und speziellen Beschichtungen stellt die sichere Regeneration des Filters im Abgassystem eines Automobils immer noch ein Problem dar. Die Regeneration der Partikelfalle ist erforderlich, da die zunehmende Ansammlung von Partikelteilchen in den zu durchströmenden Kanalwänden einen stetig steigenden Druckverlust zur Folge hat, der negative Auswirkungen auf die Motorleistung hat. Die Regeneration umfasst im wesentlichen das kurzzeitige Aufheizen der Partikelfalle bzw. der darin angesammelten Partikel, so dass die Rußpartikel in gasförmige Bestandteile umgesetzt werden. Dies kann beispielsweise auch dadurch erreicht werden, dass mit Hilfe einer vorgeschalteten exothermen Reaktion (z. B. Oxidation von zusätzlich in die Angasleitung eingespritztem Kraftstoff in einem Oxidationskatalysator ("Nachverbrennung")) das Abgas kurzzeitig die Temperaturen erreicht, die ausreichen, die in der Partikelfalle haftenden Partikel umzuwandeln. Diese hohe thermische Beanspruchung der Partikelfalle hat allerdings negative Auswirkungen auf die Lebensdauer.

Zur Vermeidung dieser diskontinuierlichen und thermisch sehr verschleißfördemden Regeneration wurde ein System zur kontinuierlichen

Regeneration von Filtern entwickelt (CRT :"continuous regeneration trap"). In einem solchen System werden die Partikel bei Temperaturen bereits oberhalb von 200°C mittels Oxidation mit NO2 verbrannt. Das hierzu erforderliche NO2 wird häufig durch einen Oxidationskatalysator erzeugt, der stromaufwärts vor der Partikelfalle angeordnet ist. Hierbei stellt sich jedoch gerade im Hinblick auf die Anwendung bei Kraftfahrzeugen mit Diesel-Kraftstoff das Problem, dass nur ein unzureichender Anteil von Stickstoffmonoxid (NO) im Abgas existiert, welcher zu dem gewünschten Stickstoffdioxid (N02) umgewandelt werden kann.

Infolgedessen kann bislang nicht sichergestellt werden, dass eine kontinuierliche Regeneration der Partikelfalle im Abgassystem stattfindet.

Es ist weiter zu berücksichtigen, dass neben nichtumwandelbaren Partikeln auch Öl oder zusätzliche Rückstände von Additiven in einer Partikelfalle angelagert werden, die nicht ohne weiteres regeneriert werden können. Aus diesem Grund müssen bekannte Filter in regelmäßigen Abständen ausgetauscht und/oder gewaschen werden.

Zusätzlich zu einer minimalen Reaktionstemperatur und einer spezifischen Verweildauer muss zur kontinuierlichen Regeneration von Partikeln mit NO2 ausreichend Stickoxid zur Verfügung gestellt werden. Tests bezüglich der dynamischen Emission von Stickstoffmonoxid (NO) und Partikeln haben klar hervorgebracht, dass die Partikel gerade dann emittiert werden, wenn kein oder nur sehr wenig Stickstoffmonoxid im Abgas vorhanden ist und umgekehrt. Daraus folgt, dass ein Filter mit realer kontinuierlicher Regeneration im wesentlichen als Kompensator oder Speicher fungieren muss, so dass gewährleistet ist, dass die beiden Reaktionspartner zu einem gegebenen Zeitpunkt gleichzeitig in den benötigten Mengen im Filter vorhanden sind. Weiterhin ist der Filter möglichst nahe an der Verbrennungskraftmaschine anzuordnen, um bereits unmittelbar nach dem Kaltstart möglichst hohe Temperaturen annehmen zu können. Zur Bereitstellung des erforderlichen Stickstoffdioxides ist dem Filter ein Oxidationskatalysator vorzuschalten, welcher Kohlenmonoxid (CO) und

Kohlenwasserstoffe (HC) umsetzt und insbesondere auch Stickstoffmonoxid (NO) in Stickstoffdioxid (N02) konvertiert. Bei einer motornahen Anordnung dieses Systems aus Oxidationskatalysator und Filter ist insbesondere die Position vor einem Turbolader geeignet, der bei Diesel-Kraftfahrzeugen häufig zur Erhöhung des Ladedrucks in der Brennkammer verwendet wird.

Betrachtet man diese grundsätzlichen Überlegungen, so stellt sich für den tatsächlichen Einsatz im Automobilbau die Frage, wie ein derartiger Filter aufgebaut ist, der in einer solchen Position und in Anwesenheit extrem hoher thermischer und dynamischer Belastungen einen zufrieden stellenden Filterwirkungsgrad aufweist. Dabei sind insbesondere die räumlichen Gegebenheiten zu berücksichtigen, die ein neues Konzept für Filter bedingen.

Während bei den klassischen Filtern, welche im Unterboden eines Kfzs angeordnet wurden, ein möglichst großes Volumen im Vordergrund stand, um eine hohe Verweilzeit der noch nicht umgesetzten Partikel im Filter und somit eine hohe Effizienz'zu gewährleisten, besteht bei einer motornahen Anordnung nicht genügend Platz bzw. Raum zur Verfügung.

Hierzu wurde ein neues Konzept entwickelt, welches im wesentlichen unter dem Begriff"offenes Filtersystem"bekannt geworden ist. Diese offenen Filtersysteme zeichnen sich dadurch aus, dass auf ein konstruktives, wechselseitiges Verschließen der Filterkanäle verzichtet werden kann. Dabei wird vorgesehen, dass die Kanalwände zumindest teilweise aus porösem oder hochporösem Material aufgebaut sind und dass die Strömungskanäle des offenen Filters Umlenk-oder Leitstrukturen aufweist. Diese Einbauten bewirken, dass die Strömung bzw. die darin enthaltenen Partikel hin zu den Bereichen aus porösem oder hochporöserem Material gelenkt werden. Dabei hat sich überraschenderweise herausgestellt, dass die Partikel durch Interception und/oder Impaction an und/oder in der porösen Kanalwand haften bleiben. Für das Zusammenkommen dieser Wirkung sind die Druckunterschiede im Strömungsprofil des strömenden Abgases von Bedeutung. Durch die Umlenkung können zusätzlich lokale

Unterdruck-oder Überdruckverhältnisse entstehen, die zu einem Filtrationseffekt durch die poröse Wand hindurch führen, da die obengenannten Druckunterschiede ausgeglichen werden müssen.

Die Partikelfalle ist dabei im Gegensatz zu den bekannten geschlossenen Sieb- oder Filtersystemen offen, weil keine Strömungssackgassen vorgesehen sind.

Diese Eigenschaft kann somit auch zur Charakterisierung derartiger Partikelfilter dienen, so dass beispielsweise der Parameter"Strömungsfreiheit"zur Beschreibung geeignet ist. So bedeutet eine"Strömungsfreiheit"von 20 %, dass in einer Querschnittsbetrachtung ca. 20 % der Fläche durchschaubar sind. Bei einem Partikelfilter mit einer Kanaldichte von ca. 600 cpsi ("cells per square inch") mit einem hydraulischen Durchmesser von 0,8 mm entspräche diese Strömungsfreiheit einer Fläche von über 0,1 mm2. Mit anderen Worten bedeutet dies, dass eine Partikelfalle dann als offen zu bezeichnen ist, wenn er grundsätzlich von Partikeln vollständig durchlaufen werden kann, und zwar auch von Partikeln, die erheblich größer als die eigentlich herauszufilternden Partikel sind (insbesondere der für den Diesel-und/oder Benzinkraftstoff charakteristische Partikelgrößenbereich). Dadurch kann ein solcher Filter selbst bei einer Agglomeration von Partikeln während des Betriebes nicht verstopfen. Ein geeignetes Verfahren zur Messung der Offenheit von Partikelfallen ist beispielsweise die Prüfung, bis zu welchem Durchmesser kugelförmige Partikel noch durch einen solchen Filter rieseln können. Bei vorliegenden Anwendungsfällen ist eine Partikelfalle insbesondere dann offen", wenn Kugeln von größer oder gleich 0, 1 mm Durchmesser noch hindurchrieseln können, vorzugsweise Kugeln mit einem Durchmesser oberhalb von 0, 2 mm. Solche "offenen"Filterelemente gehen beispielsweise aus den Dokumenten DE 201 17 873 U1, DE 201 17 659 U1, WO 02/00326, WO 01/92692, WO 01/80978 hervor, deren Offenbarungsinhalt hiermit vollständig zum Gegenstand der vorliegenden Beschreibung gemacht ist.

Im Hinblick auf die allgemeine Ausgestaltung von Wabenkörpern mit internen Strömungsleitflächen gibt beispielsweise-das deutsche Gebrauchsmuster DE 89 08 738. U1 Hinweise. Dieses Dokument beschreiben Wabenkörper, insbesondere Katalysator-Trägerkörper für Kraftfahrzeuge, aus lagenweise angeordneten, zumindest in Teilbereichen strukturierten Blechen, welche die Wände einer Vielzahl von für ein Fluid durchströmbare Kanäle bilden. Dort wird beschrieben, dass in den meisten Anwendungsfällen und bei den üblichen Dimensionierungen solcher Wabenkörper die Strömung in den Kanälen im wesentlichen laminar ist, d. h. sehr kleine Kanalquerschnitte verwendet werden.

Unter diesen Bedingungen bauen sich an den Kanalwänden relativ dicke Grenzschichten auf, welche einen Kontakt der Kernströmung in den Kanälen mit den Wänden verringern. Um eine Verwirbelung des Abgasstromes im Inneren der Kanäle zu bewirken und somit einen intensiven Kontakt des gesamten Abgasstromes mit einer katalytisch aktiven Oberfläche der Kanäle zu gewährleisten, werden hier Umstülpungen vorgeschlagen, die im Inneren des Kanals Anströmflächen bilden, so dass das Abgas quer zur Hauptströmungsrichtung abgelenkt wird.

Gerade im Hinblick auf die Realisierung einer solchen offenen Partikelfalle ist es nunmehr Aufgabe der vorliegenden Erfindung, die Effektivität im Hinblick auf die Umsetzung von im Abgas enthaltenen Schadstoffen zu verbessern.

Insbesondere soll die Möglichkeit eröffnet werden, Abgasanlagen insbesondere für Automobile mit Dieselmotor von besonders kleiner Bauart bereitzustellen.

Zudem soll die Fertigung, die Montage und die Wartung derartiger Abgasanlagen deutlich vereinfacht und damit kostengünstiger gestaltet werden.

Diese Aufgaben werden gelöst durch eine hochtemperaturfeste Faserlage für eine Partikelfalle zur Reinigung von Abgasen einer Verbrennungskraftmaschine mit den Merkmalen des Patentanspruchs 1 sowie eine entsprechende Partikelfalle mit den Merkmalen des Patentanspruchs 8. Weitere vorteilhafte Ausgestaltungen sind in den abhängigen Patentansprüchen beschrieben, wobei die dort aufgezeigten

Merkmale einzeln oder in jeder beliebigen, sinnvollen Kombination miteinander auftreten können.

Die erfindungsgemäße hochtemperaturfeste Faserlage aus Metall für eine Partikelfalle zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen zeichnet sich dadurch aus, dass zumindest in einem Abschnitt eine Beschichtung vorgesehen ist, die zumindest teilweise der eines Oxidationskatalysators und/oder eines 3-Wege-Katalysators und/oder eines SCR-Katalysators entspricht.

Die Vorsehung einer solchen katalytisch aktiven Beschichtung hat eine Vielzahl von Vorteilen, die anschließend kurz umrissen werden sollen. So kann beispielsweise erreicht werden, dass die ursprünglich im Abgassystem vorgesehenen Komponenten zur Oxidation bzw. Reduktion und/oder Speicherung von im Abgas enthaltenen Schadstoffen kleinvolumiger ausgeführt werden können oder sogar ganz auf sie verzichtet werden kann. Dies hat zur Folge, dass das Abgassystem als solches deutlich schlanker bzw. kleiner ausgeführt werden kann, wodurch ein einfacher Aufbau, eine einfache Instandhaltung und eine kostengünstige Herstellung des Abgassystems ermöglicht wird. Zudem werden überraschenderweise auch synergetische Effekte bewirkt. So werden beispielsweise direkt im Inneren einer mit einer solche Faserlage ausgestatteten Partikelfalle Abgasbestandteile generiert, die bei der Umsetzung bzw. Beseitigung der angelagerten Partikel behilflich sind. Diese Abgasbestandteile werden also nahe der Oberfläche der Faserlage, an der die Partikel haften, direkt erzeugt und bereitgestellt. Somit kann beispielsweise die Regenerierungstemperatur der Partikelfalle auch deutlich gesenkt werden, zum Beispiel von über 900 °C auf Temperaturen unterhalb von 600 °C.

Im Hinblick auf die Anordnung des mindestens einen Abschnitts der Faserlage sei angemerkt, dass sich dieser Abschnitt auch über die gesamte Oberfläche der Faserlage erstrecken kann. Es ist jedoch auch möglich, mehrere Abschnitte vorzusehen, wobei diese beschichtet und/oder teilweise auch unbeschichtet sein

können, wobei ggf. auch unterschiedliche Beschichtungsarten, voneinander verschiedene Abschnittsformen oder Abschnittsflächeninhalte gewählt werden können. Es ist auch möglich, dass sich der mindestens eine Abschnitt nur auf einer Außenfläche bzw. -seite der hochtemperaturfesten Faserlage befindet.

Im Hinblick auf die Eigenschaften der Beschichtung eines Oxidationskatalysators ist festzuhalten, dass solche Katalysatoren dazu dienen, die Geschwindigkeit bestimmter Reaktion zu erhöhen, ohne dabei selbst verbraucht zu werden. Durch geeignete Katalysatorsubstanzen kann erreicht werden, dass die Oxidationsvorgänge für CO (Kohlenmonoxid) und HC (Kohlenwasserstoffe) im Abgas bei tieferen Temperaturen ablaufen. Mit Hilfe derartiger Beschichtungen, die in der Regel Katalysatorsubstanzen der Platingruppe enthalten, können gasförmige Kohlenwasserstoffe und Kohlenmonoxid bei Abgastemperaturen schon oberhalb von 250 °C im dieselmotorischen Abgas oxidiert werden. Eine Besonderheit derartiger Oxidationsbeschichtungen ist darin zu sehen, dass hier unter Umständen eine Nachverbrennung der noch an Rußpartikeln anlagernden Kohlenwasserstoffe stattfindet, wodurch die Partikelemission weiter reduziert werden kann. Bislang hatte man sich gescheut, eine derartige Kombination von oxidationsfördernden Beschichtungen und Filterelementen in einer Einheit vorzusehen, da befürchtet wurde, dass die katalytisch aktiven Substanzen aufgrund einer zunehmenden Abdeckung mit Partikeln beeinträchtigt werden würden. Von diesem Vorurteil der Fachwelt wurde bei der Erfindung abgewichen und eine hochtemperaturfeste Faserlage entwickelt, die die Herstellung von besonders effektiven Partikelfallen ermöglicht.

Sollen die drei Schadstoffkomponenten CO, HC und NO. (Stickoxide) durch Nachreaktion vermindert werden, so kann dies durch eine Beschichtung der Faserlage mit einer solchen des 3-Wege-Katalysators erreicht werden. Die wirksame Katalysatorsubstanz umfasst dabei Platin- (Pt), Palladium- (Pd) bzw.

Rhodiummetall (Rh) in feiner Verteilung auf einer großen Oberfläche. Bei einem Lambdawert von 1 wird CO zu Kohlendioxid (CO2), CH zu CO2 und Wasser

(H20) oxidiert-und NO. zu Stickstoff (N2) reduziert. Dabei bietet sich folgende Beschichtung hinsichtlich des Oxidationskatalysators an : Pt/Pd = 2/1 0,93-1, 2 Gramm Pt/LiterKatalysatoiträgervolumen 0,46-0, 6 Gramm Pt/LiterKataiysatortiagervolumen Betreffend den Multiiünktionskatalysator (Reduktion) wird vorgeschlagen, dass folgende Beziehungen gelten : Pt/Rh = 5/1 1, 16-1, 5 Gramm Pt/LiterKatalysatorträgervolumen 1,23-0, 3 Gramm Rh/LiterKatalysatorhägemolumen Unter Katalysatorträgerkörpervolumen wird das Volumen verstanden, welches das Material des Trägers (Wabenstruktur, etc) und die vom Träger gebildeten Hohlräume, Kanäle usw. umfasst.

Die Beschichtung eines SCR-Katalysators kann ggf. auch mehrschichtig bzw. mehrstufig ausgebildet sein. Ein mögliches Harnstoff-SCR-Katalysatorsystem besteht aus mehreren hintereinander angeordneten Teilbereichen der Beschichtung, die auf die Faserlage aufgetragen ist. Die Teilbereiche können dabei in Strömungsrichtung des Abgases folgendermaßen angeordnet sein : - eine Beschichtung eines Oxidationskatalysators (optional), - die Beschichtung eines Hydrolysekatalysators, die Beschichtung eines SCR-Katalysators und -ggf. ein nachgeschalteter Oxidationskatalysator.

Der optional vorgeschaltete Oxidationskatalysator dient zur Erhöhung der SCR- Aktivität bei tiefen Abgastemperaturen (insbesondere beim Diesel-Pkw). Durch <BR> <BR> eine Anhebung des NOs-Anteils (Optimum : 50 Vol. -%) im Abgas mittels teilweiser Oxidation von NO kann die Reaktionsgeschwindigkeit der SCR- Reaktion in einem Temperaturbereich unterhalb von etwa 573 K deutlich gesteigert werden. Daneben erfolgt an der Katalysatoroberfläche die Oxidation von Kohlenmonoxid zu Kohlendioxid sowie die Reaktion von unvollständig

verbrannten Kohlenwasserstoffen zu Kohlendioxid und Wasser. Ohne Einsatz eines solch vorgelagerten Bereichs mit einer Oxidationsbeschichtung würde die Oxidation der Kohlenwasserstoffe zum Teil am SCR-Katalysator erfolgen und somit eine Minderung des Stickstoffoxid-Umsatzes hervorrufen.

Mit Hilfe der Beschichtung eines Hydrolysekatalysators gelingt die vollständige Zersetzung einer wässrigen Harnstofflösung bereits bei niedrigen Temperaturen, z. B. um 470 K. Unterhalb von ca. 470 K erweist sich die Zersetzung des Harnstoffs als problematisch, da aufgrund einer unvollständigen Zersetzung unerwünschte Nebenprodukte entstehen können. Die Beschichtung des SCR- Katalysators dient zur selektiven Reduktion der Stickstoffoxide NOx mit Ammoniak zu den unproblematischen Produkten Stickstoff und Wasser.

Gemäß einer weiteren Ausgestaltung der hochtemperaturfesten Faserlage umfasst die Beschichtung Washcoat. Die Beschichtung der relativ glatten Oberflächen der Fasern mit Washcoat hat eine Vergrößerung der katalytisch aktiven Oberfläche zur Folge. Diese zerklüftete Oberfläche gewährleistet einerseits ein ausreichend großes Platzangebot für die Fixierung eines Katalysators (z. B. Platin, Rhodium <BR> <BR> etc. ) und dient andererseits zur Verwirbelung des durchströmenden Abgases, wobei ein besonders intensiver Kontakt zum Katalysator bewirkt wird.

Das Auftragen der die Katalyse fördernden hochoberflächigen Washcoat-Schicht erfolgt bekanntermaßen in der Weise, dass die Faserlage (oder später die gesamte Partikelfalle aus Faserlagen und Metallfolien) in eine flüssigen Washcoat- Dispersion getaucht oder mit dieser besprüht wird. Anschließend wird die überschüssige Washcoat-Dispersion entfernt, der Washcoat in der Faserlage getrocknet und abschließend bei Temperaturen meist über 450 °C kalziniert.

Während des Kalzinierens werden die flüchtigen Bestandteile der Washcoat- Dispersion ausgetrieben, so dass eine temperaturbeständige und katalysefördernde Schicht mit hoher spezifischer Oberfläche erzeugt wird. Gegebenenfalls wurde dieser Vorgang mehrfach wiederholt, um eine gewünschte Schichtdicke zu

erreichen. Die mittlere Schichtdicke liegt dabei bevorzugt in einem Bereich von 0,001 bis 0,02 mm, insbesondere zwischen 0, 005 und 0,012 mm Der Washcoat besteht gewöhnlich aus einer Mischung eines Aluminiumoxids und mindestens einem Promoteroxid wie beispielsweise Seltenerdoxiden, Zirkonoxid, Nickeloxid, Eisenoxid, Germaniumoxid und Bariumoxid. Die Washcoat- Dispersion muss dabei während des Auftragens auf den Wabenkörper eine möglichst gute Fließeigenschaft aufweisen, um eine gewünschte, gleichmäßige Schichtdicke über die gesamte Kanallänge zu erzielen.

Zur Erzielung einer derartigen Fließeigenschaft weisen bekannte Washcoat- Dispersionen einen bestimmten pH-Wert auf, wobei nur ein begrenzter Feststoffanteil erlaubt wird. Allerdings haben Versuche gezeigt, dass eine derartige Washcoat-Dispersion eine zeitabhängige Viskosität aufweist. Dies hat zur Folge, dass die Washcoat-Dispersion sehr rasch geliert und die Generierung einer gleichmäßigen Schichtdicke verhindert. Dieses Gelieren kann dadurch verzögert werden, dass die Washcoat-Dispersion in Bewegung gehalten wird, also entweder die Dispersion oder die damit benetzte Filterlage bewegt, insbesondere zum Vibrieren angeregt wird.

Gemäß noch einer weiteren Ausgestaltung der Faserlage besteht diese aus einem porösen Sinter-und/oder Faserwerkstoff (z. B. Stahl). Insbesondere bieten sich hier hochtemperaturfeste und korrosionsbeständige Stähle mit relativ hohen Anteilen von Chrom, Nickel, Aluminium und/oder Molybdän an. Dabei ist es besonders vorteilhaft, dass die Faserlage Fasern mit einem mittleren Durchmesser aufweist, der kleiner als 0,082 mm ist, insbesondere in einem Bereich von 0,01 bis 0,05 mm liegt. Um zu vermeiden, dass eine solche Filterlage einen hohen Staudruck im Abgasstrom erzeugt, wird vorgeschlagen, dass die Faserlage eine Porosität hat, die mindestens 50 % beträgt, insbesondere mindestens 75 %, bevorzugt mindestens 85 % und vorzugsweise sogar mindestens 95 %. In diesem Zusammenhang sei angemerkt, dass sich solche Faserlagen relativ gut mit Fasern

einer gemittelten Länge von 0, 4 mm bis 0, 05 mm herstellen ließen, wobei bevorzugt kleinere Faserlängen bei dickeren Fasern zu wählen sind.

Weiter wird vorgeschlagen, dass die Faserlage in einem Längsschnitt im wesentlichen parallel zur größten Außenfläche Öffnungen hat, die im Mittel eine Ausdehnung von 0,01 mm bis 0,5 mm haben, insbesondere von 0,05 mm bis 0,25 mm. Grundsätzlich sei an dieser Stelle angemerkt, dass die Faserlage Fasern in nahezu beliebiger Anordnung aufweisen kann, insbesondere hierunter auch Wirrlagen, Gewebe oder ähnliche Strukturen zu verstehen sind. Dabei können regelmäßige Strukturen auch nur regional vorliegen, während in den restlichen Bereichen eine eher chaotische Anordnung der Fasern vorliegt.

Um sicherzustellen, dass ausreichend große Hohlräume für Partikel bzw. deren Agglomerate vorgesehen sind, wird hier gerade für die Anwendung in Abgassystemen von Dieselmotoren vorgeschlagen, dass eine gewisse Porengröße bereitgestellt wird. Zur Ennittlung der Porengröße dient hier ein Längsschnitt durch das Material, der kleine Querschnitte der Poren bzw. Hohlräume aufzeigt, die hier Öffnungen genannt sind. All diese Öffnungen haben im Mittel eine Ausdehnung im obengenannten Bereich. Dabei ist hier ein Mittelwert aller maximalen Ausdehnungen der im Längsschnitt erkennbaren Öffnungen gemeint.

Da sich die Abmessung der Öffnung auf die bereits beschichtete Faserlage bezieht, kann auch ein entsprechender gemittelter Faserabstand herangezogen werden, der bevorzugt kleiner als 0,6 mm zu wählen ist, insbesondere zwischen 0,05 mm und 0,35 mm.

Weiter wird vorgeschlagen, dass die Faserlage eine Dicke hat, die kleiner 3 mm beträgt, insbesondere kleiner 1, 5 mm, bevorzugt kleiner 0, 5 mm und vorzugsweise kleiner 0,1 mm. Die hier genannten Dicken sind gerade im Hinblick auf den Einsatz der Faserlage für Partikelfallen zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen gewählt.

Gemäß einem weiteren Aspekt der Erfindung wird eine Partikelfalle zur Reinigung von Abgasen mobiler Verbrennungskraftnaschinen vorgeschlagen, welche zumindest eine, teilweise strukturierte Metallfolie und zumindest eine hochtemperaturfeste Faserlage nach der oben beschriebenen Bauart hat, wobei bevorzugt mehrere strukturierte Metallfolien und mehrere Faserlagen abwechselnd zueinander und insbesondere miteinander gewunden in einem Gehäuse angeordnet sind. Dabei ist insbesondere eine"offene"Paltikelfalle gebildet, wie sie eingangs beschrieben wurde. Demnach ist es sonders vorteilhaft, ein"offenes"Filterelement zu bilden, wie es in den Dokumenten DE 201 17 873 U1, DE 201 17 659 U1, WO 02/00326, WO 01/92692, WO 01/80978 beschrieben ist.

Weiter wird vorgeschlagen, dass die Partikelfalle im wesentlichen parallel zur Achse verlaufende Kanäle bildet, wobei Leitflächen, vorzugsweise Leitflächen der Metallfolie, in zumindest einen Teil der Kanäle hineinragen und eine Umlenkung von durch die Kanäle strömenden Gasen hin zur Faserlage bewirken.

Derartige Leitflächen können durch Vorsprünge, Noppen, Mikrowellungen, Schaufeln oder ähnliche Strukturen gebildet sein. Es ist auch möglich, dass diese Leitflächen durch Kanten von Löchern in derartigen Metallfolien gebildet sind.

Die Leitflächen selbst können ebenfalls Löcher aufweisen.

Gemäß einer weiteren Ausgestaltung hat die Partikelfalle ein Volumen, und die Beschichtungsmenge der Partikelfalle in Bezug auf dieses Volumen liegt im Bereich von 20 bis 300 g/1 (Gramm pro Liter), bevorzugt sogar zwischen 50 und 120 g/l. Unter Volumen ist in diesem Zusammenhang das Volumen gemeint, welches sich aus den Metallfolien, den Faserlagen sowie den gebildeten Kanäle zusammensetzt. Üblicherweise liegt ein solches Volumen im Bereich von 0, 011 bis 1, 5 1, bevorzugt zwischen 0, 3 1 und 0, 81.

Weiterhin wird vorgeschlagen, dass die mindestens eine, zumindest teilweise strukturierte Metallfolie Durchbrüche aufweist, die sich über mindestens eine

Strukturweite erstrecken, vorzugsweise sogar über 2, insbesondere 3 Strukturweiten. Das bedeutet, dass beispielsweise ein solcher Durchbruch mehrere durch die Struktur gebildete, benachbarte Kanäle miteinander verbindet. Auf diese Weise wird eine besonders effektive Durchmischung der Teilabgasströme gewährleistet, ohne dass vor der Partikelfalle ein unerwünscht hoher Staudruck erzeugt wird. Dabei sei noch angemerkt, dass sich die Durchbrüche im wesentlichen in der Ebene der Metallfolie erstrecken.

Die Erfindung wird nun anhand der Figuren näher erläutert. Dabei sei darauf hingewiesen, dass die Figuren besonders bevorzugte Ausführungsbeispiele der Erfindung zeigen, die Erfindung jedoch nicht darauf begrenzt ist. Es zeigen : Fig. l schematisch und in einer Explosionsdarstellung ein Detail einer Partikelfalle gemäß der Erfindung, Fig. 2 ein weiteres Detail einer Ausgestaltung der erfindungsgemäßen Partikelfalle, Fig. 3 schematisch eine Ausgestaltung eines Abgassystems einer mobilen Verbrennungskraftmaschine, Fig. 4 schematisch und perspektivisch eine weitere Ausgestaltung der erfindungsgemäßen Partikelfalle, Fig. 5 schematisch einen Längsschnitt durch eine erfindungsgemäße Ausgestaltung der Faserlage, und Fig. 6 einen weiteren Längsschnitt einer Faserlage im beschichteten Zustand.

Fig. 1 zeigt schematisch und in einer Explosionsdarstellung ein Detail einer Partikelfalle, wie sie beispielsweise zur Abgasbehandlung von mobilen

Verbrennungskraftmaschinen eingesetzt wird. Dargestellt sind zwei erfindungsgemäße Faserlagen 1, zwischen die eine Metallfolie 14 angeordnet ist.

Die Faserlagen 1 weisen jeweils einen Abschnitt 3 auf, in dem eine Beschichtung 4 angeordnet ist. Bei dieser Beschichtung 4 kann es sich um die eines Oxidationskatalysators, eines Drei-Wege-Katalysators und/oder eines SCR- Katalysators handeln. Bevorzugt weisen auch die Metallfolien 14 (zumindest in Teilbereichen) eine katalytisch aktive und/oder speichernde Beschichtung auf.

Üblicherweise liegen die benachbarten Lagen aneinander an und sind bevorzugt fügetechnisch miteinander verbunden, insbesondere miteinander verlötet. Hierzu ist es beispielsweise erforderlich, einen Teilbereich, insbesondere den Rand der Faserlage 1 nicht zu beschichten, um hier die Möglichkeit zur Ausbildung fügetechnischer Verbindungen zu gewährleisten.

Die Strukturierung der Metallfolie 14 hat zur Folge, dass dieses"Sandwich"aus glatten Lagen (Faserlage 1) und Welllage (Metallfolie 14) für ein Abgas in einer Strömungsrichtung 21 durchströmt werden kann. Dabei sind Leitflächen 18 in den Kanälen 17 angebracht, die eine Verwirbelung der Teilgasströme zur Folge haben, so dass diese insbesondere gegen die beschichtete Faserlage 1 geleitet werden.

Die Struktur der Metallfolie 14 ist hier eine Wellstruktur mit einer vorgegebenen Strukturweite 36. Bevorzugt sind die Leitflächen 18 bzw. darunterliegende Durchbrüche 19 größer ausgeführt, als die Strukturweite 36, so dass durch die Durchbrüche 19 mehrere benachbarte Kanäle 17 miteinander verbunden werden können.

Fig. 2 zeigt eine Anordnung von Metallfolien 14 und einer Faserlage 1 im Detail.

Wiederum sind die Metallfolien 14 und die Faserlage 1 abwechselnd angeordnet, wobei die Struktur der Metallfolien 14 in Verbindung mit der Faserlage 1 Kanäle 17 bildet, die für das Abgas in einer Strömungsrichtung 21 durchströmbar sind. In die Kanäle 17 hinein ragen Leitflächen 18, die durch Stanzen, Drücken oder auf andere Weise aus der Metallfolie 14 selbst hergestellt wurden. Dadurch sind gleichzeitig Durchbrüche 19 geschaffen, so dass von dem durch den einen

Kanal 17 strömenden Gas eine Teilrandströmung"abgeschält"und zur Faserlage 1 hingeleitet werden kann. Auf diese Weise werden auch die Partikel 22 mitgerissen und zur Faserlage 1 geführt. Dort bleiben sie auf der Außenfläche 9 beispielsweise kleben oder lagern sich in Hohlräumen, Poren oder ähnlichen Öffnungen der Faserlage 1 an. Die hier dargestellte Faserlage 12 weist eine Mehrzahl chaotisch angeordneter Fasern 6 auf, die mit einer Beschichtung 4 versehen sind. Insgesamt hat die Faserlage 1 eine Dicke 12, die kleiner als 3 mm ist.

Fig. 3 zeigt schematisch den Aufbau einer Abgasanlage einer automobilen Verbrennungskraftmaschine 13. Das in der Verbrennungslcraftmaschine 13 generierte Abgas wird über eine Abgasleitung 23 den unterschiedlichsten Komponenten zur Abgasbehandlung zugeführt, bevor es letztendlich an die Umgebung abgegeben wird. Das Abgassystem, das in Fig. 3 dargestellt ist, weist in Strömungsrichtung 21 hintereinander folgende Komponenten auf : Einen Startkatalysator 24, einen Turbolader 25, einen Oxidationskatalysator 26, eine Reduktionsmittelzufuhr 27, einen Mischer 28, eine erfindungsgemäße Partikelfalle 2 sowie einen Hauptkatalysator 29.

Der Startkatalysator 24 zeichnet sich durch sein besonders kleines Volumen (beispielsweise kleiner 0,1 Liter) aus und ist aufgrund seiner geringen Wärmekapazität und seiner unmittelbaren Nähe zum Motor bereits sehr kurzer Zeit nach einem Motorstart soweit aufgeheizt, dass eine katalytische Umsetzung von im Abgas enthaltenen Schadstoffen möglich ist (z. B. Temperaturen oberhalb von 230°C nach wenigen Sekunden). Die Funktion des Oxidationskatalysators 26 vor einer Partikelfalle 2 zur Regenerierung wurde bereits oben ausführlich erläutert. Die Reduktionsmittelzufuhr 27 und der Mischer 28 dient beispielsweise der Zufuhr von festem oder flüssigen Harnstoff, so däss auch eine Umsetzung von Schadstoffen mit dem SCR-Verfahren möglich ist. Der Mischer 28 kann als Leitfläche, Gitter, Wabenkörper oder in ähnlicher Weise ausgeführt sein. Es ist jedoch auch möglich, den Mischer 28 vor der Partikelfalle 2 wegzulassen, da der

Partikelfilter 2 selbst ebenfalls eine Verwirbelung der Abgasströme bzw. eine feine Verteilung des eingeleiteten Reduktionsmittels bewirkt. Der nachgeschaltete Hauptkatalysator 29 weist üblicherweise ein relativ großes Volumen auf, insbesondere größer 1,5 Liter.

Fig. 4 zeigt perspektivisch und schematisch den Aufbau einer Partikelfalle 2. Die Partikelfalle 2 zur Reinigung von Abgasen mobiler Verbrennungskraftmaschinen umfasst eine strukturierte Metallfolie 14 und eine hochtemperaturfeste Faserlage 1, die spiralig um eine Achse 16 der Partikelfalle 2 angeordnet sind (alternativ sind auch einfache Stapelanordnungen, S-förmige Schlingungen oder andere Windungen der Metallfolien und/oder Faserlagen möglich). Die Metallfolie 14 und die Faserlage 1 bilden Kanäle 17, welche sich im wesentlichen parallel zur Achse 16 durch die Partikelfalle 2 hindurch erstrecken. Der Verbund aus Metallfolie 14 und Faserlage 1 ist in einem Gehäuse 15 untergebracht und vorteilhafterweise auch mit diesem fügetechnisch verbunden. Bei der dargestellten Ausführungsform'der Partikelfalle 2 ragt das Gehäuse 15 über die Stirnflächen 34 der Partikelfalle 2 bzw. der Metallfolie 14 und der Faserlage 1 hervor. Die Materialstärke 30 der gewellten Metallfolie 14 liegt bevorzugt in einem Bereich unterhalb von 0,05 mm, bevorzugt sogar unterhalb von 0,02 mm. Hierbei bietet sich besonders an, dass die Materialstärke 30 bzw. die Beschichtung4 (nicht dargestellt), oder andere Parameter der Partikelfalle 2 über die Gesamtlänge 31 der Partikelfalle 2 nicht konstant sind. D. h. beispielsweise, dass die Partikelfalle 2 in einem ersten Längenabschnitt 32 eine geringere Wärmekapazität, eine höhere Porosität, eine größere Beladung hinsichtlich der katalytisch aktiven Beschichtung, eine erhöhte Anzahl/Größe von Durchbrüchen 19, Leitflächen 18 oder Fasern hat, als in einem zweiten Längenabschnitt 33. Grundsätzlich ist die Unterteilung der Partikelfalle 2 in mehr als zwei Längenabschnitte auch möglich.

Die dargestellte Partikelfalle 2 hat ein Volumen 20, welches durch das von der Faserlage 1 und der Metallfolie 14 ausgefüllte Volumen im Inneren des Gehäuses 20 charakterisiert ist, wobei das Volumen der Kanäle 17 ebenfalls

umfasst ist. Hinsichtlich der Beschichtung 4 wird die erfindungsgemäße Partikelfalle mit einer solchen Menge versehen, die im Bereich von 20 bis 300 g/1 beträgt. Dabei ist es möglich, dass diese Menge über die Gesamtlänge 31 gleichmäßig auf den Außenflächen 9 der Faserlage 1 und/oder der Mantelfolien 14 angeordnet ist, allerdings ist auch möglich, dass nur die Faserlage 1 oder nur Teilbereiche der Metallfolie 14 mit einer katalytisch aktiven Beschichtung 4 versehen sind. Es ist auch möglich, dass in verschiedenen Längenabschnitten unterschiedliche Arten oder Mengen der Beschichtung 4 vorgesehen sind.

Fig. 5 zeigt schematisch einen Längsschnitt 8 durch die Faserlage 1. Dabei lässt sich erkennen, dass die Fäserlage 1 durch eine Vielzahl von Fasern 6 gebildet ist, die hier teils geordnet, teils chaotisch miteinander verbunden sind. Die Fasern 6 weisen bevorzugt einen Durchmesser 7 im Bereich von 0,012 und 0,035 mm auf.

Durch die Anordnung der Fasern 6 in dem Längsschnitt 8 werden Öffnungen 10 gebildet. Diese stellen praktisch einen Querschnitt der Hohlräume dar, die im Inneren der Faserlage 1 gebildet sind.

Fig. 6 zeigt schematisch ebenfalls einen Längsschnitt 8 der Faserlage 1, wobei nun die Fasern 6 mit einer Beschichtung 4 ausgeführt sind. Die Beschichtung 4 umfasst Washcoat 5, der aufgrund seiner zerklüfteten Oberfläche ausreichend Möglichkeit zur Anlagerung der katalytisch aktiven Substanzen 35 bildet. Trotz der Beschichtung 4 weist der Längsschnitt 8 immer noch Öffnungen 10 mit einer Ausdehnung 11 auf. Diese Ausdehnung 11 aller Öffnungen 10 beträgt im Mittel zwischen 0,05 und 0, 4 mm. Dabei ist bevorzugt gleichzeitig eine Porosität von ca.

87 % einzuhalten.

Die vorliegende Erfindung ist das Ergebnis einer Vielzahl von aufwendigen technischen Versuchen, um die Effektivität von Partikelfallen in Abgassystemen automobiler Verbrennungskraftmaschinen zu verbessern.

Bezugszeichenliste 1 Faserlage 2 Partikelfalle 3 Abschnitt 4 Beschichtung 5 Washcoat 6 Faser 7 Durchmesser 8 Längsschnitt 9 Außenfläche 10 Öffnung 11 Ausdehnung 12 Dicke 13 Verbrennungskraftmaschine 14 Metallfolie 15 Gehäuse 16 Achse 17 Kanal 18 Leitfläche 19 Durchbruch 20 Volumen 21 Strömungsrichtung 22 Partikel 23 Abgasleitung 24 Startkatalysator 25 Turbolader 26 Oxidationskatalysator 27 Reduktionsmittelzufuhr 28 Mischer

29 Hauptkatalysator 30 Materialstärke 31 Gesamtlänge 32 Erster Längenabschnitt 33 Zweiter Längenabschnitt 34 Stirnfläche 35 Substanz 36 Strukturweite