Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PESTICIDAL COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2013/064518
Kind Code:
A1
Abstract:
A compound of formula (I), wherein R1 to R4 are, for example, each hydrogen, R5 is, for example, an unsubstituted aromatic 6-membered heterocycle; R6 is, for example,hydrogen; R7 is,for example, hydrogen, cyano, hydroxyl, formyl, C1-C4-alkyl, C1-C4-alkoxy, C2-C4- alkenyl, or C2-C4-alkynyl; and A1 to A5 are, independently selected, from, for example, N, and C-H; and its use as a pesticidal agent.

Inventors:
LOISELEUR OLIVIER (CH)
PITTERNA THOMAS (CH)
O'SULLIVAN ANTHONY CORNELIUS (CH)
LUKSCH TORSTEN (CH)
Application Number:
PCT/EP2012/071523
Publication Date:
May 10, 2013
Filing Date:
October 31, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SYNGENTA PARTICIPATIONS AG (CH)
LOISELEUR OLIVIER (CH)
PITTERNA THOMAS (CH)
O'SULLIVAN ANTHONY CORNELIUS (CH)
LUKSCH TORSTEN (CH)
International Classes:
C07D237/08; A01N43/48; A01N43/50; A01N43/78; C07D237/12; C07D239/26; C07D241/16; C07D241/18; C07D277/22; C07D277/32; C07D403/12; C07D417/12
Domestic Patent References:
WO2005058828A12005-06-30
WO2005058828A12005-06-30
WO2000015615A12000-03-23
WO2007048556A12007-05-03
WO2008148570A12008-12-11
WO2010123791A12010-10-28
WO2008013925A22008-01-31
WO2008013622A22008-01-31
WO2011051243A12011-05-05
WO2006087343A12006-08-24
WO2002015701A22002-02-28
WO2003018810A22003-03-06
WO1993007278A11993-04-15
WO1995034656A11995-12-21
WO2003052073A22003-06-26
WO1990013651A11990-11-15
Foreign References:
EP1997800A12008-12-03
EP0374753A21990-06-27
EP0427529A11991-05-15
EP0451878A11991-10-16
EP0367474A11990-05-09
EP0401979A21990-12-12
Other References:
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 27 August 2009 (2009-08-27), XP002687994, Database accession no. 1176667-96-1
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 27 August 2009 (2009-08-27), XP002687995, Database accession no. 1176702-41-2
DATABASE REGISTRY [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; 18 March 2010 (2010-03-18), XP002687996, Database accession no. 1211530-59-4
L. A. PAQUETTE: "Encyclopedia of Reagents for Organic Synthesis", vol. 3, 1995, WILEY, pages: 1751 - 1754
J. MED. CHEM., vol. 32, no. 12, 1989, pages 2561 - 73
C. WHITE, SCIENCE, vol. 318, 2007, pages 783
PROC. BCPC, INT. CONGR., vol. 1, 2003, pages 93
A. WOOD, COMPENDIUM OF PESTICIDE COMMON NAMES, 1995
Attorney, Agent or Firm:
ARUNASALAM, Velautha-Cumaran (Intellectual PropertyWRO-1004-6-2, Schwarzwaldallee 215 Basel, CH)
Download PDF:
Claims:
A compound of the formula (I) wherein

wherein

R1 is hydrogen, methyl or a halogen;

R2 is hydrogen, methyl or a halogen;

R3 is hydrogen, methyl or a halogen;

R4 is hydrogen, methyl or a halogen;

R5 is an aromatic 5- membered heterocycle which contains one heteroatom selected from N, O and S, and which has two or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4- haloalkoxy, C1-C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

R5 is an an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 - C4-alkoxy, C1 -C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, the optional substituent, which may be 1 to 3, selected

independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 - C4-alkoxy, C1 -C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl;

R6 is hydrogen or C1-C4-alkyl;

R7 is hydrogen, cyano, hydroxyl, formyl, C1-C4-alkyl, C1 -C4-alkoxy, C2-C4-alkenyl, C2- C4-alkynyl, C1 -C4-alkoxy- C1-C4-alkyl, C1-C4-cyanoalkyl, C1-C4-alkylcarbonyl, C1 -C4- alkoxycarbonyl, benzyl, C3-C6-cycloalkylcarbonyl or C3-C6-cycloalkoxycarbonyl; A1 is N, C-H or C-X;

A2 is N, C-H or C-X;

A3 is N, C-H or C-X;

A4 is N, C-H or C-X;

A5 is N, C-H or C-X;

X is a halogen, OH, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 -C4-haloalkylsulfanyl, C1-C4- alkoxy or C1 -C4-haloalkoxy;

with the proviso that at most three of A1 to A5 are N;

as well as its acceptable salts, enantiomers, diastereomers, tautomers, and N-oxides.

2. The compound according to claim 1 , wherein R1 , R2, R3 and R4 are hydrogen; R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1-C4-haloalkyl and C1 -C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl;

R6 is hydrogen or C1-C4-alkyl;

R7 is hydrogen, C1-C4-alkylcarbonyl, or C1 -C4-alkoxycarbonyl;

A1 , A2, A3, A4 and A5, independently of each other, are N, C-H or C-X; and

X, independently of each X, is a halogen, cyano, C1-C4-haloalkyl.

3. The compound according to either claims 1 or claim 2 wherein R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom , and which has two or more substituents selected independently from each other from halogen and C1 -C4- haloalkyl; preferably selected independently from each other from halogen and C1 -C2- haloalkyl.

4. The compound according to either claims 1 or claim 2 wherein R5 is an aromatic 5- membered heterocycle which contains two heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1 -C4-alkoxy, C1 -C4-haloalkoxy and C3- C6-cycloalkyl, wherein if a sulphur atom is present in the ring, then only one sulfur atom is present in the ring; preferably the substituents are selected independently from each other from halogen, C1-C2-alkyl, C1-C2-haloalkyl, C1 -C2-alkoxy, C1 -C2-haloalkoxy and C3- C4-cycloalkyl, wherein the halogen or halo is preferably chlorine, fluorine.

5. The compound according to either claims 1 or claim 2 wherein R5 is a substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, wherein there are 1 to 3 substituents, selected independently from each other from halogen, C1 -C4-alkyl, C1- C4-haloalkyl, C1-C4-alkoxy and C1 -C4-haloalkoxy; preferably the substituents are selected independently from each other from halogen, C1-C2-alkyl, C1-C2-haloalkyl, C1 - C2-alkoxy, and C1 -C2-haloalkoxy, wherein the halogen or halo is preferably chlorine, fluorine..

6. The compound according to any one of claims 1 to 3 wherein the 5- membered heterocycle is a thiophene, preferably 2,5-dimethyl-thiophen-4-yl or 2-methyl-4-bromo- thiophen-5-yl. 7. The compound according to any one of claims 1 , 2 and 4 wherein the 5- membered heterocycle is a isothiazole, pyrazole, 1 ,2,4-thiadiazole or thiazole, preferably 5-chloro-isothiazol-3-yl or unsubstituted isothiazol-5-yl, 3-chloro-pyrazol-4-yl , 3-chloro- pyrazol-5-yl or unsubstituted pyrazol-4-yl pyrazol-5-yl, 3-methyl-1 ,2,4-thiadiazol-5-yl, 3- trifluoromethyl-1 ,2,4-thiadiazol-5-yl or 5-chloro-1 ,2,4-thiadiazol-3-yl, or 4-chloro- or 4- bromo-thiazol-2-yl, 4-trifluoromethyl-thiazol-2-yl, 5-trifluoromethyl-thiazol-2-yl, 5-chloro- thiazol-2-yl, 4-cyclopropyl-thiazol-2-yl or unsubstituted thiazol-5-yl.

8. The compound according to to any one of claims 1 , 2, and 5 wherein the 6- membered heterocycle is a pyrazine, pyridazine or pyrimidine, preferably 5-chloro-, 5- methyl-, 5-trifluoromethyl- or 5-methoxy-pyrazin-2-yl, 5-chloro-3-methyl-, 3,5-dimethyl-, 5- trifluoromethyl-3-methyl- or 5-methoxy-3-methyl-pyrazin-2-yl, 3-methyl-pyrazin-2-yl, 3,5- dimethyl-pyrazin-3-yl, 4-chloro-6-trifluoromethyl-pyridazin-3-yl, 3-methyl-, 3-trifluoromethyl- or 3-chloro-pyridazin-6-yl, 3,5-dimethyl-, 3-trifluoromethyl-5-methyl- or 3-chloro-5-methyl- pyridazin-6-yl, 5-methyl-pyridazin-6-yl, unsubstituted pyridaziny-6-yl, 2-methylpyrimidin-5- yl, 5-methyl-, 5-trifluoromethyl-, 5-chloro- or 5-trifluoromethoxy-pyrimidin-2-yl, 5-methyl-6- trifluormethyl-, 5,6-bis(trifluoromethyl)-, 5-chloro-6-trifluoromethyl- or 5-trifluoromethoxy-6- trifluoromethyl-pyrimidin-2-yl, 4-trifluoromethyl-pyrimidin-2-yl, unsubstituted pyrimidin-2-yl or 6-trifluromethyl-pyrimidin-4-yl. 9. The compound according to any one of claims 1 to 8 wherein R6 is hydrogen, methyl or ethyl; preferably hydrogen.

10. The compound according to any one of claims 1 to 9 wherein R7 is hydrogen, methylcarbonyl, or methoxycarbonyl; preferably hydrogen.

1 1 . The compound according to any one of claims 1 to 10 wherein A1 to A5 is independently selected from C-H and C-X.

12. The compound according claim 1 1 wherein at least one of A1 to A5 is C-X.

13. The compound according to any one of claims 1 to 10 wherein at most two of A1 to A5 are N; and remaining are independently selected from C-H and C-X.

14. The compound according to any one of claim 1 to 10 wherein A1 is CX, and A2 to A5 are independently selected from CH and N.

15. The compound according to any one of claims 1 to 10 & 13 wherein only one of A1 to A5 is N; and remaining are independently selected from C-H and C-X. 16. The compound according to any one of claims 1 to 10, wherein A1 and A5 are each CX and A2 to A4 are either CH or N.

17. The compound according to any one of claims 1 to 16 wherein X in CX of the A1 to A5 is, independently selected, from halogen, C1 -C2-alkyl, and C1 -C2-haloalkyl.

18. The compound according to claim 17 wherein X is halogen or C1 -C2-haloalkyl, preferably selected from chlorine, fluorine, trifluoromethyl.

19. The compound according to any one of claims 1 to 12, 17 and 18, wherein A2 to A5 are CH and A1 is C-CF3.

20. The compound according to any one of claims 1 to 10, 13- 15, 17 and 18, wherein A1 is CCI or CCF3, A2 and A5 are each N and A3 and A4 are each CH. 21 . The compound according to either claim 1 or claim 2 wherein R1 to R4, R6 and R7 are each hydrogen; R5 is an aromatic 5- membered heterocycle which contains as heteroatoms one N and one S atom, and which has one substituent selected from halogen, C1-C4-haloalkyl and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be one or two, selected independently from each other from halogen, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy and C3-C6-cycloalkyl; A1 is C-X; wherein X is halogen or C1-C2-haloalkyl; A2 is C-H or N; A3 and A4 are each CH; and A5 is C-H, C-X, wherein X is halogen, or N. 22. The compound according to claim 21 , wherein R1 to R4, R6 and R7 are each hydrogen; R5 is a thiazole which has one substituent selected from chloro and

cyclopropyl; or R5 is a substituted pyrazinyl, pyrimidinyl or pyridazinyl,the substituent, which may be 1 or 2, selected independently from each other from chloro, methyl and methoxy; A1 is C-X, wherein X is fluoro, chloro or trifluoromethyl;, A2 is C-H or N; A3 and A4 are each CH; and A5 is C-H, C-F or N.

23. A composition comprising a compound defined in any one of claims 1 to 22 and a agronomicaly carrier and optionally one or more customary formulation auxiliaries. 24. The composition according to claim 23 further comprising one or more other biologically active compounds.

25. A method of controlling damage and/or yield loss caused by a pest and/or fungi which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest and/or fungi or to a plant propagation material an effective amount of a compound of formula (I) as defined in any one of claims 1 to 22 or a composition defined in either claim 24 or 25.

26. A method for the protecting plant propagation material from damage and/or yield loss caused by a pest and/or fungi which comprises applying to the propagation material or the site, where the propagation material is planted, an effective amount of a compound of formula (I) as defined in any one of claims 1 to 22 or a composition defined in either claim 24 or 25. 27. The method according to either claim 25 or claim 26 wherein the pest is selected from the class Nematoda.

28. A treated plant propagation material, wherein adhered to the plant propagation material is an effective amount of a compound of formula (I) as defined in any one of claims 1 to 22.

29. A pharmaceutical composition for the control of helminths, arachnids or arthrop endo- or ectoparasites which comprises a compound of formula (I) as defined in any one of claims 1 to 22, a physiologically tolerable carrier and optionally one or more customary formulation auxiliaries.

30. A pharmaceutical composition comprising a compound defined in any one of claims 1 to 22, a physiologically tolerable carrier, and optionally one or more customary formulation auxiliaries for preventing infection with diseases transmitted through helminths, arachnids or arthrop endo- or ectoparasites.

31 . The composition according to claim 30 further comprising one or more other biologically active compounds.

32. A method for treating, controlling, preventing or protecting warm-blooded animals or fish against infestation or infection by helminths, arachnids or arthrop endo- or ectoparasites which comprises orally, topically or parenterally administering or applying to said animal or fish a parasiticidally effective amount of a compound of formula (I) as defined in any one of claims 1 to 22 or a composition defined in any one of claims 29 to 31 . 33. A method for the preparation of a composition for treating, controlling, preventing or protecting warm-blooded animals or fish against infestation or infection by helminths, arachnids or arthrop endo- or ectoparasites which comprises a compound of formula (I) as defined in any one of claims 1 to 22.

34. A process for preparing a compound of formula (I) comprising reacting a compound of formula (II) and formula (VII)

(VI I)

(I I) (I) wherein R1 to R7, A1 , A2, A3, A4, and A5 are as defined in any of claims 1 to 22, and Xb is a leaving group selected from halide and hydroxyl.

A compound of formula (lie)

wherein R1 to R4, R6 and R7 are as defined for formula (I) in any of claims 1 to 22; and R5 is an aromatic 5-membered heterocycle which contains one heteroatom selected from N, O and S, and which has two or more substituents selected independently from each other from halogen, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4- haloalkoxy, C1-C4-alkylsulfanyl, C1-C4-haloalkylsulfanyl, C 1 -C4-a I kyl su If i ny I , C1-C4- haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR an aromatic 5-membered heterocycle which contains two or three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1- C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1-C4-haloalkylsulfanyl, C1-C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4- haloalkoxy, C1-C4-alkylsulfanyl, C1-C4-haloalkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl. 36, The compound according to claim 35 wherein wherein R1 to R4, R6 and R7 are each H; and R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1 -C4-haloalkyl and C1-C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl 37. The compound according to claim 36, wherein R5 is an aromatic 5- membered heterocycle which contains as heteroatoms one N and one S atom, and which has one substituent selected from halogen, C1 -C4-haloalkyl and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be one or two, selected independently from each other from halogen, C1 -C4-alkyl, C1-C4-haloalkyl, C1 -C4-alkoxy and C3-C6- cycloalkyl.

38. The compound according to claim 37, wherein R5 is a thiazole which has one substituent selected from chloro and cyclopropyl; or R5 is a substituted pyrazinyl, pyrimidinyl or pyridazinyl, the substituent, which may be 1 or 2, selected independently from each other from chloro, methyl and methoxy.

39. The compound according to claim 1 , wherein R1 , R2, R3 and R4 are hydrogen; R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1-C4-haloalkyl and C1 -C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl;

R6 is hydrogen or C1-C4-alkyl;

R7 is hydrogen, C1-C4-alkylcarbonyl, or C1 -C4-alkoxycarbonyl.

A com ound of formula (Ilia)

wherein R1 to R4 are as defined for formula (I) in any of claims 1 to 22; and R5 is an aromatic 5- membered heterocycle which contains one heteroatom selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1 -C4-haloalkoxy, C1 - C4-alkylsulfanyl, C1-C4-haloalkylsulfanyl, C 1 -C4-a I kyl su If i ny I , C1-C4-haloalkylsulfinyl, C1 - C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

an aromatic 5- membered heterocycle which contains two heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

an aromatic 5- membered heterocycle which contains three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1 -C4-haloalkyl, C1 -C4-alkoxy, C1 - C4-haloalkoxy, C1-C4-alkylsulfanyl, C1-C4-haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, and which optional substituent, which may be 1 to 3, are selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 - C4-alkoxy, C1 -C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl. 41 , The compound according to claim 39 wherein wherein R1 to R4, R6 and R7 are each H; and R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1 -C4-haloalkyl and C1-C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl 42. The compound according to claim 40, wherein R5 is an aromatic 5- membered heterocycle which contains as heteroatoms one N and one S atom, and which has one substituent selected from halogen, C1-C4-haloalkyl and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be one or two, selected independently from each other from halogen, C1 -C4-alkyl, C1-C4-haloalkyl, C1 -C4-alkoxy and C3-C6- cycloalkyl.

43. The compound according to claim 40, wherein R5 is a thiazole which has one substituent selected from chloro and cyclopropyl; or R5 is a substituted pyrazinyl, pyrimidinyl or pyridazinyl,the substituent, which may be 1 or 2, selected independently from each other from chloro, methyl and methoxy.

44. The compound according to claim 1 , wherein R1 , R2, R3 and R4 are hydrogen; R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1-C4-haloalkyl and C1 -C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl.

Description:
PESTICIDAL COMPOUNDS

The present invention relates to certain N-(l -hetercyclylcyclopropylmethly) heteroaryl carboxamide derivatives, to processes for their preparation, to compositions comprising those compounds, and to their use in agriculture and veterinary fields, and fields relying on pest management. The compounds are especially active for controlling damage to plants by pests and fungal diseases in agriculture.

N-[1-(2-pyridyl)cyclopropylmethyl]heteroaryl carboxamide derivatives are described in WO2005/058828.

Inventors have found that certain N-(l-hetercyclylcyclopropylmethly) heteroaryl carboxamide derivatives are especially active for controlling damage by pests & fungal diseases, in particular nematode pests.

Accordingly, the present invention relates to a compound of formula (I)

wherein

R1 is hydrogen, methyl or a halogen;

R2 is hydrogen, methyl or a halogen;

R3 is hydrogen, methyl or a halogen;

R4 is hydrogen, methyl or a halogen;

R5 is an aromatic 5- membered heterocycle which contains one heteroatom selected from N, O and S, and which has two or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1-C4-alkoxy, C1-C4- haloalkoxy, C1-C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1-C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

R5 is an an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 - C4-alkoxy, C1 -C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR R5 is an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, the optional substituent, which may be 1 to 3, selected

independently from each other from halogen, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1 - C4-alkoxy, C1 -C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1 -C4- alkylsulfinyl, C1-C4-haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6-cycloalkyl;

R6 is hydrogen or C1-C4-alkyl;

R7 is hydrogen, cyano, hydroxyl, formyl, C1-C4-alkyl, C1 -C4-alkoxy, C2-C4-alkenyl, C2-

C4-alkynyl, C1 -C4-alkoxy- C1-C4-alkyl, C1-C4-cyanoalkyl, C1 -C4-alkylcarbonyl, C1 -C4- alkoxycarbonyl, benzyl, C3-C6-cycloalkylcarbonyl or C3-C6-cycloalkoxycarbonyl;

A1 is N, C-H or C-X;

A2 is N, C-H or C-X;

A3 is N, C-H or C-X;

A4 is N, C-H or C-X;

A5 is N, C-H or C-X;

X is a halogen, OH, cyano, C1 -C4-alkyl, C1-C4-haloalkyl, C1-C4-haloalkylsulfanyl, C1-

C4-alkoxy or C1-C4-haloalkoxy;

with the proviso that at most three of A1 to A5 are N;

as well as its acceptable salts, enantiomers, diastereomers, tautomers, and N-oxides.

The compounds of formula (I) and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense

hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case. This invention accordingly covers all such isomers and tautomers and mixtures thereof in all proportions as well as isotopic forms such as deuterated compounds. As an example, the compounds of the invention may contain one or more asymmetric carbon atoms, for example, at the -CR 6 -, -CR 5 -, -CR 1 R 2 -, and -CR 3 R 4 - groups, and the compounds of formula (I) may exist as enantiomers (or as pairs of diastereoisomers) or as mixtures of such. The invention also covers salts and N-oxides of each compound for formula (I).

One skilled in the art also recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding non salt forms, salts share the biological utility of the non salt forms.

Thus a wide variety of salts of compounds of the invention (and active ingredients used in combination with the active ingredients of the invention) may be useful for control of invertebrate pests and animal parasites. Salts amongst agriculturally and/or

physiologically tolerable salts include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids.

Suitable amongst agriculturally and/or physiologically tolerable salts can also be the salts of those cations which do not adversely affect the pesticidal and/or parasiticidal action of the compounds of formula (I). Thus, especially suitable cations are the ions of the alkali metals including sodium, potassium and lithium, of the alkaline earth metals including calcium and magnesium, and of the transition metals including manganese, copper, iron, zinc, cobalt, lead, silver, nickel, and also ammonium or organic ammonium including monoalkylammonium, dialkylammonium, trialkylammonium, tetraalkylammonium, monoalkenylammonium, dialkenylam onium, trialkenylam onium, monoalkynylammonium, dialkynyla monium, monoalkanolammonium, dialkanolammonium, C5-C6- cycloalkylammonium, piperidinium, morpholinium, pyrrolidinium, or benzylammonium, moreover phosphonium ions, sulfonium ions, preferably tri(C1 -C4 -alkyl) sulfonium and sulfoxonium ions, preferably tri (C1 -C4 -alkyl) sulfoxonium.

Alkyl groups (either alone or as part of a larger group, such as alkoxy-,

alkylsulfanyl-, alkylsulfinyl-, alkylsulfonyl-, alkylcarbonyl- or alkoxycarbonyl-) can be in the form of a straight or branched chain and are, for example, methyl, ethyl, propyl, prop-2-yl, butyl, but-2-yl, or 2-methyl-prop-2-yl. The alkyl group (either alone or as part of a larger group, such as alkoxy-, alkylsulfanyl-, alkylsulfinyl-, alkylsulfonyl-, alkylcarbonyl- or alkoxycarbonyl-), in each embodiment of the invention, is preferably C1 -C3-alkyl, more preferably C1 -C2-alkyl, especially methyl group. In the instance of alkoxy, examples are methoxy, ethoxy, propoxy, n-butoxy, isobutoxy and also their isomeric groups; preferably, independent of other embodiments, methoxy and ethoxy, especially methoxy.

Alkenyl groups can be in the form of straight or branched chains, and can be, where appropriate, of either the (E)- or (Z)-configu ration. Examples are vinyl and allyl. The alkenyl group, in each embodiment of the invention, is preferably a C2-C3 -alkenyl group, more preferably vinyl or allyl group.

Alkynyl groups can be in the form of straight or branched chains. Examples are ethynyl and propargyl. The alkynyl group, in each embodiment of the invention, is preferably a C2-C3-alkynyl group, more preferably propargyl group.

Halogen is fluorine, chlorine, bromine or iodine; halogen, in each embodiment of the invention, is fluorine, chlorine, or bromine; especially fluorine or chlorine.

Haloalkyl groups (either alone or as part of a larger group, such as haloalkoxy-, haloalkylsulfanyl-, haloalkylsulfinyl- or haloalkylsulfonyl-) are alkyl groups which are substituted by one or more of the same or different halogen atoms and are, for example, fluoromethyl, difluoromethyl, trifluoromethyl, chlorodifluoromethyl and 2,2,2-trifluoro-ethyl. The haloalkyl group (either alone or as part of a larger group, such as haloalkoxy-, haloalkylsulfanyl-, haloalkylsulfinyl- or haloalkylsulfonyl-), in each embodiment of the invention, haloakyl is preferably trifluromethyl. In instance of haloalkoxy, examples are fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy, 1 ,1 ,2,2- tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and 2,2,2- trichloroethoxy; preferably difluoromethoxy, 2,2,2-trifluoroethoxy, 2-chloroethoxy and trifluoromethoxy

Cycloalkyl groups are mono-cyclic and are, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The C3-C6-cycloalkyl group, in each embodiment of the invention, is preferably a C3-C5-cycloakyl, more preferably a C3-C4-cycloalkyl group, especially a C3-cycloalkyl group. Where a cycloalkyl moiety is said to be substituted, the cycloalkyl moiety is preferably substituted by one to four substituents, most preferably by one to three substituents, such as one or two substituents, especially one substitutent.

Alkoxycarbonyl is, for example, methoxycarbonyl, ethoxycarbonyl,

propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec- butoxycarbonyl and tert-butoxycarbonyl; preferred are of alkoxycarbonyl are

methoxycarbonyl, ethoxycarbonyl and isopropoxycarbonyl.

Alkoxyalkyi is, for example, methoxymethyl, 2-methoxyethyl, ethoxymethyl, 2- ethoxyethyl, n-propoxymethyl, 2-n-propoxyethyl, isopropoxymethyl and 1-isopropoxyethyl. The alkoxyalkyi group, in each embodiment of the invention, is preferably a C1-C4-alkoxy- C1-C4-alkyl, more preferably a C1-C2-alkoxy-methyl, such as methoxymethyl and ethoxymethyl groups.

Alkylsulfanyl group is, for example, methylsulfanyl, ethylsulfanyl, propylsulfanyl, isopropylsulfanyl, n-butylsulfanyl, isobutylsulfanyl, sec-butylsulfanyl and tert-butylsulfanyl Examples of haloalkylsulfanyl are chloro- and/or fluoro-halogenated substituents thereof, such as difluoromethylsulfanyl, trifluoromethylsulfanyl, chlorodifluoromethylsulfanyl and

2.2.2- trifluoro-ethylsulfanyl

Aryl groups (either alone or as part of a larger group, such as aryl-alkylene-) are aromatic ring systems which can be mono-, bi- or tricyclic. Examples of such rings include phenyl, naphthyl, anthracenyl, indenyl or phenanthrenyl. Preferred aryl groups are phenyl and naphthyl, phenyl being most preferred.

Examples of cycloalkylcarbonyl are cyclopropylcarbonyl, cyclobutylcarbonyl, cyclopentylcarbonyl and cyclohexylcarbonyl; preferred are cyclopropylcarbonyl and cyclobutylcarbonyl.

Examples of cycloalkoxycarbonyl are cyclopropyloxycarbonyl,

cyclobutyloxycarbonyl, cyclopentyloxycarbonyl and cyclohexyloxycarbonyl; preferred are cyclopropyloxycarbonyl and cyclobutyloxycarbonyl.

Aromatic 5-membered heterocycle is preferably a single ring of five atoms having 1 , 2 or 3 heteroatoms independently selected from N, O and S, wherein if a sulphur or oxygen atom is present in the ring, then only one sulfur or one oxygen atom, respectively, is present in the ring, optionally in addition to one or two nitrogen atoms.

Aromatic 6-membered heterocycle is preferably a single ring of six atoms having 2 or 3 nitrogen atoms.

Examples of aromatic 5-membered heterocycle having 1 , 2 or 3 heteroatoms selected from N, O and S are furan, imidazole, isothiazole, isoxazole, 1 ,2,3-oxadiazole, 1 ,2,4-oxadiazole, 1 ,2,5-oxadiazole, 1 ,3,4-oxadiazole, oxazole, pyrazole, pyrrole, 1 ,2,3- thiadiazole, 1 ,2,4-thiadiazole, 1 ,2,5-thiadiazole, 1 ,3,4-thiadiazole, thiazole, thiophene,

1 .2.3- triazole, 1 ,2,4-triazole.

Examples of aromatic 6-membered heterocycle having 2 or 3 nitrogen atoms are pyrazine, pyridazine, pyrimidine, 1 ,2,3-triazine, 1 ,2,4-triazine, 1 ,3,5-triazine. Preferred aromatic 6-membered heterocycle are pyrazine, pyridazine, pyrimidine, which can be unsubstituted or substituted; especially preferred are mono or disubstituted pyrazine, pyridazine or pyrimidine, wherein the substituents can be independently selected from halogen, C1-C4-haloalkyl and C1 -C4-haloalkoxy.

In an embodiment, independent of other embodiments, at least two of R1 , R2, R3 and R4 for the compound of formula (I) are hydrogens; preferably at least three; especially each of R1 , R2, R3 and R4 is hydrogen.

In an embodiment, independent of other embodiments, at least one, preferably one, of R1 , R2, R3 and R4 for the compound of formula (I) is halogen or methyl. In an embodiment, independent of other embodiments, R5 is a two or more substituted 5-membered single ring heterocycle which contains one heteroatom selected from oxygen, sulfur and nitrogen; an one or more substituted 5-membered single ring heterocycle which contains two heteroatoms independently selected from N, O and S, wherein if a sulfur or oxygen is present, then only one sulfur or oxygen atom respectively is present in the ring; an one or more substituted 5-membered single ring heterocycle which contains three heteroatoms independently selected from N, O and S, wherein if a sulfur or oxygen is present, then only one sulfur and/or oxygen atom respectively is present in the ring; an optionally substituted 6-membered single ring heterocycle which contains two nitrogen atoms; or an optionally substituted 6-membered single ring heterocycle which contains three nitrogen atoms.

In an embodiment, independent of other embodiments, the aromatic 6-membered heterocycle at R5 is unsubstituted.

In an embodiment, independent of other embodiments, the aromatic 6-membered heterocycle at R5 is substituted with 1 to 3 substituents.

In an embodiment, independent of other embodiments, the aromatic 5-membered heterocycle at R5 has two substituents.

In an embodiment, independent of other embodiments, the aromatic 5-membered heterocycle at R5 has one substituent in the instance there are two or three heteroatoms.

In an embodiment, independent of other embodiments, the substituents on the heterocycle at R5, independent of 5-membered or 6-membered ring, are, independently selected, from halogen, C1-C4-alkyl, C1-C4-alkoxy, C1 -C4-haloalkyl, C1-C4-haloalkoxy and C3-C6-cycloalkyl.

In an embodiment, independent of other embodiments, R5 is any one of the R5 substituents depicted in Table P below.

In an embodiment, independent of other embodiments, R6 is hydrogen or C1 -C2- alkyl, preferably hydrogen or methyl.

In an embodiment, independent of other embodiments, R7 is selected from hydrogen, cyano, hydroxyl, formyl, C1 -C4-alkyl, C1 -C4-alkoxy, C2-C4-alkenyl, C2-C4- alkynyl, C1 -C4-alkoxy- C1 -C4-alkyl, C1-C4-alkylcarbonyl, C1-C4-alkoxycarbonyl and benzyl. Preferably R7 is hydrogen, hydroxyl, C1 -C2-alkyl, C1 -C2-alkoxy, C2-alkenyl, C3- alkynyl, C1 -C2-alkoxy-C1 -alkyl, C1 -C2-alkylcarbonyl, and C1 -C2-alkoxycarbonyl, especially hydrogen, hydroxyl, methyl, cyano, formyl, methoxy, allyl, propargyl, methoxycarbonyl, methoxymethyl and benzyl; especially R7 is hydrogen. In an embodiment, independent of other embodiments, compound of formula (I) has as A1 to A5, independently of each other, C-H and C-X. In an embodiment one or two, preferably one, of A1 to A5 is CX.

In an embodiment, independent of other embodiments, compound of formula (I) has as A1 to A5 two N; and remaining are independently selected from C-H and C-X.

In an embodiment, independent of other embodiments, compound of formula (I) has as A1 to A5 only one N; and remaining are independently selected from C-H and C-X.

In an embodiment, independent of other embodiments, the compound of formula (I) has A1 as CX and A2 to A5 are independently selected from CH and N.

In an embodiment, independent of other embodiments, the compound of formula (I) has A1 as CX, A5 as N and A2 to A4 are each CH.

In an embodiment, independent of other embodiments, the compound of formula (I) has A1 as CX, A2 & A5 as N, and A3 & A4 are each CH.

In an embodiment, independent of other embodiments, the compound of formula (I) has A1 and A5 as each CX and A2 to A4 are either CH or N.

In an embodiment, independent of other embodiments, in the instance any one of A1 to A5 is CX, X in CX is, independently of A1 to A5, is selected from halogen, OH, C1- C4-alkyl, and C1-C4-haloalkyl. Preferably X is halogen, OH, C1 -C2-alkyl and C1 -C2- haloalkyl, especially halogen, methyl and halomethyl, such as trifluoromethyl.

In an embodiment, independent of other embodiments, the compound of formula (I) has A2 to A5 as CH and A1 is C-CF3.

In a preferred group of compounds of formula (I), R1 , R2, R3 and R4 are each hydrogen; R5 is an aromatic 5- membered heterocycle which contains one S atom as heteroatom and which has two or more substituents selected independently from each other from halogen, C1 -C4-haloalkyl and C1-C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl;

R6 is hydrogen or C1-C4-alkyl;

R7 is hydrogen, C1-C4-alkylcarbonyl, or C1 -C4-alkoxycarbonyl; A1 , A2, A3, A4 and A5, independently of each other, are N, C-H or C-X; and X, independently of each X, is a halogen, cyano, C1-C4-haloalkyl.

Preferably R5, independent of other embodiments, is an aromatic 5- membered heterocycle which contains one S atom as heteroatom , and which has two or more substituents selected independently from each other from halogen and C1 -C4-haloalkyl; preferably selected independently from each other from halogen and C1 -C2-haloalkyl.

Preferably R5, independent of other embodiments, is an aromatic 5- membered heterocycle which contains two heteroatoms independently selected from N and S, and which has one or more substituents selected independently from each other from halogen, C1-C4-alkyl, C1-C4-haloalkyl, C1 -C4-alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl, wherein if a sulphur atom is present in the ring, then only one sulfur atom is present in the ring; preferably .

Preferably R5, independent of other embodiments, is a substituted aromatic 6- membered heterocycle which contains two nitrogen atoms, wherein there are 1 to 3 substituents, selected independently from each other from halogen, C1 -C4-alkyl, C1 -C4- haloalkyl, C1-C4-alkoxy and C1 -C4-haloalkoxy.

In an embodiment, independent of other embodiments, the S-containing 5- membered heterocycle is a thiophene, preferably 2,5-dimethyl-thiophen-4-yl or 2-methyl-4- bromo-thiophen-5-yl.;

In an embodiment, independent of other embodiments, the 5- membered heterocycle containing two heteroatoms independently selected from N and S is a isothiazole, pyrazole, 1 ,2,4-thiadiazole or thiazole, preferably 5-chloro-isothiazol-3-yl or unsubstituted isothiazol-5-yl, 3-chloro-pyrazol-4-yl , 3-chloro-pyrazol-5-yl or unsubstituted pyrazol-4-yl pyrazol-5-yl, 3-methyl-1 ,2,4-thiadiazol-5-yl, 3-trifluoromethyl-1 ,2,4-thiadiazol-5- yl or 5-chloro-1 ,2,4-thiadiazol-3-yl, or 4-chloro- or 4-bromo-thiazol-2-yl, 4-trifluoromethyl- thiazol-2-yl, 5-trifluoromethyl-thiazol-2-yl, 5-chloro-thiazol-2-yl, 4-cyclopropyl-thiazol-2-yl or unsubstituted thiazol-5-yl.

In an embodiment, independent of other embodiments, the 6- membered heterocycle is a pyrazine, pyridazine or pyrimidine. Preferred examples are

· 5-chloro-, 5-methyl-, 5-trifluoromethyl- or 5-methoxy-pyrazin-2-yl;

• 5-chloro-3-methyl-, 3,5-dimethyl-, 5-trifluoromethyl-3-methyl- or 5-methoxy-3- methyl-pyrazin-2-yl;

• 3-methyl-pyrazin-2-yl, 3,5-dimethyl-pyrazin-3-yl, 4-chloro-6-trifluoromethyl- pyridazin-3-yl, 3-methyl-, 3-trifluoromethyl- or 3-chloro-pyridazin-6-yl;

· 3,5-dimethyl-, 3-trifluoromethyl-5-methyl- or 3-chloro-5-methyl-pyridazin-6-yl; • 5-methyl-pyridazin-6-yl;

• unsubstituted pyridaziny-6-yl;

• 2-methylpyrimidin-5-yl, 5-methyl-, 5-trifluoromethyl-, 5-chloro- or 5-trifluoromethoxy- pyrimidin-2-yl;

· 5-methyl-6-trifluormethyl-, 5,6-bis(trifluoromethyl)-, 5-chloro-6-trifluoromethyl- or 5- trifluoromethoxy-6-trifluoromethyl-pyrimidin-2-yl;

• 4-trifluoromethyl-pyrimidin-2-yl;

• unsubstituted pyrimidin-2-yl;

• or 6-trifluromethyl-pyrimidin-4-yl.

In an embodiment, independent of other embodiments, R6 is hydrogen, methyl or ethyl; more preferably hydrogen.

In an embodiment, independent of other embodiments, R7 is hydrogen, methylcarbonyl or methoxycarbonyl; more preferably hydrogen.

In an embodiment, independent of other embodiments, A1 to A5 is N; and remaining are independently selected from C-H and C-X.

In an embodiment, independent of other embodiments, X in CX of the A1 to A5 is, independently selected, from halogen, C1-C2-alkyl, and C1-C2-haloalkyl.

In an embodiment, independent of other embodiments, X is halogen or C1-C2- haloalkyl, preferably selected from chlorine, fluorine, trifluoromethyl.

In an embodiment, independent of other embodiments, A1 is CCI, A2 and A5 are each N and A3 and A4 are each CH.

In a preferred group of compounds of formula (I), R1 to R4, R6 and R7 are each hydrogen; R5 is an aromatic 5- membered heterocycle which contains as heteroatoms one N and one S atom, and which has one substituent selected from halogen, C1 -C4-haloalkyl and C3-C6-cycloalkyl; or R5 is an optionally substituted aromatic 6- membered

heterocycle which contains two nitrogen atoms, the optional substituent, which may be one or two, selected independently from each other from halogen, C1-C4-alkyl, C1 -C4- haloalkyl, C1-C4-alkoxy and C3-C6-cycloalkyl; A1 is C-X; wherein X is halogen or C1 -C2- haloalkyl; A2 is C-H or N; A3 and A4 are each CH; and A5 is C-H, C-X, wherein X is halogen, or N.

In a preferred group of compounds of formula (I), R1 to R4, R6 and R7 are each hydrogen; R5 is a thiazole which has one substituent selected from chloro and

cyclopropyl; or R5 is a substituted pyrazinyl, pyrimidinyl or pyridazinyl,the substituent, which may be 1 or 2, selected independently from each other from chloro, methyl and methoxy; A1 is C-X, wherein X is fluoro, chloro or trifluoromethyl; A2 is C-H or N; A3 and A4 are each CH; and A5 is C-H, C-F or N.

In a preferred embodiment of each embodiment described herein, R5 is a 6- membered heterocycle, such as a pyrazine, pyridazine or pyrimidine; preferably, pyrazine, or pyrimidine. The 6- membered heterocycle is mono or di-substituted.

In the case of monosubstituted 6- membered heterocycle selected from pyrazine, pyridazine and pyrimidine, the substituent is at ortho or para of the attachment position to remaining compound, and further wherein the subtituents are selected from halogen and haloalkyl, preferably CI, or CF3, In an embodiment, the ortho substituent is chlorine.

In the case of disubstituted 6- membered heterocycle selected from pyrazine, pyridazine and pyrimidine, the substituents are at ortho and para of the attachment position to remaining compound, and further wherein the subtituents are selected halogen and haloalkyl, preferably CI, or CF3, In an embodiment, the ortho substituent is chlorine.

In a preferred embodiment of each embodiment described herein, A1 is CX , A2 and A5 is independently selected from N and CH, and A3 & A4 are each CH wherein X is CI, F or CF3, preferably CF3, CI, more preferably CF3.

In an especially preferred embodiment, A1 is CX , A2 is N and A3 to A5 are each CH wherein X is CI, or CF3, preferably CF3, CI, more preferably CF3; or A1 is CX , A5 is N and A2 to A4 are each CH wherein X is CI, F or CF3, preferably CF3, CI, more preferably CF3; or A1 is CX , A2 & A5 are each N and A3 and A4 are each CH wherein X is CI, F or CF3, preferably CF3, CI, more preferably CF3.

Compounds of formula (I) can be prepared from amines of the formula (II) and acylating agents of the formula (VII), wherein R1 , R2, R3, R4, R5, R6, R7, A1 , A2, A3, A4, and A5 are as defined herein and Xb is a leaving group. Typical leaving groups are halide, preferably chloride, and hydroxyl. When Xb is hydroxyl, (VII) is a carboxylic acid, and the reaction is preferably facilitated by an activating agent. Typical activating agents are DCC, EDCI, BOP, HBTU, BOP-CI, PyBOP as described in L. A. Paquette, Encyclopedia of Reagents for Organic Synthesis, Vol 3. Wiley, England, 1995 pp 1751 -1754. Acylating agents of the formula (VII) are known or are easily prepared by those skilled in the art.

Amines of the formula (I la), in which R6 and R7 are H and R1 , R2, R3, R4, and R5 are as defined herein, can be prepared by treating nitriles of the formula (III) with a reducing agent. A typical reducing agent is hydrogen. Typically such a hydrogenation would be facilitated by a catalyst. Typical catalysts are metals, metal salts, or metal complexes. Other typical reducing agents are hydrides. Typical hydrides are borohydrides, or aluminium hydrides, examples of which are sodium borohydride, diisobutylaluminium hydride, or lithium aluminium hydride. Such hydride reductions can be facilitated by the use of other components such as metal salts.

(Il l) (Ma)

Compounds of the formula (lib) in which R7 is H and R1 , R2, R3, R4, R5, and R6 are as defined herein can be prepared by treating imines of the formula (IV) with an organometallic reagent of the formula R6-Xc followed by hydrolysis. Xd is an activating group, typically an acyl, sulfinyl or sulfonyl group. Xc is a metal ion, which may or may not be coordinated with a further anion or ligand. Typical R6Xc reagents are Grignard or organolithium reagents.

(IV) (l i b)

Compounds (IVa) in which Xd is S(=0)Xf and R1 , R2, R3, R4, and R5 are as defined herein can be prepared from the aldehyde (VI) and a sulfinamide of the formula (IX), in which Xf is alkyl or aryl. This condensation is conveniently done in the presence of a dehydrating agent. Typical dehydrating agents are titanium chloride, titanium alkoxides, magnesium sulphate, or calcium chloride. Aldehydes of the formula (VI) can be prepared by reduction of the corresponding nitriles (III) or esters, or by oxidation of the

corresponding alcohols, for example, SWERN oxidation. One of the reducing agents which can be used for reducing nitriles or esters to aldehydes is diisobutylaluminium hydride (DIBAL).

(VI) (K) (IVa)

Nitriles of the formula (III), in which R1 , R2, R3, R4, and R5 are as defined herein, can be prepared from nitriles of the formula (XI), in which R5 is as defined herein and an alkylating agent of the formula (X) in presence of a base, in which R1 , R2, R3, and R4 are as defined herein and Xg is a leaving group. Typical leaving groups are halide and sulfonate.

It is clear that compounds of the formula (I) can be transformed to other comounds of the formula (I) through synthetic modification of the groups R1 , R2, R3, R4, R5, R6, R7, A1 , A2, A3, A4, and A5. Similarly such transformations can be performed on the intermediates (ll)-(XI).

These reactions can be conveniently performed in a solvent.

These reactions can be conveniently performed at various temperatures.

These reactions can be conveniently performed in an inert atmosphere.

Alkylation of amine is well known for deriving compounds of formula (II).

The reactants can be reacted in the presence of a base. Examples of suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines. Examples which may be mentioned are sodium hydroxide, sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert-butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine, triethylenediamine, cyclohexylamine, N-cyclohexyl-N,N- dimethylamine, Ν,Ν-diethylaniline, pyridine, 4-(N,N-dimethylamino)pyridine, quinuclidine, N-methylmorpholine, benzyltrimethylammonium hydroxide and 1 ,8-diaza- bicyclo[5.4.0]undec-7-ene (DBU).

The reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N- diethylaniline, may also act as solvents or diluents.

The reaction is advantageously carried out in a temperature range from

approximately -80°C to approximately +140°C, preferably from approximately -30°C to approximately +100°C, in many cases in the range between ambient temperature and approximately +80°C.

A compound of formula (I) can be converted in a manner known per se into another compound of formula (I) by replacing one or more substituents of the starting compound of formula (I) in the customary manner by (an)other substituent(s) according to the invention. Depending on the choice of the reaction conditions and starting materials which are suitable in each case, it is possible, for example, in one reaction step only to replace one substituent by another substituent according to the invention, or a plurality of substituents can be replaced by other substituents according to the invention in the same reaction step.

Salts of compounds of formula (I) can be prepared in a manner known per se.

Thus, for example, acid addition salts of compounds of formula (I) are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent. A salt is chosen depending on its tolerances for compound's use, such as agricultural or physiological tolerance.

Salts of compounds of formula (I) can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.

Salts of compounds of formula (I) can be converted in a manner known per se into other salts of compounds of formula (I), acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.

Depending on the procedure or the reaction conditions, the compounds of formula (I), which have salt-forming properties can be obtained in free form or in the form of salts.

Diastereomer mixtures or racemate mixtures of compounds of formula (I), in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.

Enantiomer mixtures, such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid chromatography (HPLC) on acetyl celulose, with the aid of suitable microorganisms, by cleavage with specific, immobilized enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, where only one enantiomer is complexed, or by conversion into diastereomeric salts, for example by reacting a basic end-product racemate with an optically active acid, such as a carboxylic acid, for example camphor, tartaric or malic acid, or sulfonic acid, for example

camphorsulfonic acid, and separating the diastereomer mixture which can be obtained in this manner, for example by fractional crystallization based on their differing solubilities, to give the diastereomers, from which the desired enantiomer can be set free by the action of suitable agents, for example basic agents.

Pure diastereomers or enantiomers can be obtained according to the invention not only by separating suitable isomer mixtures, but also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention with starting materials of a suitable stereochemistry.

N-oxides can be prepared by reacting a compound of the formula (I) with a suitable oxidizing agent, for example the H 2 0 2 /urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride. Such oxidations are known from the literature, for example from J. Med. Chem., 32 (12), 2561 -73, 1989 or WO 00/15615 or C. White, Science, vol 318, p.783, 2007.

It can be advantageous to isolate or synthesize in each case the biologically more effective isomer, for example enantiomer or diastereomer, or isomer mixture, for example enantiomer mixture or diastereomer mixture, if the individual components have a different biological activity.

The compounds of formula (I) and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.

Compounds of formula (II)

The invention is further directed to intermediate compounds having formulae (lie), and (Ilia), which may be used in the preparation of the compounds of formula (I).

Accordingly, the present invention makes available a compound of formula (lie)

wherein R1 to R4, R6 and R7 are as defined for formula (I); and R5 is

• an aromatic 5-membered heterocycle which contains one heteroatom selected from N, O and S, and which has two or more substituents selected

independently from each other from halogen, cyano, C1 -C4-alkyl, C1 -C4- haloalkyl, C1 -C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1-C4- haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1 -C4- alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

• an aromatic 5-membered heterocycle which contains two or three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 - C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1 -C4- alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6- cycloalkyl; OR

• an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1 -C4- haloalkyl, C1 -C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1-C4- haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1 -C4- alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl.

The present invention also makes available a compound of formula (Ilia)

where R1 to R4 are as defined for formula (I); and R5 is

• an aromatic 5- membered heterocycle which contains one heteroatom selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 -C4-alkyl, C1 -C4- haloalkyl, C1 -C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1-C4- haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1 -C4- alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR

• an aromatic 5- membered heterocycle which contains two heteroatoms

independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 - C4-haloalkyl, C1 -C4-alkoxy, C1-C4-haloalkoxy, C1 -C4-alkylsulfanyl, C1 -C4- haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1 -C4- alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl; OR • an aromatic 5- membered heterocycle which contains three heteroatoms independently selected from N, O and S, and which has one or more substituents selected independently from each other from halogen, cyano, C1 - C4-alkyl, C1 -C4-haloalkyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C1 -C4- alkylsulfanyl, C1 -C4-haloalkylsulfanyl, C1-C4-alkylsulfinyl, C1-C4- haloalkylsulfinyl, C1 -C4-alkylsulfonyl, C1-C4-haloalkylsulfonyl, and C3-C6- cycloalkyl; OR

• an optionally substituted aromatic 6- membered heterocycle which contains two or three nitrogen atoms, and which optional substituent, which may be 1 to 3, are selected independently from each other from halogen, cyano, C1-C4-alkyl,

C1 -C4-haloalkyl, C1 -C4-alkoxy, C1-C4-haloalkoxy, C1-C4-alkylsulfanyl, C1 -C4- haloalkylsulfanyl, C1 -C4-alkylsulfinyl, C1 -C4-haloalkylsulfinyl, C1 -C4- alkylsulfonyl, C1 -C4-haloalkylsulfonyl, and C3-C6-cycloalkyl.

In an embodiment, independent of any one of formulae (lie) and (Ilia), independent of any other embodiments, preferred embodiments for R1 , R2, R3 and R4 are as defined in formula (I).

In an embodiment, R5 in compound of formula (lie), independent of any other embodiments, is substituted. In a preferred embodiment, the R5 is is substituted with 1 to 3 substitutents, independently selected, from halogen, C1 -C4-alkyl, C1-C4-haloalkyl and C1 - C4-cycloalkyl.

In the instance, R5 in compound of formula (Ilia) is an aromatic 5- membered heterocycle which contains one heteroatom selected from N, O and S, it has preferably 1 to 3 substitutents, independently selected, from halogen, C1-C4-alkyl, C1-C4-haloalkyl and C1-C4-cycloalkyl.

In the instance, R5 in compound of formula (Ilia) is an aromatic 5- membered heterocycle which contains two heteroatoms independently selected from N, O and S, it has preferably 1 to 3 substitutents, independently selected, from halogen, C1-C4-haloalkyl and C1-C4-cycloalkyl.

In the instance, R5 in compound of formula (Ilia) is an aromatic 5- membered heterocycle which contains three heteroatoms independently selected from N, O and S, it has preferably 1 to 3 substitutents, independently selected, from halogen, C1-C4-alkyl, C1- C4-haloalkyl and C1-C4-cycloalkyl.

In the instance, R5 in compound of formula (Ilia) is an aromatic aromatic 6- membered heterocycle which contains two or three nitrogen atoms, it has preferably 1 to 3 substitutents, independently selected, from halogen, C1 -C4-alkyl, C1-C4-haloalkyl and C1 - C4-cycloalkyl.

In an embodiment, for formulae (lie), independent of each other, independent of

any other embodiments, R6 is preferably hydrogen or C1 -C2-alkyl, more preferably

hydrogen or methyl.

In an embodiment, for formula (lie), independent of other embodiments, R7 is

selected from hydrogen, cyano, hydroxyl, formyl, C1 -C4-alkyl, C1-C4-alkoxy, C2-C4- alkenyl, C2-C4-alkynyl, C1 -C4-alkoxy- C1-C4-alkyl, C1-C4-alkylcarbonyl, C1 -C4- alkoxycarbonyl and benzyl. Preferably R7 is hydrogen, hydroxyl, C1 -C2-alkyl, C1 -C2- alkoxy, C2-alkenyl, C2-alkynyl, C1 -alkoxy-C1-C2-alkyl, C1 -C2-alkylcarbonyl, and C1 -C2- alkoxycarbonyl, especially hydrogen, hydroxyl, methyl, cyano, formyl, methoxy, allyl,

propargyl, methoxycarbonyl, methoxymethyl and benzyl; especially R7 is H.

Preferably in the compounds of formulae (lie) and (Ilia) R1 , R2, R3 and R4 are

hydrogen;R5 is an aromatic 5- membered heterocycle which contains one S atom as

heteroatom and which has two or more substituents selected independently from each

other from halogen, C1 -C4-haloalkyl and C1-C4-haloalkoxy; or

R5 is an aromatic 5- membered heterocycle which contains two or three heteroatoms

independently selected from N and S, and which has one or more substituents selected

independently from each other from halogen, C1 -C4-alkyl, C1 -C4-haloalkyl, C1-C4- alkoxy, C1 -C4-haloalkoxy and C3-C6-cycloalkyl; or

R5 is an optionally substituted aromatic 6- membered heterocycle which contains two

nitrogen atoms, the optional substituent, which may be 1 to 3, selected independently from each other from halogen, cyano, C1-C4-alkyl, C1 -C4-haloalkyl, C1 -C4-alkoxy, C1 -C4- haloalkoxy and C3-C6-cycloalkyl; and, for the compounds of formula (lie), R6 is hydrogen or C1-C4-alkyl; and R7 is hydrogen, C1-C4-alkylcarbonyl or C1-C4-alkoxycarbonyl.

Specific examples of compounds of formula (I) are illustrated in the following Table

P:

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.51 H H H H H 0-C(=0)- C-CF3 C-H C-H C-H C-H

CH3

P.52 H H H H H 0-CH3 C-CF3 C-H C-H C-H C-H

Y

P.53 H H H H H isopropen C-CF3 N C-H C-H C-H yi

*

P.54 H H H H H benzyl C-CF3 C-H C-H C-H C-H

fY

P.55 H H H H H H C-CI N C-H C-H N

P.56 H H H H H H C-CI C-H C-H C-H N

N— N

P.57 H H H H H H C-CI N C-H C-H C-H

fY

P.58 H H H H H H C-CF3 C-H C-H C-H C-H

Y^ R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.67 H H H H H CN C-CF3 C-H C-H C-H N

P.68 H H H H H H C-CI N C-H C-H C-H

P.69 H H H H H H C-CI N C-H C-H N

P.70 H H H H H H C-CF3 C-H C-H C-H C-H

P.71 H H H H H H C-CH3 N C-H C-H N

P.72 H H H H H H N C-H C-H C-H N

P.73 H H H H * H H C-F C-H C-H C-H C-F

P.74 H H H H H H C-CF3 C-H C-H C-H C-H R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.75 H H H H H H C-F C-H C-H C-H C-F

P.76 H H H H H H C-CF3 C-H C-H C-H C-H

P.77 H H H H H OH C-CF3 C-H C-H C-H C-H

P.78 H H H H H H C-CF3 C-H C-H C-H N

Y

P.79 H H H H H H C-CI N C-H C-H N

P.80 H H H H H H C-CH3 N C-H C-H N

P.81 H H H H H C(=0)-CH3 C-CF3 C-H C-H C-H C-H

Y R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.82 H H H H H H C-CF3 C-H C-H C-H C-H

*

P.83 H H H H o H H C-CI N C-H C-H N

P.84 H H H H * H H C-F C-H C-H C-H C-F

P.85 H H H H CH3 H C-F C-H C-H C-H C-F

P.86 H H H H H H C-H C-H C-H N C- OH

P.87 H H H H H H C-CH3 N C-H C-H N

P.88 H H H H * H H C-F C-H C-H C-H C-F

P.89 H H H H H H C-CI N C-H N C-H

*Y R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.90 H H H H H H C-CH3 N N C-H C-H

P.91 H H H H H H C-CF3 C-H C-H C-H C-H

F

P.92 H H H H H 0-C(=0)- C-CF3 C-H C-H C-H C-H cycloprop

yi

Br

P.93 H H H H H CH3 C-CF3 C-H C-H C-H C-H

P.94 H H H H H H C-F C-H C-H C-H C-F

P.95 H H H H H H C-F C-H C-H C-H C-F

P.96 H H H H H H C-CI N C-H C-H C-H

Br

P.97 H H H H * H H C-CF3 C-H C-H C-H C-H R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.106 H H H H H H C-CI N C-H C-H N

P.107 H H H H H H C-CH3 C-H N C-H N

P.108 H H H H CH3 H C-CF3 C-H C-H C-H C-H

P.109 H H H H H H C-CI C-H C-H C-H N

P.1 10 H H H H H H C-CF3 C-H C-H C-H C-H

P.1 1 1 H H H H H H C-CI C-H C-H C-H N

*

P.1 12 H H H H H H N C-H C-H C-H N

P.1 13 H H H H H allyl C-CF3 C-H C-H C-H C-H R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5

P.1 14 H H H H C-H

V» H CH2-0- C-CH3 N C-H C-H

CH3

* ff

P.1 15 H H H H H H C-CH3 N C-H C-H N

P.1 16 H H H H H H C-CF3 C-H C-H C-H C-H

P.1 17 H H H H H H C-CF3 C-H C-H C-H C-H

P.1 18 H H H H H CH3 C-CH3 C-H C-H C-H N

P.1 19 F F H H H H C-CI N C-H C-H N

I

P.120 H H H H H H C-CF3 C-H C-H C-H C-H

P.121 H H H H H H C-CI N C-H C-H N

O

*

Examples of formula (lie) made available are where the substitutents R1 , R2, R3, R4, R6, R7 and R5 are as defined in each row of Table P above.

Examples of formula (Ilia) made available are where the substitutents R1 , R2, R3,

R4, and R5 as defined in each row of Table P above.

A compound of formula (I) has been found to control the damage caused by a pest and/or fungi.

In an embodiment, a compound of formula (I) can be used in agriculture. Accordingly, the invention is moreover directed to a method of controlling damage and/or yield loss caused by a pest and/or fungi which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest and/or fungi or to a plant propagation material an effective amount of a compound of formula (I).

The compounds according to the invention can be used for controlling, i. e.

containing or destroying, pests and/or fungi which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers, seeds or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.

The compounds of formula (I) according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which can be used against pesticide resistant pests and fungi, which compounds of formula (I) have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.

The compounds according to the invention act against all or individual

developmental stages of normally sensitive, but also resistant, animal pests, such as insects or representatives of the order Acarina. The insecticidal or acaricidal activity of the compounds according to the invention can manifest itself directly, i. e. in destruction of the pests, which takes place either immediately or only after some time has elapsed, for example during ecdysis, or indirectly, for example in a reduced oviposition and/or hatching rate, a good activity corresponding to a destruction rate (mortality) of at least 50 to 60%.

Examples of the above mentioned animal pests are:

- from the order Acarina, for example,

Acalitus spp, Aculus spp, Acaricalus spp, Aceria spp, Acarus siro, Amblyomma spp., Argas spp., Boophilus spp., Brevipalpus spp., Bryobia spp, Calipitrimerus spp., Chorioptes spp., Dermanyssus gallinae, Dermatophagoides spp, Eotetranychus spp, Eriophyes spp., Hemitarsonemus spp, Hyalomma spp., Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus, Panonychus spp., Phyllocoptruta oleivora, Phytonemus spp, Polyphagotarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp, Tarsonemus spp. and Tetranychus spp.;

- from the order Anoplura, for example,

Haematopinus spp., Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;

- from the order Coleoptera, for example,

Agriotes spp., Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemLineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megascelis spp, Melighetes aeneus, Melolontha spp., Myochrous armatus, Orycaephilus spp., Otiorhyn- chus spp., Phyllophaga spp, Phlyctinus spp., Popillia spp., Psylliodes spp., Rhyssomatus aubtilis, Rhizopertha spp., Scarabeidae, Sitophilus spp., Sitotroga spp., Somaticus spp, Sphenophorus spp, Sternechus subsignatus, Tenebrio spp., Tribolium spp. and

Trogoderma spp.;

- from the order Diptera, for example, Aedes spp., Anopheles spp, Antherigona soccata,Bactrocea oleae, Bibio hortulanus, Bradysia spp, Calliphora erythrocephala, Ceratitis spp., Chrysomyia spp., Culex spp., Cuterebra spp., Dacus spp., Delia spp, Drosophila melanogaster, Fannia spp.,

Gastrophilus spp., Geomyza tripunctata, Glossina spp., Hypoderma spp., Hyppobosca spp., Liriomyza spp., Lucilia spp., Melanagromyza spp., Musca spp., Oestrus spp.,

Orseolia spp., Oscinella frit, Pegomyia hyoscyami, Phorbia spp., Rhagoletis spp, Rivelia quadrifasciata, Scatella spp, Sciara spp., Stomoxys spp., Tabanus spp., Tannia spp. and Tipula spp.;

- from the order Hemiptera, for example,

Acanthocoris scabrator, Acrosternum spp, Adelphocoris lineolatus, Amblypelta nitida, Bathycoelia thalassina, Blissus spp, Cimex spp., Clavigralla tomentosicollis, Creontiades spp, Distantiella theobroma, Dichelops furcatus, Dysdercus spp., Edessa spp, Euchistus spp., Eurydema pulchrum, Eurygaster spp., Halyomorpha halys, Horcias nobilellus, Lep- tocorisa spp., Lygus spp, Margarodes spp, Murgantia histrionic, Neomegalotomus spp, Nesidiocoris tenuis, Nezara spp., Nysius simulans, Oebalus insularis, Piesma spp.,

Piezodorus spp, Rhodnius spp., Sahlbergella singularis, Scaptocoris castanea, Scotino- phara spp., Thyanta spp , Triatoma spp., Vatiga illudens;

- from the order homoptera, for example,

Acyrthosium pisum, Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp,

Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spectra, Cryptomyzus spp, Cicadulina spp, Coccus hesperidum, Dalbulus maidis, Dialeurodes spp, Diaphorina citri, Diuraphis noxia, Dysaphis spp, Empoasca spp., Eriosoma larigerum, Erythroneura spp., Gascardia spp., Glycaspis brimblecombei, Hyadaphis pseudobrassicae, Hyalopterus spp, Hyperomyzus pallidus, Idioscopus clypealis, Jacobiasca lybica, Laodelphax spp., Lecanium corni, Lepidosaphes spp., Lopaphis erysimi, Lyogenys maidis, Macrosiphum spp., Mahanarva spp, Metcalfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria aethiopica, Quadraspidiotus spp., Quesada gigas, Recilia dorsalis,

Rhopalosiphum spp., Saissetia spp., Scaphoideus spp., Schizaphis spp., Sitobion spp., Sogatella furcifera, Spissistilus festinus, Tarophagus Proserpina, Toxoptera spp,

Trialeurodes spp, Tridiscus sporoboli, Trionymus spp, Trioza erytreae , Unaspis citri, Zygina flammigera, Zyginidia scutellaris, ;

- from the order Hymenoptera, for example,

Acromyrmex, Arge spp, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplocampa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Pogonomyrmex spp, Slenopsis invicta, Solenopsis spp. and Vespa spp.;

- from the order Isoptera, for example,

Coptotermes spp, Corniternes cumulans, Incisitermes spp, Macrotermes spp,

Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate

- from the order Lepidoptera, for example,

Acleris spp., Adoxophyes spp., Aegeria spp., Agrotis spp., Alabama argillaceae, Amylois spp., Anticarsia gemmatalis, Archips spp., Argyresthia spp, Argyrotaenia spp., Autographa spp., Bucculatrix thurberiella, Busseola fusca, Cadra cautella, Carposina nipponensis, Chilo spp., Choristoneura spp., Chrysoteuchia topiaria, Clysia ambiguella, Cnaphalocrocis spp., Cnephasia spp., Cochylis spp., Coleophora spp., Colias lesbia, Cosmophila flava, Crambus spp, Crocidolomia binotalis, Cryptophlebia leucotreta, Cydalima perspectalis, Cydia spp., Diaphania perspectalis, Diatraea spp., Diparopsis castanea, Earias spp., Eldana saccharina, Ephestia spp., Epinotia spp, Estigmene acrea, Etiella zinckinella, Eucosma spp., Eupoecilia ambiguella, Euproctis spp., Euxoa spp., Feltia jaculiferia, Gra- pholita spp., Hedya nubiferana, Heliothis spp., Hellula undalis, Herpetogramma spp, Hyphantria cunea, Keiferia lycopersicella, Lasmopalpus lignosellus, Leucoptera scitella, Lithocollethis spp., Lobesia botrana, Loxostege bifidalis, Lymantria spp., Lyonetia spp., Malacosoma spp., Mamestra brassicae, Manduca sexta, Mythimna spp, Noctua spp, Operophtera spp., Orniodes indica, Ostrinia nubilalis, Pammene spp., Pandemis spp., Panolis flammea, Papaipema nebris, Pectinophora gossypiela, Perileucoptera coffeella, Pseudaletia unipuncta, Phthorimaea operculella, Pieris rapae, Pieris spp., Plutella xylostella, Prays spp., Pseudoplusia spp, Rachiplusia nu, Richia albicosta, Scirpophaga spp., Sesamia spp., Sparganothis spp., Spodoptera spp., Sylepta derogate, Synanthedon spp., Thaumetopoea spp., Tortrix spp., Trichoplusia ni , Tuta absoluta, and Yponomeuta spp.;

- from the order Mallophaga, for example,

Damalinea spp. and Trichodectes spp.; - from the order Orthoptera, for example,

Blatta spp., Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp.,

Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schistocerca spp.;

- from the order Psocoptera, for example,

Liposcelis spp.;

- from the order Siphonaptera, for example,

Ceratophyllus spp., Ctenocephalides spp. and Xenopsylla cheopis;

- from the order Thysanoptera, for example,

Calliothrips phaseoli, Frankliniella spp., Heliothrips spp, Hercinothrips spp., Parthenothrips spp, Scirtothrips aurantii, Sericothrips variabilis, Taeniothrips spp., Thrips spp;

- from the order Thysanura, for example,

Lepisma saccharina.

In a further aspect, the invention may also relate to a method of controlling or preventing infestation of useful plants by phytopathogenic microorganisms, wherein a compound of formula (I) is applied as acitve ingredient to the plants, to parts thereof or the locus thereof. The compounds of formula (I) according to the invention are distinguished by activity, by being well tolerated by plants and by being environmentally safe. They have very useful curative, preventive and systemic properties and are used for protecting numerous useful plants. The compounds of formula (I) can be used to inhibit or destroy the diseases that occur on plants or parts of plants (fruit, blossoms, leaves, stems, tubers, roots) of different useful plants, while at the same time protecting also those parts of the plants that grow later e.g. from phytopathogenic microorganisms. It is also possible to use compounds of formula (I) as dressing agents for the treatment of plant propagation material, in particular of seeds (fruit, tubers, grains) and plant cuttings (e.g. rice), for the protection against fungal infections as well as against phytopathogenic fungi occurring in the soil.

Examples of fungi include: Fungi imperfecti (e.g. Botrytis, Pyricularia,

Helminthosporium, Fusarium, Septoria, Cercospora and Alternaria); Basidiomycetes (e.g. Rhizoctonia, Hemileia, Puccinia); the Ascomycetes classes (e.g. Venturia and Erysiphe, Podosphaera, Monilinia, Uncinula); Oomycetes classes (e.g. Phytophthora, Pythium, Plasmopara); Zygomycetes (e.g., Rhizopus spp.); family Phakopsoraceae, particularly those of the genus Phakopsora, for example Phakopsora pachyrhizi, which is also referred to as Asian soybean rust, and those of the family Pucciniaceae, particularly those of the genus Puccinia such as Puccinia graminis, also known as stem rust or black rust, which is a problem disease in cereal plants and Puccinia recondita, also known as brown rust. Among the plants and the possible diseases of these plants protected by the method according to the present invention, mention may be made of:

- wheat, as regards controlling the following seed diseases: fusaria (Microdochium nivale and Fusarium roseum), stinking smut (Tilletia caries, Tilletia controversa or Tilletia indica), septoria disease (Septoria nodorum) and loose smut;

- wheat, as regards controlling the following diseases of the aerial parts of the plant:

cereal eyespot (Tapesia yallundae, Tapesia acuiformis), take-all (Gaeumannomyces graminis), foot blight (F. culmorum, F. graminearum), black speck (Rhizoctonia cerealis), powdery mildew (Erysiphe graminis forma specie tritici), rusts (Puccinia striiformis and Puccinia recondita) and septoria diseases (Septoria tritici and Septoria nodorum);

- wheat and barley, as regards controlling bacterial and viral diseases, for example barley yellow mosaic; - barley, as regards controlling the following seed diseases: net blotch (Pyrenophora graminea, Pyrenophora teres and Cochliobolus sativus), loose smut (Ustilago nuda) and fusaria (Microdochium nivale and Fusarium roseum);

- barley, as regards controlling the following diseases of the aerial parts of the plant: cereal eyespot (Tapesia yallundae), net blotch (Pyrenophora teres and Cochliobolus sativus), powdery mildew (Erysiphe graminis forma specie hordei), dwarf leaf rust (Puccinia hordei) and leaf blotch (Rhynchosporium secalis);

- potato, as regards controlling tuber diseases (in particular Helminthosporium solani, Phoma tuberosa, Rhizoctonia solani, Fusarium solani), mildew (PIrytopthora infestans) and certain viruses (virus Y);

- potato, as regards controlling the following foliage diseases: early blight (Alternaria solani), mildew (Phytophthora infestans);

- cotton, as regards controlling the following diseases of young plants grown from seeds: damping-off and collar rot (Rhizoctonia solani, Fusarium oxysporum) and black root rot

(Thielaviopsis basicola);

- protein yielding plants, for example peas, as regards controlling the following seed diseases: anthracnose (Ascochyta pisi, Mycosphaerella pinodes), fusaria (Fusarium oxysporum), grey mould (Botrytis cinerea) and mildew (Peronospora pisi);

- oil-bearing plants, for example rape, as regards controlling the following seed diseases: Phoma lingam, Alternaria brassicae and Sclerotinia sclerotiorum;

- corn, as regards controlling seed diseases: (Rhizopus sp., Penicillium sp.,

[0104]Trichoderma sp., Aspergillus sp., and Gibber ellafujikuroi);

- flax, as regards controlling the seed disease: Alternaria linicola; - forest trees, as regards controlling damping-off (Fusarium oxysporum, Rhizoctonia solani);

- rice, as regards controlling the following diseases of the aerial parts: blast disease (Magnaporthe grisea), bordered sheath spot (Rhizoctonia solani);

- leguminous plants, as regards controlling the following diseases of seeds or of young plants grown from seeds: damping-off and collar rot (Fusarium oxysporum, Fusarium roseum, Rhizoctonia solani, Pythium sp.);

- leguminous plants, as regards controlling the following diseases of the aerial parts: grey mould (Botrytis sp.), powdery mildews (in particular Erysiphe cichoracearum,

Sphaerotheca fuliginea and Leveillula taurica), fusaria (Fusarium oxysporum, Fusarium roseum), leaf spot (Cladosporium sp.), alternaria leaf spot (Alternaria sp.), anthracnose (Colletotrichum sp.), septoria leaf spot (Septoria sp.), black speck (Rhizoctonia solani), mildews (for example Bremia lactucae, Peronospora sp., Pseudoperonospora sp., Phytophthora sp.);

- fruit trees, as regards diseases of the aerial parts: monilia disease (Monilia fructigenae, M. laxa), scab (Venturia inaequalis), powdery mildew (Podosphaera leucotricha); - vine, as regards diseases of the foliage: in particular grey mould (Botrytis cinerea), powdery mildew (Uncinula necator), black rot (Guignardia biwelli) and mildew (Plasmopara viticola);

- beetroot, as regards the following diseases of the aerial parts: cercospora blight

(Cercospora beticola), powdery mildew (Erysiphe beticola), leaf spot (Ramularia beticola).

The fungicide composition according to the present invention may also be used against fungal diseases liable to grow on or inside timber. The term "timber" means all types of species of wood, and all types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists in contacting one or more compounds of the present invention, or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.

In a further aspect, the invention also relates to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica,

Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Eelonolaimus longicaudatus and other Belonolaimus species; Pine

nematodes, Bursaphelenchus xylophilus and other Bursaphelenchus species; Ring nematodes, Criconema species, Criconemella species, Criconemoides species,

Mesocriconema species; Stem and bulb nematodes, Ditylenchus destructor, Ditylenchus dipsaci and other Ditylenchus species; Awl nematodes, Dolichodorus species; Spiral nematodes, Heliocotylenchus multicinctus and other Helicotylenchus species; Sheath and sheathoid nematodes, Hemicycliophora species and Hemicriconemoides species;

Hirshmanniella species; Lance nematodes, Hoploaimus species; false rootknot

nematodes, Nacobbus species; Needle nematodes, Longidorus elongatus and other Longidorus species; Pin nematodes, Pratylenchus species; Lesion nematodes,

Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus, Rotylenchus reniformis and other Rotylenchus species; Scutellonema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other

Tylenchorhynchus species; Citrus nematodes, Tylenchulus species; Dagger nematodes, Xiphinema species; and other plant parasitic nematode species, such as Subanguina spp., Hypsoperine spp., Macroposthonia spp., Melinius spp., Punctodera spp., and Quinisulcius spp..

The compounds of the invention may also have activity against the molluscs.

Examples of which include, for example, Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus); Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); ochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicelia (H. itala, H. obvia); Helicidae Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M.

marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia and Zanitoides. The combinations according to the present invention are particularly effective against Deroceras, such as Deroceras reticulatum.

In an embodiment, independent of other embodiments, the compounds of formula (I) are especially useful for the control of nematodes. Particularly, the nematode species Meloidogyne spp., Heterodera spp., Rotylenchus spp. and Pratylenchus spp. can be controlled by compounds of the invention. Compounds of this invention are effective for controlling nematode, insect, acarid pests and/or fungal pathogens of agronomic plants, both growing and harvested, when employed alone, they may also be used in combination with other biological active agents used in agriculture, such as one or more nematicides, insecticides, acaricides, fungicides, bactericides, plant activator, molluscicide, and pheromones (whether chemical or biological). Mixing the compounds of the invention or the compositions thereof in the use form as pesticides with other pesticides frequently results in a broader pesticidal spectrum of action. For example, the formula (I) compounds of this invention may be used effectively in conjunction or combination with pyrethroids, neonicotinoids, macrolides, diamides, phosphates, carbamates, cyclodienes, formamidines, phenol tin compounds, chlorinated hydrocarbons, benzoylphenyl ureas, pyrroles and the like.

The activity of the compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding, for example, one or more insecticidally, acaricidally, nematicidally and/or fungicidally active agents. The combinations compounds of formula (I) with other insecticidally, acaricidally, nematicidally and/or fungicidally active agents may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, pests or fungi can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.

The following list of pesticides together with which the compounds according to the invention can be used, is intended to illustrate the possible combinations by way of example.

The following combination of the compounds of formula (I) with another active compounds are preferred (the abbreviation "TX" means "one compound selected from the compounds of formulae P.1 to P.147 described in Table P of the present invention"): an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628) + TX,

an acaricide selected from the group of substances consisting of 1 ,1-bis(4-chloro- phenyl)-2-ethoxyethanol (lUPAC name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (lUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-/V-methyl-/V-1- naphthylacetamide (lUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (lUPAC name) (981 ) + TX, abamectin (1 ) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha-cypermethrin (202) + TX, amidithion (870) + TX, amidoflumet [CCN] + TX, amidothioate (872) + TX, amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, aramite (881 ) + TX, arsenous oxide (882) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azobenzene (lUPAC name) (888) + TX, azocyclotin (46) + TX, azothoate (889) + TX, benomyl (62) + TX, benoxafos (alternative name) [CCN] + TX, benzoximate (71 ) + TX, benzyl benzoate (lUPAC name) [CCN] + TX, bifenazate (74) + TX, bifenthrin (76) + TX, binapacryl (907) + TX, brofenvalerate (alternative name) + TX, bromocyclen (918) + TX, bromophos (920) + TX, bromophos-ethyl (921 ) + TX, bromopropylate (94) + TX, buprofezin (99) + TX, butocarboxim (103) + TX, butoxycarboxim (104) + TX,

butylpyridaben (alternative name) + TX, calcium polysulfide (lUPAC name) (1 1 1 ) + TX, camphechlor (941 ) + TX, carbanolate (943) + TX, carbaryl (1 15) + TX, carbofuran (1 18) + TX, carbophenothion (947) + TX, CGA 50'439 (development code) (125) + TX, chinomethionat (126) + TX, chlorbenside (959) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorfenapyr (130) + TX, chlorfenethol (968) + TX, chlorfenson (970) + TX, chlorfensulphide (971 ) + TX, chlorfenvinphos (131 ) + TX, chlorobenzilate (975) + TX, chloromebuform (977) + TX, chloromethiuron (978) + TX, chloropropylate (983) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, clofentezine (158) + TX, closantel (alternative name) [CCN] + TX, coumaphos (174) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, cufraneb (1013) + TX, cyanthoate (1020) + TX, cyflumetofen (CAS Reg. No.: 400882- 07-7) + TX, cyhalothrin (196) + TX, cyhexatin (199) + TX, cypermethrin (201 ) + TX, DCPM (1032) + TX, DDT (219) + TX, demephion (1037) + TX, demephion-0 (1037) + TX, demephion-S (1037) + TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-O (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulphon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diazinon (227) + TX, dichlofluanid (230) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicofol (242) + TX,

dicrotophos (243) + TX, dienochlor (1071 ) + TX, dimefox (1081 ) + TX, dimethoate (262) + TX, dinactin (alternative name) (653) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinobuton (269) + TX, dinocap (270) + TX, dinocap-4 [CCN] + TX, dinocap-6 [CCN] + TX, dinocton (1090) + TX, dinopenton (1092) + TX, dinosulfon (1097) + TX, dinoterbon (1098) + TX, dioxathion (1 102) + TX, diphenyl sulfone (lUPAC name) (1 103) + TX, disulfiram (alternative name) [CCN] + TX, disulfoton (278) + TX, DNOC (282) + TX, dofenapyn (1 1 13) + TX, doramectin (alternative name) [CCN] + TX, endosulfan (294) + TX, endothion (1 121 ) + TX, EPN (297) + TX, eprinomectin

(alternative name) [CCN] + TX, ethion (309) + TX, ethoate-methyl (1 134) + TX, etoxazole (320) + TX, etrimfos (1 142) + TX, fenazaflor (1 147) + TX, fenazaquin (328) + TX, fenbutatin oxide (330) + TX, fenothiocarb (337) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) + TX, fenpyroximate (345) + TX, fenson (1 157) + TX, fentrifanil (1 161 ) + TX, fenvalerate (349) + TX, fipronil (354) + TX, fluacrypyrim (360) + TX, fluazuron (1 166) + TX, flubenzimine (1 167) + TX, flucycloxuron (366) + TX, flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenoxuron (370) + TX, flumethrin (372) + TX, fluorbenside (1 174) + TX, fluvalinate (1 184) + TX, FMC 1 137

(development code) (1 185) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, gamma-HCH (430) + TX, glyodin (1205) + TX, halfenprox (424) + TX, heptenophos (432) + TX, hexadecyl cyclopropanecarboxylate (lUPAC/Chemical Abstracts name) (1216) + TX, hexythiazox (441 ) + TX, iodomethane (lUPAC name) (542) + TX, isocarbophos (alternative name) (473) + TX, isopropyl 0-(methoxyaminothiophosphoryl)salicylate (lUPAC name) (473) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, lindane (430) + TX, lufenuron (490) + TX, malathion (492) + TX, malonoben (1254) + TX, mecarbam (502) + TX, mephosfolan (1261 ) + TX, mesulfen (alternative name) [CCN] + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methidathion (529) + TX, methiocarb (530) + TX, methomyl (531 ) + TX, methyl bromide (537) + TX, metolcarb (550) + TX, mevinphos (556) + TX,

mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, monocrotophos (561 ) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naled (567) + TX, NC-184 (compound code) + TX, NC-512 (compound code) + TX, nifluridide (1309) + TX, nikkomycins (alternative name) [CCN] + TX, nitrilacarb (1313) + TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, parathion (615) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, phenkapton (1330) + TX, phenthoate (631 ) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosphamidon (639) + TX, phoxim (642) + TX, pirimiphos- methyl (652) + TX, polychloroterpenes (traditional name) (1347) + TX, polynactins (alternative name) (653) + TX, proclonol (1350) + TX, profenofos (662) + TX, promacyl (1354) + TX, propargite (671 ) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothoate (1362) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridaphenthion (701 ) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX, quinalphos (71 1 ) + TX, quintiofos (1381 ) + TX, R-1492 (development code) (1382) + TX, RA-17 (development code) (1383) + TX, rotenone (722) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, sophamide (1402) + TX, spirodiclofen (738) + TX, spiromesifen (739) + TX, SSI-121 (development code) (1404) + TX, sulfiram (alternative name) [CCN] + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulphur (754) + TX, SZI-121 (development code) (757) + TX, tau-fluvalinate (398) + TX, tebufenpyrad (763) + TX, TEPP (1417) + TX, terbam (alternative name) + TX, tetrachlorvinphos (777) + TX, tetradifon (786) + TX, tetranactin (alternative name) (653) + TX, tetrasul (1425) + TX, thiafenox (alternative name) + TX, thiocarboxime (1431 ) + TX, thiofanox (800) + TX, thiometon (801 ) + TX, thioquinox (1436) + TX, thuringiensin (alternative name) [CCN] + TX, triamiphos (1441 ) + TX, triarathene (1443) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + TX, trifenofos (1455) + TX, trinactin (alternative name) (653) + TX, vamidothion (847) + TX, vaniliprole [CCN] and YI-5302 (compound code) + TX, an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (lUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hydrated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX,

an anthelmintic selected from the group of substances consisting of abamectin (1 ) + TX, crufomate (101 1 ) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX, an avicide selected from the group of substances consisting of chloralose (127) +

TX, endrin (1 122) + TX, fenthion (346) + TX, pyridin-4-amine (lUPAC name) (23) and strychnine (745) + TX,

a bactericide selected from the group of substances consisting of 1 -hydroxy- 1 H- pyridine-2-thione (lUPAC name) (1222) + TX, 4-(quinoxalin-2- ylamino)benzenesulfonamide (lUPAC name) (748) + TX, 8-hydroxyquinoline sulfate (446) + TX, bronopol (97) + TX, copper dioctanoate (lUPAC name) (170) + TX, copper hydroxide (lUPAC name) (169) + TX, cresol [CCN] + TX, dichlorophen (232) + TX, dipyrithione (1 105) + TX, dodicin (1 1 12) + TX, fenaminosulf (1 144) + TX, formaldehyde (404) + TX, hydrargaphen (alternative name) [CCN] + TX, kasugamycin (483) + TX, kasugamycin hydrochloride hydrate (483) + TX, nickel bis(dimethyldithiocarbamate)

(lUPAC name) (1308) + TX, nitrapyrin (580) + TX, octhilinone (590) + TX, oxolinic acid (606) + TX, oxytetracycline (61 1 ) + TX, potassium hydroxyquinoline sulfate (446) + TX, probenazole (658) + TX, streptomycin (744) + TX, streptomycin sesquisulfate (744) + TX, tecloftalam (766) + TX, and thiomersal (alternative name) [CCN] + TX,

a biological agent selected from the group of substances consisting of Adoxophyes orana GV (alternative name) (12) + TX, Agrobacterium radiobacter (alternative name) (13) + TX, Amblyseius spp. (alternative name) (19) + TX, Anagrapha falcifera NPV (alternative name) (28) + TX, Anagrus atomus (alternative name) (29) + TX, Aphelinus abdominalis (alternative name) (33) + TX, Aphidius colemani (alternative name) (34) + TX, Aphidoletes aphidimyza (alternative name) (35) + TX, Autographa californica NPV (alternative name) (38) + TX, Bacillus firmus (alternative name) (48) + TX, Bacillus sphaericus Neide (scientific name) (49) + TX, Bacillus thuringiensis Berliner (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. aizawai (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. israelensis (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. japonensis (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. kurstaki (scientific name) (51 ) + TX, Bacillus thuringiensis subsp. tenebrionis (scientific name) (51 ) + TX, Beauveria bassiana (alternative name) (53) + TX, Beauveria brongniartii (alternative name) (54) + TX, Chrysoperla carnea (alternative name) (151 ) + TX, Cryptolaemus montrouzieri (alternative name) (178) + TX, Cydia pomonella GV

(alternative name) (191 ) + TX, Dacnusa sibirica (alternative name) (212) + TX,

Diglyphus isaea (alternative name) (254) + TX, Encarsia formosa (scientific name) (293) + TX, Eretmocerus eremicus (alternative name) (300) + TX, Helicoverpa zea NPV (alternative name) (431 ) + TX, Heterorhabditis bacteriophora and H. megidis (alternative name) (433) + TX, Hippodamia convergens (alternative name) (442) + TX, Leptomastix dactylopii (alternative name) (488) + TX, Macrolophus caliginosus (alternative name) (491 ) + TX, Mamestra brassicae NPV (alternative name) (494) + TX, Metaphycus helvolus (alternative name) (522) + TX, Metarhizium anisopliae var. acridum (scientific name) (523) + TX, Metarhizium anisopliae var. anisopliae (scientific name) (523) + TX, Neodiprion sertifer NPV and N. lecontei NPV (alternative name) (575) + TX, Orius spp. (alternative name) (596) + TX, Paecilomyces fumosoroseus (alternative name) (613) + TX, Pasteuria penetrans + TX, Pasteuria thornei + TX, Pasteuria nishizawae + TX, Pasteuria ramosa + TX, Phytoseiulus persimilis (alternative name) (644) + TX,

Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741 ) + TX, Steinernema bibionis (alternative name) (742) + TX, Steinernema carpocapsae

(alternative name) (742) + TX, Steinernema feltiae (alternative name) (742) + TX, Steinernema glaseri (alternative name) (742) + TX, Steinernema riobrave (alternative name) (742) + TX, Steinernema riobravis (alternative name) (742) + TX, Steinernema scapterisci (alternative name) (742) + TX, Steinernema spp. (alternative name) (742) + TX, Trichogramma spp. (alternative name) (826) + TX, Typhlodromus occidentalis (alternative name) (844) and Verticillium lecanii (alternative name) (848) + TX,

a soil sterilant selected from the group of substances consisting of iodomethane (lUPAC name) (542) and methyl bromide (537) + TX,

a chemosterilant selected from the group of substances consisting of apholate

[CCN] + TX, bisazir (alternative name) [CCN] + TX, busulfan (alternative name) [CCN] + TX, diflubenzuron (250) + TX, dimatif (alternative name) [CCN] + TX, hemel [CCN] + TX, hempa [CCN] + TX, metepa [CCN] + TX, methiotepa [CCN] + TX, methyl apholate [CCN] + TX, morzid [CCN] + TX, penfluron (alternative name) [CCN] + TX, tepa [CCN] + TX, thiohempa (alternative name) [CCN] + TX, thiotepa (alternative name) [CCN] + TX, tretamine (alternative name) [CCN] and uredepa (alternative name) [CCN] + TX,

an insect pheromone selected from the group of substances consisting of (E)-dec- 5-en-1 -yl acetate with (£)-dec-5-en-1-ol (lUPAC name) (222) + TX, (£)-tridec-4-en-1-yl acetate (lUPAC name) (829) + TX, (£)-6-methylhept-2-en-4-ol (lUPAC name) (541 ) + TX, (£,Z)-tetradeca-4,10-dien-1-yl acetate (lUPAC name) (779) + TX, (Z)-dodec-7-en-1 -yl acetate (lUPAC name) (285) + TX, (Z)-hexadec-l 1-enal (lUPAC name) (436) + TX, (Z)- hexadec-1 1 -en-1-yl acetate (lUPAC name) (437) + TX, (Z)-hexadec-13-en-1 1 -yn-1-yl acetate (lUPAC name) (438) + TX, (Z)-icos-13-en-10-one (lUPAC name) (448) + TX, (Z)-tetradec-7-en-1 -al (lUPAC name) (782) + TX, (Z)-tetradec-9-en-1-ol (lUPAC name) (783) + TX, (Z)-tetradec-9-en-1-yl acetate (lUPAC name) (784) + TX, (7£,9Z)-dodeca- 7,9-dien-1-yl acetate (lUPAC name) (283) + TX, (9Z,1 1 £)-tetradeca-9,1 1-dien-1-yl acetate (lUPAC name) (780) + TX, (9Z, 12£)-tetradeca-9,12-dien-1-yl acetate (lUPAC name) (781 ) + TX, 14-methyloctadec-1 -ene (lUPAC name) (545) + TX, 4-methylnonan-5-ol with 4- methylnonan-5-one (lUPAC name) (544) + TX, alpha-multistriatin (alternative name) [CCN] + TX, brevicomin (alternative name) [CCN] + TX, codlelure (alternative name) [CCN] + TX, codlemone (alternative name) (167) + TX, cuelure (alternative name) (179) + TX, disparlure (277) + TX, dodec-8-en-1-yl acetate (lUPAC name) (286) + TX, dodec-9-en-1 -yl acetate (lUPAC name) (287) + TX, dodeca-8 + TX, 10-dien-1 -yl acetate (lUPAC name) (284) + TX, dominicalure (alternative name) [CCN] + TX, ethyl 4- methyloctanoate (lUPAC name) (317) + TX, eugenol (alternative name) [CCN] + TX, frontalin (alternative name) [CCN] + TX, gossyplure (alternative name) (420) + TX, grandlure (421 ) + TX, grandlure I (alternative name) (421 ) + TX, grandlure II (alternative name) (421 ) + TX, grandlure III (alternative name) (421 ) + TX, grandlure IV (alternative name) (421 ) + TX, hexalure [CCN] + TX, ipsdienol (alternative name) [CCN] + TX, ipsenol (alternative name) [CCN] + TX, japonilure (alternative name) (481 ) + TX, lineatin (alternative name) [CCN] + TX, litlure (alternative name) [CCN] + TX, looplure

(alternative name) [CCN] + TX, medlure [CCN] + TX, megatomoic acid (alternative name) [CCN] + TX, methyl eugenol (alternative name) (540) + TX, muscalure (563) + TX, octadeca-2,13-dien-1 -yl acetate (lUPAC name) (588) + TX, octadeca-3,13-dien-1-yl acetate (lUPAC name) (589) + TX, orfralure (alternative name) [CCN] + TX, oryctalure (alternative name) (317) + TX, ostramone (alternative name) [CCN] + TX, siglure [CCN] + TX, sordidin (alternative name) (736) + TX, sulcatol (alternative name) [CCN] + TX, tetradec-1 1 -en-1-yl acetate (lUPAC name) (785) + TX, trimedlure (839) + TX, trimedlure A (alternative name) (839) + TX, trimedlure B-i (alternative name) (839) + TX, trimedlure B 2 (alternative name) (839) + TX, trimedlure C (alternative name) (839) and trunc-call (alternative name) [CCN] + TX,

an insect repellent selected from the group of substances consisting of 2- (octylthio)ethanol (lUPAC name) (591 ) + TX, butopyronoxyl (933) + TX,

butoxy(polypropylene glycol) (936) + TX, dibutyl adipate (lUPAC name) (1046) + TX, dibutyl phthalate (1047) + TX, dibutyl succinate (lUPAC name) (1048) + TX,

diethyltoluamide [CCN] + TX, dimethyl carbate [CCN] + TX, dimethyl phthalate [CCN] + TX, ethyl hexanediol (1 137) + TX, hexamide [CCN] + TX, methoquin-butyl (1276) + TX, methylneodecanamide [CCN] + TX, oxamate [CCN] and picaridin [CCN] + TX,

an insecticide selected from the group of substances consisting of 1 -dichloro-1- nitroethane (lUPAC/Chemical Abstracts name) (1058) + TX, 1 ,1 -dichloro-2,2-bis(4- ethylphenyl)ethane (lUPAC name) (1056), + TX, 1 ,2-dichloropropane (lUPAC/Chemical Abstracts name) (1062) + TX, 1 ,2-dichloropropane with 1 ,3-dichloropropene (lUPAC name) (1063) + TX, 1-bromo-2-chloroethane (lUPAC/Chemical Abstracts name) (916) + TX, 2,2,2-trichloro-1-(3,4-dichlorophenyl)ethyl acetate (lUPAC name) (1451 ) + TX, 2,2- dichlorovinyl 2-ethylsulphinylethyl methyl phosphate (lUPAC name) (1066) + TX, 2-(1 ,3- dithiolan-2-yl)phenyl dimethylcarbamate (lUPAC/ Chemical Abstracts name) (1 109) + TX, 2-(2-butoxyethoxy)ethyl thiocyanate (lUPAC/Chemical Abstracts name) (935) + TX, 2- (4,5-dimethyl-1 ,3-dioxolan-2-yl)phenyl methylcarbamate (lUPAC/ Chemical Abstracts name) (1084) + TX, 2-(4-chloro-3,5-xylyloxy)ethanol (lUPAC name) (986) + TX, 2- chlorovinyl diethyl phosphate (lUPAC name) (984) + TX, 2-imidazolidone (lUPAC name) (1225) + TX, 2-isovalerylindan-1 ,3-dione (lUPAC name) (1246) + TX, 2-methyl(prop-2- ynyl)aminophenyl methylcarbamate (lUPAC name) (1284) + TX, 2-thiocyanatoethyl laurate (lUPAC name) (1433) + TX, 3-bromo-1-chloroprop-1-ene (lUPAC name) (917) + TX, 3-methyl-1-phenylpyrazol-5-yl dimethylcarbamate (lUPAC name) (1283) + TX, 4- methyl(prop-2-ynyl)amino-3,5-xylyl methylcarbamate (lUPAC name) (1285) + TX, 5,5- dimethyl-3-oxocyclohex-1-enyl dimethylcarbamate (lUPAC name) (1085) + TX, abamectin (1 ) + TX, acephate (2) + TX, acetamiprid (4) + TX, acethion (alternative name) [CCN] + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, acrylonitrile (lUPAC name) (861 ) + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, aldrin (864) + TX, allethrin (17) + TX, allosamidin (alternative name) [CCN] + TX, allyxycarb (866) + TX, alpha-cypermethrin (202) + TX, alpha-ecdysone (alternative name) [CCN] + TX, aluminium phosphide (640) + TX, amidithion (870) + TX, amidothioate (872) + TX, aminocarb (873) + TX, amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, anabasine (877) + TX, athidathion (883) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) + TX, azadirachtin (alternative name) (41 ) + TX, azamethiphos (42) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azothoate (889) + TX, Bacillus thuringiensis delta endotoxins (alternative name) (52) + TX, barium hexafluorosilicate (alternative name) [CCN] + TX, barium polysulfide (lUPAC/Chemical Abstracts name) (892) + TX, barthrin [CCN] + TX, Bayer 22/190 (development code) (893) + TX, Bayer 22408 (development code) (894) + TX, bendiocarb (58) + TX, benfuracarb (60) + TX, bensultap (66) + TX, beta-cyfluthrin (194) + TX, beta-cypermethrin (203) + TX, bifenthrin (76) + TX, bioallethrin (78) + TX, bioallethrin S-cyclopentenyl isomer (alternative name) (79) + TX, bioethanomethrin [CCN] + TX, biopermethrin (908) + TX, bioresmethrin (80) + TX, bis(2-chloroethyl) ether (lUPAC name) (909) + TX, bistrifluron (83) + TX, borax (86) + TX, brofenvalerate (alternative name) + TX, bromfenvinfos (914) + TX, bromocyclen (918) + TX, bromo-DDT (alternative name) [CCN] + TX, bromophos (920) + TX, bromophos-ethyl (921 ) + TX, bufencarb (924) + TX, buprofezin (99) + TX, butacarb (926) + TX, butathiofos (927) + TX, butocarboxim (103) + TX, butonate (932) + TX, butoxycarboxim (104) + TX, butylpyridaben (alternative name) + TX, cadusafos (109) + TX, calcium arsenate [CCN] + TX, calcium cyanide (444) + TX, calcium polysulfide (lUPAC name) (1 1 1 ) + TX, camphechlor (941 ) + TX, carbanolate (943) + TX, carbaryl (1 15) + TX, carbofuran (1 18) + TX, carbon disulfide (lUPAC/Chemical Abstracts name) (945) + TX, carbon tetrachloride (lUPAC name) (946) + TX, carbophenothion (947) + TX, carbosulfan (1 19) + TX, cartap (123) + TX, cartap hydrochloride (123) + TX, cevadine (alternative name) (725) + TX, chlorbicyclen (960) + TX, chlordane (128) + TX, chlordecone (963) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorethoxyfos (129) + TX, chlorfenapyr (130) + TX, chlorfenvinphos (131 ) + TX, chlorfluazuron (132) + TX, chlormephos (136) + TX, chloroform [CCN] + TX,

chloropicrin (141 ) + TX, chlorphoxim (989) + TX, chlorprazophos (990) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, chromafenozide (150) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, cis-resmethrin (alternative name) + TX, cismethrin (80) + TX, clocythrin (alternative name) + TX, cloethocarb (999) + TX, closantel (alternative name) [CCN] + TX, clothianidin (165) + TX, copper acetoarsenite [CCN] + TX, copper arsenate [CCN] + TX, copper oleate [CCN] + TX, coumaphos (174) + TX, coumithoate (1006) + TX, crotamiton (alternative name) [CCN] + TX, crotoxyphos (1010) + TX, crufomate (101 1 ) + TX, cryolite (alternative name) (177) + TX, CS 708 (development code) (1012) + TX, cyanofenphos (1019) + TX, cyanophos (184) + TX, cyanthoate (1020) + TX, cyclethrin [CCN] + TX, cycloprothrin (188) + TX, cyfluthrin (193) + TX, cyhalothrin (196) + TX, cypermethrin (201 ) + TX, cyphenothrin (206) + TX, cyromazine (209) + TX, cythioate (alternative name) [CCN] + TX, d-limonene (alternative name) [CCN] + TX, d- tetramethrin (alternative name) (788) + TX, DAEP (1031 ) + TX, dazomet (216) + TX, DDT (219) + TX, decarbofuran (1034) + TX, deltamethrin (223) + TX, demephion (1037) + TX, demephion-0 (1037) + TX, demephion-S (1037) + TX, demeton (1038) + TX, demeton-methyl (224) + TX, demeton-0 (1038) + TX, demeton-O-methyl (224) + TX, demeton-S (1038) + TX, demeton-S-methyl (224) + TX, demeton-S-methylsulphon (1039) + TX, diafenthiuron (226) + TX, dialifos (1042) + TX, diamidafos (1044) + TX, diazinon (227) + TX, dicapthon (1050) + TX, dichlofenthion (1051 ) + TX, dichlorvos (236) + TX, dicliphos (alternative name) + TX, dicresyl (alternative name) [CCN] + TX, dicrotophos (243) + TX, dicyclanil (244) + TX, dieldrin (1070) + TX, diethyl 5- methylpyrazol-3-yl phosphate (lUPAC name) (1076) + TX, diflubenzuron (250) + TX, dilor (alternative name) [CCN] + TX, dimefluthrin [CCN] + TX, dimefox (1081 ) + TX, dimetan (1085) + TX, dimethoate (262) + TX, dimethrin (1083) + TX, dimethylvinphos (265) + TX, dimetilan (1086) + TX, dinex (1089) + TX, dinex-diclexine (1089) + TX, dinoprop (1093) + TX, dinosam (1094) + TX, dinoseb (1095) + TX, dinotefuran (271 ) + TX, diofenolan (1099) + TX, dioxabenzofos (1 100) + TX, dioxacarb (1 101 ) + TX, dioxathion (1 102) + TX, disulfoton (278) + TX, dithicrofos (1 108) + TX, DNOC (282) + TX, doramectin (alternative name) [CCN] + TX, DSP (1 1 15) + TX, ecdysterone (alternative name) [CCN] + TX, El 1642 (development code) (1 1 18) + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, EMPC (1 120) + TX, empenthrin (292) + TX, endosulfan (294) + TX, endothion (1 121 ) + TX, endrin (1 122) + TX, EPBP (1 123) + TX, EPN (297) + TX, epofenonane (1 124) + TX, eprinomectin (alternative name) [CCN] + TX, esfenvalerate (302) + TX, etaphos (alternative name) [CCN] + TX, ethiofencarb (308) + TX, ethion (309) + TX, ethiprole (310) + TX, ethoate-methyl (1 134) + TX, ethoprophos (312) + TX, ethyl formate (lUPAC name) [CCN] + TX, ethyl- DDD (alternative name) (1056) + TX, ethylene dibromide (316) + TX, ethylene dichloride (chemical name) (1 136) + TX, ethylene oxide [CCN] + TX, etofenprox (319) + TX, etrimfos (1 142) + TX, EXD (1 143) + TX, famphur (323) + TX, fenamiphos (326) + TX, fenazaflor (1 147) + TX, fenchlorphos (1 148) + TX, fenethacarb (1 149) + TX, fenfluthrin (1 150) + TX, fenitrothion (335) + TX, fenobucarb (336) + TX, fenoxacrim (1 153) + TX, fenoxycarb (340) + TX, fenpirithrin (1 155) + TX, fenpropathrin (342) + TX, fenpyrad (alternative name) + TX, fensulfothion (1 158) + TX, fenthion (346) + TX, fenthion-ethyl [CCN] + TX, fenvalerate (349) + TX, fipronil (354) + TX, flonicamid (358) + TX, flubendiamide (CAS. Reg. No.: 272451 -65-7) + TX, flucofuron (1 168) + TX,

flucycloxuron (366) + TX, flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenerim [CCN] + TX, flufenoxuron (370) + TX, flufenprox (1 171 ) + TX, flumethrin (372) + TX, flupyradifurone + TX, fluvalinate (1 184) + TX, FMC 1 137 (development code) (1 185) + TX, fonofos (1 191 ) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, fosmethilan (1 194) + TX, fospirate (1 195) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furathiocarb

(412) + TX, furethrin (1200) + TX, gamma-cyhalothrin (197) + TX, gamma-HCH (430) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, GY-81 (development code) (423) + TX, halfenprox (424) + TX, halofenozide (425) + TX, HCH (430) + TX, HEOD (1070) + TX, heptachlor (121 1 ) + TX, heptenophos (432) + TX, heterophos [CCN] + TX, hexaflumuron (439) + TX, HHDN (864) + TX, hydramethylnon (443) + TX, hydrogen cyanide (444) + TX, hydroprene (445) + TX, hyquincarb (1223) + TX, imidacloprid (458) + TX, imiprothrin (460) + TX, indoxacarb (465) + TX, iodomethane (lUPAC name) (542) + TX, IPSP (1229) + TX, isazofos (1231 ) + TX, isobenzan (1232) + TX, isocarbophos (alternative name) (473) + TX, isodrin (1235) + TX, isofenphos (1236) + TX, isolane (1237) + TX, isoprocarb (472) + TX, isopropyl 0-(methoxy- aminothiophosphoryl)salicylate (lUPAC name) (473) + TX, isoprothiolane (474) + TX, isothioate (1244) + TX, isoxathion (480) + TX, ivermectin (alternative name) [CCN] + TX, jasmolin I (696) + TX, jasmolin II (696) + TX, jodfenphos (1248) + TX, juvenile hormone I (alternative name) [CCN] + TX, juvenile hormone II (alternative name) [CCN] + TX, juvenile hormone III (alternative name) [CCN] + TX, kelevan (1249) + TX, kinoprene (484) + TX, lambda-cyhalothrin (198) + TX, lead arsenate [CCN] + TX, lepimectin (CCN) + TX, leptophos (1250) + TX, lindane (430) + TX, lirimfos (1251 ) + TX, lufenuron (490) + TX, lythidathion (1253) + TX, m-cumenyl methylcarbamate (lUPAC name) (1014) + TX, magnesium phosphide (lUPAC name) (640) + TX, malathion (492) + TX, malonoben (1254) + TX, mazidox (1255) + TX, mecarbam (502) + TX, mecarphon (1258) + TX, menazon (1260) + TX, mephosfolan (1261 ) + TX, mercurous chloride (513) + TX, mesulfenfos (1263) + TX, metaflumizone (CCN) + TX, metam (519) + TX, metam-potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methacrifos (1266) + TX, methamidophos (527) + TX, methanesulphonyl fluoride (lUPAC/Chemical Abstracts name) (1268) + TX, methidathion (529) + TX, methiocarb (530) + TX, methocrotophos (1273) + TX, methomyl (531 ) + TX,

methoprene (532) + TX, methoquin-butyl (1276) + TX, methothrin (alternative name) (533) + TX, methoxychlor (534) + TX, methoxyfenozide (535) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, methylchloroform (alternative name) [CCN] + TX, methylene chloride [CCN] + TX, metofluthrin [CCN] + TX, metolcarb (550) + TX, metoxadiazone (1288) + TX, mevinphos (556) + TX, mexacarbate (1290) + TX, milbemectin (557) + TX, milbemycin oxime (alternative name) [CCN] + TX, mipafox (1293) + TX, mirex (1294) + TX, monocrotophos (561 ) + TX, morphothion (1300) + TX, moxidectin (alternative name) [CCN] + TX, naftalofos (alternative name) [CCN] + TX, naled (567) + TX, naphthalene (lUPAC/Chemical Abstracts name) (1303) + TX, NC-170 (development code) (1306) + TX, NC-184 (compound code) + TX, nicotine (578) + TX, nicotine sulfate (578) + TX, nifluridide (1309) + TX, nitenpyram (579) + TX, nithiazine (131 1 ) + TX, nitrilacarb (1313) + TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, nornicotine (traditional name) (1319) + TX, novaluron (585) + TX, noviflumuron (586) + TX, 0-5- dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (lUPAC name) (1057) + TX, 0,0- diethyl 0-4-methyl-2-oxo-2/-/-chromen-7-yl phosphorothioate (lUPAC name) (1074) + TX, Ο,Ο-diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate (lUPAC name) (1075) + TX, O, Ο,Ο', O'-tetrapropyl dithiopyrophosphate (lUPAC name) (1424) + TX, oleic acid (lUPAC name) (593) + TX, omethoate (594) + TX, oxamyl (602) + TX, oxydemeton- methyl (609) + TX, oxydeprofos (1324) + TX, oxydisulfoton (1325) + TX, pp'-DDT (219) + TX, para-dichlorobenzene [CCN] + TX, parathion (615) + TX, parathion-methyl (616) + TX, penfluron (alternative name) [CCN] + TX, pentachlorophenol (623) + TX, pentachlorophenyl laurate (lUPAC name) (623) + TX, permethrin (626) + TX, petroleum oils (alternative name) (628) + TX, PH 60-38 (development code) (1328) + TX, phenkapton (1330) + TX, phenothrin (630) + TX, phenthoate (631 ) + TX, phorate (636) + TX, phosalone (637) + TX, phosfolan (1338) + TX, phosmet (638) + TX, phosnichlor (1339) + TX, phosphamidon (639) + TX, phosphine (lUPAC name) (640) + TX, phoxim (642) + TX, phoxim-methyl (1340) + TX, pirimetaphos (1344) + TX, pirimicarb (651 ) + TX, pirimiphos-ethyl (1345) + TX, pirimiphos-methyl (652) + TX,

polychlorodicyclopentadiene isomers (lUPAC name) (1346) + TX, polychloroterpenes (traditional name) (1347) + TX, potassium arsenite [CCN] + TX, potassium thiocyanate [CCN] + TX, prallethrin (655) + TX, precocene I (alternative name) [CCN] + TX, precocene II (alternative name) [CCN] + TX, precocene III (alternative name) [CCN] + TX, primidophos (1349) + TX, profenofos (662) + TX, profluthrin [CCN] + TX, promacyl (1354) + TX, promecarb (1355) + TX, propaphos (1356) + TX, propetamphos (673) + TX, propoxur (678) + TX, prothidathion (1360) + TX, prothiofos (686) + TX, prothoate (1362) + TX, protrifenbute [CCN] + TX, pymetrozine (688) + TX, pyraclofos (689) + TX, pyrazophos (693) + TX, pyresmethrin (1367) + TX, pyrethrin I (696) + TX, pyrethrin II (696) + TX, pyrethrins (696) + TX, pyridaben (699) + TX, pyridalyl (700) + TX, pyridaphenthion (701 ) + TX, pyrimidifen (706) + TX, pyrimitate (1370) + TX,

pyriproxyfen (708) + TX, quassia (alternative name) [CCN] + TX, quinalphos (71 1 ) + TX, quinalphos-methyl (1376) + TX, quinothion (1380) + TX, quintiofos (1381 ) + TX, R- 1492 (development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 (compound code) + TX, silafluofen (728) + TX, SN 72129 (development code) (1397) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoride (lUPAC/Chemical Abstracts name) (1399) + TX, sodium hexafluorosilicate (1400) + TX, sodium pentachlorophenoxide (623) + TX, sodium selenate (lUPAC name) (1401 ) + TX, sodium thiocyanate [CCN] + TX, sophamide (1402) + TX, spinosad (737) + TX, spiromesifen (739) + TX, spirotetrmat (CCN) + TX, sulcofuron (746) + TX, sulcofuron-sodium (746) + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulphuryl fluoride (756) + TX, sulprofos (1408) + TX, tar oils (alternative name) (758) + TX, tau-fluvalinate (398) + TX, tazimcarb (1412) + TX, TDE (1414) + TX, tebufenozide (762) + TX, tebufenpyrad (763) + TX, tebupirimfos (764) + TX, teflubenzuron (768) + TX, tefluthrin (769) + TX, temephos (770) + TX, TEPP (1417) + TX, terallethrin (1418) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachloroethane [CCN] + TX, tetrachlorvinphos (777) + TX, tetramethrin (787) + TX, theta-cypermethrin (204) + TX, thiacloprid (791 ) + TX, thiafenox (alternative name) + TX, thiamethoxam (792) + TX, thicrofos (1428) + TX, thiocarboxime (1431 ) + TX, thiocyclam (798) + TX, thiocyclam hydrogen oxalate (798) + TX, thiodicarb (799) + TX, thiofanox (800) + TX, thiometon (801 ) + TX, thionazin (1434) + TX, thiosultap (803) + TX, thiosultap-sodium (803) + TX, thuringiensin (alternative name) [CCN] + TX, tolfenpyrad (809) + TX, tralomethrin (812) + TX, transfluthrin (813) + TX,

transpermethrin (1440) + TX, triamiphos (1441 ) + TX, triazamate (818) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, trichlorfon (824) + TX, trichlormetaphos-3 (alternative name) [CCN] + TX, trichloronat (1452) + TX, trifenofos (1455) + TX, triflumuron (835) + TX, trimethacarb (840) + TX, triprene (1459) + TX, vamidothion (847) + TX, vaniliprole [CCN] + TX, veratridine (alternative name) (725) + TX, veratrine (alternative name) (725) + TX, XMC (853) + TX, xylylcarb (854) + TX, YI-5302 (compound code) + TX, zeta-cypermethrin (205) + TX, zetamethrin (alternative name) + TX, zinc phosphide (640) + TX, zolaprofos (1469) and ZXI 8901 (development code) (858) + TX, cyantraniliprole [736994-63-19] + TX, chlorantraniliprole [500008-45-7] + TX, cyenopyrafen [560121 -52-0] + TX, cyflumetofen [400882-07-7] + TX, pyrifluquinazon [337458-27-2] + TX, spinetoram [187166-40-1 + 187166-15-0] + TX, spirotetramat

[203313-25-1] + TX, sulfoxaflor [946578-00-3] + TX, flufiprole [704886-18-0] + TX, meperfluthrin [915288-13-0] + TX, tetramethylfluthrin [84937-88-2] + TX,

a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (lUPAC name) (913) + TX, bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (I UPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium pentachlorophenoxide (623) + TX, tazimcarb (1412) + TX, thiodicarb (799) + TX, tributyltin oxide (913) + TX, trifenmorph (1454) + TX, trimethacarb (840) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347) + TX, pyriprole [394730-71 -3] + TX, a nematicide selected from the group of substances consisting of AKD-3088 (compound code) + TX, 1 ,2-dibromo-3-chloropropane (lUPAC/Chemical Abstracts name) (1045) + TX, 1 ,2-dichloropropane (lUPAC/ Chemical Abstracts name) (1062) + TX, 1 ,2- dichloropropane with 1 ,3-dichloropropene (lUPAC name) (1063) + TX, 1 ,3- dichloropropene (233) + TX, 3,4-dichlorotetrahydrothiophene 1 ,1-dioxide (lUPAC/Chemical Abstracts name) (1065) + TX, 3-(4-chlorophenyl)-5-methylrhodanine (lUPAC name) (980) + TX, 5-methyl-6-thioxo-1 ,3,5-thiadiazinan-3-ylacetic acid (lUPAC name) (1286) + TX, 6- isopentenylaminopurine (alternative name) (210) + TX, abamectin (1 ) + TX, acetoprole [CCN] + TX, alanycarb (15) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, AZ 60541 (compound code) + TX, benclothiaz [CCN] + TX, benomyl (62) + TX,

butylpyridaben (alternative name) + TX, cadusafos (109) + TX, carbofuran (1 18) + TX, carbon disulfide (945) + TX, carbosulfan (1 19) + TX, chloropicrin (141 ) + TX,

chlorpyrifos (145) + TX, cloethocarb (999) + TX, cytokinins (alternative name) (210) + TX, dazomet (216) + TX, DBCP (1045) + TX, DCIP (218) + TX, diamidafos (1044) + TX, dichlofenthion (1051 ) + TX, dicliphos (alternative name) + TX, dimethoate (262) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291 ) + TX, emamectin benzoate (291 ) + TX, eprinomectin (alternative name) [CCN] + TX, ethoprophos (312) + TX, ethylene dibromide (316) + TX, fenamiphos (326) + TX, fenpyrad (alternative name) + TX, fensulfothion (1 158) + TX, fosthiazate (408) + TX, fosthietan (1 196) + TX, furfural (alternative name) [CCN] + TX, GY-81 (development code) (423) + TX, heterophos [CCN] + TX, iodomethane (lUPAC name) (542) + TX, isamidofos (1230) + TX, isazofos (1231 ) + TX, ivermectin (alternative name) [CCN] + TX, kinetin

(alternative name) (210) + TX, mecarphon (1258) + TX, metam (519) + TX, metam- potassium (alternative name) (519) + TX, metam-sodium (519) + TX, methyl bromide (537) + TX, methyl isothiocyanate (543) + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, Myrothecium verrucaria composition (alternative name) (565) + TX, NC-184 (compound code) + TX, oxamyl (602) + TX, phorate (636) + TX, phosphamidon (639) + TX, phosphocarb [CCN] + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachlorothiophene (lUPAC/ Chemical Abstracts name) (1422) + TX, thiafenox (alternative name) + TX, thionazin (1434) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, xylenols [CCN] + TX, YI-5302 (compound code) and zeatin (alternative name) (210) + TX, fluensulfone [318290-98-1] + TX, a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,

a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6) + TX, probenazole (658) and Reynoutria

sachalinensis extract (alternative name) (720) + TX,

a rodenticide selected from the group of substances consisting of 2-isovalerylindan- 1 ,3-dione (lUPAC name) (1246) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, alpha-chlorohydrin [CCN] + TX, aluminium phosphide (640) + TX, antu (880) + TX, arsenous oxide (882) + TX, barium carbonate (891 ) + TX, bisthiosemi (912) + TX, brodifacoum (89) + TX, bromadiolone (91 ) + TX, bromethalin (92) + TX, calcium cyanide (444) + TX, chloralose (127) + TX, chlorophacinone (140) + TX, cholecalciferol (alternative name) (850) + TX, coumachlor (1004) + TX, coumafuryl (1005) + TX, coumatetralyl (175) + TX, crimidine (1009) + TX, difenacoum (246) + TX, difethialone (249) + TX, diphacinone (273) + TX, ergocalciferol (301 ) + TX,

flocoumafen (357) + TX, fluoroacetamide (379) + TX, flupropadine (1 183) + TX, flupropadine hydrochloride (1 183) + TX, gamma-HCH (430) + TX, HCH (430) + TX, hydrogen cyanide (444) + TX, iodomethane (lUPAC name) (542) + TX, lindane (430) + TX, magnesium phosphide (lUPAC name) (640) + TX, methyl bromide (537) + TX, norbormide (1318) + TX, phosacetim (1336) + TX, phosphine (lUPAC name) (640) + TX, phosphorus [CCN] + TX, pindone (1341 ) + TX, potassium arsenite [CCN] + TX, pyrinuron (1371 ) + TX, scilliroside (1390) + TX, sodium arsenite [CCN] + TX, sodium cyanide (444) + TX, sodium fluoroacetate (735) + TX, strychnine (745) + TX, thallium sulfate [CCN] + TX, warfarin (851 ) and zinc phosphide (640) + TX,

a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)- ethyl piperonylate (lUPAC name) (934) + TX, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2- enone (lUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) + TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX,

an animal repellent selected from the group of substances consisting of

anthraquinone (32) + TX, chloralose (127) + TX, copper naphthenate [CCN] + TX, copper oxychloride (171 ) + TX, diazinon (227) + TX, dicyclopentadiene (chemical name) (1069) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, methiocarb (530) + TX, pyridin-4-amine (lUPAC name) (23) + TX, thiram (804) + TX, trimethacarb (840) + TX, zinc naphthenate [CCN] and ziram (856) + TX,

a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,

a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX,

and biologically active compounds selected from the group consisting of azaconazole (60207-31 -0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [1 16255- 48-2] + TX, cyproconazole [94361 -06-5] + TX, difenoconazole [1 19446-68-3] + TX, diniconazole [83657-24-3] + TX, epoxiconazole [106325-08-0] + TX, fenbuconazole

[1 14369-43-6] + TX, fluquinconazole [136426-54-5] + TX, flusilazole [85509-19-9] + TX, flutriafol [76674-21 -0] + TX, hexaconazole [79983-71 -4] + TX, imazalil [35554-44-0] + TX, imibenconazole [86598-92-7] + TX, ipconazole [125225-28-7] + TX, metconazole [1251 16-23-6] + TX, myclobutanil [88671 -89-0] + TX, pefurazoate [101903-30-4] + TX, penconazole [66246-88-6] + TX, prothioconazole [178928-70-6] + TX, pyrifenox [88283- 41 -4] + TX, prochloraz [67747-09-5] + TX, propiconazole [60207-90-1] + TX, simeconazole [149508-90-7] + TX, tebuconazole [107534-96-3] + TX, tetraconazole [1 12281-77-3] + TX, triadimefon [43121 -43-3] + TX, triadimenol [55219-65-3] + TX, triflumizole [99387-89-0] + TX, triticonazole [131983-72-7] + TX, ancymidol [12771-68- 5] + TX, fenarimol [60168-88-9] + TX, nuarimol [63284-71-9] + TX, bupirimate [41483- 43-6] + TX, dimethirimol [5221 -53-4] + TX, ethirimol [23947-60-6] + TX, dodemorph [1593-77-7] + TX, fenpropidine [67306-00-7] + TX, fenpropimorph [67564-91 -4] + TX, spiroxamine [1 18134-30-8] + TX, tridemorph [81412-43-3] + TX, cyprodinil [121552-61 - 2] + TX, mepanipyrim [1 10235-47-7] + TX, pyrimethanil [531 12-28-0] + TX, fenpiclonil [74738-17-3] + TX, fludioxonil [131341-86-1] + TX, benalaxyl [71626-1 1 -4] + TX, furalaxyl [57646-30-7] + TX, metalaxyl [57837-19-1 ] + TX, R-metalaxyl [70630-17-0] + TX, ofurace [58810-48-3] + TX, oxadixyl [77732-09-3] + TX, benomyl [17804-35-2] + TX, carbendazim [10605-21 -7] + TX, debacarb [62732-91-6] + TX, fuberidazole [3878- 19-1 ] + TX, thiabendazole [148-79-8] + TX, chlozolinate [84332-86-5] + TX,

dichlozoline [24201-58-9] + TX, iprodione [36734-19-7] + TX, myclozoline [54864-61 -8] + TX, procymidone [32809-16-8] + TX, vinclozoline [50471-44-8] + TX, boscalid

[188425-85-6] + TX, carboxin [5234-68-4] + TX, fenfuram [24691 -80-3] + TX, flutolanil [66332-96-5] + TX, mepronil [55814-41-0] + TX, oxycarboxin [5259-88-1] + TX, penthiopyrad [183675-82-3] + TX, thifluzamide [130000-40-7] + TX, guazatine [108173- 90-6] + TX, dodine [2439-10-3] [1 12-65-2] (free base) + TX, iminoctadine [13516-27-3] + TX, azoxystrobin [131860-33-8] + TX, dimoxystrobin [149961-52-4] + TX, enestroburin {Proc. BCPC, Int. Congr., Glasgow, 2003, 1 , 93} + TX, fluoxastrobin [361377-29-9] + TX, kresoxim-methyl [143390-89-0] + TX, metominostrobin [133408-50-1] + TX,

trifloxystrobin [141517-21-7] + TX, orysastrobin [248593-16-0] + TX, picoxystrobin

[1 17428-22-5] + TX, pyraclostrobin [175013-18-0] + TX, ferbam [14484-64-1] + TX, mancozeb [8018-01 -7] + TX, maneb [12427-38-2] + TX, metiram [9006-42-2] + TX, propineb [12071-83-9] + TX, thiram [137-26-8] + TX, zineb [12122-67-7] + TX, ziram [137-30-4] + TX, captafol [2425-06-1 ] + TX, captan [133-06-2] + TX, dichlofluanid

[1085-98-9] + TX, fluoroimide [41205-21 -4] + TX, folpet [133-07-3 ] + TX, tolylfluanid [731-27-1 ] + TX, bordeaux mixture [801 1-63-0] + TX, copperhydroxid [20427-59-2] + TX, copperoxychlorid [1332-40-7] + TX, coppersulfat [7758-98-7] + TX, copperoxid [1317-39-1 ] + TX, mancopper [53988-93-5] + TX, oxine-copper [10380-28-6] + TX, dinocap [131 -72-6] + TX, nitrothal-isopropyl [10552-74-6] + TX, edifenphos [17109-49-8] + TX, iprobenphos [26087-47-8] + TX, isoprothiolane [50512-35-1 ] + TX, phosdiphen [36519-00-3] + TX, pyrazophos [13457-18-6] + TX, tolclofos-methyl [57018-04-9] + TX, acibenzolar-S-methyl [135158-54-2] + TX, anilazine [101-05-3] + TX, benthiavalicarb [413615-35-7] + TX, blasticidin-S [2079-00-7] + TX, chinomethionat [2439-01 -2] + TX, chloroneb [2675-77-6] + TX, chlorothalonil [1897-45-6] + TX, cyflufenamid [180409-60- 3] + TX, cymoxanil [57966-95-7] + TX, dichlone [117-80-6] + TX, diclocymet [139920- 32-4] + TX, diclomezine [62865-36-5] + TX, dicloran [99-30-9] + TX, diethofencarb [87130-20-9] + TX, dimethomorph [110488-70-5] + TX, SYP-LI90 (Flumorph) [211867- 47-9] + TX, dithianon [3347-22-6] + TX, ethaboxam [162650-77-3] + TX, etridiazole [2593-15-9] + TX, famoxadone [131807-57-3] + TX, fenamidone [161326-34-7] + TX, fenoxanil [115852-48-7] + TX, fentin [668-34-8] + TX, ferimzone [89269-64-7] + TX, fluazinam [79622-59-6] + TX, fluopicolide [2391 10-15-7] + TX, flusulfamide [106917-52- 6] + TX, fenhexamid [126833-17-8] + TX, fosetyl-aluminium [39148-24-8] + TX, hymexazol [10004-44-1] + TX, iprovalicarb [140923-17-7] + TX, IKF-916 (Cyazofamid) [120116-88-3] + TX, kasugamycin [6980-18-3] + TX, methasulfocarb [66952-49-6] + TX, metrafenone [220899-03-6] + TX, pencycuron [66063-05-6] + TX, phthalide [27355-22- 2] + TX, polyoxins [1 1 1 13-80-7] + TX, probenazole [27605-76-1] + TX, propamocarb [25606-41-1 ] + TX, proquinazid [189278-12-4] + TX, pyroquilon [57369-32-1] + TX, quinoxyfen [124495-18-7] + TX, quintozene [82-68-8] + TX, sulphur [7704-34-9] + TX, tiadinil [223580-51 -6] + TX, triazoxide [72459-58-6] + TX, tricyclazole [41814-78-2] + TX, triforine [26644-46-2] + TX, validamycin [37248-47-8] + TX, zoxamide (RH7281 ) [156052-68-5] + TX, mandipropamid [374726-62-2] + TX, isopyrazam [881685-58-1] + TX, sedaxane [874967-67-6] + TX, 3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxylic acid (9-dichloromethylene-1 ,2,3,4-tetrahydro-l ,4-methano-naphthalen-5-yl)-amide

(dislosed in WO 2007/048556) + TX, 3-difluoromethyl-1 -methyl-1 H-pyrazole-4-carboxylic acid [2-(2,4-dichlorophenyl)-2-methoxy-1 -methyl-ethyl]-amide (disclosed in WO

2008/148570) + TX, 1-[4-[4-[(5S)5-(2,6-difluorophenyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-1 ,3- thiazol-2-yl]piperidin-1-yl]-2-[5-methyl-3-(trifluoromethyl) -1 H-pyrazol-1-yl]ethanone + TX, 1-[4-[4-[5-(2,6-difluorophenyl)-4,5-dihydro-1 ,2-oxazol-3-yl]-1 ,3-thiazol-2-yl]piperidin-1 -yl]-2- [5-methyl-3-(trifluoromethyl)-1 H-pyrazol-1-yl]ethanone [1003318-67-9], both disclosed in WO 2010/123791 , WO 2008/013925, WO 2008/013622 and WO 201 1/051243 page 20) +TX, and 3-difluoromethyl-1-methyl-1 H-pyrazole-4-carboxylic acid (3',4',5'-trifluoro- biphenyl-2-yl)-amide (dislosed in WO 2006/087343) + TX.

The references in square brackets behind the active ingredients, e.g. [3878-19-1] refer to the Chemical Abstracts Registry number. The above described mixing partners are known. Where the active ingredients are included in "The Pesticide Manual" [The Pesticide Manual - A World Compendium; Thirteenth Edition; Editor: C. D. S. Tomlin; The British Crop Protection Council], they are described therein under the entry number given in round brackets hereinabove for the particular compound; for example, the compound "abamectin" is described under entry number (1 ). Where "[CCN]" is added hereinabove to the particular compound, the compound in question is included in the "Compendium of Pesticide Common Names", which is accessible on the internet [A. Wood; Compendium of Pesticide Common Names, Copyright © 1995-2004]; for example, the compound

"acetoprole" is described under the internet address:

http://www.alanwood.net/pesticides/acetoprole.html.

Most of the active ingredients described above are referred to hereinabove by a so- called "common name", the relevant "ISO common name" or another "common name" being used in individual cases. If the designation is not a "common name", the nature of the designation used instead is given in round brackets for the particular compound; in that case, the lUPAC name, the lUPAC/Chemical Abstracts name, a "chemical name", a "traditional name", a "compound name" or a "develoment code" is used or, if neither one of those designations nor a "common name" is used, an "alternative name" is employed. "CAS Reg. No" means the Chemical Abstracts Registry Number.

The mass ratio of of any two ingredients in each combination is selected as to give the desired, for example, synergistic action. In general, the mass ratio would vary depending on the specific ingredient and how many ingredients are present in the combination. Generally, the mass ratio between any two ingredients in any combination of the present invention, independently of one another, is from 100:1 to 1 :100, including from 99:1 , 98:2, 97:3, 96:4, 95:5, 94:6, 93:7, 92:8, 91 :9, 90:10, 89:1 1 , 88:12, 87:13, 86:14, 85:15, 84:16, 83:17, 82:18, 81 :19, 80:20, 79:21 , 78:22, 77:23, 76:24, 75:25, 74:26, 73:27, 72:28, 71 :29, 70:30, 69:31 , 68:32, 67:33, 66:34, 65:45, 64:46, 63:47, 62:48, 61 :49, 60:40, 59:41 , 58:42, 57:43, 56:44, 55:45, 54:46, 53:47, 52:48, 51 :49, 50:50, 49:51 , 48:52, 47:53, 46:54, 45:55, 44:56, 43:57, 42:58, 41 :59, 40:60, 39:61 , 38:62, 37:63, 36:64, 35:65, 34:66, 33:67, 32:68, 31 :69, 30:70, 29:71 , 28:72, 27:73, 26:74, 25:75, 24:76, 23:77, 22:78, 21 :79, 20:80, 19:81 , 18:82, 17:83, 16:84, 15:85, 14:86, 13:87, 12:88, 1 1 :89, 10:90, 9:91 , 8:92, 7:93, 6:94, 5:95, 4:96, 3:97, 2:98, to 1 :99. Preferred mass ratios between any two components of present invention are from 75:1 to 1 :75, more preferably, 50:1 to 1 .50, especially 25:1 to 1 :25, advantageously 10:1 to 1 :10, such as 5:1 to 1 :5, for example 1 :3 to 3:1 . The mixing ratios are understood to include, on the one hand, ratios by mass and also, on other hand, molar ratios.

Examples of application methods for the compounds of the invention amd compositions thereof, that is the methods of controlling pests / fungi in the agriculture, are spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances.

A preferred method of application in agriculture is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest/fungi in question. Alternatively, the active ingredient can reach the plants via the root system (systemic action), by applying the compound to the locus of the plants, for example by application of a liquid composition of the compound into the soil (by drenching), or by applying a solid form of the compound in the form of granules to the soil (soil application). In the case of paddy rice plants, such granules can be metered into the flooded paddy-field.

Typical rates of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha, such as 50 to 300 g/ha.

The compounds of the invention and compositions thereof are also suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type. The propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing. Alternatively, the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling. These treatment methods for plant propagation material and the plant propagation material thus treated are further subjects of the invention. Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.

The term seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.

The present invention also comprises seeds coated or treated with or containing a compound of formula I. The term "coated or treated with and/or containing" generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application. When the said seed product is (re)planted, it may absorb the active ingredient. In an embodiment, the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).

Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting. The seed treatment application of the compound formula I can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.

Suitable target plants are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous plants, such as beans, lentils, peas or soya; oil plants, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts, coffee, eggplants, sugarcane, tea, pepper, grapevines, hops, the plantain family, latex plants and

ornamentals (such as flowers, amd lawn grass or turf). In an embodiment, the plant is selected from cereals, corn, soybean, rice, sugarcane, vegetables and oil plants.

The term "plant" is to be understood as including also plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.

Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as δ-endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 ,

Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or Xenorhabdus spp., such as Photorhabdus luminescens,

Xenorhabdus nematophilus; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins; toxins produced by fungi, such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors, HMG-COA-reductase, ion channel blockers, such as blockers of sodium or calcium channels, juvenile hormone esterase, diuretic hormone receptors, stilbene synthase, bibenzyl synthase, chitinases and glucanases.

In the context of the present invention there are to be understood by δ-endotoxins, for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins. Hybrid toxins are produced

recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701 ). Truncated toxins, for example a truncated CrylAb, are known. In the case of modified toxins, one or more amino acids of the naturally occurring toxin are replaced. In such amino acid replacements, preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810). Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.

The processes for the preparation of such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above. Cryl-type deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651.

The toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects. Such insects can occur in any taxonomic group of insects, but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and butterflies (Lepidoptera).

Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a CrylAc toxin);

Bollgard II® (cotton variety that expresses a CrylAc and a Cry2Ab toxin); VipCot® (cotton variety that expresses a Vip3A and a CrylAb toxin); NewLeaf® (potato variety that expresses a Cry3A toxin); NatureGard®, Agrisure® GT Advantage (GA21 glyphosate- tolerant trait), Agrisure® CB Advantage (Bt1 1 corn borer (CB) trait) and Protecta®.

Further examples of such transgenic plants are:

1. Bt11 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a truncated CrylAb toxin. Bt1 1 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.

2. Bt176 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Genetically modified Zea mays which has been rendered resistant to attack by the European corn borer (Ostrinia nubilalis and Sesamia nonagrioides) by transgenic expression of a Cry1 Ab toxin. Bt176 maize also transgenically expresses the enzyme PAT to achieve tolerance to the herbicide glufosinate ammonium.

3. MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect- resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G-protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.

4. MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.

5. IPC 531 Cotton from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/ES/96/02.

6. 1507 Maize from Pioneer Overseas Corporation, Avenue Tedesco, 7 B-1 160 Brussels, Belgium, registration number C/NL/00/10. Genetically modified maize for the expression of the protein Cry1 F for achieving resistance to certain Lepidoptera insects and of the PAT protein for achieving tolerance to the herbicide glufosinate ammonium.

7. NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1 150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810. NK603 x MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a Cry1 Ab toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain Lepidoptera, include the European corn borer.

Generally, a compound of the present invention is used in the form of a

composition (e.g. formulation) containing a carrier. A compound of the invention and compositions thereof can be used in various forms such as aerosol dispenser, capsule suspension, cold fogging concentrate, dustable powder, emulsifiable concentrate, emulsion oil in water, emulsion water in oil, encapsulated granule, fine granule, flowable concentrate for seed treatment, gas (under pressure), gas generating product, granule, hot fogging concentrate, macrogranule, microgranule, oil dispersible powder, oil miscible flowable concentrate, oil miscible liquid, paste, plant rodlet, powder for dry seed treatment, seed coated with a pesticide, soluble concentrate, soluble powder, solution for seed treatment, suspension concentrate (flowable concentrate), ultra low volume (ulv) liquid, ultra low volume (ulv) suspension, water dispersible granules or tablets, water dispersible powder for slurry treatment, water soluble granules or tablets, water soluble powder for seed treatment and wettable powder.

A formulation typically comprises a liquid or solid carrier and optionally one or more customary formulaton auxiliaries, which may be solid or liquid auxiliaries, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, clays, inorganic compounds, viscosity regulators, surfactant, binders and/or tackifiers. The composition may also further comprise a fertilizer, a micronutrient donor or other preparations which influence the growth of plants as well as comprising a combination containing the compound of the invention with one or more other biologically active agents, such as bactericides, fungicides, nematocides, plant activators, acaricides, and insecticides.

Accordingly, the present invention also makes available a composition comprising a compound of the invention and an agronomicaly carrier and optionally one or more customary formulation auxiliaries.

The compositions are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid compound of the present invention and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the compound of the present invention with the auxiliary

(auxiliaries). In the case of solid compounds of the invention, the grinding/milling of the compounds is to ensure specific particle size. These processes for the preparation of the compositions and the use of the compounds of the invention for the preparation of these compositions are also a subject of the invention.

Examples of compositions for use in agriculture are emulsifiable concentrates, suspension concentrates, microemulsions, oil dispersibles, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, soluble powders, dispersible powders, wettable powders, dusts, granules or encapsulations in polymeric substances, which comprise - at least - a compound according to the invention and the type of composition is to be selected to suit the intended aims and the prevailing circumstances.

Examples of suitable liquid carriers are unhydrogenated or partially hydrogenated aromatic hydrocarbons, preferably the fractions C 8 to C 12 of alkylbenzenes, such as xylene mixtures, alkylated naphthalenes or tetrahydronaphthalene, aliphatic or cycloaliphatic hydrocarbons, such as paraffins or cyclohexane, alcohols such as ethanol, propanol or butanol, glycols and their ethers and esters such as propylene glycol, dipropylene glycol ether, ethylene glycol or ethylene glycol monomethyl ether or ethylene glycol monoethyl ether, ketones, such as cyclohexanone, isophorone or diacetone alcohol, strongly polar solvents, such as N-methylpyrrolid-2-one, dimethyl sulfoxide or N,N-dimethylformamide, water, unepoxidized or epoxidized vegetable oils, such as unexpodized or epoxidized rapeseed, castor, coconut or soya oil, and silicone oils.

Examples of solid carriers which are used for example for dusts and dispersible powders are, as a rule, ground natural minerals such as calcite, talc, kaolin,

montmorillonite or attapulgite. To improve the physical properties, it is also possible to add highly disperse silicas or highly disperse absorbtive polymers. Suitable particulate adsorptive carriers for granules are porous types, such as pumice, brick grit, sepiolite or bentonite, and suitable non-sorptive carrier materials are calcite or sand. In addition, a large number of granulated materials of inorganic or organic nature can be used, in particular dolomite or comminuted plant residues.

Suitable surface-active compounds are, depending on the type of the active ingredient to be formulated, non-ionic, cationic and/or anionic surfactants or surfactant mixtures which have good emulsifying, dispersing and wetting properties. The surfactants mentioned below are only to be considered as examples; a large number of further surfactants which are conventionally used in the art of formulation and suitable according to the invention are described in the relevant literature.

Suitable non-ionic surfactants are, especially, polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, of saturated or unsaturated fatty acids or of alkyi phenols which may contain approximately 3 to approximately 30 glycol ether groups and approximately 8 to approximately 20 carbon atoms in the (cyclo)aliphatic hydrocarbon radical or approximately 6 to approximately 18 carbon atoms in the alkyi moiety of the alkyi phenols. Also suitable are water-soluble polyethylene oxide adducts with polypropylene glycol, ethylenediaminopolypropylene glycol or alkyi polypropylene glycol having 1 to approximately 10 carbon atoms in the alkyi chain and approximately 20 to approximately 250 ethylene glycol ether groups and approximately 10 to approximately 100 propylene glycol ether groups. Normally, the abovementioned compounds contain 1 to approximately 5 ethylene glycol units per propylene glycol unit. Examples which may be mentioned are nonylphenoxypolyethoxyethanol, castor oil polyglycol ether, polypropylene

glycol/polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol or octylphenoxypolyethoxyethanol. Also suitable are fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate.

The cationic surfactants are, especially, quarternary ammonium salts which generally have at least one alkyi radical of approximately 8 to approximately 22 C atoms as substituents and as further substituents (unhalogenated or halogenated) lower alkyl or hydroxyalkyl or benzyl radicals. The salts are preferably in the form of halides,

methylsulfates or ethylsulfates. Examples are stearyltrimethylammonium chloride and benzylbis(2-chloroethyl)ethylammonium bromide.

Examples of suitable anionic surfactants are water-soluble soaps or water-soluble synthetic surface-active compounds. Examples of suitable soaps are the alkali, alkaline earth or (unsubstituted or substituted) ammonium salts of fatty acids having approximately 10 to approximately 22 C atoms, such as the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which are obtainable for example from coconut or tall oil; mention must also be made of the fatty acid methyl taurates. However, synthetic surfactants are used more frequently, in particular fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylaryl sulfonates. As a rule, the fatty sulfonates and fatty sulfates are present as alkali, alkaline earth or (substituted or unsubstituted) ammonium salts and they generally have an alkyl radical of approximately 8 to

approximately 22 C atoms, alkyl also to be understood as including the alkyl moiety of acyl radicals; examples which may be mentioned are the sodium or calcium salts of

lignosulfonic acid, of the dodecylsulphuric ester or of a fatty alcohol sulfate mixture prepared from natural fatty acids. This group also includes the salts of the sulphuric esters and sulfonic acids of fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulphonyl groups and a fatty acid radical of approximately 8 to approximately 22 C atoms. Examples of alkylarylsulfonates are the sodium, calcium or triethanolammonium salts of decylbenzenesulfonic acid, of dibutylnaphthalenesulfonic acid or of a naphthalenesulfonic acid/formaldehyde condensate. Also possible are, furthermore, suitable phosphates, such as salts of the phosphoric ester of a p-nonylphenol/(4- 14)ethylene oxide adduct, or phospholipids.

As a rule, the compositions comprise 0.1 to 99%, especially 0.1 to 95%, of compound according to the present invention and 1 to 99.9%, especially 5 to 99.9%, of at least one solid or liquid carrier, it being possible as a rule for 0 to 25%, especially 0.1 to 20%, of the composition to be surfactants (% in each case meaning percent by weight). Whereas concentrated compositions tend to be preferred for commercial goods, the end consumer as a rule uses dilute compositions which have substantially lower concentrations of active ingredient. Preferred compositions are composed in particular as follows (% = percent by weight):

Emulsifiable concentrates:

active ingredient: 1 to 95%, preferably 5 to 20% surfactant: 1 to 30%, preferably 10 to 20 %

solvent: 5 to 98%, preferably 70 to 85%

Dusts:

active ingredient: 0.1 to 10%, preferably 0.1 to 1 %

solid carrier: 99.9 to 90%, preferably 99.9 to 99%

Suspension concentrates and flowable concentrates:

active ingredient: 5 to 75%, preferably 10 to 50%

water: 94 to 24%, preferably 88 to 30%

surfactant: 1 to 40%, preferably 2 to 30%

Wettable powders:

active ingredient: 0.5 to 90%, preferably 1 to 80%

surfactant: 0.5 to 20%, preferably 1 to 15%

solid carrier: 5 to 99%, preferably 15 to 98%

Granulates:

active ingredient: 0.5 to 30%, preferably 3 to 15%

solid carrier: 99.5 to 70%, preferably 97 to 85%

Formulation examples (% = percent by weight)

Example F1 : Emulsion concentrates a) b) c)

Active ingredient 25 % 40 % 50 %

Calcium dodecylbenzenesulfonate 5 % 8 % 6 %

Castor oil polyethylene

glycol ether (36 mol of EO) 5 % -

Tributylphenoxypolyethylene glycol

ether (30 mol of EO) 12 % 4 %

Cyclohexanone 15 % 20 %

Xylene mixture 65 % 25 % 20 %

Emulsions of any desired concentration can be prepared from such concentrates by dilution with water.

Example F2: Solutions Active ingredient 80% 10% 5% 95%

Ethylene glycol monomethyl

ether 20% -

Polyethylene glycol

MW 400 70% -

N-Methylpyrrolid-2-one 20% - Epoxidized coconut oil 1 % 5 %

Petroleum ether

(boiling range: 160-190°) 94% - The solutions are suitable for in the form of microdrops.

Example F3: Granules a) b) c) d)

Active ingredient 5% 10% 8% 21 %

Kaolin 94% - 79% 54%

Highly disperse silica 1 % - 13% 7%

Attapulgite - 90% - 18%

The active ingredient is dissolved in dichloromethane, the solution is sprayed onto the carrier(s), and the solvent is subsequently evaporated in vacuo. Example F4: Dusts a) b)

Active ingredient 2 % 5 %

Highly disperse silica 1 % 5 %

Talc 97% -

Kaolin - 90 %

Ready-to-use dusts are obtained by intimately mixing the carriers and the active ingredient.

Example F5: Wettable powders a) b) c)

Active ingredient 25% 50% 75%

Sodium lignosulfonate 5 % 5 % - Sodium lauryl sulfate 3 % - 5 %

Sodium diisobutyl- naphthalenesulfonate 6% 10%

Octylphenoxypolyethylene glycol

ether (7-8 mol of EO) 2 % - Highly disperse silica 5 % 10 % 10 %

Kaolin 62 % 27 % -

The active ingredient is mixed with the additives and the mixture is ground thoroughly in a suitable mill. This gives wettable powders, which can be diluted with water to give suspensions of any desired concentration.

Example F6: Extruder granules

Active ingredient 10 %

Sodium lignosulfonate 2 %

Carboxymethylcellulose 1 %

Kaolin 87 %

The active ingredient is mixed with the additives, and the mixture is ground, moistened with water, extruded, granulated and dried in a stream of air. Example F7: Coated granules

Active ingredient 3 %

Polyethylene glycol (MW 200) 3 %

Kaolin 94 %

In a mixer, the finely ground active ingredient is applied uniformLy to the kaolin, which has been moistened with the polyethylene glycol. This gives dust-free coated granules.

Example F8: Suspension concentrate

Active ingredient 40 %

Ethylene glycol 10 %

Nonylphenoxypolyethylene glycol ether (15 mol of EO) 6 %

Sodium lignosulfonate 10 %

Carboxymethylcellulose 1 %

37 % aqueous formaldehyde solution 0.2 %

Silicone oil (75 % aqueous emulsion) 0.8 %

Water 32 %

The finely ground active ingredient is mixed intimately with the additives. Suspensions of any desired concentration can be prepared from the thus resulting suspension concentrate by dilution with water.

Example F9: Powders for dry seed treatment a) b) c) active ingredient 25 % 50 % 75 % light mineral oil 5 % 5 % 5 % highly dispersed silicic acid 5 % 5 %

Kaolin 65 % 40 %

Talcum - - 20 %

The combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.

Example F10: Emulsifiable concentrate

active ingredient 10 %

octylphenol polyethylene glycol ether 3 %

(4-5 mol of ethylene oxide)

calcium dodecylbenzenesulfonate 3 %

castor oil polyglycol ether (35 mol of ethylene oxide) 4 %

Cyclohexanone 30 %

xylene mixture 50 %

Emulsions of any required dilution, which can be used in plant protection, can be obtained from this concentrate by dilution with water.

Example F1 1 : Flowable concentrate for seed treatment

active ingredients 40 % propylene glycol 5 % copolymer butanol PO/EO 2 %

Tristyrenephenole with 10-20 moles EO 2 %

1 ,2-benzisothiazolin-3-one (in the form of a 20% solution in water) 0.5 % monoazo-pigment calcium salt 5 %

Silicone oil (in the form of a 75 % emulsion in water) 0.2 %

Water 45.3 %

The finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water. Using such dilutions, living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.

Examples of foliar formulation types for pre-mix compositions are: GR: Granules

WP: wettable powders

WG: water dispersable granules (powders)

SG: water soluble granules

SL: soluble concentrates

EC: emulsifiable concentrate

EW: emulsions, oil in water

ME: micro-emulsion

SC: aqueous suspension concentrate

CS: aqueous capsule suspension

OD: oil-based suspension concentrate, and

SE: aqueous suspo-emulsion.

Whereas, examples of seed treatment formulation types for pre-mix compositions

WS: wettable powders for seed treatment slurry

LS: solution for seed treatment

ES: emulsions for seed treatment

FS: suspension concentrate for seed treatment

WG: water dispersible granules, and

CS: aqueous capsule suspension.

Examples of formulation types suitable for tank-mix compositions are solutions, dilute emulsions, suspensions, or a mixture thereof, and dusts.

As with the nature of the formulations, the methods of application, such as foliar, drench, spraying, atomizing, dusting, scattering, coating or pouring, are chosen in accordance with the intended objectives and the prevailing circumstances.

The tank-mix compositions are generally prepared by diluting with a solvent (for example, water) the one or more pre-mix compositions containing different pesticides, and optionally further auxiliaries.

Suitable carriers and adjuvants can be solid or liquid and are the substances ordinarily employed in formulation technology, e.g. natural or regenerated mineral substances, solvents, dispersants, wetting agents, tackifiers, thickeners, binders or fertilizers.

Generally, a tank-mix formulation for foliar or soil application comprises

0.1 to 20%, especially 0.1 to 15 %, of the desired ingredients, and 99.9 to 80 %, especially 99.9 to 85 %, of a solid or liquid auxiliaries (including, for example, a

solvent such as water), where the auxiliaries can be a surfactant in an amount of

0 to 20 %, especially 0.1 to 15 %, based on the tank-mix formulation.

Typically, a pre-mix formulation for foliar application comprises 0.1 to 99.9 %, especially 1 to 95 %, of the desired ingredients, and 99.9 to 0.1 %, especially 99 to 5 %, of a solid or liquid adjuvant (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 50 %, especially 0.5 to 40 %, based on the pre-mix formulation.

Normally, a tank-mix formulation for seed treatment application comprises 0.25 to 80%, especially 1 to 75 %, of the desired ingredients, and 99.75 to 20 %, especially 99 to 25 %, of a solid or liquid auxiliaries (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 40 %, especially 0.5 to 30 %, based on the tank-mix formulation.

Typically, a pre-mix formulation for seed treatment application comprises 0.5 to 99.9 %, especially 1 to 95 %, of the desired ingredients, and 99.5 to 0.1 %, especially 99 to 5 %, of a solid or liquid adjuvant (including, for example, a solvent such as water), where the auxiliaries can be a surfactant in an amount of 0 to 50 %, especially 0.5 to 40 %, based on the pre-mix formulation.

Whereas commercial products will preferably be formulated as concentrates (e.g., pre-mix composition (formulation)), the end user will normally employ dilute formulations (e.g., tank mix composition).

Preferred seed treatment pre-mix formulations are aqueous suspension

concentrates. The formulation can be applied to the seeds using conventional treating techniques and machines, such as fluidized bed techniques, the roller mill method, rotostatic seed treaters, and drum coaters. Other methods, such as spouted beds may also be useful. The seeds may be presized before coating. After coating, the seeds are typically dried and then transferred to a sizing machine for sizing. Such

procedures are known in the art.

In general, the pre-mix compositions of the invention contain 0.5 to 99.9 especially 1 to 95, advantageously 1 to 50 , %, by mass of the desired ingredients, and 99.5 to 0.1 , especially 99 to 5, %, by mass of a solid or liquid adjuvant (including, for example, a solvent such as water), where the auxiliaries (or adjuvant) can be a surfactant in an amount of 0 to 50, especially 0.5 to 40, %, by mass based on the mass of the pre-mix formulation. A compound of the formula (I) is in a preferred embodiment, independent of any other embodiments, is in the form of a plant propagation material treating (or protecting) composition, wherein said plant propagation material protecting composition comprises additionally a colouring agent. The plant propagation material protecting composition or mixture may also comprise at least one polymer from water-soluble and water-dispersible film-forming polymers that improve the adherence of the active ingredients to the treated plant propagation material, which polymer generally has an average molecular weight of at least 10,000 to about 100,000.

The combinations of the present invention (i.e. those comprising a compound of the present invention and one or more other biological active agents) may be applied simulatenously or sequentially.

In the event, the ingredients of a combination are applied sequentially (i.e., one after the other), the ingredients are applied sequentially within a reasonable period of each other to attain the biological performance, such as within a few hours or days. The order of applying the ingredients in the combination, i.e., whether the compounds of formula (I) should be applied first or not is not essential for working the present invention.

In the event ingredients of the combinations are applied simultaneously in the present invention, they may be applied as a composition containing the combination, in which case (A) the compound of formula (I) and the one or more other ingredients in the combinations can be obtained from separate formulation sources and mixed together (known as a tank-mix, ready-to-apply, spray broth, or slurry), or (B) the compound of formula (I) and the one or more other ingredients can be obtained as single formulation mixture source (known as a pre-mix, ready-mix, concentrate, or formulated product).

In an embodiment, independent of other embodiments, a compound according to the present invention is applied as a combination. Accordingly, the present invention also provides a composition comprising a a compound according the invention as herein described and one or more other biological active agents, and optionally one or more customary formulation auxiliaries; which may be in the form of a tank-mix or pre-mix composition.

Alternative to the actual synergistic action with respect to biological activity, the combinations according to the invention also can have surprising advantageous properties which can also be described, in a wider sense, as synergistic activity. Examples of such advantageous properties that may be mentioned are: advantageous behaviour during formulation and/or upon application, for example upon grinding, sieving, emulsifying, dissolving or dispensing; increased storage stability; improved stability to light; more advantageous degradability; improved toxicological and/or ecotoxicological behaviour; or any other advantages familiar to a person skilled in the art.

The compounds of the present invention may also find application in other fields, such as one or more of protection of stored goods and store rooms, the protection of raw materials (such as wood and textiles), floor coverings and buildings, and in hygiene management - especially the protection of humans, domestic animals and productive livestock against pests. The invention therefore also makes available pesticidal compositions for such uses and the methods therefor. The composition would need to be modified for use in a particular use, and a skilled person would be able to make available such compositions for any particular use.

In the hygiene sector, the compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.

Examples of such parasites are:

- Of the order Anoplurida: Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..

- Of the order Mallophagida: Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp. and Felicola spp..

- Of the order Diptera and the suborders Nematocerina and Brachycerina, for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp. and

Melophagus spp..

- Of the order Siphonapterida, for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..

- Of the order Heteropterida, for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

- Of the order Blattarida, for example Blatta orientalis, Periplaneta americana,

Blattelagermanica and Supella spp..

- Of the subclass Acaria (Acarida) and the orders Meta- and Meso-stigmata, for example Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp. and Varroa spp..

- Of the orders Actinedida (Prostigmata) and Acaridida (Astigmata), for example Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp. and Laminosioptes spp..

The compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings. The compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec.,Tryptodendron spec, Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec, and Dinoderus minutus, and also hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis and Coptotermes formosanus, and bristletails such as Lepisma saccharina.

The application methods for applying a compound or a composition thereof to stored goods, store rooms, raw materials (such as wood and textiles), floor coverings and buildings, and in hygiene management is known in the art.

The invention also provides a method for treating, curing, controlling, preventing and protecting warm-blooded animals, including humans, and fish against infestation and infection by helminths, arachnids and arthropod endo- and ectoparasites which comprises orally, topically or parenterally administering or applying to said animals an

anthelmintically, acaricidally or endo- or ectoparasiticidally effective amount of compound of formula (I) .

The above method is particularly useful for controlling and preventing helminth, nemtode, acarid and arthropod endo- and ectoparasitic infestations and infections in warm-blooded animals such as cattle, sheep, swine, camels, deer, horses, poultry, fish, rabbits, goats, mink, fox, chinchillas, dogs and cats as well as humans.

In the context of control and prevention of infestation and infections in warmblooded animals, compounds of invention are especially useful for the control of helminths and nematodes. Examples for helminths are members of the class Trematoda, commonly known as flukes or flatworms, especially members of the genera Fasciola, Fascioloides, Paramphistomu, Dicrocoelium, Eurytrema, Ophisthorchis, Fasciolopsis, Echinostoma and Paragonimus. Nematodes which can be controlled by the formula (I) compounds include the genera Haemonchus, Ostertagia, Cooperia, Oesphagastomu, Nematodirus,

Dictyocaulus, Trichuris, Dirofilaria, Ancyclostoma, Ascaria and the like.

The compound of this invention may also control endoparasitic arthropod infestations such as cattle grub and stomach bot. In addition, acarid and arthropod ectoparasitic infestations in warm-blooded animals and fish including biting lice, sucking lice, bot flies, biting flies, muscoid flies, flies, myiasitic fly larvae, gnats, mosquitoes, fleas, mites, ticks, nasal bots, keds and chiggers may be controlled, prevented or eliminated by the compounds of this invention. Biting lice include members of Mallophaga such as Bovicola bovis, Trichodectes canis and Damilina ovis. Sucking lice include members of Anoplura such as Haematopinus eurysternus, Haematopinus suis, Linognathus vituli and Solenopotes capillatus. Biting flies include members of Haematobia. Ticks include

Boophilus, Rhipicephalus, Ixodes, Hyalomma, Amblyomma and Dermacentor. The compounds of the invention may also be used to control mites which are parasitic on warm-blooded mammals and poultry including mites of the orders Acariformes and Parasitiformes.

For oral administration to warm-blooded animals, the compounds of the invention may be formulated as animal feeds, animal feed premixes, animal feed concentrates, pills, solutions, pastes, suspensions, drenches, gels, tablets, boluses and capsules. In addition, the compounds of the invention may be administered to the animals in their drinking water. For oral administration, the dosage form chosen should provide the animal with about 0.01 mg/kg to 100 g/kg of animal body weight per day of the compound of the invention.

Alternatively, the compounds of the invention may be administered to animals parenterally, for example, by intraruminal, intramuscular, intravenous or subcutaneous injection. The compounds of the invention may be dispersed or dissolved in a

physiologically acceptable carrier for subcutaneous injection. Alternatively, the compounds of the invention may be formulated into an implant for subcutaneous administration. In addition the compounds of the invention may be transdermal^ administered to animals. For parenteral administration, the dosage form chosen should provide the animal with about 0.01 mg/kg to 100 mg/kg of animal body weight per day of the compound of the invention.

The compounds of the invention may also be applied topically to the animals in the form of dips, dusts, powders, collars, medallions, sprays and pour-on formulations. For topical application, dips and sprays usually contain about 0.5 ppm to 5,000 ppm and preferably about 1 ppm to 3,000 ppm of the compound of the invention. In addition, the compounds of the invention may be formulated as ear tags for animals, particularly quadrupeds such as cattle and sheep.

The compounds of the invention may also be used in combination or conjunction with one or more other parasiticidal compounds (to broaden the spectrum of activity) including, but not limited to, anthelmintics, such as benzimidazoles, piperazine, levamisole, pyrantel, praziquantel and the like; endectocides such as avermectins, milbemycins and the like; ectoparasiticides such as arylpyrroles, organophosphates, carbamates, gamabutyric acid inhibitors including fipronil, pyrethroids, spinosads, imidacloprid and the like; insect growth regulators such as pyriproxyfen, cyromazine and the like; and chitin synthase inhibitors such as benzoylureas including flufenoxuron.

The parasiticidal compositions of the present invention include a parasiticidally effective amount of a compound of the invention or combinations thereof admixed with one or more physiologically tolerable inert, solid or liquid carriers known from veterinary medicinal practice for oral, percutaneous and topical administration. Such compositions may comprise further additives, such as stabilizers, anifoams, viscosity regulators, binders and tackifiers, whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The compositions according to the present invention may also be used for the preparation of composition useful to curatively or preventively treat human and animal fungal diseases such as, for example, mycoses, dermatoses, trichophyton diseases and candidiases or diseases caused by Aspergillus spp., for example Aspergillus fumigatus.

In an embodiment, independent of any other embodiments, a compound of formula (I) is a anti-helminth compound.

In an embodiment, independent of any other embodiments, a compound of formula (I) is a pesticidal compound, preferably a nematicidal compound.

In each aspect and embodiment of the invention, "consisting essentially" and inflections thereof are a preferred embodiment of "comprising" and its inflections, and "consisting of" and inflections thereof are a preferred embodiment of "consisting essentially of" and its inflections.

The disclosure in the present application makes available each and every combination of embodiments disclosed herein.

The following Examples serve to illustrate the invention. They do not limit the invention. Temperatures are given in degrees Celsius; mixing ratios of solvents are given in parts by volume.

EXAMPLES PREPARATION EXAMPLE 1 : N-rri-(5-methylpyrimidin-2-yl)cvclopropyllmethyll-2- (trifluoromethyl)benzamide (compound A.2)

Step 1 : 2-(bromomethyl)-5-methyl-pyrimidine (compound Q.16) 310 mg of (5-methylpyrimidin-2-yl)methanol and 688 mg of triphenylphosphine were dissolved in 10 ml of dichloromethane and the mixture was cooled to 0 °C. Then 467 mg of N-bromo-succinimide was added, the mixture allowed to warm to ambient temperature and stirred for one hour. Then the solvent was evaporated and the residue was purified by chromatography on silica gel with cyclohexane/ethyl acetate (1 :1 ) as eluent. Thus, 204 mg of 2-(bromomethyl)-5-methyl-pyrimidine was obtained. 1 H-NMR (CDCI 3 ): 8.58 ppm (s, 2H), 4.60 ppm (s, 2H), 2.32 ppm (s, 3H).

Step 2: 2-(5-methylpyrimidin-2-yl)acetonitrile (compound Q.1 1 ) 400 mg of 2-(bromomethyl)-5-methyl-pyrimidine (step 1 ) was dissolved in 10 ml of ethanol, heated to 40 °C, and a solution of 188 mg of potassium cyanide in 5 ml of water was added at this temperature. Then the mixture was heated to 50 °C and stirred for one hour, then allowed to cool to ambient temperature. The mixture was partitioned between ethyl acetate and brine, the organic phase was dried over sodium sulfate, filtered and evaporated. The residue was purified by chromatography on silica gel with cyclohexane/ethyl acetate (1 :1 ) as eluent. Thus, 230 mg of 2-(5-methylpyrimidin-2- yl)acetonitrile was obtained. 1 H-NMR (CDCI 3 ): 8.57 ppm (s, 2H), 4.06 ppm (s, 2H), 2.33 ppm (s, 3H). Step 3: 1-(5-methylpyrimidin-2-yl)cvclopropanecarbonitrile (compound Q.6)

276 mg of sodium hydroxide was dissolved in 5 ml of water, then 370 mg of

benzyltriethylammonium chloride was added, followed by the dropwise addition of a solution of 230 mg of 2-(5-methylpyrimidin-2-yl)acetonitrile (step 2) in 0.30 ml of 1-bromo- 2-chloro-ethane. The mixture was heated to 60 °C and stirred for two hours, then allowed to cool to ambient temperature. Then 2 ml of concentrated hydrochloric acid (37%) were added carefully while cooling with an ice bath. The mixture was partitioned between ethyl acetate and brine, the organic phase was dried over sodium sulfate, filtered and evaporated. The residue was purified by chromatography on silica gel with

cyclohexane/ethyl acetate (2:1 ) as eluent. Thus, 40 mg of 1-(5-methylpyrimidin-2- yl)cyclopropanecarbonitrile was obtained. 1 H-NMR (CDCI 3 ): 8.50 ppm (s, 2H), 2.32 ppm (s, 3H), 1.83 ppm (m, 4H).

Step 4: [1-(5-methylpyrimidin-2-yl)cvclopropyllmethanamine (compound Q.1 )

40 mg of 1 -(5-methylpyrimidin-2-yl)cyclopropanecarbonitrile (step 3) was dissolved in 2 ml of methanol and 2 ml of ammonia (7N solution in methanol) was added, followed by 10 mg of Raney nickel. The mixture was stirred under an atmosphere of hydrogen (1 bar) at ambient temperature for 4 days. Then the mixture was filtered through a pad of celite and evaporated. Thus, 35 mg of crude [1-(5-methylpyrimidin-2-yl)cyclopropyl]methanamine was obtained, which was used for step 5 without further purification. 1 H-NMR (CDCI 3 ): 8.42 ppm (s, 2H), 3.05 ppm (s, 2H), 2.24 ppm (s, 3H), 0.95 ppm (m, 4H). Step 5: N-rri-(5-methylpyrimidin-2-yl)cvclopropyllmethyll-2-(trifluo romethyl)ben

(compound A.2)

35 mg of [1-(5-methylpyrimidin-2-yl)cyclopropyl]methanamine (step 4) and 43 mg of triethylamine were dissolved in 5 ml dichloromethane. 45 mg of 2-(trifluoromethyl)benzoyl chloride were added and the mixture was stirred at ambient temperature for one hour. Then the mixture was evaporated. The residue was purified by chromatography on silica gel with cyclohexane/ethyl acetate (2:1 ) as eluent. Thus, 18 mg of N-[[1-(5- methylpyrimidin-2-yl)cyclopropyl]methyl]-2-(trifluoromethyl) benzamide was obtained as an oil. 1 H-NMR (CDCI 3 ): 8.36 ppm (s, 2H), 7.64 ppm (d, 1 H), 7.50 ppm (m, 3H), 7.30 ppm (s, 1 H, broad), 3.86 ppm (d, 2H), 2.22 ppm (s, 3H), 1.40 ppm (m, 2H), 1.23 ppm (m, 2H).

PREPARATION EXAMPLE 2: N-rri -(5-methoxypyrazin-2-vncvclopropyllmethyll-2- (trifluoromethyl)benzamide (compound A.26)

Step 1 : 2-(bromomethyl)-5-chloro-pyrazine

5.0 g of 2-chloro-5-methyl-pyrazine, 6.9 g of N-bromosuccinimide and 0.33 g of 2,2'- azobis(2-methylpropionitrile) were suspended in 67 ml of chlorobenzene. The yellow mixture was heated to 130°C and stirred for 4 hours. Then the mixture was cooled to ambient temperature, diluted with ethyl acetate and an aqueous solution of sodium thiosulfate was added. After extraction the phases were separated, the organic layer was washed with brine, dried over anhydrous sodium sulphate and evaporated. The residue was purified by flash chromatography on silica gel with cyclohexane/ethyl acetate (2:1 ) as eluent. Thus, 5.52 g of 2-(bromomethyl)-5-chloro-pyrazine was obtained as a brown oil. 1 H-NMR (CDCI 3 ): 8.57 ppm (s, 1 H), 8.49 ppm (s, 1 H), 4.54 ppm (s, 2H).

Step 2: 2-(5-chloropyrazin-2-yl)acetonitrile

1.95 g of 2-(bromomethyl)-5-chloro-pyrazine (step 1 ) was dissolved in 19 ml of ethanol and 1.22 g potassium cyanide was added to the resulting solution. The mixture was stirred at ambient temperature for 2 hours, then heated to 45°C for 3 hours. Then 0.5 ml of water was added to the mixture and the reaction was stirred for additional 5 hours at 45°C. The mixture was cooled to ambient temperature and evaporated. The residue was purified by flash chromatography on silica gel with cyclohexane/ethyl acetate (2:1 ) as eluent. Thus, 420 mg of 2-(5-chloropyrazin-2-yl)acetonitrile was obtained as a solid. 1 H-NMR (CDCI 3 ): 8.60 ppm (s, 1 H), 8.48 ppm (s, 1 H), 3.97 ppm (s, 2H).

Step 3: 1 -(5-methoxypyrazin-2-yl)cvclopropanecarbonitrile

0.73 g of 2-(5-chloropyrazin-2-yl)acetonitrile (step 2) was dissolved in 20 ml of dry tetrahydrofuran. The solution was cooled to 0 °C and 0.48 g of sodium hydride (60%) was added at once. Formation of gas was observed and 1.6 ml of 1-bromo-2-chloro-ethane was added. The mixture was warmed to ambient temperature and then to 50°C. The reaction was stirred for 1 hour at 50 °C. Then 20ml of methanol was added and the mixture evaporated under reduced pressure at 50 °C. The residue was purified by flash

chromatography on silica gel with cyclohexane/ethyl acetate (1 :1 ) as eluent. Thus, 106 mg of 1-(5-methoxypyrazin-2-yl)cyclopropanecarbonitrile was obtained as a white solid. 1 H-NMR (CDCI 3 ): 8.45 ppm (s, 1 H), 8.07 ppm (s, 1 H), 3.97 ppm (s, 3H), 1 .70 ppm (s, 4H).

Step 4: [1-(5-methoxypyrazin-2-yl)cvclopropyHmethanamine

105 mg of 1-(5-methoxypyrazin-2-yl)cyclopropanecarbonitrile (step 3) and 2.0 ml of ammonia (7N in methanol) were dissolved in 5.0 ml of methanol. 50 mg of Raney-nickel (slurry in water) was washed twice with methanol and added to the reaction mixture. The mixture was transfered in a reactor and stirred under an athmosphere of hydrogen at 10 bar at ambient temperature over night. The mixture was filtered over celite and the solution was evaporated. Thus, 140 mg of [1-(5-methoxypyrazin-2-yl)cyclopropyl]methanamine was obtained as an oil. 1 H-NMR (CDCI 3 ): 8.16 ppm (s, 1 H), 8.05 ppm (s, 1 H), 3.94 ppm (s, 3H), 3.00 ppm (s, 2H, broad), 1 .25 (m, 4H). Step 5: N-[[1 -(5-methoxypyrazin-2-yl)cvclopropyllmethyll-2-(trifluorometh yl)benzamide

(compound A.26)

60 mg of [1-(5-methoxypyrazin-2-yl)cyclopropyl]methanamine (step 4) and 68 mg of triethylamine were dissolved in 5 ml of dichloromethane. 70 mg of 2- (trifluoromethyl)benzoyl chloride was added to the resulting solution. The mixture was stirred at ambient temperature for 1.5 hours. The mixture was extracted with water and dichloromethane, the phases separated and the organic phase dried over anhydrous sodium sulphate and evaporated. The residue was purified by flash chromatography on silica gel with cyclohexane/ethyl acetate (1 :1 ) as eluent. Thus, 95 mg of N-[[1 -(5- methoxypyrazin-2-yl)cyclopropyl]methyl]-2-(trifluoromethyl)b enzamide was obtained as an oil. 1 H-NMR (CDCIs): 8.07 ppm (s, 1 H), 7.90 ppm (s, 1 H), 7.68 ppm (m, 1 H), 7.57 ppm (m, 1 H), 7.51 ppm (m, 2H), 6.73 ppm (s, 1 H, broad), 3.93 ppm (s, 3H), 3.78 ppm (d, 2H), 1.13 ppm (m, 4H).

PREPARATION EXAMPLE 3: N-rri -(4-cvclopropylthiazol-2-yl)cvclopropyllmethyll-2- (trifluoromethyl)benzamide (Compound A10)

Step 1 : 2-bromo-1 -cvclopropyl-ethanone

1-Cyclopropylethanone (20 g, 237.8 mmol) was dissolved in Methanol (1 18.9 mL). At 0°C was Bromine (38.00 g, 237.8 mmol) added drop wise in 30 minutes. The brown solution was stirred at 0°C. After 5 minutes the reaction mixture was exothermic and the temperature raised to 32°C. Afterwards the solution was colorless. The reaction mixture was stirred for 30 minutes. Then 250ml water were added carefully. The emulsion was extracted 3 times with 100ml Diethyl ether. The combined organic phases were washed with 70ml 10% IS^COg, 75ml water and 75ml brine. The organic phase was dried with

Na2SC>4 , filtrated and evaporated at 300mbar/40°C. The desired product was obtained as a brownish liquid (41.4g).

1 H-NMR (CDCIs): 4.05 (s, 2H), 2.32 (m, 1 H), 1.22 (m, 2H), 1.13 (m, 2H)

Step 2: 2-(4-cvclopropylthiazol-2-yl)acetonitrile

2-Cyanothioacetamide (2.0647 g, 20 mmol) was dissolved in Ethanol (37.00 mL) at 40°C. Then 2-bromo-1-cyclopropyl-ethanone (3.5437 g, 20 mmol) was added. The resulting brown-red solution was heated to reflux. The reaction mixture was stirred 20 minutes at reflux. It was cooled down to 10°C. A NH^OH-solution 25% was added to the reaction mixture until it was alkaline. Then 200ml water was added. Very little product precipitated. Therefore the water was extracted 3 times with (Et^O. The organic phases were washed twice with brine, dried with Na2SC> filtrated and evaporated. The residue was a brown oil

(7.50g). There was still a lot of ethanol in the product. It was dissolved again in ether and washed with water and washed twice with brine.

The organic phase was dried on Na2SC>4 , filtrated and evaporated. A brown oil was obtained (2.7g). This was the desired product with 80% purity.

1 H-NMR (CDCI 3 ): 6.85 (s, 1 H), 4.05 (s, 2H), 2.02 (m, 1 H), 0.95 (m, 2H), 0.85 (m, 2H).

Step 3: 1-(4-cvclopropylthiazol-2-yl)cvclopropanecarbonitrile

Sodium hydroxide (30% in water, 14 g, 1 10 mmol) was dissolved in Water (3.3 mL). At rt Benzyl(triethyl) ammonium hydrochloride (3.0 g, 13 mmol) was added. A solution of 2-(4- cyclopropylthiazol-2-yl)acetonitrile (2.7 g, 13 mmol) and 1 ,2-Dibromoethane (5.2 g,28 mmol) was then added dropwise. The resulting reaction mixture was stirred at rt over night (gas evolution). To the dark brown reaction mixture was added water and Diethylether. The phases were separated. The organic phase was washed with water, washed twice with 1 N HCI and twice with brine. The organic phase was dried with Na2SC>4 , filtrated and evaporated. A brown oil was obtained (1.78g).

1 H-NMR (CDCI 3 ): 6.7 (s, 1 H), 1 .95 (m, 1 H), 1 .85-1.7 (m, 4H), 0.9 (m, 2H), 0.82 (m, 2H).

Step 4: [1-(4-cvclopropylthiazol-2-yl)cvclopropyllmethanamine

1-(4-Cyclopropylthiazol-2-yl)cyclopropanecarbonitrile (0.58 g, 3.049 mmol) in Diethylether (5.1 mL) was cooled down to 0°C. At 0°C Lithium aluminum hydride (1 M in Et20, 8.23 mL, 8.23 mmol) was added drop wise during 20 min. Then the suspension was stirred at 0°C for 1 hour. The reaction mixture finally was quenched at 0°C very carefully with 5ml NaOH 30%. There was a strong exotherm due to the excess of LiAIH4. After the quench EtOAc was added to the suspension. The suspension was filtrated. The phases were separated. The water phase was extracted twice with EtOAc. The combined organic phases were washed with brine, dried with Na2SC>4 and filtrated. The filtrate was evaporated. The residue was a yellow oil (427mg). This was the desired product.

1 H-NMR (CDCI 3 ): 6.60 (s, 1 H), 2.98 (s, 2H), 2.0 (m, 1 H), 1.60 (bs, 2H), 1 ,12 (m, 2H), 0.95 (m, 2H), 0.9-0.8 (m, 4H). Step 5: Ν-ΓΓ1 -(4-cvclopropylthiazol-2-yl)cvclopropyllmethyll-2-(trifluoro methyl)benzamide (Compound A10)

[1-(4-Cyclopropylthiazol-2-yl)cyclopropyl]methanamine (0.1 g, 0.515 mmol) was dissolved in CH2CI2 (1 mL) . Triethylamine (0.107 mL, 0.772 mmol) was added. At 0°C 2- (trifluoromethyl)benzoyl chloride (0.0761 mL, 0.515 mmol) was added drop wise. The reaction mixture was stirred 30 min at 0°C. It was diluted with EtOAc, washed with HCI 1 N, aq NaHC03 and brine. Then it was dried over filtrated and evaporated. The residue was a crude of 166 mg. The crude was purified by flash chromatography (Solvent: Cyclohexane /EtOAc 3/1 ). A white solid was isolated (133mg). mp. 83.4°- 84.2°C

1H-NMR (CDCI 3 ): 7.7 (d, 1 H), 7.6-7.45 (m, 3H), 7.25 (bs, 1 H), 6.6 (s, 1 H), 3.8 (d, 2H), 1.95 (m, 1 H), 1 .3 (m,2H), 1.1 (m, 2H), 0.85 (m, 2H), 0.75 (m, 2H).

PREPARATION EXAMPLE 4: 2-(trifluoromethyl)-N-[[1 -[4-(trifluoromethyl)thiazol-2- yl]cyclopropyl]methyl]benzamide (Compound A14)

Step 1 : tert-butyl 2-cvano-2-r4-(trifluoromethyl)thiazol-2-yllacetate

To a solution of 2-chloro-4-(trifluoromethyl)thiazole (1 g, 5.3313 mmol) in NMP (3.8 mL) was added at RT K2C03 (2.2328 g, 15.994 mmol), followed by the dropwise addition of tert-butyl 2-cyanoacetate (1 .0537 g, 7.4639 mmol). Then the reaction mixture was heated at 80°C during 3h. The reaction mixture was poured in water (35 mL). An aqueous solution of HCI 4N was added slowly (gas evolution, foam formation) until pH~5-6 (a precipitate appeared), the reaction mixture was then filtrated and washed with water and hexane. The pink solid was dried under vacuum and gave 1 .24 g of pur product.

1H-NMR (CDCI 3 ): 12.3 (bs, 1 H), 7.03 (s, 1 H), 1.55 (s, 9H). Step 2: 2-r4-(trifluoromethyl)thiazol-2-yllacetonitrile

To a solution of tert-butyl 2-cyano-2-[4-(trifluoromethyl)thiazol-2-yl]acetate (2.1 1 g, 7.22 mmol,) in HCI 4N (9 mL) was added dropwise acetic acid (9 mL, 7.22 mmol) at RT, then the reaction mixture was heated at 80°C for 1 h. The reaction mixture was poured in an ice-water solution (-100 mL), then extracted with AcOEt (2 times). Organics layers were washed by H20, NaCI, then dried under Na2S04, filtered and concentrated under reduce pressure to afford an orange oil (1.0 g).This was the desired compound with 91 % purity. 1 H-NMR (CDCI 3 ): 7.85 (s, 1 H), 4.2 (s, 2H).

Step 3: 1-r4-(trifluoromethyl)thiazol-2-yllcvclopropanecarbonitrile

K2C03 (1 .75 g, 12.7 mmol) was diluted in DMSO (6.5 mL, 4.23 mmol). The 2-[4- (trifluoromethyl)thiazol-2-yl]acetonitrile (0.812 g, 4.23 mmol) and 1 ,2-dibromoethane (0.548 mL, 6.34 mmol)were dissolved in DMSO (2mL) and added dropwise to the solution. The reaction mixture was heated at 45°C during 1 .5h. It was added slowly to ice water (75 mL).

Then an aqueous solution of HCI 4N was added, until acidic pH (-8-10 mL), then extracted by AcOEt. Organic layers were washed by H20, NaCI, dried (over Na2S04), filtered and concentrated under reduced pressure to give a dark oil (1 .09 g). The crude was purified flash chromatography (Cyclohexane/AcOEt: 1/1 ) to give an orange oil (540 mg) corresponding to the desired product.

1 H-NMR (CDCI 3 ): 7.67 (s. 1 H), 1.97 (m, 2H), 1 .92 (m, 2H). Step 4: tert-butyl N-[[1-[4-(trifluoromethyl)thiazol-2-yllcvclopropyllmethyllca rbamate

To a solution of 1-[4-(trifluoromethyl)thiazol-2-yl]cyclopropanecarbonitrile (0.344 g, 1.58 mmol) in MeOH (13 mL) at 0°C under argon, was added (Boc)20 (0.860 g, 3.94 mmol), followed by NiCI2.6H20 (0.0956 g, 0.394 mmol), then NaBH4 (0.417 g, 1 1 .0 mmol) was added in 30 min. The dark reaction mixture was allowed to warm up to R.T. and stirred overnight. Diethylenetriamine (0.176 mL, 1.58 mmol) was added and the mixture was stirred 30 min more. The reaction mixture was concentrated under reduce pressure and the residue was dissolved in EtOAc (100 mL) and washed with NaHC03 (2 times), then dried over Na2S04, filtrated, and concentrated under vacuum to give a brown solid-oil (435 mg). The crude was purified by flash chromatography (Solvent: Cyclohexane /EtOAc 95/5) to give a yellow oil (217 mg) as the pure desired compound.

1 H-NMR (CDCIs): 7.55 (s, 1 H), 5.25 (bs, 1 H), 3.55 (d, 2H), 1 .45 (s, 9H), 1 .27 (m, 2H), 1 .2 (m, 2H). Step 5: ri-r4-(trifluoromethyl)thiazol-2-yllcvclopropyllmethanamine hydrochloride

The tert-butyl N-[[1 -[4-(trifluoromethyl)thiazol-2-yl]cyclopropyl]methyl]carbama te (0.307 g, 0.952 mmol) was diluted in HCI 4M in dioxane (6.19 mL) at R.T. and the reaction mixture was stirred overnight. The yellow solution was concentrated under vacuum and gave 0.236 g of a yellow solid corresponding to the desired compound.

1 H-NMR (CDCI 3 ): 8.9 (bs, 3H), 7.65 (s, 1 H), 3.45 (m, 2H), 1.75 (m, 2H), 1.3 (m, 2H).

Step 6: 2-(trifluoromethyl)-N-IT1 -r4-(trifluoromethyl)thiazol-2-yllcvclopropyllmethyll benzamide (Compound A14)

To a solution of [1-[4-(trifluoromethyl)thiazol-2-yl]cyclopropyl]methanamine hydrochloride

(0.1 18 g, 0.430 mmol) in dry dichloromethane ( 0.9 mL) was added Et3N (0.15 mL, 1.07 mmol) at R.T., then the mixture was cooled at 0°C and 2-(trifluoromethyl)benzoyl chloride was added dropwise (0.0631 mL, 0.430 mmol). The reaction mixture was warmed to R.T. and stirred for 2h. Water was added and the mixture was extracted with dichloromethane (3 times). The combined organics layers were washed by Na2C03, NaCI, then dried over Na2S04, filtered and evaporated to afford a colorless oil (352 mg) which was purified by flash chromatography (Cyclohexane to Cyclohexane/AcOEt :4/1 ). It afforded a white gum (131 mg).

1 H-NMR (CDCI 3 ): 7.7 (d, 1 H), 7.6-7.5 (m, 4H), 6.9 (bs, 1 H), 3.87 (d, 2H), 1 .47 (m, 2H), 1 .2 (m, 2H).

PREPARATION EXAMPLE 5: 2-(trifluoromethyl)-N-rri-r4-(trifluoromethyl)pyrimidin-2- yllcvclopropyllmethyllbenzamide (Compound A15)

Step 1 : tert-butyl 2-cyano-2-[4-(trifluoromethyl)pyrimidin-2-yllacetate

To a solution of 2-chloro-4-(trifluoromethyl)pyrimidine (1 .0 g, 5.5 mmol) in NMP (3.9 mL) was added at RT K2C03 (2.3 g, 16 mmol), followed by the dropwise addition of tert-butyl 2-cyanoacetate (1 .1 g, 7.7 mmol). Then the reaction mixture was heated at 80°C. The reaction mixture was poured in water (35 mL). An aqueous solution of HCI 4N was added slowly (gas evolution, foam formation) until pH~5-6, then the mixture was filtrated and washed with water and Hexane. The white solid was dried under vacuum and gave 1 .756 g of pur product.

1 H-NMR (CDCI 3 ):7.93 (t, 1 H), 6.8 (d, 1 H), 4.75 (s, 1 H), 1.55 (s, 9H). Step 2: 2-r4-(trifluoromethyl)pyrimidin-2-yllacetonitrile

To a solution of tert-butyl 2-cyano-2-[4-(trifluoromethyl)pyrimidin-2-yl]acetate (2.38 g, 8.29 mmol) in HCI 4N (10 mL) was added dropwise acetic acid (10 ml_, 8.29 mmol) at RT, then the reaction mixture was heated at 70°C for 1 h. The reaction mixture was poured in an ice-water solution (-100 mL), then extracted with AcOEt (2 times). Organics layers were washed by H20, NaCI, then dried under Na2S04, filtered and concentrated under reduce pressure to afford an orange oil (0.187 g). This was the desired product with a purity of 94%.

1 H-NMR (CDCI 3 ):9.08 (d, 1 H), 7.67 (d, 1 H), 4.12 (s, 2H).

Step 3: 1-r4-(trifluoromethyl)pyrimidin-2-yllcvclopropanecarbonitril e

To a mixture of 2-[4-(trifluoromethyl)pyrimidin-2-yl]acetonitrile (0.695 g, 3.71 mmol), 1 ,2- dibromoethane (0.963 mL, 1 1 .1 mmol) and triethylbenzylammonium chloride (0.0425 g, 0.186 mmol) in toluene (5 mL) was added dropwise at R.T. aqueous NaOH 30% (2.9 mL, 28.2 mmol). The colorless solution had turn into a red one. The exothermic reaction mixture was vigorously stirred overnight. The reaction mixture was diluted with H20, and extracted with Et20 (4 times). The combined organic layers were washed with H20, NaCI and dried over Na2S04. The solvent was removed to give a red oil (1 .0 g). The red residue was triturated in cyclohexane and evaporated (2 times) to afford a red solid (940 mg). The crude was purified by flash chromatography (Solvent: CycloHexane/EtOAc: 4/1 ) to give a white powder (535 mg).

1 H-NMR (CDCI 3 ):8.95 (d, 1 H), 7.52 (d, 1 H), 1.93 (m, 4H).

Step 4: tert-butyl N-[[1-[4-(trifluoromethyl)pyrimidin-2-yllcvclopropyllmethyll carbamate

To a solution 1-[4-(trifluoromethyl)pyrimidin-2-yl]cyclopropanecarbonitril e (0.340 g, 1.60 mmol) in MeOH (8 mL) at 0°C under argon, was added (Boc)20 (0.870 g, 3.99 mmol), followed by NiCI2.6H20 (0.0967 g, 0.399 mmol). Then NaBH4 (0.483 g, 12.8 mmol) was added in 30 min. The dark reaction mixture was allowed to warm up to R.T. and was stirred overnight. Diethylenetriamine (0.178 mL, 1.59 mmol) was added and the mixture was stirred 30 min more. The dark solution was first filtrated over celite before being evaporated under reduce vacuum. The residue was dissolved in EtOAc (100 mL) and washed with NaHC03 (2 times), then dried over Na2S04, filtrated, and concentrated under vacuum to give 348 mg of a brown oil. The crude was purified by flash chromatography (Solvent:CycloHexane /AcOEt:80/20) to give a colorless oil (320 mg). 1 H-NMR (CDCI 3 ):8.85 (d, 1 H), 7.38 (d, 1 H), 5.6 (bm, 1 H), 3.6 (d, 2H), 1.5-1 .4 (m, 1 1 H), 1 .37 (m, 2H).

Step 5: [1-[4-(trifluoromethyl)pyrimidin-2-yllcvclopropyllmethanamin e hydrochloride

Tert-butyl N-[[1 -[4-(trifluoromethyl)pyrimidin-2-yl]cyclopropyl]methyl]carba mate (0.087 g, 0.27 mmol) was diluted in HCI 4M in dioxane (1.8 mL) at R.T., and the reaction mixture was stirred overnight, the orange suspension was concentrated under vacuum to give an orange solid (68 mg).

1 H-NMR (CDCI 3 ):8.88 (d, 1 H), 8.7 (bs, 3H), 7.45 (d, 1 H), 3.47 (m, 2H), 1.68 (m, 2H), 1.53 (m, 2H).

Step 6: 2-(trifluoromethyl)-N-rri-r4-(trifluoromethyl)pyrimidin-2-yl lcvclopropyllmethyll benzamide (Compound A15)

To a solution of [1-[4-(trifluoromethyl)pyrimidin-2-yl]cyclopropyl]methanamin e

hydrochloride (0.068 g, 0.25 mmol) in dry dichloromethane (0.5 mL) was added Et3N (0.089 mL, 0.63 mmol) at R.T., then the mixture was cooled at 0°C. The 2-(trifluoromethyl) benzoyl chloride was added dropwise (0.037 mL, 0.25 mmol) at 0°C. The reaction mixture was warmed up to R.T. and stirred during 2h. H20 was added and the mixture was extracted with dichloromethane (3 times). The combined organics layers were washed by Na2C03, NaCI, then dried over Na2S04, filtered and evaporated to afford a colorless oil (220 mg). It was purified using flash chromatography (Cyclohexane to

Cyclohexane/AcOEt:4/1 ) and afforded a white gum (71 mg).

1 H-NMR (CDCIs): 8.8 (d, 1 H), 7.65 (d, 1 H), 7.6-7.45 (m, 3H), 7.38 (d, 1 H), 7.05 (bs, 1 H), 3.92 (d, 2H), 1 .53 (m, 2H), 1 .39 (m, 2H).

PREPARATION EXAMPLE 6: 2-ftrifluoromethvn-N-rri-r6-ftrifluoromethvnDyridazin-3- yllcvclopropyllmethyllbenzamide (Compound A19)

Step 1 : tert-butyl 2-cyano-2-[6-(trifluoromethyl)pyridazin-3-yllacetate

3-Chloro-6-(trifluoromethyl)pyridazine (0.8 g, 4.38 mmol) was dissolved in NMP (2.1914 mL). Potassium carbonate (1 .8173 g, 13.15 mmol) was added. Then tert-Butyl 2- cyanoacetate (0.878 mL, 6.14 mmol) was added. The yellow suspension was warmed up to 80°C and stirred 3 hours at 80°C. The brown suspension was cooled down to rt. Then it was added to 10ml water. The brown solution was acidified with HCI cone, (gas evolution, strong foaming). There was a precipitation. The suspension was filtrated and the filter cake was washed with water. The filter cake was dissolved in EtOAc , dried with IS^SC^ filtrated and the organic phase evaporated to yield 1 .23g of desired material.

1H-NMR (CDCIs): 14.3 (bs, 1 H), 7.68 (dd, 1 H), 7.35 (d, 1 H), 1.55 (s, 9H).

Step 2: 2-r6-(trifluoromethyl)pyridazin-3-yllacetonitrile

Tert-butyl 2-cyano-2-[6-(trifluoromethyl)pyridazin-3-yl]acetate (1 .23 g, 4.28 mmol) was suspended in Acetic acid (5.7 mL) and Hydrogen chloride 5N (5.31 ml_). The yellow suspension was stirred at 70°C for 1 hour. Over time it became a brown homogeneous solution. The reaction mixture was cooled down to rt. Then it was added to ice water. The water was extracted 3 times with EtOAc. The combined organic phases were washed with water and brine, dried with filtrated and concentrated to give 0.81 g of a yellow oil. The crude was purified by flash chromatography (Solvent: Cyclohexane /EtOAc 2/1 ). 0.626g of product were isolated as a pale brown solid.

1H-NMR (CDCI 3 ): 7.9-7.8 (m, 2H), 4.33 (s, 2H).

Step 3: 1-r6-(trifluoromethyl)pyridazin-3-yllcvclopropanecarbonitril e

2-[6-(Trifluoromethyl)pyridazin-3-yl]acetonitrile (0.1 g, 0.534 mmol) and Benzyl(triethyl) ammonium hydrochloride (0.01223 g, 0.053 mmol) were mixed in 1 ,2-Dibromoethane (0.138 mL, 1.603 mmol). The reaction mixture was not stirrable. Therefore 1 ml Toluene was added. A solution of sodium hydroxide 30% in water (0.407 mL, 4.062 mmol) was added. After 2 hours the reaction mixture was dark red. It was stirred at rt overnight (gas evolution). To the dark brown reaction mixture was added water and diethylether. The phases were separated. The organic phase was washed with water, twice with 1 N HCI and twice with brine. The organic phase was dried with filtrated and concentrated to give 121 mg of a brown oil. The crude was purified by flash chromatography (Solvent:

Cyclohexane /EtOAc 3/1 ): 66 mg of pure product were isolated as a yellow/orange solid. 1 H-NMR (CDCIs): 8.12 (d, 1 H), 7.85 (d, 1 H), 2.25 (m, 2H), 2.0 (m, 2H). Step 4: tert-butyl N-rri-r6-(trifluoromethyl)pyridazin-3-yllcvclopropyllmethyll carbamate

1-[6-(Trifluoromethyl)pyridazin-3-yl]cyclopropanecarbonit rile (0.215 g, 1 .009 mmol) was dissolved MeOH (7.5647 ml_). At 0°C Di-tert-butyl dicarbonate (0.44027 g, 2.017 mmol) was added. Nickel (II) chloride hexahydrate (0.047948 g, 0.202 mmol) was then added.

Over 60 minutes Sodium borhydride (0.2671 g, 7.060 mmol) was added in small portions.

The reaction was exothermic and gas evolved. The black suspension was warmed to rt and stirred over night. The black supension was filtrated over Hyflo and washed with MeOH. The filtrate was evaporated. The residue was dissolved in 100ml EtOAc and washed twice with 50ml saturated NaHCOg. The organic phase was dried with Na2S04 filtrated and concentrated. The residue was a yellow oil (0.280 g). The crude was purified by flash chromatography (Solvent: Cyclohexane /EtOAc 3/1 ). 100mg of a colorless oil were obtained.

1H-NMR (CDCI 3 ): 7.68 (d, 1 H), 7.4 (d, 1 H), 4.9 (bs, 1 H), 3.65 (d, 2H), 1.5-1 .4 (m, 1 1 H), 1 .35 (m, 2H).

Step 5: [1-[6-(trifluoromethyl)pyridazin-3-yllcvclopropyllmethanamin e hydrochloride

Tert-Butyl N-[[1 -[6-(trifluoromethyl)pyridazin-3-yl]cyclopropyl]methyl]carba mate (0.1 g, 0.315 mmol) was dissolved in HCI 4M in Dioxane (2.0 mL) at rt. The reaction mixture (a yellow solution) was stirred overnight. It was concentrated to give 83 mg of a brown oil. The compound was directly engaged in Step 6 without any purification. Step 6: 2-(trifluoromethyl)-N-IT1 -r6-(trifluoromethyl)pyridazin-3-yllcvclopropyllmethyll benzamide (Compound A19)

[1-[6-(trifluoromethyl)pyridazin-3-yl]cyclopropyl]methana mine hydrochloride (0.083 g, 0.327 mmol) was diluted in CH2CI2 (2 mL). Triethylamine (0.1 14 mL, 0.818 mmol) was added. At 0°-5°C 2-(Trifluoromethyl)benzoyl chloride (0.0480 mL, 0.327 mmol) was added dropwise. The reaction mixture was stirred 10 min at 0°C, then 30 min at rt. It was washed with water and brine. The organic phase was dried with Na2SC>4 , filtrated and concentrated to give

130mg of a crude brown oil. The crude was purified by flash chromatography (Solvent: Cyclohexane /EtOAc 2/1 ). 77mg of product were isolated but it still contained some impurities. This fraction was further purified over reverse phase column (method described below) to give 27mg of pure product as a colorless gum.

1 H-NMR (CDCI 3 ): 7.73 (d, 1 H), 7.65 (d, 1 H), 7.6-7.45 (m, 3H), 7.25 (d, 1 H), 7.0 (bs, 1 H), 4.02 (d, 2H), 1 .55 (m, 2H), 1 .25 (m, 2H).

Preparative reverse phase purification method:

Autopurification System from Waters: 2767 sample Manager, 2489 UVA isible Detector, 2545 Quaternary Gradient Module.

Column: Phenomenex Synergi C18, 4 micron particle size, 80 Angstrom, 75 x 30.00 mm, DAD Wavelength (nm): 220 and 254

Solvent Gradient: Reversed Phase

A = water (Fluka Analytical)

B= Acetonitrile for prep. HPLC ( Fluka Analytical)

Time A% B% Flow (ml/min)

0.00 70.0 30.0 50.00

0.01 70.0 30.0 50.00

6.00 45.0 55.0 50.00 7.90 45.0 55.0 50.00

8.00 0.0 100.0 50.00

8.90 0.0 100.0 50.00

9.00 70.0 30.0 50.00

9.50 70.0 30.0 50.00

9.55 70.0 30.0 0.00

PREPARATION EXAMPLE 7: N-rri -(4-chlorothiazol-2-yl)cvclopropyllmethyll-2- (trifluoromethyl)pyridine-3-carboxamide (Compound A21 )

Step 1 : tert-butyl 2-(4-chlorothiazol-2-yl)-2-cvano-acetate

To a solution of 2,4-dichlorothiazole (2 g, 12.985 mmol) in NMP (9.3 mL) was added at RT K2C03 (5.4382 g, 38.956 mmol) followed by the dropwise addition of tert-butyl 2- cyanoacetate (2.6 mL, 18.179 mmol). Then the reaction mixture was heated at 80°C for 5 hr. The reaction mixture was poured in water (35 mL). An aqueous solution of HCI 4N was added slowly (gas evolution, foam formation) until pH~5-6, then filtrated and washed with water and hexane. The white solid was dried under vacuum and gave 2.71 g of a white solid as pure product.

1 H-NMR (CDCIs): 12.0 (bs, 1 H), 6.36 (s, 1 H), 1.52 (s, 9H). Step 2: 2-(4-chlorothiazol-2-yl)acetonitrile

To a solution of tert-butyl 2-(4-chlorothiazol-2-yl)-2-cyano-acetate (2.71 g, 10.5 mmol) in HCI 4N (10 mL) was added dropwise acetic acid (10 mL) at RT, then the reaction mixture was heated at 70°C for 1 h. The reaction mixture was poured in an ice-water solution (-100 mL), then extracted with AcOEt (2 times). Organics layers were washed by H20, NaCI, then dried under Na2S04, filtered and concentrated under reduce pressure to afford an orange oil (1 .73 g). it contained the desired product with a purity of 88%. It was used directly in the next step without purification.

1H-NMR (CDCIs): 7.18 (s, 1 H), 4.13 (s, 2H).

Step 3: 1-(4-chlorothiazol-2-yl)cvclopropanecarbonitrile

To a mixture of 2-(4-chlorothiazol-2-yl)acetonitrile (2.88 g, 18.2 mmol), 1 ,2-dibromoethane (4.71 mL, 54.5 mmol) and triethylbenzylammonium chloride (0.208 g, 0.908 mmol) was added, dropwise at R.T. a solution of NaOH 30% in water (14 mL, 138 mmol). The colorless solution turned into a red one. The exothermic reaction mixture was vigorously stirred overnight. The reaction mixture was diluted with H20, and extracted with Et20 (4 times). The combined organic layers were washed with H20, NaCI and dried over Na2S04. The solvent was removed to give a dark oil (6.5 g). The crude was purificated by flash chromatography using silica gel (Cyclohexane/AcOEt: 4/1 ) to give a white solid (2.22 g)- 1 H-NMR (CDCI 3 ): 7.0 (s, 1 H), 1 .93 (m, 2H), 1 .87 (m, 2H).

Step 4: [1-(4-chlorothiazol-2-yl)cvclopropyHmethanamine

To a solution of 1-(4-chlorothiazol-2-yl)cyclopropanecarbonitrile (0.100 g, 0.542 mmol) in Et20 (0.9 mL) was added dropwise at 0°C, under argon, LiAIH4 (1.0 mol/L) in Et20 (1 .4 mL). The red solution turned into an orange one, the mixture was stirred during 1.5h at 0°C. The mixture was carefully quench (dropwise quench, exothermic , temperature not beyond 15°C) by an addition of 1 mL H20, followed by 2 mL NaOH 4M then 3 mL H20 and the reaction mixture was stirred 15 min at R.T.. Na2S04 was added and the mixture was stirred 15 min more and filtrated. The mixture was extracted by EtOAc (2 times). The combined organic layers were washed with NaCI, dried under Na2S04, filtrated and evaporated under reduced pressure to give an orange oil (25 mg).

1H-NMR (CDCIs): 6.92 (s, 1 H), 3.03 (s, 2H), 1 .75 (bs, 2H), 1 .23 (m, 2H), 1 .06 (m, 2H).

Step 5: Ν-ΓΓ1 -(4-chlorothiazol-2-yl)cvclopropyllmethyll-2-(trifluoromethy l)pyridine-3- carboxamide (Compound A21 )

To a solution of [1-(4-chlorothiazol-2-yl)cyclopropyl]methanamine (0.153 g, 0.747 mmol) in dry dichloromethane (3.0 mL) was added, under argon, NEt3 (0.210 ml_, 1 .49 mmol), then the mixture was cooled down to 0°C. HOBT H20 (0.204 g, 1 .49 mmol), EDC HCL (0.287 g, 1.49 mmol), and 2-(trifluoromethyl)pyridine-3-carboxylic acid (0.143 g, 0.747 mmol,) were successively added and the reaction mixture was stirred 3h. at R.T. Water was added, the aqueous solution was extracted with dichloromethane (3 times), the combined organic layers were washed by NaCI, dried over Na2S04, filtrated and evaporated under reduced pressure. A white solid was obtained (387 mg). It was purified by flash chromatography (Cyclohexane to Cyclohexane/AcOEt :1/1 ) to afford the desired product as a white solid (102 mg).

1 H-NMR (CDCI 3 ): 8.77 (dd, 1 H), 7.92 (dd, 1 H), 7.56 (dd, 1 H), 6.97 (bs, 1 H), 6.9 (s, 1 H), 3.86 (d, 2H), 1.42 (m, 2H), 1.18 (m, 2H).

PREPARATION EXAMPLE 8: 2-(trifluoromethyl)-N-rri-r5-(trifluoromethyl)thiazol-2- yllcvclopropyllmethyllbenzamide (compound A 29)

Step 1 : (l -iodocvclopropyl)methanamine

Δ Iodine chloride (14.9 ml, 47.5 g, 292 mmol) was added dropwise over ca 20 minutes to a suspension of sodium azide (42.5 g, 647 mmol) in acetonitrile (200ml) stirred at 0 °C, at such a rate that the temperature stayed below 10 °C. The last part was washed in with a little MeCN. It was then stirred at 0 °C for ca 15 minutes. There was a little solid left. The solution was then cooled with an ice/salt bath. Methylenecyclopropane (20ml, 14g, 259 mmol) was bubbled in below the surface, at such a rate that the temperature stayed between 5 and 10 °C. After the addition the mixture was allowed to warm to room temperature. Then hexane (200 ml), water (200 ml) and some dichlormethane was added to ensure complete solution. The organic phase was separated, washed with 10%

Na2S203 causing a small exotherm, and dried with MgS04. A 2 ml portion of this solution was evaporated down to yield 276 mg of the intermediate azide.

1H-NMR (CDCI 3 ): 3.38 (s, 2H); 1.13 (t, 2H); 0.96 (t, 2H)

The bulk of the hexane solution was evaporated down to ca 150 ml, diluted to ca 350 ml with methanol, evaporated down to ca 100ml, diluted to ca 350ml with methanol and evaporated down to ca 100ml. This solution was added to a solution of SnCI2. dihydrate (74.6 g, 331 .8 mmol) in methanol (300 ml) under stirring at 0 °C. There was an exotherm to ca 20 °C. The exotherm was kept under control by occasion cooling of the reaction mixture in the cool bath, keeping the mixture at ca 20 °C. After 30 minutes the exotherm had subsided and the mixture was stirred for a further hour. The mixture was shaken between tBuOMe and 4M NaOH. The mixture was filtered through celite to remove the fine white precipitate and the mixture evaporated down to ca 100ml. This was shaken between tBuOMe and half saturated NaCI, dried with MgS04 and evaporated down to yield 8.9 g of crude amine. , which was dissolved in tBuOMe, and treated with excess HCI in MeOH to give a white precipitate which was filtered off to yield 7.61 g of the product as a

hydrochloride salt.

1 H-NMR (D20): 4.70 (s, NH3 and H20), 3.08 (s, 2H); 1.19 (t, 2H); 1 .02 (t, 2H)

Step 2: N-[(1 -iodocvclopropyl)methyl1-2-(tnfluoromethyl)benzamide

(l -iodocyclopropyl)methanamine hydrochloride (2.75 g, 1 1 .8 mmol) was stirred with NaHC03 (1 M, 64.8 mmol) and dichloromethane (65ml). 2-(trifluoromethyl)benzoyl chloride (2.12 ml, 2.93 g, 14.1 mmol) was added dropwise. After ca one hour the organic phase was separated, dried with MgS04, and evaporated to give the crude product, which was stirred with cyclohexane for two hours. The white crystalline product (2.94 g) was filtered off. The mother liquors were evaporated down and chromatographed to yield a further 191 mg.

1 H-NMR (CDCIs): 7.73 (d, 1 H); 7.66-7.53 (m, 3H); 6.15 (br s, 1 H); 3.54 (d, 2H); 1.14 (t, 2H); 1 .08 (t. 2H]

Step 3: 2-(trifluoromethyl)-N-rri-r5-(trifluoromethvnthiazol-2- yllcvclopropyllmethyllbenzamide (compound A 29)

A solution of iPrMgCI and LiCI in THF (1 .3 M each, 0.75ml, 0.97mmol) was added dropwise to a solution of (N-[(1-iodocyclopropyl)methyl]-2-(trifluoromethyl)benzamide (300 mg, 0.812 mmol) in THF (6ml) at -78 °C. It was warmed to 0 °C and cooled again to -78 °C. Butyl lithium in hexane (1.6M, 1 ml, 1.62 mmol) was dropwise. After 15 minutes LC/MS showed complete reaction, so the solution was added to a solution of 2-chloro-5- (trifluoromethyl)thiazole (305 mg, 1 .63 mmol) and MnCI2 (20.7 mg, 0.163 mmol) in THF (1 .5ml) under argon at 0°C. After one hour at 0°C the mixture was shaken between NH4CI (5M), and EtOAc. The organic phase was dried with MgS04 and evaporated to yield 312 mg which was dissolved in dichloromethane and filtered through silica to yield 1 17 mg crude mixture, which was separated on RP-HPLC to yield 6mg of the pure product. M.p. 94-96 °C.

1 H-NMR (CDCI 3 ): 7.82 (s, 1 H); 7.68 (d, 1 H), 7.63-7.52 (m, 3H); 3.88 (d, 2H); 1 .52 (t, 2H); 1.22 (t, 2H).

According to the methods described above, the compounds in Table A & Q were prepared. Table A: Compounds of formula (I)

R1 R2 R3 \R4 R5 R6 R7 A1 A2 A3 A4 A5 Retention [M+Hf Method LC-MS time

A.4 H H H H H H C-F C-H C-H C-H C-F 1.53 304 ZCQ11

A.5 H H H H H H C-CI N C-H C-H N 1.39 304 / 306 ZCQ11

A.6 H H H H H H C-CF3 C-H C-H C-H C-H 1.24 350 ZCQ11

A.7 H H H H H H C-CI N C-H C-H N 1.22 318/320 ZCQ11

A.8 H H H H H H C-F C-H C-H C-H C-F 1.31 318 ZCQ11

R1 R2 R3 \R4 R5 R6 R7 A1 A2 A3 A4 A5 Retention [M+Hf Method LC-MS time

A.9 H H H H H H C-F C-H C-H C-H C-F 1.27 290 ZCQ11

A.10 H H H H H H C-CF3 C-H C-H C-H C-H 1.82 367 ZMD11 83-84

A.11 H H H H H H C-CF3 C-H C-H C-H C-H 1.41 322 ZCQ11

A.12 H H H H H H C-CF3 C-H C-H C-H C-H 1.45 350 ZCQ11 86-89

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5 Retention [M+Hf Method LC-MS Mj time (°C)

A.13 H H H H H H C- C- C- C- C- 1 .71 361/363 ZCQ1 1

CF3 H H H H

CI

A.14 H H H H H H C- C- C- C- C- 1 .8 395 ZCQ1 1

CF3 H H H H

A.15 H H H H H H C- C- C- C- C- 1.83 390 ZCQ11

CF3 H H H H

A.16 H H H H H H C-CI N C- C- N 1.61

F 363/365 ZCQ11

H H

F ~ ^

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5 Retention [M+Hf Method LC-MS Mj time (°C)

A.17 H H H H H H C-CI N

CI C- C- N 1.48 329/331 ZCQ11

H H

A.18 H H H H H H C-CI N C- C- N 1.64 358/360 ZCQ11

H H

A.19 H H H H H H c- C- C- C- C-

F F 1.69 390 STANDARD_LONG

CF3 H H H H

A.20 H H H H H H

CI C- C- C- C- N 0.93 362 STANDARD

CF3 H H H

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 A4 A5 Retention [M+Hf Method LC-MS Mj time CC)

A.21 H H H H CI H H C- N C- C- C- 0.87 362 STAN DARD 146- CF3 H H H

147

A.22 H H H H CI H H C- C- C- C- N 0.94 308 STAN DARD

CH3 H H H

A.23 H H H H CI H H C-CI C- C- C- N 0.87 328 STAN DARD

H H H

A.24 H H H H CI H H C-F C- C- C- N 0.86 312 STAN DARD

H H H

R1 R2 R3 R4 R5 R6 R7 A1 A2 A3 Λ4 Λ5 Retention [M+Hf Method LC-MS Mj time (°C)

A.30 H H H H H H C-CF3 C- C- C- C- 127-

CF 3 H H H H 129

Table Q: Compounds of formulae (II). (Ill), (IV), (V) and (VI)

Formula CAS R1 R2 R3 R4 R5 R6 R7 X Retention [M+HJ+ Metht

Reference time LC-MS

Q.28 Formula none H H H H H H 0.21 186/191 ZCQ11 (Ilia)

LC-MS method: ZCQ12

ZQ Mass Spectrometer from Waters (Single quadrupole mass spectrometer) Instrument Parameter:

Ionization method: Electrospray

Polarity: positive and negative ions

Capillary: 3.00 kV

Cone: 30 V

Extractor: 2.00 V

Source Temperature: 150°C,

Desolvation Temperature: 350C

Cone Gas Flow: 50 L/Hr

Desolvation Gas Flow: 400 L/Hr

Mass range: 100 to 900 Da

Acquity UPLC from Waters:

Binary pump, heated column compartment and diode-array detector.

Solvent degasser, binary pump, heated column compartment and diode-array detector. Column: Waters UPLC HSS T3 , 1 .8 Dm, 30 x 2.1 mm,

Temp: 60 °C

DAD Wavelength range (nm): 210 to 500

Solvent Gradient:

A = H20 + 5% MeOH + 0.05 % HCOOH

B= Acetonitril + 0.05 % HCOOH

Time A% B% Flow (ml/min)

0.00 90 10 0.85

1 .20 0 100.0 0.85

1 .50 0 100.0 0.85 LC-MS method: ZCQ1 1

ZQ Mass Spectrometer from Waters (Single quadrupole mass spectrometer) Instrument Parameter:

Ionization method: Electrospray

Polarity: positive and negative ions

Capillary: 3.00 kV

Cone: 30.00 V

Extractor: 2.00 V

Source Temperature: 100°C,

Desolvation Temperature: 250°C

Cone Gas Flow: 50 L/Hr

Desolvation Gas Flow: 400 L/Hr

Mass range: 100 to 900 Da

HP 1 100 HPLC from Agilent:

Solvent degasser, quaternary pump, heated column compartment and diode-array detector.

Column: Phenomenex Gemini C18, 3 mm, 30 x 3 mm,

Temp: 60 °C

DAD Wavelength range (nm): 210 to 500

Solvent Gradient:

A = H20 + 5% MeOH + 0.05 % HCOOH

B= Acetonitril + 0.05 % HCOOH

Time A% B% Flow (ml/min)

0.00 100 0 1.700

2.00 0 100.0 1.700

2.80 0 100.0 1.700

2.90 100 0 1.700

3.00 100 0 1.700 LC-MS method: ZMD1 1

ZMD Mass Spectrometer from Waters (Single quadripole mass spectrometer) Instrument Parameter:

Ionization method: Electrospray

Polarity: positive or negative ions

Capillary: 3.80 kV

Cone: 30.00 V

Extractor: 3.00 V

Source Temperature: 150°C,

Desolvation Temperature: 350°C

Cone Gas Flow: OFF

Desolvation Gas Flow: 600 L/Hr

Mass range: 100 to 900 Da

HP 1 100 HPLC from Agilent:

Solvent degasser, binary pump, heated column compartment and diode-array detector. Column: Phenomenex Gemini C18, 3 mm, 30 x 3 mm,

Temp: 60 °C

DAD Wavelength range (nm): 200 to 500

Solvent Gradient:

A = H20 + 5% MeOH + 0.05 % HCOOH

B= Acetonitril + 0.05 % HCOOH

Time A% B% Flow (ml/min)

0.00 100 0 1.700

2.00 0 100.0 1.700

2.80 0 100.0 1.700

2.90 100 0 1.700

3.00 100 0 1.700 LC-MS method: STANDARD

ZQ Mass Spectrometer from Waters (Single quadrupole mass spectrometer) Instrument Parameter:

Ionization method: Electrospray

Polarity: positive and negative ions

Capillary: 3.00 kV

Cone: 30 V

Extractor: 2.00 V

Source Temperature: 150°C,

Desolvation Temperature: 350C

Cone Gas Flow: 50 L/Hr

Desolvation Gas Flow: 400 L/Hr

Mass range: 100 to 900 Da

Acquity UPLC from Waters:

Binary pump, heated column compartment and diode-array detector.

Solvent degasser, binary pump, heated column compartment and diode-array detector. Column: Waters UPLC HSS T3 , 1 .8 Dm, 30 x 2.1 mm,

Temp: 60 °C

DAD Wavelength range (nm): 210 to 500

Solvent Gradient:

A = H20 + 5% MeOH + 0.05 % HCOOH

B= Acetonitril + 0.05 % HCOOH

Time A% B% Flow (ml/min)

0.00 90 10 0.85

1 .20 0 100.0 0.85

1 .50 0 100.0 0.85 LC-MS method: STANDARD LONG

ZQ Mass Spectrometer from Waters (Single quadrupole mass spectrometer) Instrument Parameter:

Ionization method: Electrospray

Polarity: positive and negative ions

Capillary: 3.00 kV

Cone: 30 V

Extractor: 2.00 V

Source Temperature: 150°C,

Desolvation Temperature: 350C

Cone Gas Flow: 50 L/Hr

Desolvation Gas Flow: 400 L/Hr

Mass range: 100 to 900 Da

Acquity UPLC from Waters:

Binary pump, heated column compartment and diode-array detector.

Solvent degasser, binary pump, heated column compartment and diode-array detector. Column: Waters UPLC HSS T3 , 1 .8 Dm, 30 x 2.1 mm,

Temp: 60 °C

DAD Wavelength range (nm): 210 to 500

Solvent Gradient:

A = H20 + 5% MeOH + 0.05 % HCOOH

B= Acetonitril + 0.05 % HCOOH

Time A% B% Flow (ml/min)

0.00 90 10 0.85

2.70 0 100.0 0.85

3.00 0 100.0 0.85 BIOLOGICAL EXAMPLES:

Meloidoqyne spp. (Root-knot nematode) contact activity, preventive. Pouch test.

Filter papers (9 cm x 4.5 cm) with a small pocket were placed into plastic pouches (12 cm x 6 cm ). One cucumber cv. Toshka seed was placed in the centre of the filter paper pocket of all the pouches needed for a test. The cucumber seeds in the pouches were treated with test solutions at 200 ppm by pipetting the solution directly over the cucumber seed in the filter paper pocket in the pouch. Prior to application, the compound solution was prepared at twice the concentration required and the egg suspension is prepared with FORL nutrient solution with 3000 eggs/ 0.5 ml. After applying all the treatments, 3000 eggs (in 0.5 ml of FORL nutrient solution) were pipetted into the pouches. The pouches were incubated in a moist chamber for twelve days and watered regularly to maintain good filter paper moisture essential for the growing cucumber root system. After this period, the filter paper containing the germinated cucumber seedling was removed from the plastic pouch to assess the number of galls caused by Meloidogyne spp. per root system.

The following compounds showed at least a reduction of 75% of galling compared to the untreated control: A.1 , A.5, A.6, A.10, A.1 1.

Meloidoqyne spp. (Root-knot nematode) contact activity, preventive, drench test.

Cucumber cv. Toshka seeds were sown directly into pots filled with a sandy substrate. Six days later pots were each treated with 5 ml of a WP10 suspension of the test compound at

20 ppm. Hereafter pots were inoculated with 3000 eggs of M. incognita. The trial was harvested fourteen days after trial application and inoculation. Root galling was assessed according to Zeck ' s gall index (Zeck, 1971 ).

The following compounds showed at least a reduction of 75% of galling compared to the untreated control: A.1 , A.4, A.5, A.7, A.8, A.9, A.1 1 A.12, A.17, A.26, and some at least a reduction of 80%.




 
Previous Patent: CAMSHAFT ADJUSTMENT DRIVE

Next Patent: PESTICIDAL COMPOUNDS