Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PHOSPHORAMIDATE DERIVATIVES
Document Type and Number:
WIPO Patent Application WO/2005/070944
Kind Code:
A1
Abstract:
The present invention provides a phosphoramidate compound comprising the structure (I) Formula (I)wherein: X comprises a monosaccharide group comprising the structure (II) or (III),8Formula (II) , (III) B and B are independently selected from the group consisting of -O-, -CH2- and a bond, preferably -O-; R1 is selected from the group consisting of -H, protecting groups and monovalent hydrocarbon radicals; R2 and R3 are independently selected from the group consisting of -H and monovalent hydrocarbon radicals, or R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a cyclic system; R4 is selected from the group consisting of -H and monovalent hydrocarbon radicals; R5-R12 are independently selected from the group consisting of -H, -OH, N3, halogen, -SH,-OR13, -SR13', -NHR14, -NR142 and group Formula (1) wherein B' is selected from the group consisting of -O-, -CH2- and a bond, preferably -O-; R1-R4 are independently selected and are as defined above, wherein R13 and R13’ are independently selected from the group consisting of -H, monovalent hydrocarbon radicals, protecting groups and -C(O)R15, and wherein R14 is selected from the group consisting of -H, monovalent hydrocarbon radicals, protecting groups and -C(O)R15, wherein R15 is selected from the group consisting of -H and monovalent hydrocarbon radicals; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (I). The present invention also provides processes for the production of (I) and uses thereof.

Inventors:
MCGUIGAN CHRISTOPHER (GB)
CARANGIO ANTONELLA (IT)
CATERSON BRUCE (GB)
HUGHES CLARE ELIZABETH (GB)
CURTIS CLARE LOUISE (GB)
Application Number:
PCT/GB2005/000161
Publication Date:
August 04, 2005
Filing Date:
January 18, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV CARDIFF (GB)
MCGUIGAN CHRISTOPHER (GB)
CARANGIO ANTONELLA (IT)
CATERSON BRUCE (GB)
HUGHES CLARE ELIZABETH (GB)
CURTIS CLARE LOUISE (GB)
International Classes:
C07H11/04; (IPC1-7): C07H11/04; A61K31/7024; A61P29/00
Foreign References:
US20020045597A12002-04-18
EP0482206A11992-04-29
Attorney, Agent or Firm:
Howard, Paul Nicholas (43-45 Bloomsbury Square, London WC1A 2RA, GB)
Download PDF:
Claims:
CLAIMS:
1. A phosphoramidate compound comprising the structure (I) wherein: X comprises a monosaccharide group comprising the structure (II) or (III) B and B'are independently selected from the group consisting of O, CH2 and a bond, preferably0 ; Rl is selected from the group consisting ofH, protecting groups and monovalent hydrocarbon radicals; R2 and R3 are independently selected from the group consisting ofH and monovalent hydrocarbon radicals, or R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a cyclic system ; R4 is selected from the group consisting ofH and monovalent hydrocarbon radicals; R5R12 are independently selected from the group consisting ofH, OH, N3, halogen,SH, oR13,SRt3',NHR14,NRI42 and group wherein B"is selected from the group consisting ofO,CH2and a bond, preferably0 ; RlR4 are independently selected and are as defined above, wherein R13 and Ru3 are independently selected from the group consisting ofH, monovalent hydrocarbon radicals, protecting groups andC (O) R15, and wherein R14 is selected from the group consisting of H, monovalent hydrocarbon radicals, protecting groups andC (O) R15, wherein Rl5 is selected from the group consisting ofH and monovalent hydrocarbon radicals; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (I).
2. A compound according to claim 1, wherein Rl is selected from the group consisting ofH, C120 alkyl, C220 alkenyl, C2 20 alkynyl, 330 cycloalkyl, 330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl and 530 aryl.
3. A compound according to claim 1 or claim 2, wherein Rl is selected from the group consisting of C116 alkyl, C216 alkenyl, C216 alkynyl, C320 cycloalkyl, C320 cycloalkenyl, 4 20 cycloalkynyl, 720 aralkyl, 7. 20 alkaryl and 620 aryl.
4. A compound according to any of claims 1 to 3, wherein Rl is selected from the group consisting of primary or secondary C116 alkyl, C26 alkenyl, C57 cycloalkenyl, C57 cycloalkynyl, C511 arC16 alkyl, C16 alkC511 aryl and Cs ll aryl.
5. A compound according to any preceding claim, wherein RI is selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenyl and structural isomers thereof, preferably methyl, ethyl, propyl and isopropyl.
6. A compound according to any preceding claim, wherein R1 is selected from the group consisting of methyl, ethyl, 2butyl, benzyl, preferably benzyl.
7. A compound according to any preceding claim, wherein W and R3 are independently selected from the group consisting ofH, Cl20 alkyl, C22o alkenyl, C22o alkynyl, C330 cycloalkyl, C330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl, and C530 aryl.
8. A compound according to any preceding claim, wherein at least one of R2 and R3 is selected from the group consisting ofH, primary, secondary and tertiary Cl 6 alkyl, C5 7 ar Cl 3 alkyl and C13 alkC57 aryl, or, R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a group selected from C38 cycloalkyl, C38 cycloalkenyl, and 48 cycloalkynyl.
9. A compound according to any of claims 1 to 8, wherein at least one of Ra and R3 is selected from the group consisting ofH, methyl, propyl, isopropyl, butyl, isobutyl, phenyl, hydroxyphenyl, indolyl, thiol, alkylthio, thioalkyl, hydroxyalkyl, amino, alkylimino, imino, alkylNH, H2Nalkyl, imidazolyl, amido and carboxyl.
10. A compound according to any preceding claim, wherein R2 and R3 are independently selected from the group consisting ofH, methyl, benzyl, isopropyl, propyl, nbutyl, sbutyl, tbutyl, or, R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a group selected from C36 cycloalkyl, C36 cycloalkenyl, and C46 cycloalkynyl.
11. A compound according to any preceding claim, wherein R2 is H or methyl.
12. A compound according to any of claims 1 to 10, wherein both R2 and R3 are methyl.
13. A compound according to any of claims 1 to 10, wherein R2 isH and R3 is methyl.
14. A compound according to any of claims 1 to 10, wherein both R2 and R3 together form a cyclopentyl ring.
15. A compound according to any of claims 1 to 10, wherein one or both of R2 and R3, either taken separately or together, corresponds to the side chains of any naturally occurring amino acid.
16. A compound according to any of claims 1 to 10, wherein the groupNHCR2R3 CO2RI is aNHCHR3Co2Rl group, which corresponds to a carboxyprotected aamino acid.
17. A compound according to any preceding claim, wherein R4 is selected from the group consisting ofH, Cl20 alkyl, 220 alkenyl, C220 alkynyl, 330 cycloalkyl, 330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl and 530 aryl.
18. A compound according to any preceding claim, wherein R4 is selected from the group consisting of CI15 alkyl, C215 alkenyl, 215 alkynyl, C320 cycloalkyl, 320 cycloalkenyl, 420 cycloalkynyl, C720 aralkyl, 720 alkaryl and 520 aryl.
19. A compound according to any preceding claim, wherein R4 is selected from the group consisting of substituted or unsubstituted C712 alkaryl, substituted or unsubstituted C712 aralkyl and substituted or unsubstituted C612 aryl.
20. A compound according to any preceding claim, wherein R4 comprises one or more electron donating groups.
21. A compound according to any preceding claim, wherein R4 is selected from phenyl, benzyl or pyridyl, optionally substituted with one or more of the electron donating groups independently selected from the group consisting ofOH, methyl, ethyl, npropyl, isopropyl, nbutyl, tbutyl, methoxy, ethoxy, npropoxy, spropoxy, nbutoxy, tbutoxy, methoxyethoxy, methoxymethyl, ethoxymethyl, propoxymethyl, dimethoxymethyl, butoxymethyl, methoxyethyl, ethoxyethyl, phenyl, benzyl, phenylethyl, phenylpropyl, phenylbutyl, acetoxyl, propionyloxyl, butyryloxyl, benzoyloxyl,NH2, methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, diethylamino, dipropylamino, methylethylamino, 2hydroxyethylamino, di (2hydroxyethyl) amino, piperidino, morpholino, Nmethylpiperadinyl, thiomorpholino, aziridinyl,. indolinyl, tetrahydroquinolinyl and halogeno (including fluoro, chloro, bromo and iodo).
22. A compound according to any preceding claim, wherein R4 is selected from phenyl, benzyl or pyridyl, optionally substituted with one or more of the electron donating groups independently selected from the group consisting of paramethoxy, parachloro, para bromo, paraethoxy, paraNH2, paraphenyl, orthomethoxy, orthochloro, orthobromo, orthoethoxy, orthoNH2 and orthophenyl, preferably, R4 is selected from phenyl, para methoxyphenyl, parachlorophenyl, parabromophenyl, paraethoxyphenyl, para aminophenyl and paraphenylphenyl.
23. A compound according to any preceding claim, wherein R5Rt2 are independently selected from the group consisting ofH,OH,OC (O) CH3, OC (O) CH2CH3, NH2, NHC (O) CH3, NHC (O) CH2CH3, NHCH3, NHCH2CH3 and a group wherein RlR4 are as defined in any preceding claim.
24. A compound according to any of claims 1 to 22, wherein R6R8, R11 and R12 are independently selected from the group consisting ofH,OH,NHCI lo alkyl,NHC (O) C 10 alkyl andNH2.
25. A compound according to any of claims 1 to 22, wherein R6R8, R11 and R12 are independently selected from the group consisting ofNHC (O) CI6 alkyl andNH2.
26. A compound according to any of claims 1 to 22, wherein R6R8, Rll and Rl2 are OH.
27. A compound according to any of claims 1 to 22, wherein R5 and Rl° are independently selected from the group consisting ofOH andOCIio alkyl, wherein the alkyl chain may be substituted or unsubstituted, cyclic or acyclic, preferably R and Rl° are OH.
28. A compound according to any preceding claim, wherein RS and Rt° do not comprise a halogen or a purine or pyrimidine base.
29. A compound according to any of claims 1 to 22, wherein R13, R13', R14 and R15 are independently selected from the group consisting of H, C120 alkyl, C220 alkenyl, 220 alkynyl, 330 cycloalkyl, 330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl and 530 aryl.
30. A compound according to any of claims 1 to 22, wherein Rl3, Rl3, Rl4 and Rls are independently selected from the group consisting ofH, C115 alkyl, C215 alkenyl, Catis alkynyl, C320 cycloalkyl, C320 cycloalkenyl, 420 cycloalkynyl, C720 aralkyl, C720 alkaryl and C620 aryl.
31. A compound according to any of claims 1 to 22, wherein R13, R13', R14 and Ris are more preferably independently selected from the group consisting of straight chain Cl l0 alkyl, 210 alkenyl and C612 aryl.
32. A compound according to any of claims 1 to 22, wherein R13, R13', R14 and Ris are independently selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenyl and structural isomers thereof, preferably methyl, ethyl, propyl and isopropyl.
33. A compound according to any preceding claim, wherein (II) and (III) are selected from the group consisting of galactosamine, fructose, glucosamine, nacetylgalactosamine, galactose, nacetylglucosamine, glucose, muramic acid, mannose, nacetylmuramic acid and ribose, substituted with one or more groups (A) wherein RlR4 are independently selected and are as defined in any preceding claim.
34. A compound according to any preceding claim, wherein X comprises a group having the structure (IV) wherein: at least Rl6 comprises a group (A) wherein RlR4 are independently selected and are as defined in any preceding claim; R17 and R17' are independently selected from the group consisting ofH and a group (A); R18 is selected from the group consisting ofOH,oRt9, halogen, SR19', N3, NR202 and NHR20, wherein R19 and R19' are independently selected from the group consisting ofH, monovalent hydrocarbon radicals, protecting groups andC (O) R21, R2o is selected from the group consisting ofH, monovalent hydrocarbon radicals, protecting groups andC (O) R21, wherein Rat is selected from the group consisting ofH and monovalent hydrocarbon radicals; or a phannaceutically acceptable derivative or metabolite of a compound of formula (IV).
35. A compound according to claim 34, wherein Rl8 is selected from the group consisting ofOH,NH2 andNHC (O) R22, wherein Ra2 is selected from the group consisting of C120 alkyl, C220 alkenyl, C220 alkynyl, 330 cycloalkyl, 330 cycloalkenyl, 4 30 cycloalkynyl, C730 aralkyl, C730 alkaryl and 530 aryl.
36. A compound according to claim 34 or claim 35, wherein Rl8 is a group NHC (O) R.
37. A compound according to any of claims 34 to 36, wherein R22 is selected from the group consisting C115 alkyl, C215 alkenyl, C215 alkynyl, C320 cycloalkyl, C320 cycloalkenyl, C420 cycloalkynyl, C720 aralkyl, 7. 20 alkaryl and 620 aryl.
38. A compound according to any of claims 34 to 37, wherein R22 is selected from the group consisting of straight chain C110 alkyl, straight chain 210 alkenyl and Cgis aryl.
39. A compound according to any of claims 34 to 38, wherein R22 is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, tetrahydronaphthyl, indanyl and biphenyl.
40. A compound according to any of claims 34 to 39, wherein Rl8 isNHC (O) CH3 or NHC (O) CH2CH3.
41. A compound according to any of claims 34 to 40, wherein R19, R19', R20 and R21 are independently selected from the group consisting ofH, C120 alkyl, C220 alkenyl, 220 alkynyl, 330 cycloalkyl, C330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl and C530 aryl.
42. A compound according to any of claims 34 to 41, wherein R19, R19', R20 and R21 are independently selected from the group consisting ofH, C115 alkyl, C215 alkenyl, 215 alkynyl, 320 cycloalkyl, C320 cycloalkenyl, C420 cycloalkynyl, C720 aralkyl, 720 alkaryl and C620 aryl.
43. A compound according to any of claims 34 to 42, wherein R19, R19', Wo and R21 are independently selected from the group consisting of straight chain Cl 10 alkyl, straight chain 210 alkenyl and C6i8 aryl.
44. A compound according to any of claims 34 to 43, wherein R19, R19', Wo and R21 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl and cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenylyl, preferably methyl, ethyl, propyl and isopropyl.
45. A compound according to any preceding claim, wherein R4 comprises an electron donating group selected from the group consisting of C120 alkyl, NH2, NHR23, NR242, OH, OR25, O, NHC (O) R26,OC (O) R27, CH=CR282, halogen (including F, Cl, Br and I), wherein R2328 are independently selected from the group consisting of Cl 20 alkyl, C220 alkenyl, C220 alkynyl, 330 cycloalkyl, 330 cycloalkenyl, 430 cycloalkynyl, C730 aralkyl, C730 alkaryl and C530 aryl.
46. A compound according to claim 45, wherein R2328 are independently selected from the group consisting of CI15 alkyl, C215 alkenyl, C215 alkynyl, C320 cycloalkyl, C320 cycloalkenyl, 420 cycloalkynyl, C720 aralkyl, 720 alkaryl and Cgo aryl.
47. A compound according to claim 45 or claim 46, wherein R2328 are independently selected from the group consisting of straight chain Cllo alkyl, straight chain 210 alkenyl and C612 aryl.
48. A compound according to any preceding claim, wherein compound (I) has the structure (V) wherein: R29 is selected from the group consisting ofH, protecting groups andC (O) WO wherein Wo is selected from the group consisting ofH, C110 alkyl, C210 alkenyl and C6t2 aryl; Rl is selected from the group consisting ofH, protecting groups, C110 alkyl, C210 alkenyl, C712 aralkyl, C712 alkaryl and C6 l2 aryl ; R2 and R3 are independently selected from the group consisting ofH, methyl, propyl, isopropyl, butyl, isobutyl, phenyl, hydroxyphenyl, indole, thiol, alkylthiol, thioalkyl, hydroxyalkyl, amine, amino, imino, alkylimino, alkylNH, H2Nalkyl, imidazole, amide and carboxylate; R4 is selected from the group consisting C718 aralkyl or C6 l2 aryl substituted with one or more electron donating groups; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (V).
49. A compound according to claim 48, wherein Wo isCH3 orCH2CH3, R isH, R3 isH,CH3,CH2CH3 orCH2Ph (where Ph is phenyl).
50. A process for the preparation of a compound of formula (I), the process comprising reacting a compound of formula (VI) wherein : RlR4 are independently selected and are as defined in any preceding claim ; and, Y is a leaving group; with a compound comprising the structure (VII) or (VIII) wherein: E and E'are independently selected from nucleophilic groups capable of displacing a group Y from a compound of formula (VI); and R5RI2 are independently selected and are as defined in any preceding claim.
51. A compound according to claim 50, wherein Y is selected from the group consisting of Nhydroxysuccinimide, Nhydroxybenzotriazole, triflates, tosylates, mesylates, brosylates, and halides.
52. A compound according to claim 50, wherein Y is selected from Cl, Br and I, preferably Cl.
53. A pharmaceutical composition comprising a compound according to any of claims 1 to 49, in combination with a pharmaceutically acceptable excipient.
54. A method of preparing a pharmaceutical composition comprising the step of combining a compound according to any of claims 1 to 49 with a pharmaceutically acceptable excipient.
55. A compound according to any of claims 1 to 49, for use in a method of medical treatment, of the human or animal body, by way of therapy.
56. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of arthritis, preferably osteoarthritis.
57. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of cancer.
58. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of pain.
59. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of a muscaloskeletal condition.
60. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of diabetes.
61. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of a neurodegenerative disease.
62. Use of a compound according to any of claims 1 to 49, in a method of manufacture of a medicament, for the treatment of Alzheimers disease.
63. A method of treating a patient for arthritis, preferably osteoarthritis, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49. 64.
64. A method of treating a patient for cancer, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
65. A method of treating a patient for pain, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
66. A method of treating a patient for a muscaloskeletal condition, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
67. A method of treating a patient for diabetes, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
68. A method of treating a patient for a neurodegenerative disease, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
69. A method of treating a patient for Alzheimers disease, comprising administering a therapeutically effective amount of a compound according to any of claims 1 to 49.
Description:
PHOSPHORAMIDATE DERIVATIVES FIELD OF INVENTION The invention relates to phosphoramidate derivatives, compositions thereof and processes for the manufacture thereof.

BACKGROUND OF INVENTION Sugars are essential components for life, their analogues and derivatives forming the basis of numerous therapies, medicines and treatments.

Sugars are often polar, hydrophilic molecules, and tend to suffer from poor bioavailability and poor cell uptake by passive diffusion. Sugars may be subject to active transport into cells. However, this varies from cell type to cell type, and will be saturable at high concentrations.

A number of sugars undergo phosphorylation inside the cell in order to provide their desired function. This may be a rate-limiting step which limits the potency and availability of the sugar in biological systems.

Osteoarthritis affects more than one million people per annum in the UK. It is currently a poorly treated disease, with systemic treatments including NSAIDs, COX-2 inhibitors and other over-the-counter remedies. Surgery is a common treatment, but is disadvantageous as it is highly invasive, expensive, and of limited accessibility.

Glucosamine is widely used as an over-the-counter pharmaceutical composition for the prophylaxis and treatment of arthritis, most notably osteoarthritis.

It is desirable to provide an alternative and/or improved treatment for arthritis, preferably osteoarthritis.

SUMMARY OF INVENTION According to a first aspect of the present invention, there is provided a phosphoramidate compound comprising the structure (I) wherein: X comprises a monosaccharide group comprising the structure (II) or (III) B and B'are independently selected from the group consisting of-O-,-CH2-and a bond; Rl is selected from the group consisting of-H, protecting groups and monovalent hydrocarbon radicals; R2 and R3 are independently selected from the group consisting of-H and monovalent hydrocarbon radicals, or Ra and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a cyclic system; R4 is selected from the group consisting of-H and monovalent hydrocarbon radicals; R5-Rl2 are independently selected from the group consisting of-H, -OH, N3, halogen,-SH, -OR13, -SR13, -NHR14, -NR14 2 and group wherein B"is selected from the group consisting of-O-,-CH2-and a bond;

wherein Rl-R4 are independently selected and are as defined above, wherein Rl3 and Rl3 are independently selected from the group consisting of-H, monovalent hydrocarbon radicals, protecting groups and-C (O) Rl5, and wherein Rl4 is selected from the group consisting of-H, monovalent hydrocarbon radicals, protecting groups and-C (O) R15, wherein Ris is selected from the group consisting of-H and monovalent hydrocarbon radicals; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (I).

B, B"and B''' are preferably -O-.

Rl is preferably selected from the group consisting of-H, C1-20 alkyl, C2-20 alkenyl, 2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, C4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and 5-30 aryl.

Rl is more preferably selected from the group consisting of CI-16 alkyl, C2-16 alkenyl, 2-16 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, 4-20 cycloalkynyl, C7-20 aralkyl, C7-20 alkaryl and C6-20 aryl.

Rl is more preferably selected from the group consisting of primary or secondary Cl-6 alkyl, 2-6 alkenyl, 5-7 cycloalkyi, 5-7 cycloalkenyl, 5-7 cycloalkynyl, C5-11 ar-C1-6 alkyl, Ci-6 alk-C5-n aryl and 5-11 aryl.

Preferably, Rl is selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenyl and structural isomers thereof, preferably methyl, ethyl, propyl and isopropyl.

Preferably, Rl is selected from the group consisting of methyl, ethyl, 2-butyl, benzyl.

Preferably Rl is benzyl.

R2 and R3 are preferably independently selected from the group consisting of-H, C1-20 alkyl, 2-20 alkenyl, 2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, 4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl, and 5-30 aryl.

Preferably, at least one of R2 and R3 is selected from the group consisting of-H, primary, secondary and tertiary C1-6 alkyl, C5-7 ar-C1-3 alkyl and C1-3 alk-C5-7 aryl, or, R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a group selected from C3-8 cycloalkyl, C3-8 cycloalkenyl, and 4-8 cycloalkynyl.

Preferably, at least one of R2 and R3 is selected from the group consisting of-H, methyl, propyl, isopropyl, butyl, isobutyl, phenyl, hydroxyphenyl, indolyl, thiol, alkylthio, thioalkyl, hydroxyalkyl, amino, alkylimino, imino, alkyl-NH-, H2N-alkyl-, imidazolyl, amido and carboxyl.

Preferably, R2 and R3 are independently selected from the group consisting of-H, methyl, benzyl, isopropyl, propyl, n-butyl, s-butyl, t-butyl, or, R2 and R3 together form an alkylene or heteroalkylene chain so as to provide, together with the C atom to which they are attached, a group selected from C3-6 cycloalkyl, C3-6 cycloalkenyl, and C4-6 cycloalkynyl.

Preferably, R2 is-H or methyl.

Preferably, both R2 and R3 are methyl.

Preferably, R2 is-H and R3 is methyl.

Preferably, both R2 and R3 together form a cyclopentyl ring.

Preferably, one or both of Ra and R3, either taken separately or together, corresponds to the side chains of any naturally occurring amino acid.

Preferably, the group -NH-CR2R3-CO2R1 is a -NH-CHR3-CO2R1 group, which corresponds to a carboxy-protected a-amino acid.

Preferably, the group R3 corresponds to the side chain of a naturally occurring amino acid such as Alanine, Arginine, Asparagine, Aspartic Acid, Cysteine, Cystine, Glycine, Glutamic Acid, Glutamine, Histidine, Isoleucine, Leucine, Lysine, Methionine, Phenylalanine, Serine, Threonine, Tryptophan, Tyrosine, Valine.

Preferably, when R2 is H, the stereochemistry at the asymmetric centre-CHR3- corresponds to an L-amino acid.

When R2 and R3 are different, all stereoisomeric forms of the asymmetric centre-CR2R3- are intended to fall within the scope of the present invention, i. e. both L and D stereoisomers.

R4 is preferably selected from the group consisting of-H, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, 4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and 5-30 aryl.

R4 is more preferably selected from the group consisting of 1-15 alkyi, 2-15 alkenyl, 2-15 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, 4-20 cycloalkynyl, C7-20 aralkyl, C7-20 alkaryl and C6 20 aryl.

R4 is preferably substituted or unsubstituted C7-12 alkaryl, substituted or unsubstituted 7-12 aralkyl or substituted or unsubstituted C6-12 aryl. Preferably, R4 comprises alkaryl, aralkyl or aryl, substituted with one or more electron donating groups.

The term"electron-donating group", as used herein, means a functionality which draws electrons to itself less than a hydrogen atom would at the same position.

It has been found that where R4 is phenyl or benzyl, in particular a phenyl or benzyl group substituted with an electron-donating group, the stability and/or the activity of the compound is increased.

Preferably, R4 is selected from phenyl, benzyl or pyridyl, optionally substituted with one or more of the electron-donating groups independently selected from the group consisting of- OH, methyl, ethyl, n-propyl, isopropyl, n-butyl, t-butyl, methoxy, ethoxy, n-propoxy, s- propoxy, n-butoxy, t-butoxy, methoxyethoxy, methoxymethyl, ethoxymethyl, propoxymethyl, dimethoxymethyl, butoxymethyl, methoxyethyl, ethoxyethyl, phenyl, benzyl, phenylethyl, phenylpropyl, phenylbutyl, acetoxyl, propionyloxyl, butyryloxyl, benzoyloxyl,-NH2, methylamino, ethylamino, propylamino, isopropylamino, dimethylamino, diethylamino, dipropylamino, methylethylamino, 2-hydroxyethylamino, di (2-hydroxyethyl) amino, piperidino, morpholino, N-methylpiperadinyl, thiomorpholino, aziridinyl, indolinyl, tetrahydroquinolinyl and halogeno (including fluoro, chloro, bromo and iodo).

Preferably, R4 is selected from phenyl, benzyl or pyridyl, optionally substituted with one or more of the electron-donating groups independently selected from the group consisting of para-methoxy, para-chloro, para-bromo, para-ethoxy, para-NH2, para-phenyl, ortho- methoxy, ortho-chloro, ortho-bromo, ortho-ethoxy, ortho-NH2 and ortho-phenyl.

Preferably, R4 is mono-, di-or tri-substituted with an electron-donating group defined above, preferably mono-substituted.

Preferably, R4 is selected from phenyl, para-methoxyphenyl, para-chlorophenyl, para- bromophenyl, para-ethoxyphenyl, para-aminophenyl and para-phenylphenyl.

R5-Rl2 are preferably independently selected from the group consisting of-H,-OH, -OC (O) CH3, -OC (O) CH2CH3, NH2,-NHC (O) CH3,-NHC (O) CH2CH3, -NHCH3,- NHCH2CH3 and a group

wherein R1-R4 are independently selected and are as defined above.

Preferably, at least one of groups R5-R12 is a-NHC (O) CH3 group.

Preferably, Rs is-OH,-OC (O) CH3, -OC (O) CH2CH3, -NHC (O) CH3 or-NHC (O) CH2CH3, R6 is-OH,-NH2,-NHC (O) CH3 or-NHC (O) CH2CH3, R7 is-OH or-OCH (CH3) C (O) OH, R8 is-OH, R9 is -H or-OH, Rl° is-OH, R"is-OH and R12 is-OH.

R6-R8, R11 and R12 are preferably independently selected from the group consisting of-H,- OH, -NHC1-10 alkyl, -NHC (O) Cl-lo alkyl and-NH2.

R6-R8, Rll and Ri are preferably independently selected from the group consisting of- NHC (O) C1-6 alkyl and -NH2.

R6 is preferably a-NHC (O) CH3 group.

R6-R8, R11 and R12 are preferably-OH.

RS and Rl° are preferably independently selected from the group consisting of-OH and- OC l l0 alkyl, wherein the alkyl chain may be substituted or unsubstituted, cyclic or acyclic.

Rs and Rl° are preferably-OH.

Preferably, R and Rl° do not comprise a halogen or a purine or pyrimidine base.

R13, R13', R14 and Rl5 are preferably independently selected from the group consisting of- H, Ci-20 alkyl, C2-20 alkenyl, 2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, C4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and C5-30 aryl.

R13, R13', R14 and Ris are more preferably independently selected from the group consisting of-H, C1-15 alkyl, C2-15 alkenyl, C2-15 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, 4-20 cycloalkynyl, C7-20 aralkyl, C7-20 alkaryl and C6-20 aryl.

Rl3, Rl3, Rl4 and Ris are more preferably independently selected from the group consisting of straight chain Cl lo alkyl, C2 l0 alkenyl and C6-12 aryl.

Preferably, Rl3, Rl3, Rl4 and R15 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenyl and structural isomers thereof, preferably methyl, ethyl, propyl and isopropyl.

Preferred compounds (1) comprise monosaccharides (II) and (III) selected from the group consisting of galactosamine, fructose, glucosamine, n-acetylgalactosamine, galactose, n- acetylglucosamine, glucose, muramic acid, mannose, n-acetylmuramic acid and ribose, substituted with one or more groups (A): A preferred compound (I) is N-acetyl glucosamine substituted with a group (A). wherein Rl-R4 are independently selected and are as defined above.

Preferably, the present invention encompasses all possible optical isomeric forms of the groups (II) and (III). Preferably, the groups (II) and (III) are selected to resemble the predominant optical isomers in their naturally occurring monosaccharide analogues.

Preferably, the chirality at each chiral centre of groups (II) and (III) is independently fixed in the R or S configuration. The chirality at each chiral centre of groups (II) and (III) may be of mixed configuration.

Preferably, the compounds of the present invention have an octanol/water partition coefficient (log P) in the range of 1-3, preferably 1.5-2. 5, preferably about 2.

In a particularly preferred embodiment, X comprises a group having the structure (IV) wherein: at least R16 comprises a group (A) wherein Rl-R4 are independently selected and are as defined above; Rl7 and R17' are independently selected from the group consisting of-H and a group (A); Rl8 is selected from the group consisting of-OH,-ORl9, halogen,-SRl9, N3, -NR202 and- NHR20, wherein R19 and R19' are independently selected from the group consisting of-H, monovalent hydrocarbon radicals, protecting groups and-C (O) R21, R20 is selected from the group consisting of-H, monovalent hydrocarbon radicals, protecting groups and-C (O) R2l, wherein Ruz is selected from the group consisting of-H and monovalent hydrocarbon radicals; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (IV).

Preferably, when one of groups RI or or is a group (A), the other R or R is-HL Rl7 and R17' are preferably-H.

Rl8 is preferably selected from the group consisting of-OH,-NH2 and-NHC (O) R22, wherein R22 is selected from the group consisting of C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, C4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and 5-30 aryl.

Rl8 is more preferably a group-NHC (O) R22.

R22 is preferably selected from the group consisting C1-15 alkyl, C2-15 alkenyl, C2-15 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, 4-20 cycloalkynyl, C7-20 aralkyl, C7-20 alkaryl and C6-20 aryl.

R2 is more preferably selected from the group consisting of straight chain C1-10 alkyl, straight chain 2-10 alkenyl and C6 l8 aryl.

More preferably, R22 is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, tetrahydronaphthyl, indanyl and biphenyl.

Preferably Rl8 is-NHC (O) CH3 or NHC (O) CH2CH3.

Roi9, R19', Wo and R2l are preferably independently selected from the group consisting of- H, C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, 3-30 cycloalkyl, 3-30 cycloalkenyl, 4-30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and 5-30 aryl.

R19, Rl9, R20 and R21 are more preferably independently selected from the group consisting of-H, C1-15 alkyl, C2-15 alkenyl, 2-15 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, C4-20 cycloalkynyl, C7-20 aralkyl, C7-20 alkaryl and C6-20 aryl.

Roi9, R19', Wo and R21 are more preferably independently selected from the group consisting of straight chain 1. 10 alkyi, straight chain 2-10 alkenyl and Cg-is aryl.

Preferably, Rl9, Rl9, Wo and R21 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, adamantyl, vinyl, propenyl, cyclohexenyl, benzyl, phenylethyl, phenylpropyl, phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, biphenylyl, preferably methyl, ethyl, propyl and isopropyl.

Preferred electron donating groups which may comprise part of R4 in compound (I) or (IV) as defined above, or compound (V) and (VI), as defined below, include Cl-2o alkyl,- NH2, -NHR23, -NR242, -OH, -OR25, -O-, -NHC(O)R26, -OC(O)R27, -CH=CR282, halogen (including F, Cl, Br and 1), wherein R23-28 are independently selected from the group consisting of C1-20 alkyl, C2-20 alkenyl, C2-20 alkynyl, C3-30 cycloalkyl, C3-30 cycloalkenyl, C4- 30 cycloalkynyl, C7-30 aralkyl, C7-30 alkaryl and 5-30 aryl.

More preferably, R 23-28 are independently selected from the group consisting of C1-15 alkyl, C2-15 alkenyl, C2-15 alkynyl, C3-20 cycloalkyl, C3-20 cycloalkenyl, 4-20 cycloalkynyl, 7-20 aralkyl, C7-20 alkaryl and C6-20 aryl- More preferably, R are independently selected from the group consisting of straight chain C -lo alkyl, straight chain 2-10 alkenyl and Cl-12 aryl.

In a particularly preferred embodiment of the present invention, compound (I) has the structure (V)

wherein: Ra9 is selected from the group consisting of-H, protecting groups and-C (O) WO wherein Wo is selected from the group consisting of-H, C1-10 alkyl, C2-10 alkenyl and C6 12 aryl ; Rl is selected from the group consisting of-H, protecting groups, Coalkyi, Cz-toalkenyl, C7-12 aralkyl, C7-12 alkaryl and C6-12 aryl; Ra and R3 are independently selected from the group consisting of-H, methyl, propyl, isopropyl, butyl, isobutyl, phenyl, hydroxyphenyl, indole, thiol, alkylthiol, thioalkyl, hydroxyalkyl, amine, amino, imino, alkylimino, alkyl-NH-, H2N-alkyl-, imidazole, amide and carboxylate; R4 is selected from the group consisting C7-18 aralkyl or 6-12 aryl substituted with one or more electron donating groups; or a pharmaceutically acceptable derivative or metabolite of a compound of formula (V).

Preferably, Wo is-CH3 or-CH2CH3, R2 is preferably-H, R3 is preferably-H,-CH3, -CH2CH3 or-CH2Ph (where Ph is phenyl).

According to a second aspect of the present invention, there is provided a process for the preparation of a compound of formula (I), the process comprising reacting a compound of formula (VI) wherein: Rl-R4 are independently selected and have the same definitions as above; and, Y is a leaving group; with a compound comprising the structure (VII) or (VIII)

wherein: E and E'are independently selected from nucleophilic groups capable of displacing a group Y from a compound of formula (VI); and R5-Rl2 are independently selected and have the same definitions as above.

Preferably E and E'are both-OH. In this embodiment, structures (VII) or (VIII) are represented by structures (IX) and (X) respectively as shown below. wherein: R5 R12 are independently selected and have the same definitions as above.

The term"leaving group"generally refers to groups readily displaceable by a nucleophile.

Such leaving groups are well known in the art. Examples of such leaving groups include, but are not limited to, N-hydroxysuccinimide, N-hydroxybenzotriazole, triflates, tosylates, mesylates, brosylates, and halides.

Y is preferably selected from Cl, Br and I, preferably Cl.

The process is preferably carried out in the presence of a solvent, preferably an organic solvent, preferably a dry organic solvent.

Preferred organic solvents include hydrocarbons, ethers, halogenated hydrocarbons, ketones, alcohols, nitriles, amines, esters, carbonates and mixtures thereof.

Preferred solvents include diethylether, tetrahydrofuran, diphenylether, anisole, dimethoxybenzene, pyridine, trimethylamine and triethylamine.

The process is preferably carried out below ambient temperature (25°C). More preferably, the reaction is carried out below 0°C, more preferably below-20°C, preferably below - 30°C.

The reaction is preferably carried out in the presence of a base, preferably an organic base.

For example, N-methylimidazole is preferred.

The compounds of the present invention have been found to be particularly useful in the treatment of arthritis, particularly osteoarthritis.

As used herein, the term"monovalent hydrocarbon radicals"refers to any straight chain, branched, cyclic, acyclic, heterocylic, saturated or unsaturated radical, which contains a carbon backbone comprising one or more hydrogen atoms, optionally substituted with one or more heteroatoms in or on the carbon backbone. The term"monovalent hydrocarbon radical"is intended to encompass the terms"alkyl","alkenyl","alkynyl","cycloalkyl", "cycloalkenyl","cycloalkynyl","alkaryl","aralkyl"and"aryl"as defined below.

As used herein, the term"alkyl"refers to a straight or branched saturated monovalent hydrocarbon radical, having the number of carbon atoms as indicated, optionally substituted with one or more heteroatoms in or on the carbon backbone.

As used herein, the term"alkenyl"refers to a straight or branched unsaturated monovalent hydrocarbon radical, having the number of carbon atoms as indicated, optionally substituted with one or more heteroatoms in or on the carbon backbone, and the distinguishing feature of a carbon-carbon double bond.

As used herein, the term"alkynyl"refers to a straight or branched unsaturated monovalent hydrocarbon radical, having the number of carbon atoms as indicated, optionally substituted with one or more heteroatoms in or on the carbon backbone, and the distinguishing feature of a carbon-carbon triple bond.

As used herein, the term"cycloalkyl"refers to a cyclic saturated monovalent hydrocarbon radical, having the number of carbon atoms as indicated, optionally substituted with one or more heteroatoms in or on the carbon backbone.

As used herein, the terms"cycloalkenyl"and"cycloalkynyl"refer to cyclic unsaturated monovalent hydrocarbon radicals, optionally substituted with one or more heteroatoms in or on the carbon backbone. A"cycloalkenyl"is characterized by a carbon-carbon double bond and a"cycloalkynyl"is characterized by a carbon-carbon triple bond.

As used herein, the term"ary1"refers to a monovalent unsaturated aromatic carbocyclic radical having one or two rings, optionally substituted with one or more heteroatoms in or on the carbon backbone, such as phenyl, naphthyl, indanyl or biphenyl, or to a monovalent unsaturated aromatic heterocyclic radical, optionally substituted with one or more heteroatoms in or on the carbon backbone, such as quinolyl, dihydroisoxazolyl, furanyl, imidazolyl, pyridyl, phthalimido, thienyl, thiophenyl, pyrrolyl and the like. Exemplary heterocyclic radicals include pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, tetrahydrofuranyl, pyranyl, pyronyl, pyridyl, pyrazinyl, pyridazinyl, piperidyl, piperazinyl, morpholinyl, thionaphthyl, benzofuranyl, isobenzofuryl, indolyl, oxyindolyl, isoindolyl, indazolyl, indolinyl, 7-azaindolyl, isoindazolyl, benzopyranyl, coumarinyl, isocoumarinyl, quinolyl, isoquinolyl, napthridinyl, cinnolinyl, quinazolinyl, pyridopyridyl, benzoxazinyl, quinoxadinyl, chromenyl, chromanyl, isochromanyl and carbolinyl. Where the aryl group comprises more than one ring, the rings may be fused or bicyclic.

As used herein, the term"alkaryl"refers to an aryl group with an alkyl substituent, such as toluyl. Binding is through the aryl group. Such groups have the number of carbon atoms as indicated, and may be substituted with one or more heteroatoms in or on the carbon backbone.

As used herein, the term"aralkyl"refers to an alkyl group with an aryl substituent, such as benzyl. Binding is through the alkyl group. Such groups have the number of carbon atoms as indicated, and may be substituted with one or more heteroatoms in or on the carbon backbone.

As used herein, the term"substituted"is contemplated to include all permissible substituents of organic compounds. In a broad aspect, the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds. The permissible substituents can be one or more and the same or different for appropriate organic compounds. For purposes of this invention, the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds.

As used herein, the term"heteroatom"includes N, O, S, P, Si and halogen (including F, Cl, Br and I).

As used herein, the term"protecting group"refers to any group which when bound to one or more hydroxyl groups, amine groups or carboxyl groups prevents reactions from occurring at these groups and which protecting group can be removed by conventional chemical or enzymatic steps to re-establish the hydroxyl, carboxyl or amine group.

As used herein, the term"amine-protecting group"as used herein refers to substituents of the amine group commonly employed to block or protect an amine group while reacting other functional groups in the molecule.

Examples of such amine-protecting groups include the formyl ("For") group, the trityl group, the phthalimido group, the trichloroacetyl group, the chloroacetyl, bromoacetyl, and iodoacetyl groups, urethane-type blocking groups, such as t-butoxycarbonyl ("Boc"), 2- (4- biphenylyl) propyl-2-oxycarbonyl ("Bpoc"), 2-phenylpropyl-2-oxycarbonyl ("Poc"), 2- (4- xenyl) isopropoxycarbonyl, 1, 1-diphenylethyl-1-oxycarbonyl, 1, 1-diphenylpropyl-1-

oxycarbonyl, 2- (3, 5-dimethoxyphenyl) propyl-2-oxycarbonyl ("Ddz"), 2- (p-toluyl) propyl- 2-oxycarbonyl, cyclopentanyloxycarbonyl, 1-methylcyclopentanyloxycarbonyl, cyclohexanyloxy-carbonyl, 1-methylcyclohexanyloxycarbonyl, 2- methylcyclohexanyloxycarbonyl, 2- (4-toluylsulfonyl) ethoxycarbonyl, 2- (methylsulfonyl) ethoxycarbonyl, 2-(triphenylphosphino) ethoxycarbonyl, 9- fluorenylmethoxycarbonyl ("Fmoc"), 2- (trimethylsilyl) ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl) prop-1-enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4- acetoxybenzyloxycarbonyl, 2,2, 2-trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, isobornyloxycarbonyl, 1-piperidyloxycarbonyl, benzyloxycarbonyl ("Cbz"), 4-phenylbenzyloxycarbonyl, 2-methylbenzyloxy-carbonyl, . alpha. -2, 4, 5,-tetramethylbenzyloxycarbonyl ("Tmz"), 4-methoxybenzyloxycarbonyl, 4- fluorobenzyloxycarbonyl, 4-chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2- chlorobenzyloxycarbonyl, 2, 4-dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3- bromobenzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 4- (decyloxy) benzyloxycarbonyl and the like; the benzoylmethylsulfonyl group, dithiasuccinoyl ("Dts"), the 2- (nitro) phenylsulfenyl group ("Nps"), the diphenyl-phosphine oxide group and like amine-protecting groups. Preferred amine-protecting groups are Boc, Cbz and Fmoc.

As used herein, the term"hydroxy-protecting group"refers to a group commonly employed to block or protect a hydroxyl group while reacting other functional groups in the molecule.

Examples of hydroxy-protecting groups include tetrahydropyranyl, 2-methoxypropyl, 1- ethoxyethyl, methoxymethyl, 2-methoxyethoxymethyl, methylthiomethyl, t-butyl, t-amyl, trityl, 4-methoxytrityl, 4,4'-dimethoxytrityl, 4,4', 4"-trimethoxytrityl, benzyl, allyl, trimethylsilyl, (t-butyl) dimethylsilyl, 2,2, 2-trichloroethoxycarbonyl groups and the like.

As used herein, the term"carboxyl-protecting group"as used herein refers to one of the ester derivatives of the carboxylic acid group commonly employed to block or protect the carboxylic acid group while reactions are carried out on other functional groups in the compound. Examples of such carboxylic acid protecting groups include t-butyl, benzyl, 4- nitrobenzyl, 4-methoxybenzyl, 3, 4-dimethoxybenzyl, 2,4-dimethoxybenzyl, 2, 4,6-

trimethoxybenzyl, 2,4, 6-trimethylbenzyl, pentamethylbenzyl, 3, 4-methylenedioxybenzyl, benzhydryl, 4, 4'-dimethoxytrityl, 4,4', 4"-trimethoxytrityl, 2-phenylpropyl, trimethylsilyl, t- butyldimethylsilyl, phenyl, 2,2, 2-trichlorc) ethyl, ß-(trimethylsilyl) ethyl, p- (di (n- butyl) methylsilyl) ethyl, p-toluenesulfonylethyl, 4-nitrobenzylsulfonylethyl, allyl, cinnamyl, 1-(trimethylsilylmethyl)-propenyl and like moieties.

By"a pharmaceutically acceptable derivative"is meant any pharmaceutically acceptable salt, ester or salt of such ester or any other compound which, upon administration to a recipient, is capable of providing (directly or indirectly) a compound (1), (IV) or (V).

Pharmaceutically acceptable salts are generally acid addition salts, which are preferably such of therapeutically acceptable inorganic or organic acids, such as strong mineral acids, for example hydrohalic. Preferred salts include hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid, aliphatic or aromatic carboxylic or sulfonic acids, for example, formic acid, acetic acid, propionic acid, succinic acid, glycollic acid, lactic acid, malic acid, tartaric acid, gluconic acid, citric acid, maleic acid, fumaric acid, pyruvic acid, phenylacetic acid, benzoic acid, 4-aminobenzoic acid, anthranilic acid, 4- hydroxybenzoic acid, salicylic acid, 4-aminosalicylic acid, pamoic acid, nicotinic acid, methanesulfonic acid, ethanesulfonic acid, hydroxyethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, sulfanilic acid, cyclohexylsulfamic acid and ascorbic acid. For compounds having a free carboxy group, pharmaceutically acceptable salts are also derived from bases, for example, alkali metal salts, such as the sodium salt, or salts derived from pharmaceutically acceptable amines.

The terms"derivative"and"metabolite", as used herein with reference to compounds (I), (IV) and (V), do not include naturally occurring saccharide metabolites, for example, glucose-6-phosphate, fructose-6-phosphate and glucosamine-6-phosphate.

According to a further aspect of the present invention there is provided a pharmaceutical composition comprising a compound of the present invention in combination with a pharmaceutically acceptable excipient.

According to a further aspect of the present invention there is provided a method of preparing a pharmaceutical composition comprising the step of combining a compound of the present invention with a pharmaceutically acceptable excipient.

The compounds of the present invention may be used in a method of medical treatment, of the human or animal body, by way of therapy.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of arthritis, preferably osteoarthritis.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of cancer.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of pain.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of muscaloskeletal conditions.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of diabetes The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of neurodegenerative disease.

The compounds of the present invention may be used in a method of preparing a medicament, used in the treatment of Alzheimers disease.

The present invention further provides a method of treating a patient for arthritis, preferably osteoarthritis, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for cancer, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for pain, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for a muscaloskeletal condition, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for diabetes, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for a neurodegenerative disease, comprising administering a therapeutically effective amount of a compound according to the present invention.

The present invention further provides a method of treating a patient for Alzheimers disease, comprising administering a therapeutically effective amount of a compound according to the present invention.

The medicament employed in the present invention can be administered by oral or parenteral routes, including intravenous, intramuscular, intraperitoneal, subcutaneous, transdermal, airway (aerosol), rectal, vaginal and topical (including buccal and sublingual) administration.

For oral administration, the compounds of the invention will generally be provided in the form of tablets or capsules, as a powder or granules, or as an aqueous solution or suspension.

Tablets for oral use may include the active ingredients mixed with pharmaceutically acceptable excipients such as inert diluents, disintegrating agents, binding agents, lubricating agents, sweetening agents, flavouring agents, colouring agents and preservatives. Suitable inert diluents include sodium and calcium carbonate, sodium and calcium phosphate, and lactose, while corn starch and alginic acid are suitable disintegrating agents. Binding agents may include starch and gelatin, while the lubricating agent, if present, will generally be magnesium stearate, stearic acid or talc. If desired, the tablets may be coated with a material such as glyceryl monostearate or glyceryl distearate, to delay absorption in the gastrointestinal tract.

Capsules for oral use include hard gelatin capsules in which the active ingredient is mixed with a solid diluent, and soft gelatin capsules wherein the active ingredients is mixed with water or an oil such as peanut oil, liquid paraffin or olive oil.

Formulations for rectal administration may be presented as a suppository with a suitable base comprising for example cocoa butter or a salicylate.

For intramuscular, intraperitoneal, subcutaneous and intravenous use, the compounds of the invention will generally be provided in sterile aqueous solutions or suspensions, buffered to an appropriate pH and isotoncity. Suitable aqueous vehicles include Ringer's solution and isotonic sodium chloride. Aqueous suspensions according to the invention may include suspending agents such as cellulose derivatives, sodium alginate, polyvinyl- pyrrolidone and gum tragacanth, and a wetting agent such as lecithin. Suitable preservatives for aqueous suspensions include ethyl and n-propyl p-hydroxybenzoate.

The compounds of the invention may also be presented as liposome formulations.

In general a suitable dose will be in the range of 0.01 to 10 mg per kilogram body weight of the recipient per day, preferably in the range of 0.2 to 1.0 mg per kilogram body weight per day. The desired dose is preferably presented once daily, but may be dosed as two, three, four, five or six or more sub-doses administered at appropriate intervals throughout the day. These sub-doses may be administered in unit dosage forms, for example,

containing 10 to 1500 mg, preferably 20 to 1000 mg, and preferably 50 to 700 mg of active ingredient per unit dosage form.

The invention will now be described with reference to the following Examples. It will be appreciated that what follows is by way of example only and that modifications to detail may be made whilst still falling within the scope of the invention.

EXPERIMENTAL GENERAL METHODS Thin Layer Cromatography: Thin layer cromatography (TLC) was performed on commercially available Merck Kieselgel plates and separated components were visualised using ultra violet light (245 and 366 nm).

Column Chromatography: Column chromatography was performed using Woelm silica (32-63 mm) as stationary phase. Glass columns were slurry packed in the appropriate eluent under gravity. Samples were applied as a concentrated solution in the same eluent, or pre-absorbed onto silica gel. Fractions containing the product were identified by TLC, pooled and the solvent removed in vacuo.

NMR Spectroscopy : lH, 13C, 31p and l9F were recorded on a Bruker Avance DPX300 spectrometer with operating frequencies of 300,75, 121 and 282 MHz respectively. 31p- NMR are reported in units of 8 relative to 85% phosphoric acid as the external standard, positive shifts are downfield. The following abbreviations are used in the assignment of NMR signals: s (singlet), d (doublet), t (triplet), q (quartet), bs (broad signal) dd (doublet of doublets).

Solvents and Reagents : All solvents used were anhydrous and used as purchased from Aldrich. All reagents were used as received. All glassware was oven dried at 130 °C for several hours or overnight and allowed to cool under a steam of dry nitrogen.

Preparation of Phenyl (methoxy-L-alaninyl) phosphorochloridate :

Phenyl dichlorophosphate (3. 54ml, 23.7 mmol) and L-alanine-methyl ester hydrochloride salt (3.29 g, 23.7 mmol) were suspended in anhydrous 30 ml of DCM. Anhydrous triethylamine (6.5 ml, 47.4 mmol) in 20 ml of dry DCM was added dropwise at-78 Oc under nitrogen. Following the addition, the reaction mixture was slowly allowed to warm at room temperature and stirred for one hour. The solvent was removed under reduced pressure and the solid obtained was washed with anhydrous ether (2 x 20 ml), filtered and the filtrate reduced to dryness to give the crude product (6.05 g, 92%) as an oil, which was used in the following step without any further purification.

31p nmr (CDC13, 121 MHz): 9.16, 8.82.

Preparation of N-Acetylglucosamine-6-[phenyl (methoxy-L-alanyl)] phosphorarnidate [GLU3] : To a suspension of N-acetylglucosamine (1.5 g, 6.78 mmol) in 100 ml of anhydrous pyridine under an atmosphere of argon at-40 °C N-methylimidazole (2.7 ml, 33.9 mmol) was added.

Phenyl (methoxy-L-alaninyl) phosphorochloridate (2.25 g, 8.13 mmol) in 12 ml of dry THF was then added dropwise over 15 minutes, and the reaction mixture was stirred at room

temperature at-40 °C for 2 hours. The solvent was removed under reduced pressure and the residue was purified by column cromatography using an eluent of DCM/MeOH (98: 2), followed by an eluent of DCM/MeOH (9: 1), to give the pure product (100 mg, 3%) as a white foam.

'H-nmr (d6-DMSO ; 300 MHz): 7.70 (1H, d, J = 8.0 Hz, NH), 7.41-7. 16 (5H, m, OPh), 6.61 (1H, m, OH-1), 5.93 (1H, m, NH-Ala), 5.20 (1H, m, OH-4), 4.97 (1H, m, H-1), 4.77 (1H, d, J = 4.77, 3-OH), 4.24 and 4.07 (2H, m, H-6), 3.85 (2H, m, CH-Ala + H-5), 3.66-3. 44 (5H, m, COOCHs + H-2 + H-3), 3.15 (1H, m, H-4), 1.85 (3H, s, NHCOCH3), 1.23 (3H, m, CH3-Ala).

13C-nmr (d6-DMSO ; 75 MHz): 20.0 (CH3-Ala), 23 0 (23.1 NHCOCH), 49.9 and 50.0 (CH-Ala), 52.1 and 52.2 (COOCH9, 54.5 (C-2), 66.3 (C-6), 70.4, 70.5, 70.6, 70.7 (C-5 and C-3), 71. 1 (C-4), 91.1 (C-1), 120.4 and 120.5, 124.7, 129.7 and 129.9, 151.0 and 151. 1 (OPh), 169.7 and 169.9 (NHCOCH3), 173.9 and 170.0 (COOCH3).

31P nmr (CDCl3, 121 MHz): 4. 88, 4.54.

Preparation of N-Acetylglucosamine-3, 6- [phenyl (methoxy-L-alanyl) ] bis- phosphoramidate [GLU2] : This was also isolated from the above reaction as a white foam (400 mg, 8%).

1H-nmr (d6-DMSO ; 300 MHz): 7.71 (1H, d, J = 8.1 Hz, NH), 7. 36 and 7.17 (10H, m, 2 x OPh), 6.99 (1H, m, OH-1), 5.99 (2H, m, NH-Ala), 5.53 (1H, m, OH-4), 5.01 (1H, m, H-1), 4.43-4. 13 (3H, m, H-3 + H-6), 3.90 (4H, m, 2x CH-Ala, + H-5 + H-2), 3.57 (7H, m, 2x COACH + H-4), 7.76 (3H, s, NHCOCH9, 1.24 (6H, m, 2x CH3-Ala).

13C-nmr (d6-DMSO ; 75 MHz): 20.0 (CH3-Ala), 22.9 (NHCO), 50. 0 and 50. 1 (CH- Ala), 52.1 (COOCHa), 53.0 (C-2), 65.7 (C-6), 69.5, 70. 3, 78.3 (C-5, C-4, C-3), 91.2 (C-1), 120.5, 120.5, 124.8, 129.8, 129.9, 151.1, 151.1, 159. 3 (2x OPh), 169.8 (NHCOCH3), 174.1 (WOCH3).

31p nmr (CDCl3, 121 MHz): 6. 32, 6.22, 5. 57, 4.64.

Preparation of 4-Methoxyphenyl phosphorodichloridate: Dry triethylamine (4.2 ml, 30 mmol) and p-methoxyphenol (3.72 g, 30 mmol) in 100 ml dry ether were added dropwise to a stirred solution of dry ether (50 ml) containing phosphorus oxychloride (2.80 ml, 30 mmol), at-78°C under nitrogen. Following the addition, the reaction mixture was slowly allowed to warm at room temperature and stirred for one hour. The solvent was removed under reduced pressure to give the crude product (6.6 g, 92%) as an oil, which was used in the following step without any further purification.

31p nmr (CDCl3, 121 MHz): 5.4 Preparation of 4-methoxyphenyl (benzoxy-L-alaninyl) phosphorochloridate:

4-Methoxyphenyl phosphorodichloridate (6.6 g, 27.38 mmol) and L-alanine-benzyl ester hydrochloride salt (5.91 g, 27. 38 mmol) were suspended in 100 ml of anhydrous DCM.

Anhydrous triethylamine (7.6 ml, 57.77 mmol). in 20 ml of dry DCM was added dropwise at-78 °C under nitrogen. Following the addition, the reaction mixture was slowly allowed to warm at room temperature and stirred for one hour. The solvent was removed under reduced pressure and the solid obtained was washed with anhydrous ether (2 x 20 ml), filtered and the filtrate reduced to dryness to give the crude product (9.66 g, 92%) as an oil, which was used in the following step without any further purification.

31p nmr (Cl3, 121 MHz): 9.8, 9.5 Preparation of N-Acetylglucosamine-6- [4-methoxyphenyl (benzoxy-L-alanyl) ] phosphoramidate [GLU5] : To a suspension of N-acetylglucosamine (2.0 g, 9.04 mmol) in 100 ml of anhydrous pyridine under an atmosphere of argon at-40 °C N-methylimidazole (3.6 ml, 45.25 mmol) was added. 4-methoxyphenyl (benzoxy-L-alaninyl) phosphorochloridate (4.16 g, 10.8 mmol) in 8.6 ml of dry THF was then added dropwise over 15 minutes, and the reaction mixture was stirred at room temperature at-40 °C for 2 hours. The solvent was removed under reduced pressure and the residue was purified by column cromatography using an eluent of DCM/MeOH (98: 2), followed by an eluent of DCM/MeOH (9 : 1), to give the pure product (400 mg, 9%) as a white foam.

'H-nmr (dg-DMSO ; 300 MHz): 7.74 (1H, d, J = 7.8 Hz, NH), 7.43 and 7.42 (SH, sapp, Bz), . 7. 18-6. 91 (4H, m, OPh), 6.65 (1H, m, OH-1), 5.94 (1H, m, NH-Ala), 5.27-5. 11 (3H, m, OH-4 + CH2Bz), 5.01 (1H, m, H-1), 4.81 (1H, m, 3-OH), 4.26 and 4.09 (2H, m, H-6), 3 94 (2H, m, CH-Ala + H-5), 3.77 (1H, s, OCH3), 3.69 (1H, m, H-2), 3.61 (1H, m, H-3) 3 17 (1H, m, H-4), 1.90 (3H, s, NHCO), 1.23 (3H, m, CH3-Ala).

13C-nmr (d6-DMSO ; 75 MHz): 20.0 and 20.1 (CH3-Ala), 23.0 (23.1 NHCO), 50.1 and 50.2 (CH-Ala), 54.5 (C-2), 66.3 and 66.3 (CH2Bz + C-6), 70.5, 70.7, 71.1 (C-4 + C-5 + C- 3), 91.1 (C-1), 114.8, 121.5 and 121.5, 128.2, and 128.2, 128.4, 128. 8, 136. 3, 144.6, 156.2 (OPh + Bz), 169.7 (NHCOCH3), 173.40 (COOBz).

31P nmr (CDCl3, 121 MHz): 5.53, 5. 41.

BIOLOGICAL ASSAY: Method: Articular cartilage was harvested under aseptic conditions from the metatarso- phalangeal joints (hock joints) of skeletally mature cattle (18 months or older). The articular cartilage was diced into small pieces and pre-cultured for 2-3 days in 10% foetal calf serum, Dulbeco's Modified Eagle's Medium (DMEM) containing 50 ug/ml gentamycin. After pre-culture, the cartilage slices were washed 3 times in DMEM and then apportioned into 24 well culture plates at 10-20 mg cartilage per well in 0.5 ml media containing either DMEM alone (control) or DMEM plus glucosamine or chemically modified glucosamine derivatives of the present invention (Treated) at 2.5, 5,10 and 15 mM concentrations and they were pre-cultured for a further 30-60 minutes in the presence or absence of these derivatives. A replicate set of these cultures was then exposed to 10 ng/ml interleukin-1 (IL-la) and cultured for a further 4-6 days. Each experimental culture condition was set up in triplicate. Thus, the experimental culture conditions tested were: (i) Control: DMEM alone; (ii) Treated: DMEM + glucosamine or modified glucosamine at 2.5, 5,10 and 15 mM concentrations; (iii) Control + IL-la : DMEM + 10 ng/ml IL-la ; and, (iv) Treated + IL-la: DMEM + glucosamine or modified glucosamine at 2.5, 5, 10 and 15 mM concentrations + 10 ng/ml IL-la.

At the end of 4-6 days culture, the media was separated from the pieces of tissue explant and the following analyses were performed:

(i) Analyses of media for sulphated glucosaminoglycan release (a measure of cartilage proteoglycan degradation) using the dimethylmethylene blue (DMMB) method described by Farndale et al, (1986) Biochem. Biophys. Acta 883: 173-177 ; (ii) Lactate levels in the media (a measure for cell viability and metabolism): Curtis et al, (2002), Proceedings of the Nutrition Society 61: 3871-389 ; (iii) Western Blot analyses of media samples using mAbs BC-3 and BC-14 to detect cartilage proteoglycan (aggrecan) metabolites degraded by either aggrecanases (ADAMTS-4 &-5) or matrix metalloproteinases, respectively; Caterson et al, (2000) Matrix Biology 19: 333-344; (iv) Cartilage explants were extracted with TriReagent (Sigma) to isolate RNA and DNA and following purification on Quiagen columns, was analysed by RT-PCR for gene profile expression of various cartilage matrix proteins: e. g. proteoglycans, collages, aggrecanases (ADAMTS-4 &-5) and matrix metalloproteinases; Curtis et al, (2002) Arthritis and Rheumatism 46: 1544-1553; (v) Cartilage explants were also extracted with 4M guanidine HC1 and the matrix proteins and proteoglycans analysed by Western Blot analyses; Little et al, (2002) Matrix Biology 21: 271-288 ; and (vi) A replicate set of cultures was used for radio-labelled sulphate incorporation to measure cartilage proteoglycan biosynthesis and cartilage metabolism.