Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PEDICLE SCREW BASED VERTEBRAL BODY STABILIZATION APPARATUS
Document Type and Number:
WIPO Patent Application WO/2007/134230
Kind Code:
A3
Abstract:
A pedicle screw stabilization device comprises a superior and inferior pedicle screw anchor with a shaped memory alloy spacer therebetween.

Inventors:
THRAMANN JEFFERY (US)
Application Number:
PCT/US2007/068770
Publication Date:
June 26, 2008
Filing Date:
May 11, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THRAMANN JEFFERY (US)
International Classes:
A61B17/70
Foreign References:
US5180393A1993-01-19
Other References:
See also references of EP 2023836A4
Attorney, Agent or Firm:
HOLLAND & HART et al. (Denver, Colorado, US)
Download PDF:
Claims:

I claim

1 A screw based spinal stabilization device, comprising a superior screw, an inferior screw, a spacer coupled to the superior screw and inferior screw, the spacer allows compression and expansion of the vertebral bodies and comprises an elastic portion to allow relative movement between the superior screw and the inferior screw that dampens compression and expansion of the spacer to provide a relatively gentle stop to motion, and a sheath of relatively inelastic material to inhibit relative motion between the superior screw and the inferior screw for a period of time

2 The device of claim 1 , wherein the spacer is constructed from shaped memory alloy

3 The device of claim 1 , wherein the sheath comprises a degradable

4 The device of claim 3, wherein the sheath is external to the spacer

5 The device of claim 3, wherein the sheath is internal to the spacer

6 The device of claim 1 , wherein the sheath comprises a removable material

7 The device of claim 3, wherein the degradable material is resorbable material

8 The device of claim 1 , wherein the superior screw and the inferior screw each comprise an anchor, wherein the anchor includes a bone engaging surface and a top opposite the bone engaging surface, a channel resides in the anchor extending from the top towards the bone engaging surface, the channel being sized to fit the spacer, and a setscrew is threaded into the channel to lock the spacer in the channel

9 The device of claim 2, wherein the shaped memory alloy is nickel-titanium

10 The device of claim 1 , wherein the sheath extends over the entire spacer

11 The device of claim 1, wherein at least one of the superior screw and the inferior screw carries bone growth material

12 The device of claim 1, wherein at least one of the superior screw and the inferior screw comprises at least one bone growth channel

13 A screw based spinal stabilization device, comprising a superior screw, an inferior screw, a spacer coupled to the superior screw and inferior screw, the spacer allows compression and expansion of the vertebral bodies and comprises an elastic portion to allow relative movement between the superior screw and the inferior screw that dampens compression and expansion of the spacer to provide a relatively gentle stop to motion, and a band of relatively inelastic material coupled to the superior screw and the inferior screw to inhibit relative motion between the superior screw and the inferior screw for a period of time

14 The device of claim 13, wherein the band is coupled to the superior spinous process and the inferior spinous process

15 The device of claim 13, wherein the band comprises a plate coupled to at least the superior vertebral body and the inferior vertebral body

16 The device of claim 13, wherein the band is a degradable material

17 The device of claim 16, wherein the degradable material is resorbable material

18 The device of claim 13, wherein at least one of the superior screw and the inferior screw carries bone growth material

19 The device of claim 13, wherein at least one of the superior screw and the inferior screw comprises at least one bone growth channel

20 A screw based spinal stabilization device, comprising a superior screw, an inferior screw, and a spacer coupled to the superior screw and inferior screw, the spacer having a relatively inelastic state and a relatively elastic state, in the inelastic state the spacer inhibits relative movement between the superior screw and the inferior screw to promote fusion of the superior screw and the inferior screw to the superior body and inferior body, in the elastic state the spacer allows compression and expansion of the vertebral bodies and comprises an elastic portion to allow relative movement between the superior pedicle screw

and the inferior pedicle screw that dampens compression and expansion of the spacer to provide a relatively gentle stop to motion.

21. The device of claim 20, wherein the spacer comprises at least one shaped memory alloy.

Description:

PEDICLE SCREW BASED VERTEBRAL BODY STABILIZATION APPARATUS

RELATED APPLICATIONS

This application is a continuation in part under 35 U. S. C. ยง 120 of United States Patent Application Number 11/128,962, titled Pedicle Screw Based Vertebral Body Stabilization Apparatus, filed May 12, 2005, incorporated herein as if set out in full.

FIELD OF THE INVENTION

The present invention relates to vertebral body stabilization and support and, more particularly, to a pedicle screw based system providing flex restrictions on vertebral bodies.

BACKGROUND OF THE INVENTION

Surgical techniques to correct or address spinal problems are turning more and more to non-fusion technologies. One type technology involves spinous process stabilization. Spinous process stabilization is further explained in United States Patent Application Serial Number 11/128,960 filed, May 12, 2005, titled SPINAL STABILIZATION, which application is incorporated herein as if set out in full. Another similar technology comprises using conventional pedicle screws. One conventional pedicle based stabilization system includes a pedicle screw platform threaded into at least a superior and inferior pedicle. Stabilizing cords a placed and spacers inserted between sets of pedicle screws. Once everything is placed, the cords are tightened.

Conventional pedicle based systems, such as the one explained above, provide adequate support, however, any flex of the system is abruptly stopped by either the cord or the spacer. Even if the spacer provides for some flex, the cord provides an abrupt stop in the opposite direction.

Some pedicle screw stabilization devices provide tracks to allow some movement. For example, the spacer may have elongated slots or tracks on the superior and/or inferior end the spacer to move relative to the pedicle screw,

which allows for some relative movement between the superior and inferior vertebrae The track provides more flex than the spacer/cord systems, but provides abrupt stops in both directions

However, one problem with a pedicles screw based systems is over time the pedicle screws loosen and the stabilization device fails over time The screws loosen, in part, because the motion inhibits the screw from fusing to the bone

Thus, it would be desirous to develop a pedicle screw based spinal stabilization apparatus that provide a mechanism to prompt fusion

SUMMARY OF THE INVENTION

To attain the advantages and in accordance with the purpose of the invention, as embodied and broadly described herein, a pedicle screw based spinal stabilization apparatus is provided The apparatus uses materials specifically designed to dampen the movement to provide a gentle stop The apparatus comprises a superior pedicle screw and an inferior pedicle screw A spacer coupled to the superior pedicle screw and inferior pedicle screw allows compression and expansion of the vertebral bodies At least a part of the spacer comprises elastic portion that dampens compression and expansion of the spacer to provide a relatively gentle stop to motion Moreover, the elastic portion comprises a rigid degradable portion to make the elastic portion relatively inelastic until the degradable portion degrades

The foregoing and other features, utilities and advantages of the invention will be apparent from the following more particular description of a preferred embodiment of the invention as illustrated in the accompanying drawings

BRIEF DESCRIPTION OF THE DRAWING

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the present invention, and together with the description, serve to explain the principles thereof Like items in the drawings are referred to using the same numerical reference

Figure 1 shows a superior view of a vertebral body,

Figure 2 shows an elevation view of the vertebral body of Figure 1 , Figure 3 shows a superior vertebral body and an inferior vertebral body with a pedicle screw based spacer consistent with an embodiment of the present invention, Figure 4 shows a pedicle screw and anchor consistent with an embodiment of the present invention, and

Figure 5 shows a possible shape of a portion of the spacer of Figure 3

DETAILED DESCRIPTION

The present invention will now be described with reference to Figures 1 to 5 Referring first to Figures 1 and 2, a vertebral body 100 is shown for reference Figure 1 shows a superior view of a vertebral body 100 (i e , looking down the spinal column) The vertebral body 100 comprises, among other parts, the pedicles 102, the facets 104, the lamina 106, and the spinous process 108 Figure 2 shows a side elevation view of vertebral body 100 with a pedicle 102, the facet 104, lamina 106, and spinal process 106

Figure 3 shows a side elevation view of a superior vertebral body 302 and an inferior vertebral body 304 (not shown to scale and slightly exploded for ease of reference) with a pedicle screw stabilization device 300 For reference, vertebral bodies 302 and 304 comprise the superior pedicle 306 and the inferior pedicle 308 An intervertebral disk 310 typically exists in intervertebral space 312, but may be removed and/or replace by artificial discs, grafts, or the like

Device 300 comprises a superior pedicle screw 320 and an inferior pedicle screw 322 A spacer 324 is coupled to the pedicle screws Spacer 324 includes a elastic/damper portion 326 that allows some expansion and contraction between the vertebral bodies While shown as a single piece, spacer 324 could be multiple pieces When multiple pieces are provided, parts may provide dampening in one or both directions as desired Portion 326 is shown centrally located on spacer 324, but could be located elsewhere and/or be the entire spacer 324 In either direction, the resistance to the motion would increase to provide a relatively gentle stop to the motion instead of the abrupt stop associated with conventional stabilization devices

Spacer 324 could be made our of polymers or other biocompatible material, but it is preferred to construct spacer 324 from shaped memory alloys because of their elastic qualities at conventional body temperatures Spacer 324 could be attached to pedicle screws 320 and 322 in any conventional manner Moreover, while show as a single level stabilization, device 300 could be used for multiple level stabilization

Optionally, a band 330 can be used to further inhibit flex of the spine Band 330 can be wrapped about superior pedicle screw 320 and inferior pedicle screw 322 Alternatively, band 330 can be wrapped about other parts of the vertebral body For example, band 330 could be wrapped about the spinous process of superior vertebral body 302 and the spinous process of the inferior vertebral body 304 as shown in phantom Band 330 could be any conventional biocompatible material, such as, for example, metals, shaped memory alloys, polymers, PEEK, or the like Band 330 could be a circular, elliptical, or other shape band or attach similar to a "C" clamp or the like such that band 330 only has a single side

As mentioned, one problem with pedicle based system is the tendency of the pedicles screws to loosen over time The loosening in part is due to the motion between the vertebral bodies inhibiting the pedicle screw from fusing the pedicle To facilitate fusing, a sheath 328 of degradable material may be formed around spacer 324 Sheath 328 should be relatively inflexible and cause the vertebral segment to move in unison Sheath may comprise resorbable material, for example Alternatively, sheath 328 could be a non- degradable but removable material that could be surgically removed after a predetermined length of time Sheath 328, while shown over the entire spacer 324 may be hmted to an area proximate the elastic portion 326 of spacer 324 Moreover, instead of a sheath 328, band 330 may comprise the degradable material to inhibit relative motion and prompt fusion Still alternatively, instead of sheath 328, a spinal plate 332 comprising degradable material may be used to inhibit initial movement Once the relatively inelastic degradable portion degrades or absorbs, the device would function as described Sheath 328 may be internal to spacer 324 as well If internal to spacer 324, spacer 324 may have perforations to facilitate degrading or absorbing of the material If spacer 324 or elastic portion 326 comprise shaped memory alloy, sheath

328 could be replaced by providing shaped memory alloy spacer in its relatively inelastic state and after a sufficient amount of time, activating the shaped memory alloy such that it enters its elastic phase

Figure 4 shows a top and side view of pedicle screw 400 and anchor 402 to which a spacer 324 may be attached Anchor 402 has a bone engaging surface 404 and a top 406 opposite the bone engaging 404 A bore 405 extends from the top 406 to the bone engaging surface 404 A channel 408 extends from the top 406 towards bone engaging surface 404 Channel 408 is designed to fit spacer 324 Channel 408 may be open on two sides of anchor 402, similar to a spinal rod system, or open on a single side of anchor 402 (as shown) A setscrew 410 having first threads 412 it threaded onto corresponding threads 414 in bore 405 to couple spacer 324 to pedicle screw 400 and anchor 402 To facilitate the pedicle screws being permanently threaded into pedicles, thread 450 may be coated with bone growth materials 452, as those materials are conventionally understood in the art Moreover, the pedicle screws may include bone growth channels 454 to promote bone growth through the pedicle screws Channels 454 may be coated and/or packed with bone growth material As one of skill in the art would now recognize, the pedicle screws may be similar to bone growth cages The bone growth devices along with sheath 328 should prompt fusing the pedicle screw to the bone

As mentioned above, spacer 324 and/or portion 326 could be constructed out of a number of materials to provide elastic movement in multiple directions Figure 5 shows an optional and possible construction of spacer 324 and/or portion 326 to facilitate expansion and compression of spacer 324 Figure 5 shows an accordion shape section 500 Section 500 can expand in direction A on application of tension Section 500 can compress in direction B on application of compression Using an accordion shape, as section 500 becomes more elongated and/or more compact, the force resisting movement increases to provide a dampening effect The dampening effect provides a more gentle stop than conventional pedicle screw based stabilization devices

While the invention has been particularly shown and described with reference to an embodiment thereof, it will be understood by those skilled in

the art that various other changes in the form and details may be made without departing from the spirit and scope of the invention.