Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PEPTIDE-BASED PEROXIDASE INHIBITORS AND METHODS OF USING SAME
Document Type and Number:
WIPO Patent Application WO/2011/044096
Kind Code:
A1
Abstract:
The present invention provides peptide -based peroxidase inhibitors having the formula AA1-AA2- AA3, wherein AA1is a positively charged, negatively charged or neutral amino acid, AA2 is a redox active amino acid, and AA3 is an amino acid possessing a reducing potential such that AA3 is capable of undergoing a redox reaction with a radical of amino acid AA2 or a retro or retro-inverso analog thereof. The result of such a combination is a highly effective inhibitor of peroxidase activity that has potent anti- inflammatory properties in widely diverse models of vascular disease and injury. Exemplary tripeptides effectively inhibit peroxidase mediated LDL oxidation, increase vasodilation in SCD mice, inhibit eosinophil infiltration and collagen deposition in asthma mice, inhibit acute lung injury, and decrease ischemic injury of the heart.

Inventors:
ZHANG HAO (US)
SHI YANG (US)
XU HAO (US)
PRITCHARD KIRKWOOD A JR (US)
Application Number:
PCT/US2010/051425
Publication Date:
April 14, 2011
Filing Date:
October 05, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MCW RES FOUND INC (US)
ZHANG HAO (US)
SHI YANG (US)
XU HAO (US)
PRITCHARD KIRKWOOD A JR (US)
International Classes:
A61K38/00; A61K38/06
Foreign References:
US20060074026A12006-04-06
US20050113297A12005-05-26
US6815422B22004-11-09
Other References:
ZHANG ET AL.: "Intramolecular electron transfer between tyrosyl radical and cysteine residue inhibits tyrosine nitration and induces thyyl radical formation in model peptides treated with myeloperoxidase, H2O2, and NO2-.", J BIOL CHEM, vol. 280, 2005, pages 40684 - 40698, XP008155884
HEINECKE ET AL.: "Tyrosyl radical generated by myeloperoxidase catalyzes the oxidative cross- linking of proteins.", J CLIN INVEST, vol. 91, 1993, pages 2886 - 2872, XP008155886
CHOREV; GOODMAN, TIBTECLI, vol. 13, 1995, pages 439 - 445
Attorney, Agent or Firm:
RABE, Ann, E. (411 E. Wisconsin Ave.Milwaukee, WI, US)
Download PDF:
Claims:
CLAIMS

We claim:

1. A method of inhibiting peroxidase activity in a subject, the method comprising administering to the subject a peptide-based peroxidase inhibitor having the formula AA1-AA2-AA3, wherein AA! is a positively charged, negatively charged or neutral amino acid, AA2 is a redox active amino acid, and AA3 is an amino acid possessing a reducing potential such that AA3 is capable of undergoing a redox reaction with a radical of amino acid AA2; or a retro or retro-inverso analog thereof.

2. The method according to claim 1 wherein the amino acid AAi is lysine, arginine, or histidine.

3. The method according to claim 1 wherein the redox active amino acid AA2 is tyrosine, tryptophan, chlorotyrosine, nitrotyrosine, or dimethyltyrosine.

4. The method according to claim 1 wherein the amino acid AA3 is cysteine, selenocysteine, or homocysteine.

5. The method according to claim 1 wherein the peptide-based inhibitor has the formula KYC or KWC.

6. The method according to claim 1 wherein the peptide-based inhibitor has the retro or retro- inverso formula of the peptide-based inhibitor KYC or KWC.

7. The method according to claim 1 wherein the peptide-based inhibitor comprises L-amino acids.

8. The method according to claim 1, wherein the peptide-based inhibitor comprises D-amino acids.

9. The method according to claim 1 wherein the peptide-based inhibitor further comprises a protecting group coupled to its amino or carboxyl terminus.

10. The method according to claim 1 wherein the peptide-based inhibitor further comprises a first protecting group coupled to the amino terminus and a second protecting group coupled to the carboxyl terminus.

1 1. The method according to any one of claims 9 or 10 wherein the protecting groups are independently selected from the group consisting of acetyl, amide, 3 to 20 carbon alkyl groups, Fmoc, Tboc, 9-fluorene acetyl group, 1-fluorene carboxylic group, 9-florene carboxylic group, 9-fluorenone-l- carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2-sulphonyl (Mts), 4,4- dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6-sulphonyl (Pmc), 4- methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3- nitro-2-pyridinesulphenyl (Npys), l-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6- dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2-bromobenzyloxycarbonyl (2-Br- Z), Benzyloxymethyl (Bom), t-butoxycarbonyl (Boc), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t- butoxy (tBuO), t-Butyl (tBu), Acetyl (Ac), and Trifluoroacetyl (TFA).

12. The method according to claim 1 wherein the peptide -based inhibitor comprises an acetyl protecting group coupled to its amino terminus.

13. The method according to claim 1 wherein the peptide-based inhibitor comprises an amide protecting group coupled to its carboxyl terminus.

14. The method according to claim 1 wherein the peptide-based inhibitor comprises an acetyl protecting group coupled to its amino terminus and an amide protecting group coupled to its carboxyl terminus.

15. The method according to claim 1 wherein the peptide-based inhibitor has the formula Ac-KYC- amide or Ac-KWC-amide.

16. The method according to claim 1 wherein said method results in the treatment of a disease or condition attributable to aberrant peroxidase activity in the subject.

17. The method according to claim 16 wherein the disease or condition attributable to aberrant peroxidase activity is selected from the group consisting of wound inflammation, hypersensitivity, digestive disease, cardiovascular disease, neuronal disease, lung disease, autoimmune disease, degenerative neurological disease, degenerative muscle disease, infectious disease, disease associated with graft transplantation, allergic disease, musculo-skeletal inflammation, and sepsis.

18. The method according to claim 16 wherein the disease or condition attributable to aberrant peroxidase activity is selected from the group consisting of hypertension, peripheral vascular disease, pulmonary inflammation, asthma, atherosclerosis, diabetes, persistent pulmonary hypertension, sickle cell disease, neurodegenerative disease, multiple sclerosis, Alzheimer's disease, lung cancer, lupus, ischemic heart disease, Parkinson's disease, Crone's disease, inflammatory bowel disease, necrotizing enterocolitis, arthritis, polymyocytis, cardiomyopathy, psoriasis, amyotrophic lateral sclerosis, muscular dystrophy, cystic fibrosis, attention deficiency hyperactive disorder, acute lung injury, acute respiratory distress syndrome, swine flu, heart failure, chemotherapy-induced heart failure, arthritis, rheumatoid arthritis, and acute myocardial infarction.

19. The method according to claim 1 wherein said method results in the promotion of angiogenesis in a tissue of the subject.

20. The method according to claim 19 wherein said method results in the promotion of angiogenesis impaired by persistent pulmonary hypertension, peripheral vascular disease or vascular disease in the myocardium in the subject.

21. The method according to claim 1 wherein said method results in the treatment of a disease or condition associated with abnormal, excessive blood vessel development in the subject.

22. The method according to claim 1 wherein said method results in a reduction in ischemic injury to the subject's heart.

23. A peptide-based peroxidase inhibitor having the formula AAi-AA2-AA3, wherein AAi is a positively charged, negatively charged or neutral amino acid, AA2 is a redox active amino acid, and AA3 is an amino acid possessing a reducing potential such that AA3 is capable of undergoing a redox reaction with a radical of amino acid AA2; or a retro or retro-inverso analog thereof.

24. The peptide-based peroxidase inhibitor according to claim 23 wherein the amino acid AAi is lysine, arginine, or histidine.

25. The peptide-based peroxidase inhibitor according to claim 23 wherein the redox active amino acid AA2 is tyrosine, tryptophan, chlorotyrosine, nitrotyrosine, or dimethyltyrosine.

26. The peptide-based peroxidase inhibitor according to claim 23 wherein the amino acid AA3 possessing the reducing potential is cysteine, selenocysteine, or homocysteine.

27. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor has the formula KYC or KWC.

28. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based peroxidase inhibitor has the retro or retro-inverso formula of the peptide-based peroxidase inhibitor KYC or KWC.

29. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor comprises L-amino acids.

30. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor comprises D-amino acids.

31. The peptide-based peroxidase inhibitor according to any one of claims 23-30 wherein the peptide- based inhibitor further comprises a protecting group coupled to the amino or carboxyl terminus.

32. The peptide-based peroxidase inhibitor according to any one of claims 23-30 wherein the peptide- based inhibitor further comprises a first protecting group coupled to the amino terminus and a second protecting group coupled to the carboxyl terminus.

33. The peptide-based peroxidase inhibitor according to any one of claims 31 or 32 wherein the protecting groups are independently selected from the group consisting of acetyl, amide, 3 to 20 carbon alkyl groups, Fmoc, Tboc, 9-fluorene acetyl group, 1-fluorene carboxylic group, 9-florene carboxylic group, 9-fluorenone-l -carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2- sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6- sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), l-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2- bromobenzyloxycarbonyl (2-Br-Z), Benzyloxymethyl (Bom), t-butoxycarbonyl (Boc), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), Acetyl (Ac), and Trifluoroacetyl (TFA).

34. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor comprises an acetyl protecting group coupled to its amino terminus.

35. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor comprises an amide protecting group coupled to its carboxyl terminus.

36. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor comprises an acetyl protecting group coupled to its amino terminus and an amide protecting group coupled to its carboxyl terminus.

37. The peptide-based peroxidase inhibitor according to claim 23 wherein the peptide-based inhibitor has the formula Ac-KYC-amide or Ac-KWC-amide.

38. A pharmaceutical composition capable of inhibiting peroxidase activity in a subject, comprising the peptide-based inhibitor of any one of claims 23-37 and a pharmaceutically acceptable carrier.

39. A method of making a pharmaceutical composition capable of inhibiting peroxidase activity in a subject, comprising the steps of (a) providing a peptide-based inhibitor according to any one of claims 23- 37; and (2) mixing the peptide-based inhibitor with a pharmaceutically acceptable carrier to yield the pharmaceutical composition.

40. Use of a peptide-based peroxidase inhibitor according to any one of claims 23-37 for the manufacture of a medicament for the inhibition of peroxidase activity in a subject.

41. A peptide-based peroxidase inhibitor according to any one of claims 23-37 for use in the inhibition of peroxidase activity in a subject.

42. A method of treating a disease or condition attributable to oxidative stress or inflammation in a subject, comprising administering a therapeutically effective amount of a peptide-based peroxide inhibitor according to any one of claims 23-37 to a subject wherein said disease or condition is treated in the subject.

43. A method of promoting angiogenesis in a subject, comprising administering a therapeutically effective amount of a peptide-based peroxide inhibitor according to any one of claims 23-37 to a subject wherein angiogenesis is promoted in the subject.

44. A method of reducing ischemic injury of a subject's heart following an ischemic event, comprising administering a therapeutically effective amount of a peptide-based peroxide inhibitor according to any one of claims 23-37 to a subject wherein the injury to the subject's heart after an ischemic event is less than when said peptide-based peroxide inhibitor is not administered to the subject.

Description:
PEPTIDE-BASED PEROXIDASE INHIBITORS AND METHODS OF USING SAME

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Appn. No. 61/248,627, filed

October 5, 2009, which is incorporated by reference herein for all purposes.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

[0002] Not applicable.

BACKGROUND OF THE INVENTION

[0003] It is well established that inflammation plays an important role in pathogenesis of disease.

Inflammation has been shown to be involved in the mechanisms driving neurodegenerative disease, cardiovascular disease, airway disease, inflammatory bowel disease (IBD), diabetes and even cancer.(l-6) One of the major factors promoting cellular injury during inflammation is oxidative stress. Oxidative stress is induced in cells by over production of reactive oxygen species (ROS), reactive nitrogen species (RNS) and/or an increase in heme peroxidase activity.(7) During inflammation, cells produce highly reactive free radicals (e.g., superoxide anion, hydroxyl radical, peroxide radical, and nitrogen dioxide radical) and strong oxidants (e.g., peroxynitrite and hydrogen peroxide). These free radicals and oxidants have been shown to oxidatively modify proteins, nucleic acids and lipids to the point of causing cell injury and death.

[0004] Growing evidence supports the idea that over-expression or increased activity of mammalian heme peroxidases are involved in the pathogenesis and progression of a variety of diseases. For example, increased neutrophil-derived myeloperoxidase (MPO) activity has been found in atherosclerosis,(8) Alzheimer's disease,(9) Parkinson's disease,(10) multiple sclerosis,(l 1) IBD,(12) kidney disease(13) and rheumatoid arthritis.(14) Another immune cell derived peroxidase, eosinophil peroxidase (EPO), also causes severe respiratory damage in asthma.(15) The relationship between peroxidase and cardiovascular disease is so strong that a measured increase in heme peroxidase (MPO) has been used as a biomarker for the diagnosis and prognosis of cardiovascular disease.(16) In spite of the recent growth in the evidence that heme peroxidases play important roles in the pathogenesis of vascular disease, effective therapies targeting aberrant heme peroxidase activity remain lacking.

[0005] Mammalian heme peroxidases, including MPO, are activated by hydrogen peroxide (H 2 O 2 ). Activated peroxidases catalyze oxidation reactions with a variety of compounds through either a one- electron oxidation cycle or two-electron oxidation cycle. The mechanisms mediating peroxidase activation are as follows. In the inactive native state, the Fe ion in the active site of mammalian heme peroxidases is in the Fe 3+ state.(17, 18) This ferrous ion reacts with H 2 O 2 to form compound I, an oxy- ferryl-cation radical (PFe 4+ =0). Compound I reacts with halides (CI -1 and Br "1 ) or pseudohalides (SCN 1 ) via direct, two-electron reduction to form hypochlorous acid (HOCl), hypobromous acid (HOBr), and hypothiocynite (HOSCN), respectively. (17, 18) As these potent oxidants leave the active site, the heme peroxidases are reduced back to Fe 3+ and the cycle starts over again with the arrival of a second H 2 O 2 .

[0006] Compound I can also react with organic and inorganic substrates such as aromatic amino acids, derivatives of indole and a variety of other species (i.e., nitrite, ascorbate and urate) via two, sequential one-electron reductions.(17, 18) In this reaction sequence, nitrite or tyrosine reduces Compound I to form compound II (Fe 4+ =0), which yields a nitrogen dioxide radical or a tyrosyl radical, respectively. Compound II can be further reduced by one electron back to the Fe 3+ state by a second nitrite or tyrosine.

[0007] It is important to note that heme peroxidases can generate both oxidants and free radicals through direct oxidation of biological molecules. This makes them one of the most potent sources of oxidative stress. It has been shown that heme peroxidase-derived oxidants and free radicals oxidatively modify proteins to chlorotyrosine, bromotyrosine, nitrotyrosine, dityrosine, thiol oxidation products and haloamine, DNA molecules to 5-chlorouracil, and lipids to halohydrins, lysophospholipids, a-halo-fatty aldehydes, and other lipid peroxidation products. (19)

[0008] As peroxidase-generated oxidants and radicals induce cell injury and death, inhibition of such chronic increases in aberrant peroxidase activity should, in turn, decrease chronic inflammation. Several research programs have worked on developing inhibitors for heme peroxidases over the last several decades.(19) For the most part this research has focused on three lines of investigation. The first line of research focuses on hydrazine (RNHNH 2 ) and hydrazide (RCONHNH 2 ) derivatives that irreversibly inhibit heme peroxidase activity (19). However, these compounds are considered "suicide substrates" of peroxidase and inactivate the enzyme by destroying the heme center. The second line of research focuses on hydroxamic acids [RCNOHOH or RC(0)NHOH] and indole type compounds that reversibly inhibit peroxidase activity. Hydroxamic acids reduce Compound I and II (19). They also inhibit H 2 O 2 binding to the heme peroxidase to inhibit formation of Compound I. Some of the indole derivatives (such as tryptophan, tryptamine and melatonin) also rapidly reduce compound I and inhibit the two-electron oxidation cycle of peroxidase. The final line of investigation focuses on another class of compounds that inhibit peroxidase via scavenging heme peroxidase oxidation products, for example, vitamin E and polyphenols scavenge nitrogen dioxide radicals (20, 21).

[0009] Although MPO plays an important role in fighting infection, it is also believed to play a causal role in the development of atherosclerosis. Several clinical studies show that plasma MPO concentrations directly correlate with increased risk of arteriosclerosis, acute myocardial infarction and even heart failure. Immune-fluorescent studies show that sickle cell disease (SCD) increases MPO deposition in the subendothelial spaces in the lungs of patients who have died from complications of SCD. The fact that MPO was observed to co-localize with 3-nitrotyrosine in these studies means that when MPO is released and trapped in the vessel wall, it remains fully capable of generating potent oxidants (i.e., ·Ν0 2 ) to nitrate protein tyrosines.

[00010] Unfortunately, the progress made in understanding the mechanisms by which MPO impairs vascular function, has not translated into the development of effective therapies. Even though aggressive efforts have been taken, the agents or drugs that have been developed to date fall short for several reasons. Several strategies have been employed. For example, azide, hydrazides and hydroxamic acids have been used to irreversibly inhibit MPO by modifying the heme site. Indole derivatives have been used because they effectively compete with Cl ~ , SGST to prevent Compound I from generating HOCl and HOSCN. Phenolic compounds have been used because they effectively scavenge compound I and II.

[00011] However, all of these agents have side effects that limit their use to in vitro or cell culture studies. None have been used successfully to reduce oxidative stress in vivo. It is unclear if the intrinsic toxic nature of the compounds (such as hydrazine or hydrazide) or the toxicity of products generated after oxidation by peroxidase makes the compounds essentially worthless as therapeutic agents. In the instances where the agents have been used in animal models, they were observed to be either directly toxic or were converted into toxic compounds. For instance, heme poisons have been shown to inhibit mitochondrial respiration, which is not be a good thing. Even though indole derivatives are effective for scavenging Compound I, MPO oxidizes them to an indole radical that is both toxic and capable of increasing oxidative stress. Finally, even though phenolic agents effectively scavenge Compound I, MPO oxidizes them to phenoxyl radicals that are highly toxic and capable of increasing oxidative stress via oxidative modification of proteins and lipids. Such outcomes underscore the importance of developing specific MPO inhibitors that can be used not only for treating vascular disease but also investigating mechanisms by which MPO increases vascular disease.

[00012] Accordingly, there is a long felt but unsolved need in this field to obtain improved agents that effectively prevent or reduce peroxidase-dependent oxidative stress in the in vivo setting.

BRIEF SUMMARY OF THE INVENTION

[00013] To overcome the drawbacks associated with the previous approaches, the present inventors have developed a series of peptide -based heme peroxidase inhibitors, in which redox active amino acids such as tyrosine and tryptophan serve as agents that reduce both compound I and II. While no one theory or mechanism of pharmacological effect is adopted herein, it appears that the small peptides are acted on by the peroxidase to form a tryptophanyl and tyrosyl radical that is rapidly scavenged by the thiol of an adjacent cysteine. This reaction yields a thiol radical or a mixed disulfide that can be further detoxified in vivo by thiol reduction systems (such as GSH/GSSG, GSH reductase, glutaredoxin or thioredoxin). The inventors observed that tripeptides containing Try/Trp, Cys, and a positive amino acid such as lysine are able to serve as potent inhibitors of peroxidase activity. The inventors have demonstrated that these small peptides not only inhibit MPO-mediated LDL oxidation in vitro but also are highly effective at improving vascular function, decreasing pulmonary inflammation and increasing cardioprotection.

[00014] Accordingly, in a first aspect, the invention is a peptide -based peroxidase inhibitor having the formula AAi-AA 2 -AA 3 , wherein AAi is a positively charged, negatively charged or neutral amino acid, AA 2 is a redox active amino acid, and AA 3 is an amino acid possessing a reducing potential such that AA 3 is capable of undergoing a redox reaction with a radical of amino acid AA 2 . Such peptide inhibitors are particularly useful for improving vascular function, decreasing pulmonary inflammation and increasing cardioprotection in a subject. In certain preferred embodiments, the peptide inhibitor has the amino acid sequence KYC or KWC. The invention also encompasses protected peptide versions as well as retro or retro-inverso analogs. Accordingly, in certain embodiments, some of the amino acids comprising the required amino acid sequence are "D" amino acids; in other embodiments, all the amino acids comprising the required amino acid sequence are "D" amino acids.

[00015] In certain preferred embodiments, the peptide contains both an acetyl protecting group coupled to the peptide's amino terminus and an amide protecting group coupled to the peptide's carboxyl terminus. Preferred inhibitors according to the invention include the protected tripeptides Ac-KYC-amide and Ac-KWC-amide.

[00016] The invention also includes pharmaceutical compositions useful as peroxidase inhibitors.

Such compositions contain one or more of the peptides described herein and a pharmaceutically acceptable carrier.

[00017] In another aspect, the invention provides a method of inhibiting peroxidase activity in a subject. The method includes the step of administering to a subject in need of such therapy one or more of the peptides described herein. In certain preferred embodiments, the subject is a human or a non- human mammal. Preferably, the method includes the additional step of mixing the peptide with a pharmaceutically acceptable carrier before the peptide is administered. In preferred embodiments of the invention, the method is carried out to improve vascular function, decrease pulmonary inflammation, and/or increase cardioprotection in the subject.

[00018] Of course, the invention also contemplates the use of a peptide as described and claimed herein for the manufacture of a medicament for inhibiting peroxidase activity in a subject. Such methods include the steps of (a) providing a peptide as described herein, and (b) mixing the peptide with a pharmaceutically acceptable carrier. As well, the invention encompasses the manufacture and use of medicaments specifically-purposed for treatment of one or more of the diseases/conditions described in the following disclosure.

[00019] Other objects, advantages and features of the present invention will become apparent from the following specification taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[00020] Fig. 1 depicts the scheme for OVA sensitization of mice described in the examples section.

[00021] Fig. 2 shows that Ac-KYC-amide inhibits MPO-mediated oxidation of LDL. Reaction mixture contains LDL (0.15 mg/ml), NaN0 2 (100 μΜ), H 2 0 2 (300 μΜ), MPO (20 nM) and various amount of HZ2 (KYC) in a potassium phosphate buffer (100 mM, pH 7.4) containing DTP A (100 μΜ). The oxidation of LDL was followed at 234 nm by a HP UV7VIS spectrometer at room temperature. The traces in the figure represented 2 repeat experiments.

[00022] Fig. 3 illustrates that Ac-KYC-amide increases vasodilation in facialis arteries isolated from sickle cell disease (SCD) mice. The Berkeley murine model of SCD (SCD mice) were euthanized after anesthesia, and facialis arteries were isolated. The isolated and pressurized facialis arties from SCD mice were treated with HZ2 (KYC, 1.5 μg/mL, final concentration) for 20 min. The vasodilation of pressurized arterioles was determined according to the description in the Methods section.

[00023] Fig. 4 shows the effects of Ac-KYC-amide on pulmonary inflammation in an OVA- murine model of experimentally-induced asthma. The model was established according to the methods section. The tissues were embedded in paraffin, sections were cut (5 μιη) and stained either with hematoxylin and eosin (H&E)(a) or with McLetchie trichrome (b). Images (40x) were captured on a Zeiss Imager.Zl microscope using 40x/0.95 aperture objective and Axiocam HRc camera and Axiovision Software (version 4.6) (all from Carl Zeiss, Heidelberg, Germany).

[00024] Fig. 5A illustrates the Ischemia Protocol discussed in the examples section. Fig. 5B shows that KWC treatments increase cardioprotection in SS/Mcw rat hearts. KAA, a negative control, which is missing the central redox active aromatic amino acid and the adjacent cysteine, does not. Fig. 5C shows that KWC increases coronary blood flow in SS/Mcw rat hearts subjected to ischemia and even in isolated hearts prior to ischemia.

[00025] Fig. 6 illustrates that pretreatment and treatment of EMP-injected mice with KYC dramatically decreased pulmonary retention of Q-dot labeled EMPs. [00026] Fig. 7. The effects of KYC on MPO mediated HOC1 formation. Fig. 7A. KYC inhibits

HOC1 formation. After incubation of 20 nM MPO, 50 μΜΗ 2 0 2 , 150 mM NaCl, 5 mM taurine and KYC in an 100 mM phosphate buffer (pH 7.4)-DTPA (100 μΜ) for 30 min, formed chlorotaurine was quantified by KI/TMB assay. Fig. 7B. The efficiency of HOC1 inhibition. Inhibition efficiency of KYC was compared to Tyr, GSH and Trp at 12.5 μΜ.

[00027] Fig. 8. Western blot analysis for nitrotyrosine: Effect of KYC on MPO-mediated nitration of BSA. BSA (0.5 mg/ml) was incubated with MPO (20 nM), H 2 0 2 (100 μΜ), nitrite (100 μΜ) and various amount of KYC in a phosphate buffer (100 mM, pH 7.4)-DTPA (100 mM) for 30 min. The reaction was stopped by catalase. The resulting nitrotyrosine was detected by western blot.

[00028] Fig. 9. Fig. 9A. KYC inhibits LDL oxidation. LDL (0.15 mg/ml) was mixed with NaN0 2

(100 μΜ), H 2 0 2 (100 μΜ), MPO (20 nM) and KYC an 100 mM phosphate buffer (pH 7.4)-DTPA (100 μΜ). LDL oxidation was monitored at 234 nm. Fig. 9B. Comparing the effects of KYC, GSH and Tyr (25 μΜ each) on MPO/H 2 0 2 /N0 2 " -mediated LDL oxidation. Fig. 9C. Comparing the effects of KYC, GSH and Tyr (25 μΜ each) on MPO/H 2 0 2 -mediated LDL oxidation.

[00029] Fig. 10A. HPLC analysis of KYC products from various MPO-mediated oxidation reactions. KYC (440 μΜ) was incubated with MPO (30 nM), hydrogen peroxide (100 μΜ) and NaN0 2 (0.5 mM) or NaCl (100 mM) in 100 mM phosphate buffer, pH 7.4 containing DTPA (100 μΜ) at room temperature for 30 min and then the product was analyzed by HPLC. Fig. 10B. GSH reduces KYC disulfide. 440 μΜ KYC was mixed with MPO (50 nM) and hydrogen peroxide (100 μΜ) for 2 hr as in A. 50 μΐ ^ of A was mixed with 50 μΐ of GSH (10 mM) for 5 min and 2 hr at room temperature and resulted products were analyzed by HPLC. Fig. IOC. DTT reduces KYC disulfide 440 μΜ KYC was mixed with MPO (50 nM) and hydrogen peroxide (100 μΜ) for 2 hr as above. 50 μΐ ^ of A was mixed with 50 μΐ of DTT (0.5 mM) for 5 min at room temperature and product was analyzed.

[00030] Fig. 11. KYC specifically inhibits MPO from HL-60 cells. Fig. 11 A. KYC inhibited

HOC1 formation. HL-60 cells (6xl0 6 ) were incubated with PMA and taurine (5 mM) in PBS at 37 °C for 30 min. The reaction was stopped by catalase. After centrifugation, chlorotaurine was quantified by the KI/TMB assay. Fig. 1 IB. The effect of KYC and its disulfide on NOX activity. The 0 2 * formation was analyzed by SOD-inhibitable Cyt C reduction assay, the HL-60 cells was incubated with cytochrome C (40 μΜ) with or without superoxide dismutase at 37 °C for 30 min. The reaction was stopped by catalase. After centrifugation, the reduction of cytochrome C was determined at 550 nm by a UV-Vis spectrophotometer. Fig. 11C. HPLC product analysis. KYC was incubated with HL-60 cells and PMA at 37 °C for 30 min. the KYC oxidation products were analyzed by HPLC with a C-18 column (2.3X150 mm). [00031] Fig. 12A. KYC treatments dramatically increase endothelium and endothelial nitric oxide

(eNOS) -dependent vasodilatation in pressurized facialis arteries isolated from SCD mice. Fig. 12B. KYC reduces vessel wall thickness. Fig. 12C. KYC reduces chlorotyrosine and MPO levels in the aortas of SCD mice compared with non-treated SCD mice. KYC treatments reduced WBC counts in SCD by more than half.

[00032] Fig. 13. Effects of KYC treatment on MPO and Cl-Tyr in arteries isolated from SCD mice of SCD mice.

DETAILED DESCRIPTION OF THE INVENTION

I. In General.

[00033] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although suitable methods and materials for the practice or testing of the present invention are described below, other methods and materials similar or equivalent to those described herein, which are well known in the art, can also be used.

[00034] As used herein, the term "amino acid" residue or sequence refers to abbreviations used herein for designating the amino acids based on recommendations of the IUPAC-IUB Commission on Biochemical Nomenclature (see Biochemistry (1972) 1 1 : 1726-1732). Also included are the (D) and (L) stereoisomers of such amino acids when the structure of the amino acid admits of stereoisomeric forms. The term "amino acid" encompasses the 20 naturally-occuring amino acids and, as well, the "unnatural amino acids" which include any amino acid, modified amino acid, and/or amino acid analog that is not one of the 20 common naturally occurring amino acids.

[00035] As used herein, the phrase "redox active amino acid" refers to an amino acid which comprises a moiety that allows electron and/or proton transferring in and out of the amino acid.

[00036] As used herein, the term "amino acid possessing a reducing potential" refers to an amino acid having the ability to participate in a redox reaction, particularly a redox reaction with the radical of a redox active amino acid contained in the same peptide as the amino acid possessing the reducing potential.

[00037] As used herein, the term "peptide" refers to a polymer of amino acid residues. The terms apply to amino acid polymers in which one or more amino acid residues is an artificial chemical analogue of a corresponding naturally occurring amino acid, as well as to naturally occurring amino acid polymers. For example, "peptide" specifically includes the non-genetically-coded amino acids that either occur naturally or are chemically synthesized including, but not limited to synthetic a-and β- amino acids known to one of skill in the art. [00038] As used herein, the term "analog" refers to a molecule in which one or more atoms, functional groups, or substructures have been replaced with different atoms, groups, or substructures. Analogs of the inhibitors described herein are generally "functional analogs" in that they share similar physical, chemical, biochemical, or pharmacological properties to the described molecules.

[00039] As used herein, the phrase "protecting group" refers to a chemical group that, when attached to a functional group in an amino acid (e.g. a side chain, an alpha amino group, an alpha carboxyl group, etc.) blocks or masks the properties of that functional group. Preferred amino-terminal protecting groups include, but are not limited to acetyl, or amino groups. Other amino-terminal protecting groups include, but are not limited to alkyl chains as in fatty acids, propeonyl, formyl and others. Preferred carboxyl terminal protecting groups include, but are not limited to groups that form amides or esters.

[00040] As used herein, the term "retro" as applied to an amino acid sequence refers to an amino acid sequence that is in reverse order of the original reference sequence. The term "inverso" as applied to an amino acid sequence refers to an amino acid sequence composed of D-amino acids as opposed to the parent L-sequence. Because the orientation of the side-chains in a retro-inverso analog is very similar to that in a reference L-sequence, there is a high probability of functional similarity between the two sequences.

[00041] As used herein, the phrase "inhibiting peroxidase activity" refers to a statistically significant reduction in peroxidase activity measured in either in vitro or in vivo settings. Various methods to assay peroxidase inhibition are known in the field, including the MPO/H 2 0 2 -mediated LDL oxidation assay described in the examples section below.

[00042] As used herein, the term "subject" includes non-human mammals and humans.

[00043] As used herein, the phrase "therapeutically effective amount" means the amount of a compound that, when administered to a subject for treating a disease or disorder, is sufficient to affect such treatment for the disease or disorder. The "therapeutically effective amount" can vary depending on the compound, the disease or disorder and its severity, and the age, weight, etc., of the subject to be treated.

[00044] As used herein, the term "treating" or "treatment" of any disease or disorder refers, in one embodiment, to ameliorating the disease or disorder (i.e., arresting or reducing the development of the disease or at least one of the clinical symptoms thereof). In another embodiment "treating" or "treatment" refers to ameliorating at least one physical parameter, which may not be discernible by the subject. In yet another embodiment, "treating" or "treatment" refers to modulating the disease or disorder, either physically, (e.g., stabilization of a discernible symptom), physiologically, (e.g., stabilization of a physical parameter), or both. In yet another embodiment, "treating" or "treatment" refers to delaying the onset of the disease or disorder, or even preventing the same.

II. The Invention.

[00045] During chronic states of inflammation such as diabetes, atherosclerosis, hypertension,

SCD and asthma, white blood cells become activated and release a variety of peroxidases. As all cells generate H 2 O 2 , this released peroxidase creates an environment where secondary free radicals are produced on an ongoing basis. Under these conditions, cells adjacent to the peroxidase are subjected to chronic increases in oxidative stress and inflammation.

[00046] Several different strategies have been used in the design of heme peroxidase inhibitors.

Different approaches used to date rely on 1) irreversible modification of the heme center of the active site; 2) reversible binding of a substrate inhibitor which blocks H 2 O 2 binding to compound I and II; and 3) scavenging of the toxic radical products released from heme peorxidase after oxidation. (19) Although some of these compounds inhibit heme peroxidase activity in vitro, none of the inhibitors proposed to date are suitable for inhibiting peroxidase in vivo because they are directly toxic or the oxidized products generated via peroxidase are toxic. As research continues to link aberrant peroxidase activity to chronic disease, developing novel non-toxic inhibitors of heme peroxidase becomes an urgent task for providing effective therapies.

[00047] Redox active amino acids such as Tyr and Trp have been shown to be susceptible to oxidation induced by heme peroxidases. Indole related compounds have been proposed as myeloperoxidase inhibitors for inhibiting the formation of hypochlorous acid.(28, 29) However, the Tyr and Trp radicals generated are also pro-oxidants that can cause cell injury and death.(19, 30) Others have shown that tyrosyl radicals can induce LDL oxidation via transferring the radical from tyrosine to unsaturated fatty acids. (19) Therefore, Tyr and Trp alone cannot act as an effective peroxidase inhibitors for reducing peroxidase mediated cell injury.

[00048] In order to treat peroxidase-dependent oxidative stress in the in vivo setting, the inventors designed a series of small peptides where the central amino acid was a tryptophan (W) or tyrosine (Y) bracketed by an adjacent lysine (K) and cysteine (C). The tripeptides were used to treat diverse murine models of inflammation and vascular disease, where aberrant peroxidase activity is believed to be involved. In vitro, the tripeptide Ac-KYC-amide (KYC) significantly inhibited myeloperoxidase- mediated low-density lipoprotein (LDL) oxidation. KYC treatment of sickle cell disease mice markedly increased vasodilatation of isolated facialis arteries in response to acetylcholine (ACh) compared with non-responsive isolated arteries from untreated SCD mice. KYC treatments decreased pulmonary inflammation and eosinophil infiltration in vivo in a murine model of asthma (via ovalbumin sensitization). Finally, Ac-KWC-amide (KWC), increased cardioprotection of isolated perfused rat hearts that were subjected to ischemia/reperfusion (I/R) injury. Together these data demonstrate that small peptides containing a central amino acid that is a redox active aromatic amino acid (e.g., tyrosine, tryptophan) directly adjacent to an electron donor (e.g., cysteine) and a third amino acid with positive charge are potent inhibitors of heme peroxidases. This configuration seems to represent the minimal construct required for inhibiting peroxidase activity. The inventors' observations demonstrate that KWC and KYC are highly effective for treating vascular disease, pulmonary inflammation and any other form of peroxidase-mediated injury.

[00049] In this invention, the inventors unexpectedly showed that structurally novel peptides can be used to detoxify MPO activity. By placing an aromatic amino acid between a cysteine and lysine (or other amino acid) to generate the structurally novel peptides of the present invention, peptides that are easily oxidized to form an aromatic amino acid radical but are also immediately scavenged are formed. Exploiting this design, the MPO-generated radical on Y or W in the tripeptides (KYC and KWC, respectively) is rapidly transferred to C to form a thiyl radical, which in turn forms a non-toxic disulfide. One advantage the novel peptides of the invention provide is that highly reactive and toxic aromatic radicals are converted to less reactive thiyl radicals and, subsequently, a disulfide. A second advantage of the novel peptides of the invention is that disulfide may be reduced to its active monomeric form by glutathione. Thus, MPO activity is detoxified by a novel aromatic tripeptide which directs radical transfer rather than allowing the radical to randomly oxidize biologically relevant lipids, proteins and/or DNA to injure cells and tissues. As the product of MPO mediated oxidation of the tripeptide is a simple disulfide or mixed disulfide, which is similar to glutathione disulfide, the body is more easily able to reduce the disulfide to its active monomer, making the novel peptide of the present invention useful in vitro and in vivo.

[00050] Accordingly, the present invention is directed to highly effective peroxidase inhibitors that are composed of a central redox active aromatic amino acid, an adjacent amino acid with high reducing potential and another adjacent amino acid which stabilizes the redox center. The inventors have shown that such inhibitors based on small peptides are highly effective at: improving vasodilatation in an established murine model of vascular disease, the SCD mouse; decreasing pulmonary inflammation and collagen deposition in an established murine model of allergen-induced asthma; and, finally, increasing cardioprotection in an established rodent model of ischemia/reperfusion (I/R) injury. Taken together these data demonstrate that the configuration of the presently-disclosed peptides represents a unique structure with potent anti-inflammatory properties in a wide variety of disease models.

[00051] As can be appreciated, the composition and arrangement of the amino acids in the tripeptides are essential components for inhibiting peroxidase activity and limiting inflammation and cell death resulting from heightened aberrant peroxidase activity. It has been well documented that MPO/H 2 0 2 -mediated LDL oxidation plays an important role in pathogenesis of atherosclerosis. As simply adding tyrosine to the MPO/H 2 O 2 /LDL mixture accelerates LDL oxidation, (22) tyrosine alone is not protective. If GSH were added to the incubation mixture, it would take several hundred μΜ to increase protection. Thus, the differences in the protective effects of the present tripeptides and other sulfhydryl containing peptides is that high concentrations of GSH would be required to scavenge the product of MPO activity. Thus, GSH alone is insufficient for inhibiting MPO/H 2 0 2 -induced LDL oxidation. Finally, Lys provides a positive charge that may electrostatically interact with OH group of Tyr and SH group of Cys, this interaction might decrease the pKa of both Tyr and Cys, which can increase the reactivity of this peptide in inhibiting MPO/H 2 0 2 -induced oxidation. However, when these amino acids are arranged with the redox active Tyr or Trp sandwiched between Cys and Lys, this unique arrangement provides self-inactivation of the Tyr and Trp radical species and transfers the Tyr and Trp radical species Cys, which has a lower redox potential than Tyr* or Trp*. Thus, the present tripeptides contain a short redox cascade, which efficiently transfers radicals from the aromatic amino acids to a thiol to form a S* which often reacts with another thiol to form a disulfide (-SS-), which can be easily regenerated by cellular thiol reduction mechanisms. (23)

[00052] While no one mechanism of pharmacological action is adopted herein, the fact that the present tripeptides inhibit peroxidase-mediated LDL oxidation and mixed protein dissulfides can be reduced to their respective thiols by cellular glutathione reductase suggests that oxidized tripeptides may be regenerated intracellularly. Cellular regeneration of the tripeptides would certainly explain why the small peptides are more effective inhibitors of peroxidase mediated cell injury in vivo than in vitro. The ability of the tripeptides to improve vasodilatation, decrease pulmonary inflammation and collagen deposition, and increase cardioprotection demonstrates their potential utility as anti-inflammatory agents and underscores the universal nature of aberrant peroxidase activity in a wide variety of vascular disease.

[00053] Although KYC and KWC inhibit MPO/H 2 0 2 -mediated LDL oxidation, it is possible that these small peptides may possess alternative pathways of protection. As thiol containing proteins have been shown to form nitrosothiols when added to environments of high nitrosative stress,(24) the present tripeptides may also form nitrosothiols in environments of high nitrosative stress. In addition, the tripeptides may also scavenge oxidants directly as both the aromatic amino acids have been shown to react with peroxynitrite as well as ·Ν0 2 and ·ΟΗ radicals. (25) Thus, KYC and KWC, which are highly effective inhibitors of MPO/H 2 0 2 -mediated LDL oxidation, may be able to decrease oxidative stress induced by a wide variety of radical species. If KYC and KWC form nitrosothiols in vivo, this would mean that these tripeptides have the ability to convert potent oxidants into what many consider to be protective agents that can be used to inhibit platelet aggregation, increase vasodilatation and cardioprotection.(26)

[00054] Previously, the inventors demonstrated that vasodilatation in SCD mice was impaired and that treatment with D-4F, a novel apoA-I mimetic that was designed to improve HDL function, increases eNOS-dependent vasodilatation in the SCD mice. In the studies described below, the inventors show that KYC dramatically increased vasodilatation in facialis arteries from SCD mice to -60% of maximal vessel diameter change with just three weeks treatment. In their previous studies, D-4F treatments increased vasodilatation in SCD mice to -35%. In those studies, facialis arteries isolated from untreated SCD were non-responsive to acetylcholine (Ach) stimulation. In other words vasodilatation did not increase when the SCD arteries were stimulated with ACh. Here however, vasodilatation of facialis arteries isolated from SCD mice did occur in response to ACh stimulation -20%. Taking the increase in baseline responses into account the inventors' data indicate that 3 weeks of KYC treatments improve vasodilatation in SCD mice to the same extent as D-4F.

[00055] It has been known for some time that the aromatic amino acids, Trp and Tyr, can be oxidized by most peroxidases to rapidly form corresponding tryptophanyl and tyrosyl radicals. During this one electron oxidation process, Trp and Tyr compete against other potential substrates, such as chloride, bromide, nitrite etc, for compound I and II, and inhibit heme peroxidase to form other radicals and oxidants. On the basis that these aromatic amino acids are preventing the formation of toxic halide and nitrite radicals one might anticipate that supplementation of Trp and Tyr might prevent cell damage induced by halide radicals and other oxidants. However, Trp* and Tyr* are themselves toxic. A previous report showed that Tyr enhanced myeloperoxidase/H 2 0 2 dependent LDL oxidation.(16) In the present invention, toxic Trp* and Tyr* radicals are eliminated by placing a thiol, which has a lower reducing potential than Trp* and Tyr*, next to Tyr and Trp and inclusion of another amino acid such as positive charged Lys making both Tyr and Cys more reactive. The result of bracketing Tyr and Trp with Lys and Cys is a series of potent peroxidase inhibitors that decrease oxidative stress and inflammation in vitro and in vivo.

[00056] Accordingly, in a first aspect, the invention provides a peptide-based inhibitor of peroxidase activity. Such peptide inhibitors are particularly useful for improving vascular function, decreasing pulmonary inflammation and increasing cardioprotection in a subject. In view of the inventors' discovery, peptide-based peroxidase inhibitors of the invention have the formula AAi-AA 2 - AA 3 , wherein AAi is a positively charged, negatively charged, or neutral amino acid, AA 2 is a redox active amino acid, and AA 3 is an amino acid possessing a reducing potential such that AA 3 is capable of undergoing a redox reaction with a radical of amino acid AA 2 . Amino acid AAi is preferably a positively charged amino acid such as lysine, arginine, or histidine. The redox active amino acid AA 2 is preferably tyrosine, tryptophan, chlorotyrosine, nitrotyrosine, or dimethyltyrosine. Amino acid AA 3 is an amino acid possessing reducing potential, preferably a sulfur- or selenium-containing amino acid, most preferably a cysteine, selenocysteine, or homocysteine. As noted herein preferred peptide -based inhibitors have the formula KYC or KWC, most preferably where the amino termini are protected by acetyl groups and the carboxyl termini are protected by amides.

[00057] In addition to the above sequences, this invention also encompasses peptides comprising retro and retro-inverso analogs of each of these sequences. In retro forms, the direction of the amino acid sequence is reversed. In inverso forms, the chirality of the constituent amino acids is reversed (i.e., L form amino acids become D form amino acids and D form amino acids become L form amino acids). In the retro-inverso form, both the order and the chirality of the amino acids are reversed. A given amino acid reference amino acid sequence and its retro-inverso form are mirror images of each other, and typically have similar functions. For a discussion of retro- and retro-inverso peptides see, e.g., Chorev and Goodman, (1995) TibTech, 13: 439-445.

[00058] In certain embodiments, peptides of the invention further contain a protecting group coupled to the amino or carboxyl terminus of the peptide, or a first protecting group coupled to the amino terminus of the peptide and a second protecting group coupled to the carboxyl terminus of the peptide. Possible protecting groups for use in this embodiment include without limitation amide, 3 to 20 carbon alkyl groups, Fmoc, Tboc, 9-fluorene acetyl group, 1-fluorene carboxylic group, 9-florene carboxylic group, 9-fluorenone-l -carboxylic group, benzyloxycarbonyl, Xanthyl (Xan), Trityl (Trt), 4-methyltrityl (Mtt), 4-methoxytrityl (Mmt), 4-methoxy-2,3,6-trimethyl-benzenesulphonyl (Mtr), Mesitylene-2- sulphonyl (Mts), 4,4-dimethoxybenzhydryl (Mbh), Tosyl (Tos), 2,2,5,7,8-pentamethyl chroman-6- sulphonyl (Pmc), 4-methylbenzyl (MeBzl), 4-methoxybenzyl (MeOBzl), Benzyloxy (BzlO), Benzyl (Bzl), Benzoyl (Bz), 3-nitro-2-pyridinesulphenyl (Npys), l-(4,4-dimentyl-2,6-diaxocyclohexylidene)ethyl (Dde), 2,6-dichlorobenzyl (2,6-DiCl-Bzl), 2-chlorobenzyloxycarbonyl (2-Cl-Z), 2- bromobenzyloxycarbonyl (2-Br-Z), Benzyloxymethyl (Bom), t-butoxycarbonyl (Boc), cyclohexyloxy (cHxO), t-butoxymethyl (Bum), t-butoxy (tBuO), t-Butyl (tBu), acetyl (Ac), and Trifluoroacetyl (TFA).

[00059] In certain preferred embodiments, the peptide contains a protecting group coupled to the amino terminal and the amino terminal protecting group is acetyl. In other preferred embodiments, the peptide contains a protecting group coupled to the carboxyl terminal and the carboxyl terminal protecting group is an amide. In still other preferred embodiments, the peptide contains a first protecting group coupled to the amino terminus that is an acetyl, and a second protecting group coupled to the carboxyl terminal that is an amide.

[00060] The invention also includes pharmaceutical compositions for inhibiting peroxidase activity, containing one or more of the peptides described above and a pharmaceutically acceptable carrier. Preferably these compositions are in unit dosage forms such as tablets, pills, capsules, powders, granules, sterile parenteral solutions or suspensions, metered aerosol or liquid sprays, drops, ampules, auto-injector devices or suppositories; for oral, parenteral, intranasal, sublingual or rectal administration, or for administration by inhalation or insufflation. It is also envisioned that the peptides of the present invention may be incorporated into transdermal articles designed to deliver the appropriate amount of peptide in a continuous fashion.

[00061] It is not critical whether an inhibitor according to the invention is administered directly to a peroxidase, to a tissue comprising the peroxidase, a body fluid that contacts the peroxidase, or a body location from which the inhibitor can diffuse or be transported to the peroxidase. It is sufficient that the inhibitor is administered to the subject in an amount and by a route whereby an amount of the inhibitor sufficient to inhibit the peroxidase arrives, directly or indirectly at the peroxidase.

[00062] For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutically acceptable carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture for a compound of the present invention, or a pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be easily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which, serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

[00063] The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavored syrups, aqueous or oil suspensions, and flavored emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium caboxymethylcellulose, methylcellulose, polyvinylpyrrolidone or gelatin.

[00064] In certain embodiments, the peptides of the invention will be provided as pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the peptide according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulphuric acid, methanesulphonic acid, fumaric acid, maleic acid, succinic acid, acetic acid, benzoic acid, oxalic acid, citric acid, tartaric acid, carbonic acid or phosphoric acid. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g. sodium or potassium salts, alkaline earth metal salts, e.g. calcium or magnesium salts; and salts formed with suitable organic ligands, e.g. quaternary ammonium salts.

[00065] Suitable dosage levels for the inhibition of peroxidase activity in a human subject (i.e, an effective therapeutic amount to inhibit peroxidase activity) is about 0.01-5000 mg/kg, per day, preferably about 0.1-500 mg/kg per day, and especially about 0.1-50 mg/kg per day.

[00066] In another aspect, the invention provides a method of reducing peroxidase activity in a subject. The method includes the step of administering to a subject in need of such therapy one or more of the peptides as described above. In certain preferred embodiments, the subject is a human or a non- human mammal. Preferably, the method includes the additional step of mixing the peptide with a pharmaceutically acceptable carrier before the peptide is administered. In preferred embodiments of the invention, the method is carried out to improve vascular function, decrease pulmonary inflammation, and/or increase cardioprotection in the subject. However, it can be appreciated that the inventive peptides act on a molecular process common to a plethora of medical diseases and conditions. Therefore, the present peptides are envisioned to be useful in treating a wide range of diseases and conditions attributable to aberrant peroxidase activity, including but not limited to, wound inflammation, hypersensitivity, digestive disease, cardiovascular disease, neuronal disease, lung disease, autoimmune disease, degenerative neurological disease, degenerative muscle disease, infectious disease, disease associated with graft transplantation, allergic disease, musculo-skeletal inflammation, and sepsis.

[00067] Methods of the invention are further envisioned to be useful in treating hypertension, peripheral vascular disease, pulmonary inflammation, asthma, atherosclerosis, diabetes, persistent pulmonary hypertension, sickle cell disease, neurodegenerative disease, multiple sclerosis, Alzheimer's disease, lung cancer, lupus, ischemic heart disease, Parkinson's disease, Crohn's disease, inflammatory bowel disease, necrotizing enterocolitis, arthritis, polymyocytis, cardiomyopathy, psoriasis, amyotrophic lateral sclerosis, muscular dystrophy, cystic fibrosis, attention deficiency hyperactive disorder, acute lung injury, acute respiratory distress syndrome, flu (including H1N1), heart failure, chemotherapy-induced heart failure, arthritis, rheumatoid arthritis, or acute myocardial infarction. [00068] Further, methods of the invention will find use in the promotion of angiogenesis in tissues of a subject, or the promotion of angiogenesis impaired by persistent pulmonary hypertension, peripheral vascular disease or vascular disease in the myocardium in the subject, or the treatment of a disease or condition associated with abnormal, excessive blood vessel development in the subject. Methods of the invention are additionally useful in treating subjects for the reduction and/or prevention of ischemic injury to a subject's heart following an ischemic event or insult.

[00069] Of course, the invention also contemplates the use of a peptide as described and claimed herein for the manufacture of a medicament for inhibiting peroxidase activity in a subject. Such methods include the steps of (a) providing a peptide as described herein, and (b) mixing the peptide with a pharmaceutically acceptable carrier. As well, the invention encompasses the manufacture and use of medicaments specifically-purposed for treatment of one or more of the diseases/conditions described above.

EXAMPLES

[00070] The following examples are provided as further non-limiting illustrations of particular embodiments of the invention.

[00071] Peptide Synthesis. Tripeptides (Ac-KYC-amide [KYC] and Ac-KWC- amide[KWC]) were synthesized using Fmoc (N-(9-fluorenyl)methoxycarbonyl) chemistry by the Protein, Nucleic Acid Core Laboratory of the Medical College of Wisconsin and purified by a preparative HPLC. The purity and authenticity of both peptides were assured by a single peak from an RP-HPLC analysis and correct mass determined by a matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

[00072] Tyrosine (Y), an aromatic amino acid, is rapidly oxidized by MPO to generate toxic tyrosyl radicals (Y * ). In developing KYC, we reasoned that if this MPO substrate were going to be used to inhibit MPO then the Y * radicals that would be generated would have to be scavenged before they had a chance to oxidize other cellular targets. One of the ways to scavenge free radicals is by intramolecular electron transfer (IET). Radiation chemistry studies show that electron transfer among redox active amino acids follows the rank order of Met > Trp > Tyr >= Cys. Thus, if Cys is positioned next to Tyr, an established substrate for MPO, then based on the rank order listed above, any Y * radical that forms as a result of MPO activity would easily be transferred to Cys. Moreover, the rate constants for IET with Cys, which are on the order of 10 4 - 10 5 S , were fast enough to prevent Y * from oxidizing any downstream biological targets.

[00073] TyrCys (YC) is the shortest peptide ever used to protect Y from nitration and di-Tyr formation and is lipophilic, making it difficult to dissolve in aqueous buffers or enter subendothelial spaces where MPO might be found. However, by positioning Y between lysine (K) and cysteine (C), then the novel tripeptide of the present invention becomes more soluble in aqueous buffers than the dipeptide YC. Our enzymatic studies show that KYC is highly water soluble, can be added directly to physiological buffers and directly interacts with the active site of MPO to inhibit peroxidase activity.

[00074] This example illustrates exemplary small peptides where redox active amino acids were paired with Cys so that the thiol side chain can donate electrons to regenerate the redox reactive amino acid. The present data illustrate that a peptide combining Cys and either Trp or Tyr with a positively charged Lys increases the reactivity of the Trp or Tyr and the Cys to the Trp* or Tyr* radical as well as increase the solubility of the small peptide. The result of such a combination is a highly effective inhibitor of peroxidase activity that has potent anti-inflammatory properties in widely diverse models of vascular disease and injury.

[00075] MPO-mediated oxidation of LDL. Reaction mixtures contained LDL (0.15 mg/ml),

NaN0 2 (100 μΜ), H 2 0 2 (300 μΜ), MPO (20 nM) and various concentrations of KYC in a potassium phosphate buffer (100 mM, pH 7.4) containing DTPA (100 μΜ). LDL oxidation was monitored at 234 nm at room temperature on a HP UV/VIS spectrometer. Absorbance traces represent the average of duplicate experiments.

[00076] Murine Model of Sickle Cell Disease. Mice treated with KYC in vivo. SCD mice were treated with KYC (intraperitoneal injection: IP 0.3 mg/kg/d) or with PBS (IP 100 for 3 weeks. Anesthesia was induced with Ketamine (lOOmg/kg) + Xylazine (lOmg/kg) cocktail (ip) and then sacrificed by exsanguination. Facialis arteries were atraumatically dissected and maintained in cooled MOPS solution (in mM: NaCl 145, KCL 4.7, CaCl 2 2, NaH 2 P0 4 1.2, M g S0 4 , 1.2, pyruvate 2, EDTA 0.02, MOPS 3.0, and glucose 5.0, at pH 7.4). Vessels were then submerged in a MOPS bath, mounted on MOPS-containing glass capillary tubes, internally pressurized (60 mmHg), and warmed to 37°C. Internal vascular diameters were measured with a calibrated video-microscope (Boeckeler). After the vessel was allowed to acclimate to 37°C (approximately 30 min), the diameter was measured and recorded (D^). A thromboxane analog, U46619 (10 ~9 to 10 ~8 M), was used to preconstrict the vessel to 30% - 50% of D max . A control dose-response curve using acetylcholine (ACh, 10 "7 - 10^ M) was performed and vessel diameter recorded. The vessels were washed twice with fresh MOPS buffer over 30 minutes and then incubated with L-nitroargininemethylester (L-NAME) 200μΜ for 20 minutes. Vessels were then preconstricted with U46619 (10 ~9 to 10 ~8 M) and a dose response curve using acetylcholine (ACh, 10 "7 - 10 "4 M) was performed again. Vasodilation to papaverine (2.0X10^ M) was determined after all treatments to ensure smooth muscle viability. Vasodilation was calculated as a percent of maximal vessel diameter change. [00077] For vessels treated with KYC (ex-vivo): Using untreated SCD mice, the vessels were isolated/ cannulated the same as for the mice treated with KYC in vivo. After the control dose-response curve using acetylcholine (ACh, 10 "7 - 10 "4 M) and subsequent washing, the vessels were incubated with KYC 1.5 μg/ml for 20 minutes, pre-constricted, and exposed to acetylcholine (ACh, 10 "7 - 10 "4 M). Vasodilation to papaverine (2.0X10 "4 M) was determined after all treatments to ensure smooth muscle viability. Vasodilation was calculated as a percent of maximal vessel diameter change.

[00078] Murine Model of Experimentally-Induced Asthma. C57BL/6J mice (12-14 wk old) from Jackson Laboratory (Bar Harbor, ME) were housed in sterile autoclavable microisolation cages and fed standard laboratory mouse chow and water ad libitum. All protocols were approved by the Institutional Animal Care and Use Committee (IACUC) of the Medical College of Wisconsin.

[00079] C57BL/6J mice were divided into three groups; a control group (Control), an ovalbumin

(OVA)-sensitized group and an OVA-sensitized group treated with KYC. OVA sensitization was achieved using a modification of a protocol previously described by de Siqueira et al 15 (Fig. 1). This OVA sensitization protocol was chosen because it has been shown to sensitize C57BL/6 mice reproducibly for long periods of time with exaggerated allergic responses to OVA. When mice inhale aerosolized OVA, robust allergic responses are routinely observed.

[00080] Briefly, on day one, mice were anesthetized (halothane; Halocarbon Laboratories, River

Edge, NJ) and a heat- denatured OVA fragment (~80 mg, 5 x 2 x 2 mm) was implanted subcutaneously in the dorsal aspect of the neck. The incision was closed with stainless steel clips and the mouse was allowed to recover. Implantation of the heat-denatured OVA fragment initiates sensitization. On day fifteen, the implanted mice were exposed to aerosolized OVA (6% in PBS) for 30 minutes every other day for ten days. Twenty-four hours after the last OVA challenge, the mice were deeply anesthetized (halothane), sacrificed by exsanguination and the lungs removed for analysis. For the KYC-treated OVA- sensitized mice, treatments started on day 15. OVA-sensitized mice were treated with KYC (0.3 mg/kg) every other day for 10 days, a total of 5 treatments. Twenty- four hours after the last OVA challenge, the mice were deeply anesthetized (halothane) and exsanguinated and the lungs removed for histological analysis (H&E) and collagen deposition (McLetchie's Trichrome).

[00081] The standard protocol for fixing the lungs was to inflate the lung with 0.5 mL PBS-Zn- formalin prior to removal. The lungs were removed and embedded in paraffin, and sections cut (5 μιη) and stained either with hematoxylin and eosin (H&E) to enhance cytoplasmic and nuclear structures or with McLetchie trichrome to visualize collagen deposition to assess thickening of basement membranes in airways and pulmonary vessels. Images were captured on a Zeiss Imager.Zl microscope using 40x/0.95 aperture objective and Axiocam HRc camera and Axiovision Software (version 4.6) (all from Carl Zeiss, Heidelberg, Germany). [00082] Ischemia/Reperfusion (I r) Injury in Isolated Hearts. Rats used in this study received humane care in compliance with the Guide for the Care and Use of Laboratory Animals, by the National Research Council. Rats were maintained on a low salt (0.4% NaCl) diet with unlimited access to water. Environmental influences were minimized by maintaining rats in identical housing conditions. Dahl S (SS/Mcw male rats at 8 weeks of age were used for this study.

[00083] Modified Krebs-Henseleit bicarbonate buffer was prepared containing the following components (in mM): 118.5 NaCl, 25.0 NaHC0 3 , 4.8 KC1, 1.2 MgS0 4 -6H 2 0, and 1.2 KH 2 P0 4 (pH 7.4 when gassed with 95% 0 2 -5% C0 2 ) in which the calcium content was 1.8. Glucose (11.1 mM) was added to the perfusate. Before use, all perfusion fluids were filtered through cellulose acetate membranes with a pore size of 5 μηι. To this perfusate, drugs (KAA, KYC) were added as needed. Animals were weighed, and heparin was administered intraperitoneally based on weight (150 IU/kg). Anesthesia was induced with pentobarbital sodium (30 mg/kg ip). Once adequate anesthesia was obtained, the abdomen was opened, and the diaphragm was separated from its chest wall attachments and the pericardium opened. The aorta was clamped and the heart excised. The heart was then immediately transferred to the Langendorff apparatus, and the aorta was cannulated and secured using silk ties. Coronary arteries were perfused at constant pressure (80 mmHg) in a retrograde fashion with Krebs buffer. The heart was immersed in a bath containing Krebs buffer at 37.2 +/- 0.1 °C to maintain conditions of normothermia. Left ventricular pressure (LVP) was measured isovolumetrically with a transducer connected to a thin, saline-filled latex balloon inserted into the left ventricle through the mitral valve from an incision in the left atrium.

[00084] Drug perfusion. After steady-state levels of function were reached, hearts were perfused with HZ2 (Ac-KYC-NH 2 ) or HZ3 (Ac-KWC-NH 2 ) at 50mg/L for 40 min prior to 35 min global ischemia and 2 hour reperfusion. The protocol for perfusing isolated hearts with or without KWC or scramble peptide KAA is described in Fig. 5A.

[00085] MPO-mediated HOC1 Production. MPO (20 nM) was incubated with H 2 0 2 (50 μΜ),

NaCl (150 mM), taurine (5 mM) and increasing concentrations of KYC in phosphate buffer (100 mM, pH 7.4) which also contained diethylene triamine pentaacetic acid (DTP A, 100 μΜ) to prevent non-specific, divalent metal cation oxidation for 30 min. Reactions were halted by addition of catalase. Chlorotaurine was quantified using the 3,3-,5,5-tetramethylbenzidine (TMB) assay. Briefly, 400 μΐ ^ of reaction solution was mixed with 100 μΐ, of 2 mM TMB, 100 μΜ Nal containing 10% dimethylformamide (DMF) in 400 mM acetate buffer (pH 5.4). After 5 min, absorbance (650 nm) was recorded on a UV/Vis spectrophotometer (Agilent Model 8453).

[00086] MPO-mediated Nitration of Bovine Serum Albumin (BSA). BSA (0.5 mg/mL) was incubated with MPO (20 nM), H 2 0 2 (100 μΜ), nitrite (100 μΜ) and increasing concentrations of KYC in phosphate buffer (100 mM, pH 7.4) containing DTPA (100 μΜ) for 30 min. Reactions were stopped by addition of catalase. Nitrotyrosine formation was assessed by western blot analysis.

[00087] MPO-mediated LDL Oxidation. Reaction mixtures contained LDL (0.15 mg/mL),

NaN0 2 (100 μΜ), H 2 0 2 (100 μΜ), MPO (20 nM) and increasing concentrations of KYC in a phosphate buffer (100 mM, pH 7.4) containing DTPA (100 μΜ). Rates of LDL oxidation were monitored at room temperature at 234 nm, the wavelength maximum for conjugated dienes.

[00088] HPLC Analysis. KYC oxidation products were analyzed by reverse phase HPLC using a C- 18 column (2x150 mm). The peptide and products were eluted using an acetonitrile (ACN) gradient (5 - 10%, containing 0.1% trifluoroacetic acid (TFA)) for 20 min. Elution was monitored at both 220 nm and 280 nm.

[00089] PMA induced HOC1 Formation by HL-60 cells. HL-60 cells were cultured in RPMI

1640 medium containing 10% FCS (passage 20-50). HL-60 cells were harvested by centrifugation (1000 rpm, 10 min), washed 2X with phosphate buffer (10 mM, pH 7.4) with NaCl (138 mM), KC1 (2.67 mM), CaCl 2 (0.901 mM), MgCl 2 (0.493 mM) and glucose (lmg/ml) to remove culture medium. The HL-60 cells (6 xl0 6 /0.5ml) were re-suspended in DPBS. The washed HL-60 cells were either stimulated with PMA (10 μΜ) or not, and then incubated with taurine (5 mM) and increasing concentrations of KYC (0.1 uM - 100 μΜ) at 37 °C for 30 min. The reaction was stopped by addition of catalase. After centrifugation, absorbance at 650 nm of the reaction mixtures was recorded to determine chlorotaurme production, which is directly proportional to production of HOC1.

[00090] PMA-induced Superoxide Anion Formation. HL-60 cells were cultured in RPMI 1640 medium containing 10 % FCS (passage 20-50). HL-60 cells were harvested by centrifugation (1000 rpm, 10 min), washed 2X with phosphate buffer (10 mM, pH 7.4) with NaCl (138 mM), KC1 (2.67 mM), CaCl 2 (0.901 mM), MgCl 2 (0.493 mM) and glucose (lmg/ml) to remove culture medium. The HL-60 cells (6 xl0 6 /0.5ml) were re-suspended in DPBS. After stimulation with PMA (10 μΜ), the HL-60 cells were incubated with cytochrome C (40 μΜ) with or without superoxide dismutase at 37°C for 30 min. The reaction was stopped by centrifugation. Cytochrome C reduction was measured at 550 nm on a UV-Vis spectrophotometer (Agilent, Model 8453).

[00091] Vasodilatation. SCD mice were treated with KYC (0.3 mg/kg/d, intraperitioneal injections) for 3 weeks. Mice were anesthetized, euthanized by exsanguination and the facialis arteries isolated by microdissection, cannulated, and pressurized. Physiological responses to increasing concentrations of acetylcholine (ACh) were determined by videomicroscopy as previously described.

[00092] Vessel Wall Thickness. After completing the vasodilatation studies, the pressurized vessels were maximally dilated by addition of papaverine (10^ mol/L, 4 min), and outside and inside diameters recorded. An index of wall thickness was calculated using the following formula; ([outside diameter/inside diameter]/2)/outside diameter, as previously described.

[00093] Immunofluorescence Studies. In a separate study, SCD mice were treated with KYC

(IP, 0.3 mg/kg/d). After three weeks treatment, mice were deeply anesthetized and euthanized by exsanguination. Thoracic and abdominal aortas were surgically removed and rinsed free of blood elements using ice cold PBS. Aortas were fixed, imbedded in paraffin, and sectioned.

[00094] KYC Inhibits Myeloperoxidase Oxidation of LDL. Addition of MPO/H 2 0 2 /nitrite to

LDL dramatically increases absorbance at 234 nm in the LDL solution after a short 25 min lag time (Fig.

2) . In contrast, addition of 20 μΜ and 100 μΜ KYC totally suppresses conjugated diene formation in the LDL solution for more than 2 hours. At 4 μΜ, KYC increased the lag time of conjugated diene formation to 90 minutes. On the basis of absorbance values 4μΜ KYC reduces the rate of LDL oxidation by -80% at the end of the 2 hour incubation. These data clearly show that KYC is a potent inhibitor of myeloperoxidase catalyzed LDL oxidation.

[00095] KYC Improves Vasodilation in SCD Mice. Plasma MPO levels are increased in SCD mice compared with the levels in control mice. Treatment of SCD mice with KYC increases vasodilatation in pressurized facialis arteries to nearly 60%, by an L-NAME inhibitable mechanism (Fig.

3) . These data strongly suggest that KYC treatments increase eNOS-dependent vasodilatation in SCD mice. Interestingly, directly adding KYC to the vessel bath containing facialis arteries from non-treated SCD mice did not increase vasodilatation in response to ACh.

[00096] KYC Inhibits MPO HOC1 production in SCD mice. Fig. 7A shows that KYC dose- dependently inhibits MPO production of HOC1, with an IC 50 of ~7 μΜ. At 25 μΜ, KYC completely inhibits MPO-dependent HOC1 production. Fig. 7B compares the effects of KYC on MPO HOC1 production to the effects of tyrosine and tryptophan. These data show that the ability of KYC to inhibit MPO HOC1 production is comparable to that of tryptophan. Tyrosine alone has little if any effect on MPO HOC1 production.

[00097] KYC inhibits MPO by thiol-independent mechanisms. Fig. 7B shows that KYC is significantly more effective at inhibiting MPO-dependent HOC1 production than GSH (p<0.01). These data indicate KYC inhibits MPO by mechanisms beyond those mediated by thiol scavenging.

[00098] Specifically, this data suggest that KYC inhibits MPO activity by at least two mechanisms. Previously it was shown that the ΜΡΟ/Η 2 θ 2 /Νθ 2 ~ reaction system oxidized peptides that contained Tyr into conjugated peptides joined by a di-Tyr covalent bond or to peptides that contained 3- nitrotyrosine. Additional ESR spin trapping studies showed that although MPO oxidizes Y in the peptides to a Y * radical, including a Cys in the peptide protected it from forming a di-Tyr linkage or from undergoing tyrosine nitration. Although these reports show that intramolecular electron transfer (IET) is highly effective for protecting tyrosine in peptides from being oxidatively modified, no evidence existed prior to the present invention suggesting that peptides containing either Y or C or combinations of Y and C could be used to inhibit MPO activity.

[00099] Accordingly, because KYC contains Y, it competes with CF and N0 2 ~ for access to the active site of MPO, and in so doing, prevents these substrates from being transformed into HOC1 and •NO 2 . The advantage in using a competitive inhibitor rather than a suicide inhibitor is that the targeted peroxidase is still available for generating toxic oxidants to kill invading bacteria. Further, as the inhibitor is based on a known MPO substrate, non-specific interactions with other peroxidase enzymes are reduced, which should decrease toxicity.

[000100] Second, internal scavenging of Y * in KYC prevents Y * from oxidizing other biological targets. By placing C in close proximity to Y when highly reactive Y * radicals are formed by MPO activity they are scavenged by the thiol of C to form a less reactive C * radical. The C * radical is finally scavenged when 2 KYC * combine to form a KYC disulfide. As GSH and DTT are both able to reduce KYC disulfide to an active monomer, one advantage, which remains to fully tested, is that KYC may actually exploit the body's natural anti-oxidant defense mechanisms to facilitate inhibition of MPO activity. This type of biochemistry is analogous to how GSH is oxidized to GSSG disulfide by lipid hydroperoxides and then regenerated by GSH or GSH peroxidases.

[000101] KYC inhibits MPO-mediated protein nitration. Fig. 8 shows that KYC dose- dependently inhibits MPO-mediated nitration of BSA. Compared with the positive control, 30 μΜ KYC inhibits MPO-mediated BSA nitration (Fig. 8, lane 2 vs. 6) and essentially ablates BSA nitration at 250 μΜ (Fig. 8, lane 3).

[000102] KYC inhibits LDL oxidation by the MPO/H 2 0 2 /nitrite reaction system. Fig. 9A shows that the MPO/H 2 0 2 /nitrite dramatically increases LDL oxidation (red line), which is consistent with reports showing that MPO oxidizes biological lipids by generating nitrogen dioxide radicals. Adding KYC to MPO/H 2 0 2 /nitrite dose-dependently increases the lag time and decreases LDL oxidation. At 25 μΜ, KYC completely suppresses oxidation. These data demonstrate that KYC is a potent inhibitor of MPO-mediated LDL peroxidation.

[000103] KYC completely suppresses MPO/H 2 0 2 /nitrite-mediated LDL oxidation. The effects of KYC on MPO/H 2 0 2 /nitrite mediated LDL oxidation were compared with those of Tyr and GSH. Fig. 9B shows that KYC completely suppresses MPO/H 2 0 2 /nitrite -mediated LDL oxidation. In contrast, Tyr actually accelerates and enhances LDL oxidation. Although GSH increased the lag time of MPO mediated LDL oxidation in the presence of nitrite, for all practical purposes GSH was ineffective for inhibiting LDL oxidation when compared with KYC. [000104] Additional insight into the mechanisms by which KYC inhibits MPO-mediated LDL oxidation were gained by repeating the MPO/H 2 O 2 oxidation studies in the absence of nitrite. Fig. 9 shows that Tyr increases MPO-mediated LDL oxidation. In contrast, KYC and GSH both inhibited LDL oxidation. In short, GSH does not enter the active site. But it does, if for/by completely difference mechanisms, when KYC enters the active site, GSH scavenges HOC1.

[000105] HPLC analysis shows that the MPO/H 2 0 2 reaction system oxidizes KYC to KYC disulfides (Fig. 10A). In contrast, reports by others show that MPO does not oxidize GSH. These data (Figs. 9C and 10A) taken together show that the mechanisms by which KYC and GSH inhibit LDL oxidation are completely different. Thus, one reason why KYC is so efficient at inhibiting MPO- mediated LDL oxidization is that KYC directly interacts with MPO to inhibit oxidant generation whereas GSH is only able to scavenge oxidants after they are generated.

[000106] Analysis of products from MPO/H 2 0 2 /nitrite (Fig. 10, trace c) or MPO/H 2 0 2 /chloride (Fig. 10, trace d) mediated KYC oxidation show that the most abundant oxidation product in both reactions is KYC disulfide. These data suggest that regardless of the conditions under which MPO oxidizes KYC, in the presence of nitrite or chloride, the major product is the KYC disulfide, not dityrosine. Such findings clearly indicate that the cysteine in the tripeptide efficiently detoxifies tyrosyl radicals generated in the tripeptide by MPO-mediated oxidation. These studies demonstrate that KYC is a potent inhibitor of MPO/H 2 0 2 /nitrite and MPO/H 2 0 2 /chloride mediated LDL oxidation and that IET plays an important role in the mechanisms by which KYC inhibits MPO-mediated LDL oxidation.

[000107] KYC disulfides are reduced by glutathione or dithiothreitol (DTT). Fig. 10B, trace b shows that KYC disulfide is reduced to two products, which based on retention time is KYC (~ 6.4 min) and a mixed disulfide (KYC-[S-S]G, ~6 min). Longer incubations with GSH completely reduced the KYC disulfide to KYC monomer (Fig. 10). DTT completely reduced KYC disulfide to monomer within five min (Fig. 10b). These data demonstrate that after KYC is oxidized and forms a simple or mixed disulfide, KYC monomers can be regenerated. As disulfides of this tripeptide appear to be easily reduced by physiologically relevant concentrations of GSH the possibility exists that KYC disulfides may be regenerated into KYC monomers in vivo.

[000108] KYC inhibits MPO activity in cells. HL-60 cells were stimulated with PMA and effects of KYC on HL-60 cell HOC1 production were assessed using the TMB assay. HL-60 cells, when stimulated with PMA generate high levels of HOC1 (Fig. 1 1A, inset). However, without PMA stimulation, HL-60 cells produce little, if any HOC1 (Fig. 1 1A, inset). KYC dose-dependently inhibits HOC1 production by the PMA-stimulated HL-60 cells with an IC 50 ~7 μΜ (Fig. 1 1A). Since MPO- mediated HOC1 formation also depends on H 2 O 2 which is derived from O 2 * generation by NADPH oxidase (NOX), we next investigated whether KYC or KYC disulfide inhibits HL-60 cell HOC1 production by impairing NOX generation of O 2 * . Cytochrome C assays revealed that neither KYC nor KYC disulfide have any significant effect on O 2 * production in PMA-stimulated HL-60 cells (Fig. 1 IB). HPLC analysis revealed that KYC disulfide was the major oxidation product of PMA-stimulated HL-60 cells. Taken together, these data suggest that KYC inhibits MPO activity but not NOX activity.

[000109] MPO improves vascular function in SCD mice. To determine whether inhibiting MPO improves vascular function and/or reduces inflammation in vivo, SCD mice were treated with KYC for three weeks. Fig.12A shows that KYC treatments dramatically increases endothelium and endothelial nitric oxide (eNOS) -dependent vasodilatation in pressurized facialis arteries isolated from SCD mice. Measurements of inside and outside vessel diameters after incubation with papaverine (used to induce maximal vasodilatation) reveals that KYC also reduces vessel wall thickness (P=0.10) (Fig. 12B). Such physiological and structural changes are consistent with immunofluorescent studies showing that chlorotyrosine and MPO levels are reduced in the aortas of KYC-treated SCD mice compared with non- treated SCD mice (Fig. 13). High WBC counts are indicative of on-going inflammation in SCD and predictive of future vaso-occlusive events. Accordingly, WBC levels were quantified in the SCD mice using standard cytometry assays. Fig. 12C shows that KYC treatments reduced WBC counts in SCD by more than half.

[000110] KYC Inhibits Pulmonary Inflammation in a Murine Model of Asthma. OVA sensitization induces dramatic increases in eosinophil infiltration in the lungs of C57BL/6J mice (Fig. 4A, middle panel vs. top panel). KYC treatments of OVA-sensitized mice markedly reduce eosinophil infiltration to essentially control levels (bottom panel (KYC) vs. middle panel (OVA) and top panel (control). Collagen deposition can be seen in Fig. 4B. OVA sensitization induces dramatic increases in collagen deposition in the lungs of C57BL/6J mice (Fig. 4B, middle panel vs. top panel). KYC treatments of OVA sensitized mice markedly reduces collagen deposition to control levels (bottom panel (KYC) vs. middle panel (OVA) and top panel (control). These data demonstrate that KYC is an effective inhibitor of pulmonary inflammation and collagen deposition in an established murine model of allergen- induced asthma.

[000111] KWC Inhibits Ischemia/Reperfusion (I/R) Injury in Isolated Hearts. To determine the role of peroxidase in ischemic injury, we perfuse isolated SS/Mcw rat hearts with KWC prior to global I/R injury. Fig. 5 shows that KWC significantly increases left ventricular developed pressure (LVDP) and percent recovery of LVDP after I/R injury compared to baseline in SS rat hearts (38±3.9 mmHg and 37.1±4.3% vs. 57.3±4.8 mmHg and 55.3±4.1%, p < 0.01). In hearts treated with a peptide control, KAA, cardiac functional recovery increases but not significantly compared to the untreated control group (38±3.9 mmHg and 37.1±4.3% vs. 43.8±6.4 mmHg and 41.7±5.5%). Coronary flow rates increase more than 20% after KWC is perfused into the hearts (Fig. 5). After I/R, coronary flow rates in the KWC treated hearts show a higher percent recovery than in the untreated control group (65.2±4 vs. 49.6±3.4, p<0.05). These data show that KWC increases resistance to I/R injury in DahlS (SS/MCW) rat hearts.

[000112] KYC Inhibits Acute Lung Injury. Inflammation and sepsis induce the release of endothelial cell microparticles (EMPs). Increased production of EMPs is hypothesized to play a causal role in the mechanisms mediating acute lung injury (ALI). To test this hypothesis, the inventors incubated human umbilical vein endothelial cells with PAI-1, which is well-recognized for inducing endothelial cells to generate EMPs. The EMPs were collected by ultracentrifugation, resuspended in physiological saline solution and then labeled with Q-dots. The Q-dot labeled EMPs were counted and then injected into C57BL/6J mice to achieve a final concentration of 100,000 EMPs/mL of blood. Mice were pretreated with phosphate buffered saline (Fig. 6) or KYC and then were injected with Q-dot labeled EMPs alone or Q-dot labeled EMPs plus KYC (Fig. 6). Biodistribution studies reveal that pretreatment and treatment of EMP-injected mice with KYC dramatically decreases pulmonary retention of Q-dot labeled EMPs (Fig. 6).

[000113] Discussion. The above examples illustrate that the novel tripeptides of the present invention effectively inhibit peroxidase mediated LDL oxidation, increase vasodilation in SCD mice, inhibit eosinophil infiltration and collagen deposition in asthma mice and decrease ischemic injury of the heart. As peroxidase enzymes share many similarities with respect to mechanisms of activation, the novel tripeptides of the present invention may be effective for inhibiting peroxidase activity in a wide variety of peroxidases; myeloperoxidase, eosinophil peroxidase, vascular peroxidase I, and methemoglobin. In addition, for the reasons discussed above, the novel tripeptides of the present invention may also be capable of scavenging toxic oxidants and free radicals.

[000114] The examples described above also show, for the first time, that the novel KYC tripeptide of the present invention effectively inhibits MPO-mediated HOC1 formation, protein nitration and LDL oxidation. Further, the above data illustrate that KYC inhibits MPO activity in PMA-activated HL-60 cells but not superoxide anion production, demonstrating that KYC specifically targets MPO. When used to treat SCD mice, KYC increases endothelial- and eNOS-dependent vasodilatation as well as decreases wall thickness in pressurized facialis arteries. KYC treatments decrease immunostaining for MPO and chlorotyrosine, a specific biomarker of MPO activity, in aortic sections of the treated SCD mice. Further evidence that KYC decreases inflammation is the observation that peripheral white blood cell counts were reduced by half in SCD treated with KYC. Taken together, these data demonstrate that KYC is an effective, specific inhibitor of MPO that can be used to improve vascular physiology and decrease inflammation in SCD. [000115] The novel peptide of the present invention therefore provides the first inhibitor of MPO that has been used in an animal model of vascular disease that actually improves vascular function and decreases inflammation without inducing any apparent toxicity. For example, the MPO/H 2 O 2 reaction system oxidizes KYC to a KYC disulfide. That is not the case with GSH, which is not oxidized by simple MPO/H 2 O 2 reaction systems because it does not enter the active site of MPO. Thus, when SCD mice were treated with KYC, decreased immunostaining for chlorotyrosine, a fingerprint of MPO activity, was observed. However, KYC treatments also decreased MPO staining in the aortic sections and reduced circulating levels of WBC in the SCD mice. The decrease in chlorotyrosine staining could have resulted from a reduction in circulating WBC and subsequent release of MPO as well as from an inhibition of vascular MPO activity. Regardless, treating SCD mice with KYC, shown above to inhibit MPO activity, dramatically improved vasodilatation in SCD mice. Such observations are consistent with the notion that KYC is a specific inhibitor of MPO activity.

[000116] The importance of MPO to vascular disease and inflammation cannot be understated. For more than 20 years, MPO has been implicated in the oxidative modification of lipoproteins (both LDL and HDL), vessel wall matrix and cells. Some of the strongest evidence suggesting that MPO plays a causal role in vascular disease are data showing that both MPO and chlorotyrosine are present and co- localized in human atherosclerotic plaque. In conclusion, KYC, a novel tripeptide, is a potent inhibitor of MPO activity that improves vasodilatation and decreases inflammation in an established murine model of SCD. Thus, KYC is an effective, specific inhibitor of MPO activity that may be useful for improving vascular function and reducing inflammation in SCD.

[000117] Other embodiments and uses of the invention will be apparent to those skilled in the art from consideration from the specification and practice of the invention disclosed herein. All references cited herein for any reason, including all journal citations and U.S./foreign patents and patent applications, are specifically and entirely incorporated herein by reference. It is understood that the invention is not confined to the specific reagents, formulations, reaction conditions, etc., herein illustrated and described, but embraces such modified forms thereof as come within the scope of the following claims. REFERENCES

Weiner et al. Nature. 2002 Dec 19-26;420(6917):879-84.

Bhatt. Am J Cardiol. 2008 May 22;101(10A):4D-13D. Review.

Fahy. Proc Am Thorac Soc. 2009 May;6(3):256-9.

Braus et al. Clin Immunol. 2009 Mar 23. [Epub ahead of print]

Ehses et al. Biochem Soc Trans. 2008 Jun;36(Pt 3):340-2. Review.

Ostrand-Rosenberg et al. J Immunol. 2009 Apr 15;182(8):4499-506. Review.

Droge. Physiol Rev. 2002 Jan;82(l):47-95. Review.

Malle et al. Arch Biochem Biophys. 2006 Jan 15;445(2):245-55. Epub 2005 Aug 31. Review. Maki et al. J Biol Chem. 2009 Jan 30;284(5):3158-69. Epub 2008 Dec 5.

Choi et al. JNeurosci. 2005 Jul 13;25(28):6594-600.

Gray et al. Neurosci Lett. 2008 Oct 24;444(2): 195-8. Epub 2008 Aug 15.

Naito et al. J Gastroenterol. 2007 Oct;42(10):787-98. Epub 2007 Oct 15. Review.

Malle et al. Kidney Int. 2003 Dec;64(6): 1956-67.

Baskol et al. Cell Biochem Funct. 2006 Jul- Aug;24(4):307- 11.

Nielsen et al. Allergy. 2009 May;64(5):733-7. Epub 2008 Dec 25.

Loria et al. Mediators Inflamm. 2008;2008: 135625.

Furtmuller et al. Jpn J Infect Dis. 2004 Oct;57(5):S30-l . Review.

Furtmuller et al. Arch Biochem Biophys. 2006 Jan 15;445(2): 199-213. Epub 2005 Oct 26. Review.

Malle et al. Br J Pharmacol. 2007 Nov;152(6):838-54. Epub 2007 Jun 25.

teffen et al. Free Radic Biol Med. 2006 Oct 1 ;41(7): 1 139-50.

yxxn et d. FEBS Lett. 1999 Jul 23;455(3):243-6.

Savenkova et al. J Biol Chem. 1994 Aug 12;269(32):20394-400.

Kemp et al. Free Radic Biol Med. 2008 Mar 15;44(6):921-37. Epub 2007 Nov 28.

Zhang et al. J Biol Chem. 2005 Dec 9;280(49):40684-98. Epub 2005 Sep 21.

Stadtman. Free Radic Res. 2006 Dec;40(12): 1250-8. Review.

Gaston et al. Am J Respir Crit Care Med. 2006 Jun 1 ;173(1 1): 1 186-93. Epub 2006 Mar 9. Review.

Ou et al. Circulation. 2003 May 13; 107(18):2337-41. Epub 2003 May 5.

Galijasevic et al. Biochemistry. 2008 Feb 26;47(8):2668-77. Epub 2008 Feb 1.

Galijasevic et al. Free Radic Biol Med. 2008 Apr 15;44(8): 1570-7. Epub 2008 Jan 18.

Feksa et al. Metab Brain Dis. 2008 Jun;23(2):221-33. Epub 2008 Apr 19.

Fmtz et al lnt JRadiat Biol. 1989 Apr;55(4):539-56.

Hemecke et al. J Clin Invest. 1993;91 :2866-2872.

Kettle et al. Redox Rep. 2000;5: 179-184.

Eiserich et al. Nature. 1998;391 :393-397.