Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PAWL DRIVE FOR COUPLING TORQUE BETWEEN TWO ROTATABLE ELEMENTS
Document Type and Number:
WIPO Patent Application WO/2006/121743
Kind Code:
A1
Abstract:
A method and apparatus for transferring torque from one rotatable element to another rotatable element using at least one pawl. The apparatus comprises a first rotatable element having at least one recess, a second rotatable element and at least one pawl coupled from the second rotatable element to the at least one recess. The method comprises coupling a first rotatable element, wherein the first rotatable element comprises at least one pawl to a second rotatable element, wherein the second rotatable element comprises at least one recess; rotating the first rotatable element; engaging the first rotatable element with the second rotatable element by adapting the at least one pawl to couple with the at least one recess; and transferring torque from the first rotatable element to the second rotatable element.

Inventors:
CALI CONNARD (US)
FERREIRA CARLOS (BR)
Application Number:
PCT/US2006/017074
Publication Date:
November 16, 2006
Filing Date:
May 04, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CONNTECHNICAL IND INC (US)
CALI CONNARD (US)
FERREIRA CARLOS (BR)
International Classes:
F16D41/06
Foreign References:
US4058192A1977-11-15
US6575280B22003-06-10
Attorney, Agent or Firm:
Taboada, Alan (1040 Broad Street 2nd Floo, Shrewsbury New Jersey, US)
Download PDF:
Claims:
Claims:
1. Apparatus for coupling torque from a first rotatable element to a second rotatable element comprising: a first rotatable element comprising at least one recess; a second rotatable element; and at least one pawl coupled from the second rotatable element to at least one recess of the first rotatable element.
2. The apparatus of claim 1 further comprising at least one resilient member for biasing the at least one pawl into the at least one recess.
3. The apparatus of claim 2 wherein the at least one resilient member is a spring.
4. The apparatus of claim 1 wherein the first rotatable element comprises a substantially planar face, the at least one recess comprises a first side that is substantially perpendicular to the planar face and a second side that is sloped at an oblique angle to the first side.
5. The apparatus of claim 1 wherein the at least one pawl is adapted to couple torque from the first rotatable element to the second rotatable element until the first rotatable element rotates faster than the second rotatable element.
6. The apparatus of claim 1 wherein the at least one recess has a saw toothed shape.
7. The apparatus of claim 6 wherein a portion of the at least one pawl substantially matches the shape of the at least one recess.
8. The apparatus of claim 7 wherein the portion of the at least one pawl comprises a slot.
9. The apparatus of claim 8 wherein the slot comprises a damping material.
10. The apparatus of claim 1 wherein the first rotatable element is a pinion gear.
11. The apparatus of claim 2 wherein the second rotatable element is adapted to couple to a starter motor.
12. Apparatus for coupling torque from one rotatable element to another rotatable element comprising: a first rotatable element wherein the first rotatable element comprises a substantially planar face; the substantially planar face comprises at least one recess; the at least one recess comprises a first side that is substantially perpendicular to the planar face and a second side that is sloped at an oblique angle to the first side; a second rotatable element wherein the second rotatable element comprises at least one pawl; the second rotatable element is coupled to the first rotatable element by the at least one pawl; a portion of the at least one pawl substantially matches the shape of the at least one recess; the at least one pawl is biased towards the at least one recess by a resilient member; and the at least one pawl is adapted to couple torque from the second rotatable element to the first rotatable element until the first rotatable element rotates faster than the second rotatable element.
13. A method for coupling torque from a first rotatable element to a second rotatable element comprising: coupling a first rotatable element wherein the first rotatable element comprises at least one pawl to a second rotatable element wherein the second rotatable element comprises at least one recess; rotating the first rotatable element; engaging the first rotatable element with the second rotatable element by adapting the at least one pawl to couple with the at least one recess; and transferring torque from the first rotatable element to the second rotatable element.
14. The method of claim 13 wherein the at least one pawl is outwardly biased by a resilient member into the at least one recess.
15. The method of claim 14 wherein the resilient member is a spring.
16. The method of claim 13 wherein a portion of the at least one pawl substantially matches the shape of the at least one recess.
17. The method of claim 16 wherein the portion of the at least one pawl comprises a slot.
18. The method of claim 13 wherein the second rotatable element is a pinion gear.
19. The method of claim 13 wherein the first rotatable element is adapted to couple to a starter motor.
20. The method of claim 13 further comprising the step of disengaging the first rotatable element from the second rotatable element when the second rotatable element rotates faster than the first rotatable element.
Description:
PAWL DRIVE FOR COUPLING TORQUE BETWEEN TWO ROTATABLE

ELEMENTS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application entitled "PAWL DRIVE FOR A STARTER MOTOR" Serial No. 60/678,464, filed May 6, 2005, which is hereby incorporated by reference.

BACKGROUND OF THE INVENTION Field of the Invention

[0002] The present invention generally relates to a drive for coupling torque from one rotatable element to another rotatable element, and more particularly, coupling the torque using a pawl.

Description of the Related Art

[0003] Starter motors for internal combustion engines are designed to engage a pinion gear, a first rotatable element, with a flywheel gear, a second rotatable element. When engaged and power is applied to the starter motor, the flywheel is turned to start the engine. As soon as the engine starts, the pinion gear must be decoupled from the starter motor; otherwise, the starter motor is driven by the flywheel and may be damaged. The decoupling is conventionally performed using starter motor drive including a sprag or roller clutch. A starter motor having a roller clutch is depicted in FIG. 1. The conventional starter motor comprises a hold-in winding 1 , a pull-in winding 2, a return spring 3, an engaging lever 4, a meshing spring 5, a driver 6, a roller- type overrunning clutch 7, a pinion 8, an armature shaft 9, a stop ring 10, a spiral spline 11 , a guide ring 12, a terminal 13, a contact 14, a contact break spring 15, a moving contact 16, a solenoid switch 17, a commutator end shield 18, a brush holder 19, a carbon brush 20, a commutator 21, a pole shoe 22, an armature 23, a field frame 24, and an excitation winding 25. The arrangement and assembly of these components is well known in the art. The starter motor drive includes the clutch 7 and pinion 8.

[0004] As shown in FIGs. 2 and 3, the sprag and roller clutches 200, 300 respectively, use a wedging action to "lock-up" the clutch. Such action causes the clutch to endure extremely high radial stresses to transmit even a moderate amount of tangential force, or useful torque. Consequently, the components of the clutch (outer race 202; 302; inner race 204, 304; roller 306 and sprag 206) must be fabricated of expensive, high quality bearing steel that is hardened to withstand the forces generated by the wedging action.

[0005] FIG. 4 depicts a perspective, sectional view of a portion of a conventional starter drive 400 comprising roller-type overrunning clutch 402 (commonly referred to as a roller clutch) and a pinion 404. FIG. 5 depicts a partial cross-sectional view of the roller clutch 402 and pinion 404. The roller clutch 402 comprises a needle bearing 406 positioned between a 1-way cam 408 and a pinion raceway 410. The clutch 402 further comprises a bushing 412 inside a bore 414 in the pinion 404, a clutch shell 416, a clutch housing 418, a roller retainer 420, a roller spring 422, a mesh spring 424 and a drive flange 426.

[0006] As the pinion 404 locks, there is an extreme radial (hoop) stress as the roller 406 is wedged against the cam 408. A special steel, exact machining and expensive heat treatment is used to ensure that the clutch 402 can withstand the stress. Additionally, the structure of the clutch and its assembly procedure is complicated. Furthermore, a clockwise and counterclockwise rotation means a different shell-to-cam orientation is needed for each direction. This requirement adds complexity and manufacturing difficulty. Similar clutches are used in other applications where torque is coupled from one rotatable element to another rotatable element.

[0007] Therefore, there is a need in the art for an improved drive for coupling torque between rotatable elements.

SUMMARY OF THE INVENTION

[0008] Embodiments of the present invention relate to a method and apparatus for transferring torque from one rotatable element to another rotatable element using at least one pawl. More specifically, one embodiment

of the invention comprises a first rotatable element having at least one recess, a second rotatable element and at least one pawl coupled from the second rotatable element to the at least one recess.

[0009] In another embodiment, the invention comprises a first rotatable element, wherein the first rotatable element comprises a substantially planar face; the substantially planar face comprises at least one recess; the at least one recess comprises a first side that is substantially perpendicular to the planar face and a second side that is sloped at an oblique angle to the first side; a second rotatable element, wherein the second rotatable element comprises at least one pawl; the second rotatable element is coupled to the first rotatable element by the at least one pawl; a portion of the at least one pawl substantially matches the shape of the at least one recess; the at least one pawl is biased towards the at least one recess by a resilient member; and the at least one pawl is adapted to couple torque from the second rotatable element to the first rotatable element until the first rotatable element rotates faster than the second rotatable element.

[0010] Another embodiment of the invention is a method for coupling torque from one rotatable element to a second rotatable element. The method comprises coupling a first rotatable element, wherein the first rotatable element comprises at least one pawl to a second rotatable element, wherein the second rotatable element comprises at least one recess; rotating the first rotatable element; engaging the first rotatable element with the second rotatable element by adapting the at least one pawl to couple with the at least one recess; and transferring torque from the first rotatable element to the second rotatable element.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to

be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

[0012] Figure 1 is a sectional view of a conventional starter motor;

[0013] Figure 2 is a schematic view of the operation of a conventional sprag clutch;

[0014] Figure 3 is a schematic view of the operation of a conventional roller clutch;

[0015] Figure 4 depicts a perspective, sectional view of a portion of a conventional starter drive;

[0016] Figure 5 depicts a sectional view of a conventional roller clutch;

[0017] Figure 6 depicts a perspective view of the drive of the present invention;

[0018] Figure 7 depicts a side view of the drive of the present invention;

[0019] Figure 8a depicts a side view of the top portion of the drive of the present invention;

[0020] Figure 8b depicts a bottom up view of the top portion of the drive of the present invention;

[0021] Figure 9a depicts a side view of the bottom portion of the drive of the present invention;

[0022] Figure 9b depicts a bottom down view of the bottom portion of the drive of the present invention; and

[0023] Figure 10 depicts a pawl.

[0024] Where possible, identical reference numerals are used herein to designate elements that are common to the figures. The images in the

drawings are not necessarily drawn to scale and may be simplified to enhance clarity.

DETAILED DESCRIPTION

[0025] The present invention is a drive adapted to couple torque from a first rotatable member to another rotatable member. Embodiments of the present invention relate to a method and apparatus for transferring torque from one rotatable element to another rotatable element using at least one pawl. More specifically, the invention comprises a first rotatable element having at least one recess, a second rotatable element and at least one pawl coupled from the second rotatable element to the at least one recess.

[0026] Figure 6 is a cut-away perspective view of the inventive drive 600. The drive 600 comprises a comprises a pinion 602, a drive shell 604, a plurality of pawl springs 606 n , and a plurality of pawls 608 n . The pinion 602 has a central bore 622 and a bottom face 614 containing equally spaced recesses 61O n . Each recess has a saw-tooth shape, i.e., a slanted bottom surface of the recess. The pawls 608 are contained in slots 612 n in the drive shell 604. Each slot 612 n contains a spring 606 n that biases its associated pawl 608 n outward from the shell 604 and toward the pinion bottom face 614. Each pawl 608 n has a spring seat 616 n at one end and an angled face 618 n at the other end. The angle of the face 618 n substantially matches the angle of the saw-tooth shaped recess 61O n . The individual pawls 608 n are restricted by the drive shell 604 to move in a linear fashion to engage or disengage the pinion recesses 61O n .

[0027] Figure 7 is a cross sectional view of the drive 600 shown figure 6. The drive 600 comprises a top member 601 (shown in Figure 8a) and a bottom member 603 (shown in Figure 9a). The bottom member 603 and the top member 601 are rotatable and coupled to each other. The bottom member 603 comprises an outer housing 604, a central bore 620 through the outer housing 604 and slots 612 n within the surface of the outer housing 604. The central bore 620 is adapted to be coupled to a rotatable element such as a driveshaft. The top member 603 comprises an outer housing 602, a central

bore 622 through the outer housing 602, and recesses 61O n within the outer housing 602. Rotation of the bottom member 603 relative to the top member 601 causes the transfer of torque from the bottom member 603 to the top member 601.

[0028] Figure 9b is a top down view of the bottom rotatable element 603. The bottom rotatable element 603 has a planar surface 605 that includes a plurality of slots 6^ 1 to 612 n (collectively 612).

[0029] Figure 8B is a bottom up view of the top rotatable element 601. The top rotatable element 601 has a planar surface 607 that includes a plurality of recesses 61 Oi to 61 O n (collectively 610). In one embodiment of the invention the recesses 610 are substantially saw-toothed shaped.

[0030] Figure 10 is a side view of a pawl 608. The pawl 608 comprises a spring seat 616 and a pawl head 609. The pawl head 609 has a face 618 that substantially matches the recesses 610 of the top rotatable element 601. The spring seat 616 is coupled to an outwardly biased member 606. In one embodiment of the invention, the outwardly biased member 606 is a spring.

[0031] In one embodiment, the drive 600 comprises a pinion 602, a drive shell 604 (shown in figures 6 and 7), a plurality of pawl springs 606 n (shown in figure 10) and a plurality of pawls 6O81 to 608 n (collectively 608, shown in figure 10). The pinion 602 has a central bore 622 and a bottom face 614 (shown in figures 8b) containing equally spaced recesses 61O n (shown in figure 8b). Each recess has a saw-tooth shape, i.e., a slanted bottom surface of the recess. As an example of the number of recesses that can be used, six recesses 61 Oi to 61O 6 , that are equally spaced about a radius, are depicted. The pawls 608 (shown in figure 10) are contained in slots 612 n (shown in figure 9b) in the drive shell 604. Each slot 612 n (shown in figure 7) contains a spring 606 n (shown in figure 10) that biases its associated pawl 608 n outward from the shell 604 and toward the pinion bottom face 614. Each pawl 608 n has a spring seat 616 n at one end and an angled face 618 n at the other end. The angle of the face 618 n substantially matches the angle of the saw-tooth shaped recess 61O n . The individual pawls 608 n are restricted by the drive

shell 604 to move in a linear fashion to engage or disengage the pinion recesses 61O n .

[0032] Although six pawls 608 n and associated recesses, slots, and springs are shown, the invention may operate with as few as a single pawl or up to as many pawls as can fit in the shell 604. The number pawls and recesses control the amount of rotation of the clutch before lock-up. For example, a single pawl/recess combination would result in 359 degrees of rotation before lock up. However, using six pawl/recess combinations results in, at most, sixty degrees of rotation before lock up. Additionally, the springs 606 may be replaced with other resilient materials that may be used to bias the pawls 608 against the pinion face 614. Furthermore, a toothed bore 620 is depicted as one example of a coupling to a starter motor; other couplings such as a shaft may be used.

[0033] As the pinion 602 rotates counterclockwise, the pawls 608 fall into each pinion recess 61O n and lock the drive, allowing torque to be transferred from the starter motor (coupled to the drive 600 at toothed bore 620) to the pinion 602. As the pinion 602 rotates in the opposite direction (clockwise) or the pinion 602 rotates at a rate faster than the starter motor is rotating the pinion, the pawls 608 are pushed against the springs 606 allowing the pinion recesses 610 to slide past the pawls 608 in an unlocked manner.

[0034] In another embodiment of the invention, the pawl 608 comprises an angled pawl face 618, wherein the pawl face 618 comprises a first portion 620, a second portion 619 and a slot 650 (shown in phantom in figure 10). The slot 650 is optionally filled with a damping material capable of absorbing shock when the pawl 608 couples with the recess 610. The slot 650 extends from the face 618 n to a point within the pawl 608. Each slot 650 is oriented across the face 618 to divide the face 618 into a first portion 620 and second portion 619 and aligned with a radial from the center of the pinion 622. This slot 650 enables the second portion 619 of the face 618 to be flexible and bend towards the first portion 620. The damping material 652 absorbs the initial shock of lock up. This flexibility mitigates the shock that may be

transferred during lock up to other components including the starter motor or its shaft.

[0035] The inventive drive design has fewer components than conventional clutch designs and thus is easier to manufacture. Additionally, the reduced stresses on the components enable lighter and lower cost components to be used. For example, the drive shell can be fabricated from a thermoplastic.

[0036] While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof.