Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PATH-CONTROLLED PRESS HAVING A SLIDING BLOCK
Document Type and Number:
WIPO Patent Application WO/2017/084953
Kind Code:
A1
Abstract:
The invention relates to a path-controlled press, comprising at least one drive shaft (1) having a driver (4) that is eccentric relative to a shaft axis (W), and a sliding block (5), wherein the sliding block (5) is driven by the driver (4) to perform a forcibly actuated movement, wherein during the execution of a pressure stroke, the sliding block (5) is guided on at least one sliding surface (5a) on the pressure side in relation to a pressure-side surface of a slide guide (7), wherein the sliding block (5) has a sliding surface (5b) on the pulling side opposite the sliding surface (5a) on the pressure side, which is guided on a surface of the slide guide on the pulling side, wherein the sliding surface (5a) on the pressure side of the sliding block (5) has a concave or convex curvature, wherein the sliding surface (5b) on the pulling side of the sliding block (5) has another respective concave or convex curvature.

Inventors:
KRIEGER WILHELM (DE)
FUCHSHOFEN DIETER (DE)
GOBER NORBERT (DE)
Application Number:
PCT/EP2016/077224
Publication Date:
May 26, 2017
Filing Date:
November 10, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SMS GROUP GMBH (DE)
International Classes:
B30B1/26; B30B15/06
Domestic Patent References:
WO2007091935A12007-08-16
Foreign References:
US20050022679A12005-02-03
JP2004114119A2004-04-15
US20130074710A12013-03-28
JP2008100278A2008-05-01
JP2004136336A2004-05-13
JP2007275904A2007-10-25
DE1627435A11970-01-08
Attorney, Agent or Firm:
KROSS, Ulrich (DE)
Download PDF:
Claims:
Weggebundene Presse, umfassend

zumindest eine Antriebswelle (1 ) mit einem zu einer Wellenachse (W) exzentrischen Mitnehmer (4), und

einen Kulissenstein (5), wobei der Kulissenstein (5) durch den Mitnehmer (4) zu einer zwangsgeführten Bewegung angetrieben wird,

wobei der Kulissenstein (5) während einer Ausführung eines Presshubs an zumindest einer druckseitigen Gleitfläche (5a) gegenüber einer druckseitigen Fläche einer Kulisse (7) geführt ist,

wobei der Kulissenstein (5) eine der druckseitigen Gleitfläche (5a) gegenüberliegende, zugseitige Gleitfläche (5b) aufweist, die an einer zugseitigen Fläche der Kulisse geführt ist,

dadurch gekennzeichnet,

dass ein Antrieb der Antriebswelle einen ersten Motor (10), ein durch den ersten Motor antreibbares Schwungrad (1 1 ) und einen zweiten Motor (12) umfasst, wobei das Schwungrad (1 1 ) mittels einer Kupplung (13) mit der Antriebswelle (1 ) lösbar ankoppelbar ist, und wobei die Antriebswelle (1 ) über den zweiten Motor (12) antreibbar ist.

Weggebundene Presse nach Anspruch 1 , dadurch gekennzeichnet, dass die Kupplung (13) in einem Normalbetrieb dann geschlossen wird, wenn eine antriebsseitige und eine abtriebsseitige Drehzahl an der Kupplung (13) zumindest annähernd gleich sind, wobei eine Angleichung der Drehzahlen über eine gezielte Ansteuerung des zweiten Motors (12) erfolgt.

Weggebundene Presse nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der erste Motor (10) und das Schwungrad (1 1 ) koaxial zueinander angeordnet sind, wobei sie insbesondere als bauliche Einheit zu einem Schwungradmotor (14) integriert sind.

4. Weggebundene Presse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Schwungrad (1 1 ) ohne Übersetzung mit der

Antriebswelle (1 ) koppelbar ist, wobei das Schwungrad (1 1 ) insbesondere konzentrisch zu der Antriebswelle (1 ) angeordnet ist.

5. Weggebundene Presse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der zweite Motor (12) als konzentrisch zu der

Antriebswelle (1 ) angeordneter Torque-Motor ausgebildet ist.

6. Weggebundene Presse nach Anspruch 5, dadurch gekennzeichnet, dass eine Bremse (15) der Antriebswelle (1 ) konzentrisch zu dem Torque-Motor (12) und in axialer Richtung mit dem Torque-Motor (12) überdeckend vorgesehen ist.

7. Weggebundene Presse nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Antriebswelle (1 ) ausgehend von einer ruhenden Startposition über den Presshub bis zu einer ruhenden Stoppposition einen

Drehwinkel von mehr als 360°, insbesondere zwischen 370° und 450°, durchläuft.

8. Weggebundene Presse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die druckseitige Gleitfläche (5a) an dem

Kulissenstein (5) und/oder die die zugseitige Gleitfläche (5b) des Kulissensteins (5) gerade ausgeführt ist.

9. Weggebundene Presse nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die druckseitige Gleitfläche (5a) an dem Kulissenstein (5) eine konkave oder konvexe Krümmung aufweist, wobei die zugseitige Gleitfläche (5b) des Kulissensteins (5) eine jeweils andere, konkave oder konvexe, Krümmung aufweist. 10. Weggebundene Presse nach Anspruch 9, dadurch gekennzeichnet, dass der Kulissenstein (5) eine Pendelbewegung um eine Pendelachse (P) ausführt, wobei die Pendelachse (P) außerhalb des Kulissensteins (5) angeordnet ist. 1 1 . Weggebundene Presse nach Anspruch 10, dadurch gekennzeichnet, dass der Mitnehmer (4) um eine Exzenterachse (E) in dem Kulissenstein (5) läuft, wobei die Exzenterachse (E) einen Abstand R gegenüber der Wellenachse (W) aufweist, wobei die Exzenterachse (E) einen Abstand L zu der Pendelachse (P) aufweist, und wobei gilt: L:R >= 4, insbesondere 12 >= L:R >= 5.

12. Weggebundene Presse nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass zwischen dem Mitnehmer (4) und dem Kulissenstein (5) ein Versteilglied (17), insbesondere in Form eines einstellbar verdrehbaren Exzenterrings (18), angeordnet ist.

13. Weggebundene Presse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Druckstück (8) während des Presshubs im Wesentlichen in einer Linie mit einem Stößel der Presse bewegt wird.

14. Weggebundene Presse nach einem der Ansprüche 8 bis 1 1 , dadurch gekennzeichnet, dass zwischen dem Druckstück (8) und einem Stößel (22) der Presse eine Kraftumlenkung, insbesondere mittels eines Keils (20), erfolgt.

5. Weggebundene Presse nach einem der Ansprüche 8 bis 13, dadurch gekennzeichnet, dass eine gegenüber der Kulisse (7) ortsfest aufgenommene Ausstoßmechanik (23) mit einem gegenüber der Kulisse (7) bewegbaren und auf ein Werkstück wirkenden Ausstoßer (24) vorgesehen ist, wobei die Ausstoßmechanik (23) durch die Bewegung des Kulissensteins (5) betätigt wird.

6. Weggebundene Presse nach Anspruch 14, dadurch gekennzeichnet, dass zwischen dem Kulissenstein (5) und dem Ausstoßer (24) ein Getriebe (30) angeordnet ist.

Description:
Weggebundene Presse mit Kulissenstein

Die Erfindung betrifft eine weggebundene Presse nach dem Oberbegriff des Anspruchs 1 .

DE-OS-1 627 435 beschreibt eine Schmiedepresse, bei der ein Exzenter einer Antriebswelle in eine Öffnung eines Kulissensteins eingreift. Der Kulissenstein ist mit einer oberen, konvexen Seite sowie mit einer unteren, konvexen Seite jeweils gegen eine entsprechend konkav geformte Fläche einer Kulisse abgestützt. Der Kulissenstein pendelt im Zuge einer Drehung der Antriebswelle um eine Pendelachse, die durch einen unteren Bereich des Kulissensteins verläuft.

WO 2007/091935 A1 beschreibt einen Antrieb für eine Presse, bei der ein erster Motor ein mit der Presse koppelbares Schwungrad antreibt und bei der zudem ein zweiter Motor zum Antrieb der Presse vorgesehen ist.

Es ist die Aufgabe der Erfindung, eine weggebundene Presse anzugeben, bei der ein Antrieb wenig Bauraum beansprucht.

Diese Aufgabe wird für eine eingangs genannte weggebundene Presse erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.

Eine solche Ausgestaltung des Pressenantriebs erlaubt eine besonders niedrige Bauform des Antriebs, wobei zum Beispiel relativ kleine Schwungraddurchmesser Verwendung finden können. Dies erlaubt eine ideale Kombination mit einer Kraftübertragung mittels eines Kulissensteins, da solche Kraftübertragungen ebenfalls mit geringer Bauhöhe realisierbar sind. Der erste Motor dient im Wesentlichen dazu, das Schwungrad anzutreiben und zumindest teilweise aus dem Schwungrad entnommene Energie nachzuführen. Der zweite Motor dient im Wesentlichen dazu, die vom Schwungrad entkoppelte Antriebswelle in einem von dem Schwungrad entkoppelten Zustand zu beschleunigen und/oder zu verzögern. Zudem kann der zweite Motor dazu dienen, auch im eingekoppelten Zustand zusätzliche Antriebsenergie einzubringen. Die bei einer Verzögerung auftretende Verzögerungsenergie kann bei einer möglichen Detailgestaltung über Umrichter dem ersten Motor zugeführt werden. Unter Motoren im Sinne der vorliegenden Erfindung werden jeweils Elektromotoren verstanden. Unter einem Kulissenstein wird im Sinne der Erfindung ein gegenüber einer Kulissenfläche zwangsgeführt bewegbares Element verstanden. Die Kulissenfläche umfasst insbesondere die druckseitige Fläche und die zugseitige Fläche zur Führung des Kulissensteins. Unter einem Mitnehmer wird im Sinne der Erfindung zum Beispiel ein Exzenter oder ein Kurbelzapfen verstanden. Im Interesse einer großen Kraftübertragung handelt es sich bei dem Mitnehmer bevorzugt um einen Exzenter der Antriebswelle, der zum Beispiel mit einem kreisförmigen Umfang in einer Öffnung des Kulissensteins läuft.

Unter einer Kulisse wird im Sinne der Erfindung ein bewegbares Bauteil der Presse verstanden, das einen Arbeitsdruck während eines Presshubs bzw. Umformungsvorgangs von dem Kulissenstein aufnimmt und weiterleitet. Die Kulisse kann im Prinzip als gemeinsames Bauteil mit einem Stößel der Presse ausgebildet sein. Bei anderen Ausführungsformen kann aber auch ein weiteres Getriebe beliebiger Bauart, beispielsweise eine Keilumlenkung, zwischen der Kulisse und dem Stößel vorgesehen sein. Die Kulisse hat im Bereich der Kraftaufnahme in Druckrichtung bevorzugt ein Druckstück, das für die Anlage an dem Kulissenstein optimierte Materialeigenschaften aufweist. Eine Presse im Sinne der Erfindung betrifft allgemein eine Presse zum Schmieden, Stanzen, Tiefziehen oder zu jedem sonstigen Umformvorgang, zu dem weggebundene Pressen verwendet werden. Bei einer bevorzugten Weiterbildung wird die Kupplung in einem Normalbetrieb dann geschlossen, wenn eine antriebsseitige und eine abtriebsseitige Drehzahl an der Kupplung zumindest annähernd gleich sind, wobei eine Angleichung der Drehzahlen über eine gezielte Ansteuerung des zweiten Motors erfolgt. Dies erlaubt eine erhebliche Verschleißreduzierung der Kupplung.

Im Interesse einer einfachen und raumsparenden Bauform können der erste Motor und das Schwungrad koaxial zueinander angeordnet sein. Bevorzugt sind sie dabei als bauliche Einheit zu einem Schwungradmotor integriert. Ein solcher Schwungradmotor verzichtet vorteilhaft auf einen raumgreifenden Riemenantrieb nebst zusätzlicher Motorkonsole. Bei einer weiteren möglichen Ausführungsform sind der Motor und das Schwungrad koaxial angeordnet und über ein Getriebe, bevorzugt ein Planetengetriebe, miteinander verbunden, so dass je nach Anforderungen auch Übersetzungen realisierbar sind. Dies kann besonders kleine Schwungradmassen ermöglichen.

Allgemein vorteilhaft ist das Schwungrad ohne Übersetzung mit der Antriebswelle koppelbar, wobei das Schwungrad insbesondere konzentrisch zu der Antriebswelle angeordnet ist. Eine solche einfache Bauart ohne ein Vorgelege ist besonders dann vorteilhaft integrierbar, wenn das Schwungrad mit ausreichend kleinem Durchmesser ausgelegt werden kann. Dies ist wiederum durch das erfindungsgemäße Antriebskonzept ermöglicht.

Zur Vermeidung von aufwendigen Getrieben und im Interesse einer kompakten Bauweise ist bei einer bevorzugten Ausführungsform der zweite Motor als konzentrisch zu der Antriebswelle angeordneter Torque-Motor ausgebildet. Unter einem Torque-Motor wird allgemein und im Sinne der Erfindung ein drehmonnentstarker, hochpoliger Motor verstanden, der im Regelfall über einer Hohlwelle läuft. Torque-Motoren weisen zudem bereits aus dem Stillstand heraus ein hohes Drehmoment auf. Besonders vorteilhaft kann eine Bremse der Antriebswelle konzentrisch zu dem Torque-Motor und in axialer Richtung mit dem Torque-Motor überdeckend vorgesehen sein. Dabei kann die Bremse insbesondere im Bereich einer Hohlwelle des Torque-Motors platziert sein, um auch diesen Bauraum zu nutzen. Bei der Bremse kann es sich um eine mechanische Bremse zur Erzeugung von Reibungswärme oder auch um eine elektrische Rekuperationsbremse handeln.

Bei der Bremse kann es sich um eine Haltebremse zur Sicherstellung eines Stillstandes bei Nichtbetrieb der Presse handeln. Es kann sich besonders bevorzugt um eine federbelastete Bremse handeln, welche pneumatisch geöffnet und hydraulisch und/oder elektromagnetisch geschlossen werden kann.

Allgemein vorteilhaft ist es vorgesehen, dass die Antriebswelle ausgehend von einer ruhenden Startposition über den Presshub bis zu einer ruhenden Stoppposition einen Drehwinkel von mehr als 360° durchläuft. Bevorzugt handelt es sich um einen Drehwinkel zwischen 370° und 450°. Dies erlaubt einen größeren Beschleunigungsweg vor dem eigentlichen Pressvorgang bzw. einen größeren Bremsweg nach dem eigentlichen Pressvorgang, so dass die entsprechenden Motoren und Bremsen demgemäß kleiner dimensioniert sein können. Dies gilt insbesondere für den zweiten Motor.

Insgesamt ist bei einem vorstehend beschriebenen Antrieb eine hohe Leistung ermöglicht. Damit kann bei gegebener Ladezeit ein großer Drehzahlabfall wieder aufgeladen werden. Ein hoher zulässiger Drehzahlabfall erlaubt ein kleines Schwungrad, was von Vorteil ist. Zur Vermeidung von Kontaminationen eines Arbeitsbereichs mit Schmierfetten kann vorteilhaft vorgesehen sein, dass eine Hauptlagerstelle der Antriebswelle mittels einer Ölumlaufschmierung geschmiert ist. Bei einer allgemein bevorzugten Ausführungsform der Erfindung ist es vorgesehen, dass die druckseitige Gleitfläche an dem Kulissenstein und/oder die die zugseitige Gleitfläche des Kulissensteins gerade ausgeführt ist. Durch die gerade Formgebung einer druckseitigen Gleitfläche oder beider druckseitigen Gleitflächen ist eine einfache Fertigung des Kulissensteins möglich.

Bei einer allgemein bevorzugten Ausführungsform der Erfindung ist es vorgesehen, dass die druckseitige Gleitfläche an dem Kulissenstein eine konkave oder konvexe Krümmung aufweist, wobei die zugseitige Gleitfläche des Kulissensteins eine jeweils andere, konkave oder konvexe, Krümmung aufweist. Durch die konkave oder konvexe Formgebung der druckseitigen Gleitfläche kann auf einfache Weise eine Kraftübertragung durch den Kulissenstein erzielt werden, die einem Schubkurbelgetriebe entspricht. Zugleich wird eine große Anlagefläche im Bereich der Gleitfläche erzielt, so dass eine Auslegung für große Presskräfte einfach erzielbar ist. Insgesamt ist hierdurch eine optimierte Kraft-Weg -Kurve gegeben.

Insbesondere können die druckseitige, konkave und die zugseitige, konvexe Krümmung jeweils kreisbogenförmig ausgebildet sein. Die Krümmungen sind bevorzugt konzentrisch um denselben Punkt angeordnet, durch den auch eine Pendelachse des Kulissensteins verläuft. Beide Gleitflächen bilden dabei für den Kulissenstein zwangsführende Kulissenflächen eines Kulissengetriebes.

Bei einer ersten Variante der Erfindung hat der Kulissenstein druckseitig die konkave Gleitfläche und zugseitig die konvexe Gleitfläche. Dies entspricht der Kinematik eines Schubkurbelgetriebes, bei dem der Totpunkt eines Arbeitshubs bzw. Pressvorgangs in einer Strecklage des Schubkurbelgetriebes vorliegt. Bei einer zweiten Variante der Erfindung hat der Kulissenstein druckseitig die konvexe Gleitfläche und zugseitig die konkave Gleitfläche. Dies entspricht der Kinematik eines Schubkurbelgetriebes, bei dem der Totpunkt eines Arbeitshubs bzw. Pressvorgangs in einer Decklage des Schubkurbelgetriebes vorliegt.

Durch die erfindungsgemäße Bauart einer weggebundenen Presse ist allgemein eine niedrige Bauhöhe ermöglicht. Dies führt zu kürzeren Federlängen von Ständer, Stößel und/oder Kulisse der Presse. Hierdurch ist die Steifigkeit im Vergleich zu herkömmlichen Exzenterpressen gleicher Ständerbauart verbessert.

Ferner wird durch die erfindungsgemäße Bauart erreicht, dass bei gegebener Bauhöhe der Presse eine besonders große Länge einer starren Einheit aus Kulisse und Stößel ermöglicht ist. Dies erlaubt eine besonders gute seitliche Führung des Stößels bzw. der starren Einheit auch bei großen Presskräften.

Allgemein vorteilhaft ist es vorgesehen, dass der Kulissenstein eine Pendelbewegung um eine Pendelachse ausführt, wobei die Pendelachse außerhalb des Kulissensteins angeordnet ist. Allgemein bevorzugt ist die Pendelachse relativ zu der Kulisse ortsfest angeordnet. Unter der Annahme einer linearen Zwangsführung der Kulisse bewirkt der Kulissenstein bezüglich der Pendelachse bzw. bezüglich der Kulisse dann eine Bewegungsübertragung nach Art eines Schubkurbelgetriebes. Im Sinne der Erfindung ist je nach Anforderungen auch eine andere Zwangsführung der Kulisse denkbar, so dass die Kinematik eines Schubkurbelgetriebes nur eine von verschiedenen möglichen Bewegungsübertragungen ist. Die Erfindung ist nicht auf die konkret beschriebenen Varianten von Schubkurbelgetrieben beschränkt.

Bei einer bevorzugten Weiterbildung ist es dabei vorgesehen, dass der Mitnehmer um eine Exzenterachse in dem Kulissenstein läuft, wobei die Exzenterachse einen Abstand R gegenüber der Wellenachse aufweist, wobei die Exzenterachse einen Abstand L zu der Pendelachse aufweist, und wobei gilt: L:R >= 4. Besonders bevorzugt gilt zudem: 12 >= L:R >= 5. Bei linearer Führung der Kulisse bedeuten demnach die Größen R und L die kennzeichnenden Größen der Schubstangen eines analogen Schubkurbelgetriebes, und der Quotient R:L entspricht bei einem analogen Schubkurbelgetriebe dem Schubstangenverhältnis Lambda (bzw. L:R = 1/Lambda). Eine solche Auslegung des Getriebes der erfindungsgemäßen Presse erlaubt ein hohes Verhältnis zwischen einer in Führungsrichtung des Druckstücks wirkenden Presskraft und einer senkrecht dazu wirkenden Normalkraft. Eine gewisse Normalkraft ist dabei gewünscht, um eine gute Anlage der Kulisse und/oder des Stößels an einer seitlichen Führung zu gewährleisten. Durch Kombination mit der Verwendung eines Kulissensteins wird ein großes inverses Schubstangenverhältnis 1/Lambda ermöglicht, ohne dass eine Bauhöhe der Presse vergrößert werden muss. Durch die oben genannten Merkmale können auch bei geringer Bauhöhe und entsprechend guter Steifigkeit ähnliche Druckberührzeiten (Kenngröße: Lambda) wie bei herkömmlichen Exzenterpressen mit Druckstangen erzielt werden.

Bei der ersten Variante analog der Strecklage eines Schubkurbelgetriebes befindet sich die Pendelachse bezüglich der Wellenachse auf der Seite der Druckrichtung. Hierbei ist die Druckberührzeit bei gleicher Umlaufzeit gleich wie bei herkömmlichen Pressen mit Druckstange. Bei der zweiten Variante analog der Decklage eines Schubkurbelgetriebes befindet sich die Pendelachse bezüglich der Wellenachse auf der Seite der Zugrichtung. Hierbei ist die Drückberührzeit bei gleicher Umlaufzeit höher als bei herkömmlichen Pressen mit Druckstange, was jedoch bei speziellen Umformverfahren beziehungsweise Materialien von Vorteil sein kann.

Bei einer allgemein bevorzugten Weiterbildung der Erfindung ist zwischen dem Mitnehmer und dem Kulissenstein ein Versteilglied, bevorzugt in Form eines einstellbar verdrehbaren Exzenterrings, angeordnet. Ein solches Versteilglied kann zum Beispiel zur Höhenverstellung eines Stößels eingesetzt werden. Bei einer bevorzugten Ausführungsform der Erfindung wird die Kulisse während des Presshubs im Wesentlichen in einer Linie mit einem Stößel der Presse bewegt. Dies entspricht einer linearen und unmittelbaren Übertragung der Presskraft.

Bei einer hierzu alternativen Ausführungsform einer erfindungsgemäßen Presse erfolgt zwischen der Kulisse und einem Stößel der Presse eine Kraftumlenkung. Bevorzugt kann die Kraftumlenkung mittels eines Keils erfolgen. Hierdurch können die allgemeinen Vorteile einer Keilpresse mit den Vorteilen einer erfindungsgemäßen Presse kombiniert werden.

Bei einer allgemein vorteilhaften Weiterbildung der Erfindung ist eine gegenüber der Kulisse ortsfest aufgenommene Ausstoßmechanik mit einem gegenüber der Kulisse bewegbaren und auf ein Werkstück wirkenden Ausstoßer vorgesehen, wobei die Ausstoßmechanik durch die Bewegung des Kulissensteins betätigt wird. Dies erlaubt eine einfache und effektive Ausstoßung eines Werkstücks nach einem Pressvorgang. Besonders bevorzugt ist eine solche Ausstoßmechanik mit einem Kulissenstein der zweiten Ausführungsform kombiniert, bei dem druckseitig eine konvexe Gleitfläche vorliegt. Dies bedeutet bei sonst gleicher Dimensionierung einen größeren Weg des Kulissensteins im Bereich der druckseitigen Gleitfläche, was eine besonders einfache und effektive Bewegungsübertragung auf den Ausstoßer erlaubt. Die Betätigung des Ausstoßers kann zum Beispiel durch eine an dem Kulissenstein ausgeformte Rampe, Nocke oder ähnliche Struktur erfolgen, die den Ausstoßer bei Erreichen einer entsprechenden Position der Antriebswelle gegen eine rückstellende Federkraft betätigt.

Bei einer bevorzugten Detailgestaltung kann zwischen dem Kulissenstein und dem Ausstoßer ein Getriebe angeordnet sein, so dass Kraft und Bewegungsablauf des Ausstoßers weiter optimiert sind. Bei dem Getriebe kann es sich insbesondere um ein Lenkergetriebe, einen Umlenkhebel oder Ähnliches handeln.

Weitere Vorteile und Merkmale ergeben sich aus den nachfolgend beschriebenen Ausführungsbeispielen sowie aus den abhängigen Ansprüchen.

Nachfolgend werden bevorzugte Ausführungsbeispiele der Erfindung beschrieben und anhand der anliegenden Zeichnungen näher erläutert. Fig. 1 zeigt eine schematische Schnittansicht eines ersten Ausführungsbeispiels einer erfindungsgemäßen weggebundenen Presse, wobei die Schnittebene parallel zu einer Antriebswelle verläuft. Fig. 2 zeigt die Presse aus Fig. 1 in einer Schnittansicht mit senkrecht zu der Antriebswelle verlaufender Schnittebene entlang der Linie l-l. Fig. 3 zeigt eine Schnittansicht entlang der Linie II-II der Presse aus Fig. 1 mit einem Versteilglied.

Fig. 4 zeigt eine Skizze eines Kulissensteinantriebs als Detail der Presse aus Fig. 1 .

Fig. 5 zeigt eine Skizze eines zweiten Ausführungsbeispiels der Erfindung mit einem Kulissensteinantrieb und einem dazu kombinierten Keilantrieb.

Fig. 6 zeigt eine Skizze eines dritten Ausführungsbeispiels der Erfindung, wobei eine andere Variante des Kulissensteins mit druckseitig konvexer

Gleitfläche vorliegt.

Fig. 7 zeigt eine Skizze eines vierten Ausführungsbeispiels, bei dem eine Ausstoßmechanik mit einem Kulissensteinantrieb gekoppelt ist.

Fig. 8 zeigt eine Skizze eines fünften Ausführungsbeispiels, bei dem eine Ausstoßmechanik ein Getriebe umfasst.

Die erfindungsgemäße weggebundene Presse gemäß dem Ausführungsbeispiel nach Fig. 1 umfasst eine Antriebswelle 1 mit einer Wellenachse W, die in zwei Hauptlagern 2 gegenüber einem Pressenrahmen 3 drehgelagert ist. Die Hauptlager 2 weisen bevorzugt eine Ölumlaufschmierung auf.

Zwischen den Hauptlagern 2 hat die Antriebswelle 1 einen exzentrischen Mitnehmer in Form eines Exzenters 4. Der im Querschnitt kreisförmige Exzenter 4 hat eine Exzenterachse E, die um einen radialen Abstand R gegenüber der Wellenachse W versetzt ist.

Der Exzenter 4 durchgreift einen Kulissenstein 5 in einer dem Durchmesser des Exzenters entsprechenden Bohrung 6. Zu Montagezwecken ist der Kulissenstein dabei aus mehreren Teilen aufgebaut.

Der Kulissenstein 5 ist seinerseits in einer Kulisse 7 geführt. Die Kulisse 7 ist als gegenüber dem Pressenrahmen 3 bewegbares Gehäuse ausgebildet. Die Kulisse 7 umfasst auf einer Druckseite ein Druckstück 8, an dem eine druckseitige Gleitfläche 8a ausgebildet ist. Auf einer bezüglich des Kulissensteins gegenüberliegenden Seite ist an der Kulisse eine zugseitige Gleitfläche 7a ausgebildet. Der Kulissenstein 5 hat eine druckseitige Gleitfläche 5a, die an der Gleitfläche 8a des Druckstücks 8 anliegt, sowie eine zugseitige Gleitfläche 5b, die an der zugseitigen Gleitfläche 7a der Kulisse 7 anliegt.

Die druckseitige Gleitfläche 5a ist an dem Kulissenstein 5 konkav ausgeformt. Die zugseitige Gleitfläche 5b ist an dem Kulissenstein 5 konvex ausgeformt. Die Gleitflächen 5a, 5b, 7a, 8a sind jeweils als Ausschnitte einer Zylindermantelfläche ausgeformt, wobei die Zylinderachsen parallel zu der Wellenachse W verlaufen. Die Gleitflächen 5a, 5b, 7a, 8a verlaufen dabei konzentrisch um eine zu der Wellenachse W parallele Pendelachse P des Kulissensteins 5. Anders ausgedrückt fallen die Zylinderachsen der Zylindermantelflächen, zu denen die Gleitflächen 5a, 5b, 7a, 8a jeweils Ausschnitte bilden, mit der Pendelachse P zusammen.

Die Pendelachse P liegt somit bei der hier beschriebenen ersten Variante des Kulissensteins druckseitig und außerhalb des Kulissensteins, da die druckseitige Gleitfläche 5a des Kulissensteins 5 konkav geformt ist. Für den Kulissenstein 5 resultiert bei Drehung der Antriebswelle 1 eine zwangsgeführte Pendelbewegung um die Pendelachse P. Die Pendelachse P verläuft raumfest bezüglich der Kulisse 7 bzw. dem Druckstück 8. Die Kulisse 7 und das an ihr vorgesehene Druckstück 8 sind über seitliche Führungen 9 aufgenommen, in denen sie jeweils linear in zu der Wellenachse W senkrechter Richtung bewegbar sind. Durch eine Abwärtsbewegung bezüglich der Darstellung in Fig. 2 wird ein Presshub ausgeführt, bei dem die Antriebskraft der Antriebswelle 1 über den Kulissenstein 5 auf das Druckstück 8 einwirkt. Nach einem unteren Totpunkt der Bewegung wirkt die Antriebskraft der Antriebswelle 1 über den Kulissenstein 5 auf die zugseitige Gleitfläche 7a der Kulisse 7, so dass Kulisse 7 und Druckstück 8 entgegen der Presshubrichtung zurückgeholt werden. An einer Unterseite der Kulisse 7 sind vorliegend Spann-Vorrichtungen 7b angeordnet, mit denen ein Stößel der Presse und/oder ein Werkzeughalter und/oder ein Werkzeug angebracht werden können. Diese vollziehen entsprechend identische Bewegungen wie die Kulisse 7 bzw. das Druckstück 8. Durch die Führungen 9 vollziehen die Kulisse 7 bzw. das Druckstück 8 (bzw. ein Stößel oder Werkzeug der Presse) eine Bewegung analog der eines Schubkurbelantriebs. Beispiel eines Schubkurbelantriebs ist die Bewegungsübertragung zwischen Kolben und Kurbelwelle in einem herkömmlichen Verbrennungsmotor. Dabei sind die für die Bewegung kennzeichnenden Größen der radiale Abstand R einerseits sowie ein Abstand L zwischen der Pendelachse P und der Exzenterachse E. Das Verhältnis R:L entspricht im Fall des herkömmlichen Schubkurbelantriebs dem Schubstangenverhältnis Lambda. Bei konstanter Winkelgeschwindigkeit der Antriebswelle 1 liegt eine größte Stößelgeschwindigkeit dann vor, wenn R und L im rechten Winkel zueinander stehen.

Bei dem vorliegenden Beispiel entspricht der Totpunkt des Arbeitshubs dabei einer Strecklage eines analogen Schubkurbelgetriebes. Das heißt, dass die Strecken R und L im untersten Punkt des Werkzeugs kollinear und hintereinander liegen. Der Totpunkt des Arbeitshubs wird auch als unterer Totpunkt bezeichnet.

Im Gegensatz zu einem reinen Sinustrieb (z.B. waagerecht in der Kulisse gleitender Kulissenstein mit ebener druckseitiger Gleitfläche) tritt eine größte Stößelgeschwindigkeit erst nach 90° nach OT (oberer Totpunkt) ein.

Vorliegend wird der Kehrwert 1 /Lambda = L:R herangezogen, um den Antrieb der erfindungsgemäßen Presse zu optimieren. Es wurde festgestellt, dass eine Schmiedepresse bezüglich der Anforderungen des Bewegungsablaufs als auch von auftretenden Andruckkräften auf die seitlichen Führungen 9 besonders vorteilhaft in einem Bereich L:R = 8 ausgelegt sind. Allgemein bevorzugt sollte das Verhältnis 4 <= L:R sein. Besonders bevorzugt sollte 5<= L:R <= 12 gelten.

Solche relativ großen inversen Schubstangenverhältnisse haben bei einer vorliegenden Presse praktisch keine Auswirkungen auf die Bauhöhe, da die Position der Pendelsachse P nur durch die Bewegung des Kulissensteins definiert wird und an dieser Position keine gegenständliche Welle bzw. Lagerung erforderlich ist. Die vorstehend beschriebene Aufnahme und Bewegung des Kulissensteins wird in Fig. 4 weiter erläutert. Es sind zudem Kraftvektoren Fs, Fp und Fn eingezeichnet, die folgende Bedeutung haben: Fs ist die von dem Kulissenstein 5 ausgeübte, gesamte Druckkraft. Fs liegt auf einer Geraden, die senkrecht durch die Exzenterachse E und die Pendelachse P läuft.

Fp ist der Kraftanteil von Fs, der in Richtung des Presshubs bzw. auf das Werkstück wirkt. Bei der konkreten Bauart der Presse nach Fig. 1 handelt es sich um den senkrechten Kraftanteil.

Fn ist der Kraftanteil von Fs, der senkrecht zu Fp und auch senkrecht zu den Führungen 9 bzw. der Richtung des Presshubs steht. Durch Fn wird das Verhalten der bewegten Teile in den Führungen 9 maßgeblich bestimmt.

Ein jeweiliger Winkel WF zwischen Fp und Fs ist Ausdruck des Kurbelwinkels und des Verhältnisses L:R. Aufgrund des gewählten Verhältnisses L:R ist der Winkel WF im vorliegenden Beispiel einer Presse relativ klein.

Nachfolgend wird ein Antrieb einer erfindungsgemäßen Presse beschrieben.

Ein Antrieb der Antriebswelle 1 umfasst einen ersten Motor 10, ein durch den ersten Motor 10 antreibbares Schwungrad 1 1 und einen zweiten Motor 12. Das Schwungrad 1 1 ist über eine Kupplung 13 lösbar an die Antriebswelle 1 ankoppelbar. Der zweite Motor 12 treibt die Antriebswelle 1 unmittelbar an. Bei einer möglichen Betriebsart erfolgt eine Verzögerung beziehungsweise Bremsung bei diesem Antrieb insbesondere nicht über eine Bremse, sondern über den zweiten Motor 12. Vorliegend sind das Schwungrad 1 1 und der erste Motor 10 zu einer baulichen Einheit in Form eines Schwungradmotors 14 kombiniert. Dabei sind der erste Motor 10 und das Schwungrad 1 1 koaxial zueinander und zu der Wellenachse W der Antriebswelle 1 angeordnet. Motor 10 und Schwungrad 1 1 sind unmittelbar miteinander verbunden. Eine Übersetzung, zum Beispiel mittels eines Getriebes oder eines Riemenantriebs, erfolgt hier nicht. Bei anderen, nicht dargestellten Ausführungsformen kann eine Übersetzung zwischen Schwungrad und erstem Motor vorgesehen sein, zum Beispiel mittels eines Planetengetriebes. Die Kupplung 13 ist unmittelbar an dem Schwungradmotor 14 angeordnet und befindet sich ebenfalls in konzentrischer bzw. koaxialer Positionierung auf der Wellenachse W. Schwungradmotor 14 und Kupplung 13 sind an demselben von zwei Enden der Antriebswelle 1 angeordnet. Der zweite Motor 12 ist an dem zweiten, bezüglich der Hauptlager 2 gegenüberliegenden Ende der Antriebswelle 1 angeordnet. Auch der zweite Motor 12 ist koaxial zu der Wellenachse W über der Antriebswelle 1 positioniert. Er treibt die Antriebswelle unmittelbar und ohne Übersetzung an. Hierzu ist der zweite Motor 12 als ein Torque-Motor ausgebildet. Der zweite Motor 12 hat entsprechend ein hohes Drehmoment bereits aus dem Stillstand heraus.

Eine Bremse 15 des Antriebs ist konzentrisch und in axialer Richtung überlappend zu dem zweiten Motor 12 positioniert. Insbesondere ist die Bremse überwiegend in einer Hohlwelle des zweiten Motors 12 positioniert, wodurch dieser Bauraum optimal genutzt wird. Mittels der gegenüber dem Pressenrahmen abgestützten Bremse 15 kann die Antriebswelle 1 bei Bedarf mit hoher Leistung gebremst und/oder zum Stillstand gebracht werden. Die Bremse kann als elektrische Rekuperationsbremse und/oder als Reibungswärme erzeugende, mechanische Bremse ausgelegt sein. Vorliegend ist die Bremse 15 bevorzugt federbelastet und dient in möglicher Betriebsart als Sicherheitselement bei Stillstand der Presse. Sie kann pneumatisch geöffnet beziehungsweise hydraulisch und/oder elektromagnetisch geschlossen werden.

Insbesondere die Ansicht nach Fig. 2 macht deutlich, dass das Schwungrad 1 1 einen ausreichend kleinen Durchmesser aufweist, um in der Höhe nicht mit einem Arbeitsbereich 16 der Presse zu überlappen. Dies erlaubt einen optimalen Zugang zu dem Arbeitsbereich 16

Der vorstehend beschriebene Antrieb funktioniert nun wie folgt:

Allgemein wird das Schwungrad 1 1 durch den ersten Motor 10 dauerhaft auf einer gewünschten Drehzahl gehalten. Der zweite Motor 12 dient dazu, die Antriebswelle 1 vor einem Pressvorgang aus einer ruhenden Startposition auf eine zu dem Schwungrad gleiche oder zumindest annähernd gleiche Drehzahl zu beschleunigen, während die Kupplung 13 noch ausgekoppelt ist. Bei ausreichend geringer Drehzahldifferenz wird die Kupplung 13 dann eingekoppelt bzw. geschlossen, so dass entsprechend wenig oder keine Verlustreibung an der Kupplung auftritt. Entsprechend ist die Kupplung relativ klein dimensioniert. Durch den folgenden Presshub und Umformvorgang eines Werkstücks wird die Antriebswelle 1 gebremst und dem Schwungrad 1 1 wird Energie entnommen. Zeitgleich arbeiten der erste Motor 10 und der zweite Motor 12 gemeinsam mit hoher Leistung, um die Energieentnahme zumindest teilweise zu kompensieren. Hierdurch ist das Schwungrad relativ klein dimensioniert.

Nach dem Presshub bzw. Umformvorgang wird die Antriebswelle 1 wieder von dem Schwungrad 1 1 entkoppelt. Unter Zuhilfenahme der Bremse 15, gegebenenfalls auch durch Umkehrung des zweiten Motors 12, wird die Antriebswelle 1 dann zum Stillstand gebracht. Besonders bevorzugt ist eine elektronische Steuerung der Presse so ausgelegt, dass die Antriebswelle 1 ausgehend von der ruhenden Startposition über den Presshub / Umformvorgang bis zu der ruhenden Stoppposition einen Drehwinkel von mehr als 360° durchläuft. Bevorzugt liegt der Drehwinkel zwischen 370° und 450°.

Im vorliegenden Beispiel beträgt der Drehwinkel etwa 390°. Hierzu wird die Antriebswelle vor einer Beschleunigung in Arbeitsrichtung durch den zweiten Motor 12 zunächst um etwa 30° entgegen der Arbeitsrichtung, also 30° vor dem oberen Totpunkt, zurückgedreht. Dies bewirkt noch keine Kollision oder Beeinträchtigung des Arbeitsbereiches 16, vergrößert aber den zur Verfügung stehenden Beschleunigungswinkel für die nachfolgende Drehung der Antriebswelle in Arbeitsrichtung signifikant. Hierdurch kann der zweite Motor 12 relativ klein ausgelegt werden.

Fig. 3 zeigt die Presse aus Fig. 1 in einer Schnittansicht mit senkrecht zu der Antriebswelle verlaufender Schnittebene II-II. Es ist ein zusätzliches Versteilglied 17 vorgesehen, mittels dessen eine Höhe des Kulissensteins 5 einstellbar verändert werden kann. Diese Einstellung kann auch während eines Betriebs erfolgen. Bei einer möglichen Betriebsart kann die Einstellung zwischen zwei aufeinander folgenden Hüben stufenweise vorgenommen werden.

Das Versteilglied 17 umfasst einen Exzenterring 18, der zwischen der Bohrung 6 in dem Kulissenstein 5 und dem Exzenter 4 der Antriebswelle 1 angeordnet ist. Der Exzenterring 18 kann über einen Stellantrieb 19 in seinem Sitz verdreht werden, so dass die den Exzenter 4 aufnehmende Bohrung ihre Position bezüglich des Kulissensteins 5 ändert.

Fig. 2 zeigt eine Klemmung 17a des Versteilglieds 17. Die Klemmung 17a kann hydraulisch geöffnet werden. Das Schließen der Klemmung 17a kann hydraulisch oder mechanisch (selbstsichernd) oder kombiniert hydraulisch und mechanisch erfolgen.

Fig. 5 zeigt eine zweite Ausführungsform einer erfindungsgemäßen Presse. Hierbei wird ein Stößel und/oder Werkzeug der Presse nicht unmittelbar und linear durch die Kulisse 7 verschoben. Stattdessen ist zwischen dem Druckstück und einem Stößel der Presse eine Kraftumlenkung vorgesehen. Vorliegend erfolgt die Kraftumlenkung mittels eines Keils 20, der gegenüber einer zur Richtung des Presshubs geneigten, rahmenfesten Stützfläche 21 verschiebbar ist. Der Keil 20 ist vorliegend fest mit der Kulisse 7 verbunden. Ein Stößel 22 der Presse liegt verschiebbar an einer der Stützfläche 21 gegenüberliegenden Seite des Keils 20 an.

Will man eine Analogiebetrachtung zu einem einfachen Schubkurbelantrieb anstellen, so ist zu berücksichtigen, dass die Pendelachse P im Laufe der Bewegungsübertragung parallel zu der Stützfläche 21 verschoben wird. Entsprechend wird der Presshub HP im Sinne der Erfindung als in Richtung dieses Versatzes verlaufend betrachtet. Entsprechend wird eine Bewegung HS des Stößels 22 der Presse vorliegend um etwa 120° zu dem Presshub HP der Kulisse 7 umgelenkt. Durch einen solchen Keiltrieb kann eine besonders gleichmäßige Kraftverteilung über die Breite des Stößels erreicht werden. Bezüglich einer Ausgestaltung des Antriebs der Presse sowie der Ausgestaltung und Bewegungsübertragung des Kulissensteins weist das zweite Ausführungsbeispiel keine Änderungen zu dem Beispiel nach Fig. 1 auf.

Bei dem in Fig. 6 gezeigten Ausführungsbeispiel der Erfindung ist der Kulissenstein gemäß einer zweiten Variante ausgeformt. Dabei ist die druckseitige Gleitfläche 5a an dem Kulissenstein 5 konvex ausgeformt, im Unterschied zu der konkaven Ausformung in den vorhergehend beschriebenen Beispielen.

Die zugseitige Gleitfläche 5b ist an dem Kulissenstein 5 ebenfalls umgekehrt bezüglich der vorhergehenden Beispiele, also konkav, ausgeformt. Die korrespondierenden Gleitflächen 7a, 8a an der Kulisse sind entsprechend ebenfalls umgekehrt gekrümmt. Die Gleitflächen 5a, 5b, 7a, 8a sind wie bei der ersten Variante nach Fig. 4 jeweils als Ausschnitte einer Zylindermantelfläche ausgeformt, wobei die Zylinderachsen parallel zu der Wellenachse W verlaufen. Die Gleitflächen 5a, 5b, 7a, 8a verlaufen wiederum konzentrisch um eine zu der Wellenachse W parallele Pendelachse P des Kulissensteins 5.

Die Pendelachse P liegt somit ebenfalls außerhalb des Kulissensteins 5. Anders als bei der ersten Variante liegt die Pendelachse P bei der zweiten Variante auf der zugseitigen Seite bezüglich des Kulissensteins 5. Für den Kulissenstein 5 resultiert bei Drehung der Antriebswelle 1 wiederum eine zwangsgeführte Pendelbewegung um die Pendelachse P.

Auch die zweite Variante entspricht einem analogen Schubkurbelgetriebe mit den kennzeichnenden Größen L (Abstand zwischen Pendelachse P und Wellenachse W) und R (Abstand zwischen Exzenterachse E und Wellenachse W). Anders als bei der ersten Variante entspricht der Totpunkt des Arbeitshubs jedoch einer Decklage eines analogen Schubkurbelgetriebes. Das heißt, dass die Strecken R und L im untersten Punkt des Werkzeugs kollinear und übereinander liegen.

Es versteht sich, dass auch andere Kinematiken wie zum Beispiel exzentrische Schubkurbelgetriebe mit einer erfindungsgemäßen Ausgestaltung des Kulissensteins darstellbar sind. Bei dem in Fig. 7 gezeigten Ausführungsbeispiel ist eine Ausstoßmechanik 23 in die Presse integriert, die mittels der Bewegung des Kulissensteins betätigt wird. Die Ausstoßmechanik umfasst einen Ausstoßer 24, der in einer Führung des Stößels 22 linear verschiebbar läuft und an unteren Ende des Stößels gegen ein Werkstück (nicht dargestellt) drücken kann. Der Ausstoßer 24 wird nach einem Pressvorgang mittels einer mechanischen Zwangsführung gegen das Werkstück verschoben und drückt dieses aus einem Werkzeug (nicht dargestellt) aus. Auf diese Weise ist ein zuverlässiger Werkstückwechsel auf einfache Weise ermöglicht. Die Betätigung des Ausstoßers 24 erfolgt mittels einer Rampe 27 an dem Kulissenstein 5. Die Rampe 27 liegt an einem vorliegend als Kugel ausgebildetem Kopf 28 des Ausstoßers 24 an. Der Kulissenstein vollführt seine Pendelbewegung um die Pendelachse P, wobei er entlang der druckseitigen Gleitflächen 5a, 8a gleitet. Dabei befindet sich der Ausstoßer 24 zunächst in einer mittels einer Feder 29 rückgestellten Position, in der er nicht auf das Werkstück drückt.

Nach Durchlauf des Arbeitshubs bzw. des Pressvorgangs beginnt die Rampe 27 über die Kugel 28 den Ausstoßer 24 einzudrücken. In Fig. 7 ist etwa der Startzeitpunkt dieses Ausstoßvorgangs gezeigt, wobei sich der Kulissenstein 5 in mittiger Position und der Stößel 22 in einem unteren Totpunkt befinden.

Nachfolgend bewegt sich der Kulissenstein 5 in der Darstellung gemäß Fig. 7 weiter nach links und die Rampe 27 bewegt den Ausstoßer 24 relativ zu dem Stößel 22 bzw. zu der Kulisse 7 gegen das Werkstück. Dabei vollzieht der Ausstoßer 24 eine Bewegung um einen Hub HA gegen die Kraft der Feder 29.

Vorliegend ist die Ausstoßermechanik anhand der ersten Variante des Kulissensteins 5 mit druckseitig konkaver Gleitfläche 5a illustriert. Besonderes bevorzugt kann die Ausstoßermechanik auch mit der zweiten Variante des Kulissensteins 5 mit druckseitig konvexer Gleitfläche 5a kombiniert sein. Dies hat den Vorteil, dass der lineare Weg des Kulissensteins 5 entlang der Gleitfläche 5a bei sonst gleicher Dimensionierung der Presse größer ist, was eine weniger steile Auslegung der Rampe 27 erlaubt.

Durch Zwischenanordnung eines hydraulischen Kolbens 25 mit einer Kolbenstange 26 kann der Hub HA des mechanischen Ausstoßers 23, 24 erhöht werden. Dies bedeutet, dass die zum Ausstoßen erforderliche große Kraft von dem mechanischen Ausstoßer mit kleinem Hub HA aufgebracht wird. Der hydraulische Kolben vergrößert den Hub HA um den Hub HH. Der hydraulische Kolben 25 wird über ein Ventil mit hydraulischer Ansteuerung 34 betrieben.

Bei dem Beispiel in Fig. 8 ist eine Weiterbildung der Ausstoßermechanik 23 gezeigt, bei der zwischen dem Kulissenstein 5 und dem Ausstoßer 24 ein Getriebe 30 angeordnet ist. Vorliegend ist das Getriebe 30 als Umlenkhebel ausgeformt, der in einem Drehlager oder Schwenklager 31 an der Kulisse 7 gelagert ist. Der Kulissenstein 5 ist in einem Drehlager 32 mit dem Umlenkhebel verbunden, wobei der Drehpunkt des Drehlagers 32 mit der Gleitfläche 5a fluchtet. Das Drehlager 32 kann als eine Kurvenrolle ausgebildet sein. Die Schwenkbewegung des Umlenkhebels erfolgt dann zwangsgesteuert über die Kurvenrolle 32 durch die am Kulissenstein 5 angeordnete Kassettenführung 33.

Gegenüberliegend des Drehlagers 32 ist an dem Umlenkhebel 30 eine Rampe 27 ausgeformt, die wie im vorhergehenden Beispiel an dem Ausstoßer 24 angreift. Durch den Umlenkhebel ist insbesondere eine längere Rampe ermöglicht, um den Ausstoßer 24 besser anzusteuern.

Es versteht sich, dass die spezifischen Merkmale der vorhergehenden Ausführungsbeispiele je nach Anforderungen miteinander kombiniert werden können. Bezugszeichenliste

I Antriebswelle

2 Hauptlager

3 Pressenrahmen

4 Exzenter (Mitnehmer)

5 Kulissenstein

5a druckseitige, konkave Gleitfläche am Kulissenstein

5b zugseitige, konvexe Gleitfläche am Kulissenstein

6 Bohrung im Kulissenstein

7 Kulisse

7a zugseitige Gleitfläche an der Kulisse

7b Spannvorrichtung

8 Druckstück der Kulisse 7

8a druckseitige Gleitfläche am Druckstück

9 seitliche Führungen

10 erster Motor

I I Schwungrad

12 zweiter Motor

13 Kupplung

14 Schwungradmotor, bauliche Einheit von Schwungrad 1 1 und Motor 10

15 Bremse

16 Arbeitsbereich

17 Versteilglied

17a Klemmung des Versteilglieds

18 Exzenterring

19 Stellantrieb

20 Keil

21 Stützfläche

22 Stößel 23 Ausstoßmechanik

24 Ausstoßer

25 Hydraulischer Kolben des Ausstoßers

26 Kolbenstange des Ausstoßers

27 Rampe zur Steuerung Ausstoßer

28 Kopf des Ausstoßers

29 rückstellende Feder des Ausstoßers

30 Getriebe, Umlenkhebel

31 Drehlager Umlenkhebel - Kulisse (Schwenklager) 32 Drehlager Umlenkhebel - Kulissenstein (Kurvenrolle)

33 Kassettenführung

34 Ventil mit hydraulischer Ansteuerung

W Achse der Antriebswelle

E Achse des Exzenters

P Pendelachse des Kulissensteins

R radialer Abstand zwischen W und E

L radialer Abstand zwischen E und P

Fs gesamte Druckkraft

Fp Kraftanteil in Richtung Presshub

Fn Kraftanteil senkrecht zum Presshub

WF Winkel zwischen Fs und Fp

HP Presshub

HS Stößelbewegung

HA Hub des Ausstoßers (mechanisch)

HH Hub hydraulisch

S Schwenkbewegung Umlenkhebel