Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PEPTIDES FOR BLOCKING IL1RAP PROTEIN-PROTEIN INTERACTION AND USES THEREOF FOR TREATMENT OF DISEASE
Document Type and Number:
WIPO Patent Application WO/2016/085832
Kind Code:
A1
Abstract:
Methods and agents are provided for inhibiting interleukin 1 receptor accessory protein (IL1RAP) protein-protein interaction to treat a broad spectrum of diseases and conditions.

Inventors:
STEIDL ULRICH (US)
BARREYRO DE PUJATO LAURA (US)
PUJATO MARIO (US)
Application Number:
PCT/US2015/062060
Publication Date:
June 02, 2016
Filing Date:
November 23, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EINSTEIN COLL MED (US)
International Classes:
G01N33/50; G01N33/566
Foreign References:
US20060094663A12006-05-04
US20140017167A12014-01-16
US20140255431A12014-09-11
Other References:
BARREYRO ET AL.: "IL 1 RAP as functionally relevant target for stem- cell directed therapy in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS).", MOL CANCER THER, vol. 12, November 2013 (2013-11-01)
DATABASE UniProt KB [O] 13 October 2009 (2009-10-13), Database accession no. C7Z2X8
DATABASE UniProtKB 22 January 2014 (2014-01-22), Database accession no. V4EQS5
Attorney, Agent or Firm:
MILLER, Alan, D. et al. (Rothstein & Ebenstein LLP90 Park Avenu, New York NY, US)
Download PDF:
Claims:
What is claimed is:

1. A method of treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, the method comprising administering to the subject an agent comprising a peptide in an amount effective to inhibit ILIRAP protein-protein interaction.

2. The method of claim 1, wherein the disease or condition is one or more of cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplasia syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and inflammatory disease.

3. The method of claim 1, wherein the disease is chronic myeloid leukemia (CML), acute myeloid leukemia (AML) or myelodysplasia syndrome (MDS).

4. The method of any of claims 1-3, wherein the peptide targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (IL1R1), interleukin 1 receptor 2 (IL1R2), ST2 and KIT.

5. The method of any of claims 1-3, wherein the peptide targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (IL1R1), interleukin 1 receptor 2 (IL1R2), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor-like 2 (IL1RL2), signal-regulatory protein alpha (SIRPA), ST2, KIT, Fms-like tyrosine kinase 3 (FLT3) or a mutant variant thereof, FLT3 -internal tandem duplication, FLT3 juxtamembrane mutant, macrophage colony-stimulating factor receptor (MCSFR) and toll-like receptor (TLR).

6. The method of any of claims 1-5, wherein the peptide comprises 18-30 amino acids that include one of the following amino acid sequences: AGDKDRLIVMENKPTRPV (SEQ ID NO: l), AGDKDRLIVMENKPTHGID (SEQ ID NO:2), AGDKDRLIVMENKPTXXX (SEQ ID NO:6) or AGDKDRLIVMENKPTXXXX (SEQ ID NO:7).

7. The method of any of claims 1-5, wherein the peptide consists of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO: 1) or AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

8. A agent for treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, the agent comprising a peptide that inhibits ILIRAP protein-protein interaction.

9. The agent of claim 8, wherein the disease or condition is one or more of cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplasia syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and inflammatory disease.

10. The agent of claim 8, wherein the disease is chronic myeloid leukemia (CML), acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS).

11. The agent of any of claims 8-10, wherein the peptide targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (ILIRI), interleukin 1 receptor 2 (IL1R2), ST2 and KIT.

12. The agent of any of claims 8-10, wherein the peptide targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (ILIRI), interleukin 1 receptor 2 (IL1R2), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor-like 2 (IL1RL2), signal-regulatory protein alpha (SIRPA), ST2, KIT, Fms-like tyrosine kinase 3 (FLT3) or a mutant variant thereof, FLT3 -internal tandem duplication, FLT3 juxtamembrane mutant, macrophage colony-stimulating factor receptor (MCSFR) and toll-like receptor (TLR).

13. The agent of any of claims 8-12, wherein the peptide comprises 18-30 amino acids that include one of the following amino acid sequences: AGDKDRLIVMENKPTRPV (SEQ ID NO: l), AGDKDRLIVMENKPTHGID (SEQ ID NO:2), AGDKDRLIVMENKPTXXX (SEQ ID NO:6) or AGDKDRLIVMENKPTXXXX (SEQ ID NO:7).

14. The agent of any of claims 8-12, wherein the peptide consists of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO: 1) or AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

15. A synthetic peptide consisting of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO: l) or amino acid sequence AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

16. A method of screening for a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease, the method comprising testing whether the agent inhibits interleukin 1 receptor accessory protein (ILIRAP) protein- protein interaction, wherein an agent that inhibits ILIRAP protein-protein interaction is a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease.

17. The method of claim 16, wherein an agent that inhibits ILIRAP protein-protein interaction is a candidate agent for treating chronic myeloid leukemia (CML), acute myeloid leukemia (AML) and/or myelodysplastic syndrome (MDS).

18. The method of claim 16 or 17, wherein the agent targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (IL1R1), interleukin 1 receptor 2 (IL1R2), ST2 and KIT.

19. The method of claim 16 or 17, wherein the agent targets conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (IL1R1), interleukin 1 receptor 2 (IL1R2), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor-like 2 (IL1RL2), signal-regulatory protein alpha (SIRPA), ST2, KIT, Fms-like tyrosine kinase 3 (FLT3) or a mutant variant thereof, FLT3 -internal tandem duplication, FLT3 juxtamembrane mutant, macrophage colony-stimulating factor receptor (MCSFR) and toll-like receptor (TLR).

20. The method of any of claims 1-7, wherein the peptide is conjugated to a cytotoxic agent, a polyethylene glycol (PEG) or a nanoparticle.

21. The agent of any of claims 8-14 or the peptide of claim 15, wherein the peptide is conjugated to a cytotoxic agent, a polyethylene glycol (PEG) or a nanoparticle.

Description:
PEPTIDES FOR BLOCKING ILIRAP PROTEIN-PROTEIN INTERACTION AND USES THEREOF FOR TREATMENT OF DISEASE

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 62/083,417, filed on November 24, 2014, the content of which is incorporated by reference.

BACKGROUND OF THE INVENTION

[0002] Throughout this application various publications are referred to in superscript. Full citations for these references may be found at the end of the specification before the claims. The disclosures of these publications are hereby incorporated by reference in their entireties into the subject application to more fully describe the art to which the subject application pertains.

[0003] Interleukin 1 receptor accessory protein (ILIRAP) is a member of the Toll/interleukin- 1 (IL1) receptor (TIR) superfamily that has been involved in the progression or resolution of infection, asthma, allergy and anaphylaxis, cardiovascular disease, arthritis and neurodegenerative disease 1"3 . In addition, there are changes in expression of ILIRAP in CD34 positive 4 , progenitor cells in Chronic Myeloid Leukemia (CML) 5 , and more precisely defined stem cells in Acute Myeloid Leukemia (AML) and high-risk Myelodysplasia Syndromes (MDS) 6 ' 7 , and also other types of cancers such as papillary thyroid carcinoma 8 .

[0004] ILIRAP was originally described as a necessary partner of the interleukin 1 receptor 1 (IL1R1) 9 to initiate IL1 signaling. However, ILIRAP participates in other signaling pathways through interaction with several receptors other than IL1R1 such as the interleukin- 1 receptor 2 (IL1R2) 10 , the interleukin 33 receptor (ST2) 11"13 , and the receptor for interleukin 36 family (IL1RL2) 14 . More recently, the receptor tyrosine kinase (RTK) KIT was also shown to interact with ILIRAP in mast cells to initiate their degranulation 15 . In murine cells, ILIRAP forms a complex with the glycoprotein SIRPal to activate Akt and Erk in response to ILl stimulation 16 . As ILIRAP can participate in different signaling pathways, its direct targeting should disrupt more than one physiological process relevant for a broad spectrum of diseases.

[0005] Blockade of ILIRAP interactions is also appealing due to the relatively low or absent expression on most types of healthy HSPC and mature cell populations (except monocytes and some lymphocyte populations), and the absence of major phenotype in ILIRAP null mice. Targeting of ILIRAP was proposed for the treatment of inflammatory diseases 17 . Additionally, several drugs have been developed for the targeting of IL1 signaling in diseases other than leukemia. These drugs act to neutralize IL1 by interfering with the production of ILl or posttranslational processing of IL1 18 and a few are currently being investigated for leukemia (ClinicalTrials.gov NCT01260545) 2 . A cytotoxic antibody against ILIRAP has been developed and tested in CML cells and more recently in AML primary cells 4 ' 1 . The Fc portion of this antibody mediates antibody-dependent cellular cytotoxicity (ADCC), likely by natural killer (NK) cells which induce cell death of ILIRAP expressing cells. Here maximal antibody response activity depends on the availability of NK cell populations in leukemia and the assumption that ADCC is the dominant mechanism of action in leukemia patients. Then the focus of current targeting strategies has not been directly placed in ILIRAP but in the IL1 cytokine itself, the IL1R natural antagonist ILIRa or the ILip/ILlRl interaction.

[0006] ILIRAP is not just a surface label that can be used to direct ADCC to leukemia cells, but ILIRAP function is indeed critical for AML stem cells. Inhibition of ILIRAP by lentiviral shRNAs diminished the ability of AML cells (or high-risk MDS patient mononuclear cells) to form colonies in methylcellulose, increased cell death of AML cells in vitro 6 and led to a significant reduction of leukemic infiltration of the hematopoietic organs in a xenotransplantation model (Barreyro unpublished results), indicating that ILIRAP functions to promote cell survival and growth in leukemia. So far, no inhibitors of the function of ILIRAP have been developed.

[0007] The present invention addresses inhibitors of ILIRAP protein-protein interactions that can be used in treatment of a broad spectrum of diseases and conditions.

SUMMARY OF THE INVENTION

[0008] The invention provides methods of treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein- protein interaction, where the methods comprise administering to the subject an agent comprising a peptide in an amount effective to inhibit ILIRAP protein-protein interaction.

[0009] The invention also provides agents for treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, where the agents comprise a peptide that inhibits ILIRAP protein- protein interaction. [0010] The invention further provides a synthetic peptide consisting of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO:l) or amino acid sequence AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

[0011] The invention still further provides methods of screening for a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplasia syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease, the method comprising testing whether the agent inhibits interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, wherein an agent that inhibits ILIRAP protein-protein interaction is a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] Figure 1A-1B. In silico design of ILIRAP peptides of interference. A) Crystal structure of the extracellular domains of the IL1R1 (sphere representation) bound to ILIRAP (ribbon representation) (PDB ID: 4DEP) is depicted with the aminoacids at the receptor-coreceptor contact interphase (sphere representation) B) structural superimposition of 4DEP and 3040.

[0013] Figure 2. Sequence alignment of IL1R1 and IL1R2. Amino acid sequence alignment of human IL1R1 (SEQ ID N0:4) with human IL1R2 (SEQ ID N0:5) using ClustalW 27 ' 28 . Strictly conserved residues, conserved substitutions (according to the ClustalW defined strong groups: STA, NEQK, NHQK, NDEQ, QHRK, MILV, MILF, HY or FYW) and partially conserved substitutions are highlighted (according to the clustalw defined weak groups: CSA, ATV, SAG, STNK, STPA, SGND, SNDEQK, NDEQHK, NEQHRK, FVLIM or HFY). The filled circles above and below the aligned sequences indicate, respectively, the residues involved in IL1R1 -ILIRAP and IL1R2 -ILIRAP interactions within 4.5 angstroms.

[0014] Figure 3A-3C. ILIRAP peptides of interference reduce cell growth. A) Image of the crystal structure of the extracellular domains of the ILIRAP (sphere representation) bound to IL1R1 (ribbon representation) (PDB ID: 4DEP) is depicted with peptide of interference PI (sphere representation). B) Scheme of the ILIRAP peptides of interference with the respective amino acid positions indicated with numbers. C) THP-1 cells were exposed to scrambled peptide (scrambled), or IL1RAP peptides (PI and P2) at the indicated concentrations or left untreated (dashed line) and evaluated for cell viability determined by trypan blue staining and manual counts at 12 and 24 hours. Error bars represent the standard error of the mean of two independent experiments.

[0015] Figure 4. IL1RAP peptides of interference reduce cell growth in two different leukemia cell lines. THP-1 cells (a human monocytic cell line derived from an acute monocytic leukemia patient) (upper panel) and HL60 cells (human promyelocytic leukemia cells) (lower panel) were exposed to scrambled peptide (scrambled), or IL1RAP peptides (P I and P2) at 300 μΜ concentrations or left untreated and evaluated for cell viability determined by trypan blue staining and manual counts at the indicated durations of exposure. Error bars represent the standard error of the mean of two independent experiments.

[0016] Figure 5A-5B. A) ILIRAP blockade causes reduced clonogenic potential of AML cells. THP-1 cells were exposed to 300 μΜ ILIRAP peptides (P I and P2), scrambled control peptide (scrambled) or left untreated (UT) and evaluated for colony formation capacity in methylcellulose. The results are expressed as total number of colonies/ 1000 plated cells. Error bars represent the standard deviation of two replicates. Furthermore, primary human AML cells from patients were treated with peptides and evaluated in the same way (Fig. 5B). B) ILIRAP blockade causes reduced clonogenic potential of primary AML mononuclear cells. AML mononuclear cells derived from peripheral blood were exposed to 300 μΜ ILIRAP peptides (PI and P2), scrambled control peptide (scrambled) or left untreated (UT) for 4 hours and evaluated for colony formation capacity in methylcellulose. The results are expressed as total number of colonies/50,000 plated cells. Error bars represent the standard deviation of two replicates.

[0017] Figure 6. ILIRAP peptides of interference do not reduce clonogenic potential of healthy bone marrow mononuclear cells (BMM C). BMM C were exposed to scrambled peptide (scrambled), or ILIRAP peptides (PI and P2) for 4 hours at 300 μΜ concentrations or left untreated (UT) and evaluated for colony formation capacity in methylcellulose. Colonies were scored at 14 days. The results are expressed as total number of colonies/5xl0 4 plated cells. Error bars represent the standard deviation of two replicates.

[0018] Figure 7. ILIRAP blockade causes apoptosis and cell cycle arrest in G2 of ILIRAP dependent human leukemia cells. THP1 cells were exposed to 300 μΜ ILIRAP peptides (PI and P2), scrambled control peptide (scrambled), peptide buffer (vehicle) or left untreated (UT) and evaluated for cell cycle progression determined by flow cytometry. [0019] Figure 8. IL1RAP blockade causes cell death of IL1RAP dependent human leukemia cells. THP 1 cells were exposed to 300 μΜ IL1RAP peptides (PI and P2), scrambled control peptide (scrambled), peptide buffer (vehicle) or left untreated (UT) and evaluated for cell viability determined by Annexin V/DAPI staining and flow cytometry. The results are expressed as percentage of total cells.

[0020] Figure 9. IL1RAP blockade changes in cell morphology of IL1RAP dependent human leukemia cells. THP1 cells were exposed to 100 μΜ IL1RAP peptide P2, scrambled control peptide (scrambled), peptide buffer (vehicle) or left untreated and evaluated for cell morphology.

[0021] Figure 10. IL1RAP peptides of interference. THP1 cells were exposed to increasing concentrations of IL1RAP peptides P I (upper panel) and P2 (lower panel), scrambled control peptide (scrambled) or left untreated (UT) and evaluated for changes in phospho-IRAKl, phospho-FLT3 and phospho-STAT3 by western blot.

[0022] Figure 1 1. Bar graphs show an Image J quantification of western blots from Figure 10. Dotted line indicates the level of untreated sample. Values are expressed as fold- change to untreated sample.

DETAILED DESCRIPTION OF THE INVENTION

[0023] The invention provides a method of treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein- protein interaction, the method comprising administering to the subject an agent comprising a peptide in an amount effective to inhibit ILIRAP protein-protein interaction.

[0024] The invention also provides an agent for treating a disease or condition in a subject in which it is desirable to inhibit interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, the agent comprising a peptide that inhibits ILIRAP protein- protein interaction.

[0025] The disease or condition can be, for example, one or more of cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and inflammatory disease.

[0026] The peptide can target, for example, conserved residues of a common interface of ILIRAP that interacts with interleukin 1 receptor 1 (IL1R1), interleukin 1 receptor 2 (IL1R2), interleukin 1 receptor-like 1 (IL1RL1), interleukin 1 receptor-like 2 (IL1RL2), signal-regulatory protein alpha (SIRPA), ST2, KIT, Fms-like tyrosine kinase 3 (FLT3) (including its mutant variants, e.g. FLT3-internal tandem duplication, or FLT3 juxtamembrane mutants), macrophage colony-stimulating factor receptor (MCSFR), toll-like receptor (TLR), or other proteins interacting through this molecular interface.

[0027] The peptide can, for example, comprise 18-30 amino acids that include one of the following amino acid sequences: AGDKDRLIVMENKPTRPV (SEQ ID NO: l), AGDKDRLIVMENKPTHGID (SEQ ID NO:2), AGDKDRLIVMENKPTXXX (SEQ ID NO:6) or AGDKDRLIVMENKPTXXXX (SEQ ID NO:7). The peptide can, for example, consists of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO: l) or AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

[0028] The invention further provides a synthetic peptide consisting of amino acid sequence AGDKDRLIVMENKPTRPV (SEQ ID NO: l) or amino acid sequence AGDKDRLIVMENKPTHGID (SEQ ID NO:2).

[0029] The peptides can be conjugated to different agents, for example, a cytotoxic agent, a polyethylene glycol (PEG) or a nanoparticle. The cytotoxic agent can be, for example, a small molecule of 2,000 daltons or less, or 1,000 daltons or less, or 500 daltons or less. The PEG can have a molecular weight, for example, of 200-2,000 daltons or more. Preferably the nanoparticle is between 1 and 100 nanometers in size.

[0030] The invention still further provides a method of screening for a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplasia syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease, the method comprising testing whether the agent inhibits interleukin 1 receptor accessory protein (ILIRAP) protein-protein interaction, wherein an agent that inhibits ILIRAP protein-protein interaction is a candidate agent for treating cancer, chronic myeloid leukemia (CML), acute myeloid leukemia (AML), myelodysplasia syndrome (MDS), papillary thyroid carcinoma, infection, asthma, allergy, anaphylaxis, cardiovascular disease, arthritis, neurodegenerative disease, and/or inflammatory disease.

[0031] The agents or peptides can be administered to subjects using routes of administration known in the art. The administration can be systemic or localized to a specific site. Routes of administration include, but are not limited to, intravenous, intramuscular, intrathecal or subcutaneous injection, oral or rectal administration, and injection into a specific site. [0032] The invention further provides a pharmaceutical composition comprising any of the agents or peptides identified herein and a pharmaceutically acceptable carrier. As used herein, a "pharmaceutically acceptable carrier" is (i) compatible with the other ingredients of the composition without rendering the composition unsuitable for its intended purpose, and (ii) suitable for use with subjects as provided herein without undue adverse side effects (such as toxicity, irritation, and allergic response). Side effects are "undue" when their risk outweighs the benefit provided by the composition. Non-limiting examples of pharmaceutically acceptable carriers include any of the standard pharmaceutical carriers such as phosphate buffered saline solutions, water, and emulsions such as oil/water emulsions and microemulsions.

[0033] This invention will be better understood from the Experimental Details that follow. However, one skilled in the art will readily appreciate that the specific methods and results discussed are merely illustrative of the invention as described more fully in the claims that follow thereafter.

EXPERIMENTAL DETAILS

Introduction and Overview

[0034] Specific peptides were designed to interfere with the oligomerization of interleukin 1 receptor accessory protein (ILIRAP) with its receptors partners (including KIT, and FLT3, known key drivers of AML pathogenesis, which the inventors recently identified to interact with ILIRAP in AML cells (unpublished). These peptides enable specific interruption of ILIRAP mediated signaling representing a fundamentally novel therapeutic approach. As an example, interfering peptides were shown to lead to inhibition of downstream signaling and significant growth inhibition of ILlRAP-dependent leukemia cells.

Materials and Methods

[0035] Peptide design. To interrupt the interaction between the extracellular domains of ILIRAP and its associated molecules small peptides were designed utilizing the crystal structures of the extracellular complexes of ILIRAP, IL1R1 and ILl (PDB ID: 4DEP 19 ) and ILIRAP, IL1R2 and ILl (PDB ID: 3040 20 ) available in the Protein Data Bank (PDB) 21 . Contacts between amino acids from two different polypeptide chains (ILIRAP against IL1R1 and IL1R2) were defined as having any two atoms at a maximum distance of 4.5 Angstroms, which sufficiently encompasses Van der Waals, hydrogen bond, and most hydrophobic interactions. Structural superimposition between the two complexes was carried out using the program STAMP (STructural Alignment of Multiple Proteins) as made available in the program VMD (Visual Molecular Dynamics) 23 .

[0036] Cell lines. The AML cell line THP-1 was grown in RPMI medium supplemented with 10% Fetal Bovine Serum (FBS), lOmM HEPES, ImM Sodium pyruvate, 0.05 mM betamercaptoethanol and 1% penicillin/streptomycin.

[0037] Peptide resuspension and cell line treatment. Two specific peptides (PI : AGDKDRLIVMENKPTRPV (SEQ ID NO: l) and P2: AGDKDRLIVMENKPTHGID (SEQ ID NO:2)) and one scrambled control peptide (L DMPGRPNERDKVAJ V (SEQ ID NO:3)) were synthesized by Genscript (Piscataway, NJ) using stepwise SPPS chemical methods and purified by ITLPC (purity >98%). Peptides were free of trifluoroacetate. Lyoph lized peptides were aliquoted and resuspended in 0.15M PBS pH 7.0 before use, THP- 1 cells were seeded at 0.5 X 10 6 cells/ml and treated with control, vehicle or specific peptides at the indicated concentrations every 4 hours during the indicated periods of time.

[0038] Cell viability and clonogenic assays. Cell viability was assessed at the indicated time points by trypan blue staining and manual cell counts. Viable cells were plated in methylcellulose (StemCell technologies H4434, or R&D HSC002SF) at 1000 cells/ml in 6- well plates for cell lines and at 5 X 10 4 cells/ml for bone marrow mononuclear cells (BMM C). Cells were incubated at 37°C and 5% CO 2 . Colonies were scored after 7 days or 14 days in culture for cell lines or primary cells, respectively.

[0039] AML clonogenic assays. Primary AML mononuclear cells derived from peripheral blood were seeded in cellgro media with cytokines (FLT3L 300ng/ml, TPO lOOng/ml, SCF 300ng/ml and IL3 60ng/ml) and antibiotic. Cells were treated with IL1RAP peptides of interference or scrambled control at 300uM for 4 hours. After that period, cell viability was assessed by trypan blue staining and manual cell counts. Viable cells were plated in methylcellulose (StemCell technologies H4434, or R&D HSC002SF) at 5 X10 4 cells/ml in 6-well plates. Cells were incubated at 37°C and 5% CO 2 . Colonies were scored after 14 days in culture.

[0040] Flow cytometric determination of cell death. In order to determine viability after peptide treatment, IX 10 4 THP-1 cells were washed with PBS and mixed with pre- diluted PE-conjugated Annexin V (BD Pharmigen) and DAPI. Cells were stained at room temperature for 15 minutes and suspended in 0.2 ml of Annexin V-FLUOS incubation buffer (Roche) for analysis. [0041] Cell cycle analysis. Cell cycle analysis was performed by staining with propidium iodide (PI). In brief, 1X10 6 THP-1 cells after treatment with peptides were rinsed with PBS, fixed Fixation Buffer (BD Cytofix™ fixation buffer) for 30 min at 4°C. 5ml of cold 70 to 80% ethanol were added to the cells while vortexing and the suspension was stored overnight at -20°C. Cells were washed twice (first with PBS and then with IX PBS, 2% FBS) and spun down for 10 minutes at 1,500 rpm. Cell pellet was resuspended in 0.5 mL of PI/RNase Staining Buffer (BD Pharmingen® PI/RNase staining buffer) and incubated 15 minutes at room temperature and immediately analyzed by flow cytometry using a FACSAria II Special Order System (BD Biosciences, San Jose, CA).

[0042] Cell morphology. IX 10 4 THP-1 cells after treatment with peptides were rinsed with PBS and 0.1 ml of cell suspension was cytospun onto polylysine coated slides at minimum speed for 4 minutes in a cytocentrifuge (StatSpin Cytofuge). Slides were stained according to manufacturer's protocol using the Romanowsky staining Diff-Quick (IMEB) kit. Cells were imaged with an Axiovert 200M microscope (Zeiss) and Olympus SZ61 microscope.

[0043] Preparation of cell ly sates and Immunoblotting. 3X10 5 THP-1 cells after treatment with peptides, were lysed with modified RIPA buffer (Tris-HCl 50mM pH7.4, NP- 40 1%, Na-deoxycholate 0.25%, NaCl 150mM, EDTA ImM, PMSF ImM, Roche protease inhibitor cocktail Mini complete IX, Na 3 V0 4 ImM, NaF ImM and β-glycerophosphate 20mM). The lysate was incubated in orbital shaker 4°C 15-30 min. in a cold room. Then, cells were spun at 14,000xg 4°C for 15 min and the supernatant was transferred to a pre- cooled tube. Protein concentration in cell lysate was determined, 25 μg of lysate were mixed with 2XSDS loading buffer, boiled for 5 min, and loaded in 8% SDS-polyacrylamide gel. Proteins were transferred to a PVDF membrane and analyzed by western blot with indicated antibodies. Membranes were stripped as needed using a previously published protocol 24 . For immunoblotting, the following antibodies were used: phospho-FLT3 (Tyr591) Mouse monoclonal antibody (Cell signaling #3466), anti-phospho IRAK (T209- abeam 61799), phospho-STAT3 Tyr705) antibody (Cell signaling #9131) and Actin Antibody (C-l l sc- 1615). Membranes were developed using Pierce ECL Western Blotting Substrate (thermo) or SuperSignal West Femto Chemiluminescent Substrate (thermo).

Results and Discussion

[0044] Design of IL1RAP inhibitory peptides. The development of small molecules that can specifically disrupt ILlRAP-receptor interactions will be a valuable tool not only to target ILlRAP-mediated signaling in AML, MDS, and other diseases, but it will also facilitate study of IL1RAP protein-protein interactions. Therefore, studies were designed to interrupt the interaction between the interacting domains of IL1RAP and its associated molecules with small peptides of interference.

[0045] Crystallographic data were used to design a peptide to occupy the interaction surface in the extracellular domain of the IL1RAP-IL1R1 as well as the IL1RAP-IL1R2 complexes (FigurelA). Available in the Protein Data Bank (PDB) 21 are the structures of the interacting extracellular domains of ILIRAP in complex with IL1R1 (PDB ID: 4DEP 19 ) and with IL1R2 (PDB ID: 3040 20 ). The complex in 4DEP contains 3 polypeptide chains: 1) ILl as chain A, covering residues 1-151, 2) ILIRAP as chain B, covering residues 7-310 and 3) IL1R1 as chain C, covering residues 3-326 . Similarly, the complex in 3040 contains 3 polypeptide chains: 1) ILl as chain A, covering residues 1-152, 2) IL1R2 as chain B, covering residues 4-326 and 3) ILIRAP as chain C, covering residues 5-310. The crystal structure of the complex in 4DEP or 3040 reveals that the largest interface is formed between IL1R1 and ILl (similarly for IL1R2), with an average of 41 residues involved. Such a large interface is produced by the wrapping of ILl by the two flexibly linked immunoglobulin domains of IL1R1. ILIRAP also physically interacts with the ILl polypeptide, averaging 15 residues at the contact area. The contact interface between ILIRAP and either IL1R1 or IL1R2 is formed by 16 residues on average.

[0046] The above mentioned complexes are superimposable (see methods) (Figure IB). The structural overlay reveals that ILIRAP utilizes the same interface to interact with both receptors IL1R1 and IL1R2. Closer scrutiny of the receptor-coreceptor interface exposes the particular residues of ILIRAP and IL1R1/IL1R2 that are in contact (FigurelA). These contacting residues between ILIRAP and its receptors are also highlighted on the sequence alignment in Figure 2. Most of the residues from IL1R1 and IL1R2 in contact with ILIRAP are conserved or at least semi-conserved (with a few exceptions). Out of 12 aligned residues within 4.5 angstroms, 4 are identical, 5 conserved (meaning that general properties of the residue side-chains are conserved), 1 semi-conserved (D120-S134 who only share the characteristic of being polar) and 2 unrelated substitutions.

[0047] The design of peptides of interference was based on the idea that they should resemble the residue identities in the interaction surface of ILIRAP and its receptors. Therefore, residues found at the interaction surface of IL1R1 or IL1R2 with ILIRAP were considered in the design of the peptides. A linear path was found in the structures that traverses most of the common interface residues; peptides were designed that combine most of these common contacts (Figure 3A). This strategy is potentially powerful because the designed peptides would simultaneously interrupt both interactions, and including interactions with other molecules.

[0048] ILIRAP peptides of interference suppress growth of AML cells. Since knockdown of ILIRAP with lentivirally expressed shRNAs in THP-1 cells reduced cell survival 6 , it was determined whether specific or scrambled control peptides affected cell viability in the ILIRAP -positive cell line THP-1. THP-1 cells were treated with either different peptides of interference (PI and P2 in Figure 3B) or scrambled control peptide, or the cells were left untreated. Peptides were added at 4 hour intervals, for a period of 12 hours. Specific peptides P I and P2, but not control peptide, caused loss of viability and growth suppression of THPl cells (Figures 3C, 4). In addition, ILIRAP peptides of interference PI and P2 led to inhibition of leukemic colony formation of THP-1 cells in comparison to the scrambled control peptide (Figure 5).

[0049] ILIRAP peptides of interference do not suppress growth of healthy bone marrow mononuclear cells. In contrast to the effects of peptides PI and P2 on AML cells, no inhibitory effects of these peptides were observed on healthy control bone marrow mononuclear cells (Figure 6). These include healthy stem and progenitor cells that do not express ILIRAP. 6

[0050] ILIRAP peptides of interference induced apoptosis and/or cell cycle arrest in AML cells. The phenotypic effects of the ILIRAP interaction blockade in AML cells were assessed in vitro in THP-1 cells. THP-1 cells treated with 300μΜ of either ILIRAP peptides PI or P2 or control peptide were stained with Annexin V and DAPI and subjected to flow cytometric analysis. Changes in cell cycle were also analyzed by Propidium iodide staining and flow cytometry. THP-1 cells underwent a moderate cell cycle arrest in G2 (Figure 7) in the presence of ILIRAP peptide P2 but not control peptide (scrambled) or peptide buffer (vehicle). At 24 hours after initial treatment, ILIRAP specific peptides PI and P2 caused an increase of apoptosis as determined by Annexin V/DAPI staining (Figure 8). THP-1 cells treated with ILIRAP blocking peptides demonstrated a higher degree of cell death (DAPlVAnnexin V + ); 39% (P2) and 35% (PI) of cells were considered apoptotic upon ILIRAP blockade. ILIRAP peptides PI and P2 showed an overall reduction in viability (DAPlVAnnexin V " ) of 28% (P2) and 14% (P I) in comparison to the scrambled control peptide. In addition PI staining showed an increase of subGO for ILIRAP peptide P2 that indicates increased levels of apoptosis (Figure 7).

[0051] ILIRAP peptides of interference induced changes in morphology indicative of differentiation of AML cells. THP-1 monocyte cells can differentiate into macrophage-like cells. During the process of differentiation cells become adherent and adjust their morphology. The THP- 1 cells that remained viable after 24 hours of treatment with P 1 and P2 showed substantial changes in morphology which could be indicative of monocytic differentiation (Figure 9). In contrast, cells treated with scrambled peptide maintained a blast-like morphology (Figure 9).

[0052] ILIRAP peptides of interference affect ILl and FLT3 signaling in AML cells. In active ILl signaling, the interaction of ILIRAP with IL1R1 leads to the recruitment and phosphorylation of the interleukin 1 receptor associated kinase 1 (IRAKI). To assess whether ILIRAP peptides of interference were effective in blocking ILl signaling, the phosphorylation levels of IRAKI were determined 48 hours after treatment with ILIRAP specific peptides or scrambled control. A profound concentration dependent reduction of phospho-IRAKl was observed in THP-1 cells treated with ILIRAP peptide PI in comparison with scrambled control peptide (Figures 10, 1 1). In addition, both ILIRAP specific peptides PI and P2 showed reduced phosphorylation levels in phospho-FLT3, a receptor tyrosine kinase that also interacts with ILIRAP in leukemia cells (Barreyro unpublished results). It is possible that ILIRAP peptides of interference P I and P2 have different binding affinity because similar changes were not observed in phosphorylation of IRAKI at 48hs. In addition, levels of phospho-STAT3, a transcription factor that is activated by ILl and FLT3 signaling 25 ' 26 , changed at 48hs after the initial treatment with ILIRAP peptide P2 to a greater extent than with ILIRAP peptide P I (Figures 10, 11). This finding suggests that ILIRAP peptides of interference successfully block ILl and FLT3 signaling and attenuate downstream activation of signal transducer and activator of transcription STAT3 through the interleukin (IL)-l and FLT3 signaling pathways by blocking IL1R1/IL1RAP and IL1RAP/FLT3 receptor interactions in leukemic cells.

[0053] The present invention provides a functional interference strategy to inhibit ILIRAP function, independent of current antibody-based strategies which use ILIRAP solely as a surface label to trigger/activate an immune response against ILlRAP-expressing cells, independent of whether ILIRAP plays an actual functional role for these cells. [0054] In contrast to the present invention of using peptides of interference to block IL1RAP protein-protein interaction, antibody -based approaches are thought to mediate antitumor efficacy via antibody-dependent cellular cytotoxicity (ADCC) via NK cell-mediated induction of cell death. Unlike the present approach, antibody -based approaches are likely to have limited therapeutic efficacy in patients with diseases such as AML and MDS who are immunocompromised and will have impaired ADCC.

REFERENCES

1. Allan, S.M., Tyrrell, P.J. & Rothwell, N.J. Interleukin- 1 and neuronal injury. Nat Rev Immunol 5, 629-640 (2005).

2. Dinarello, C.A., Simon, A. & van der Meer, J.W. Treating inflammation by blocking interleukin- 1 in a broad spectrum of diseases. Nature reviews. Drug discovery 11, 633-652 (2012).

3. Liew, F.Y., Pitman, N.I. & Mclnnes, LB. Disease-associated functions of IL-33 : the new kid in the IL-1 family. Nat Rev Immunol 10, 103-1 10 (2010).

4. Jaras, M. et al. Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 107, 16280-16285 (2010).

5. Gerber, J.M. et al. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget 4, 715-728 (2013).

6. Barreyro, L. et al. Overexpression of IL-1 receptor accessory protein in stem and progenitor cells and outcome correlation in AML and MDS. Blood 120, 1290-1298 (2012).

7. Askmyr, M. et al. Selective killing of candidate AML stem cells by antibody targeting of IL1RAP. Blood 121, 3709-3713 (2013).

8. Smallridge, R.C. et al. RNA sequencing identifies multiple fusion transcripts, differentially expressed genes, and reduced expression of immune function genes in BRAF (V600E) mutant vs BRAF wild-type papillary thyroid carcinoma. The Journal of clinical endocrinology and metabolism 99, E338-347 (2014).

9. Greenfeder, S.A. et al. Molecular Cloning and Characterization of a Second Subunit of the Interleukin 1 Receptor Complex. Journal of Biological Chemistry 270, 13757- 13765 (1995). Lang, D. et al. The type II IL-1 receptor interacts with the IL-1 receptor accessory protein: a. J Immunol 161, 6871-6877 (1998).

Ali, S. et al. IL-1 receptor accessory protein is essential for IL-33-induced activation of T lymphocytes and mast cells. Proc Natl Acad Sci USA 104, 18660-18665 (2007). Chackerian, A.A. et al. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol 179, 2551-2555 (2007).

Palmer, G. et al. The IL-1 receptor accessory protein (AcP) is required for IL-33 signaling and soluble AcP enhances the ability of soluble ST2 to inhibit IL-33. Cytokine 42, 358-364 (2008).

Towne, J.E., Garka, K.E., Renshaw, B.R., Virca, G.D. & Sims, J.E. Interleukin (IL)- 1F6, IL-1F8, and IL-1F9 Signal through IL-lRrp2 and IL-lRAcP to Activate the Pathway Leading to NF-κΒ and MAPKs. Journal of Biological Chemistry 279, 13677-13688 (2004).

Drube, S. et al. The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood 115, 3899-3906 (2010).

Ruhul Amin, A.R. et al. A role for SHPS-l/SIRPalphal in IL-lbeta- and TNFalpha- dependent signaling. Oncogene 21, 8871-8878 (2002).

Cullinan, E.B. et al. IL-1 receptor accessory protein is an essential component of the IL-1 receptor. J Immunol 161, 5614-5620 (1998).

Braddock, M. & Quinn, A. Targeting IL-1 in inflammatory disease: new opportunities for therapeutic intervention. Nature reviews. Drug discovery 3, 330-339 (2004).

Thomas, C, Bazan, J.F. & Garcia, K.C. Structure of the activating IL-1 receptor signaling complex. Nature structural & molecular biology 19, 455-457 (2012).

Wang, D. et al. Structural insights into the assembly and activation of IL-lbeta with its receptors. Nat Immunol 11, 905-911 (2010).

Bernstein, F.C. et al. The Protein Data Bank: a computer-based archival file for macromolecular structures. Journal of molecular biology 112, 535-542 (1977).

Russell, R.B. & Barton, G.J. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14, 309-323 (1992).

Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. Journal of molecular graphics 14, 33-38, 27-38 (1996). Yeung, Y.G. & Stanley, E.R. A solution for stripping antibodies from polyvinylidene fluoride immunoblots for multiple reprobing. Analytical biochemistry 389, 89-91 (2009).

Arman, A. & Auron, P. Interleukin 1 (IL-1) Induces the Activation of Stat3, in Tissue Engineering, Stem Cells, and Gene Therapies, Vol. 534. (ed. Y.M. Elcin) 297-307 (Springer US, 2003).

Onai, N., Obata-Onai, A., Tussiwand, R., Lanzavecchia, A. & Manz, M.G. Activation of the Flt3 signal transduction cascade rescues and enhances type I interferon- producing and dendritic cell development. The Journal of Experimental Medicine 203, 227-238 (2006).

Larkin, M.A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947- 2948 (2007).

Goujon, M. et al. A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38, W695-699 (2010).