Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PHOTOLUMINESCENT AUTHENTICATION DEVICES, SYSTEMS, AND METHODS
Document Type and Number:
WIPO Patent Application WO/2017/023806
Kind Code:
A1
Abstract:
A system and method for authentication includes a photoluminescent label including a photoluminescent material having a decay time, the photoluminescent material being configured to absorb an incident radiation from a radiation source and to emit an emitted radiation having a spectral signature after removal of the radiation source, and a sensor configured to measure the spectral signature in the emitted radiation during the decay time.

Inventors:
LAWANDY NABIL (US)
Application Number:
PCT/US2016/044863
Publication Date:
February 09, 2017
Filing Date:
July 29, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SPECTRA SYSTEMS CORP (US)
International Classes:
G01N21/64; G01N21/78; G07D7/12
Foreign References:
US20110199222A12011-08-18
US20140061486A12014-03-06
US20120132830A12012-05-31
US20110199222A12011-08-18
Other References:
See also references of EP 3332242A4
Attorney, Agent or Firm:
SNOW, Jeffrey L. (US)
Download PDF:
Claims:
WHAT IS CLAIMED:

1. A system for authentication, the system comprising:

a photoluminescent label including a photoluminescent material having a decay time , the photoluminescent material being configured to absorb an incident radiation from a radiation source and to emit an emitted radiation having a spectral signature after removal of the radiation source; and

a sensor configured to measure the spectral signature in the emitted radiation during the decay time.

2. The system of claim 1 , wherein the

the measured spectral signature includes a measured spectral intensity at a first wavelength and a measured spectral intensity at a second wavelength to define a measured code.

3. The system of claim 2, wherein the measured code is compared to a predetermined code to determine authentication.

4. The system of claim 1 , wherein the spectral signature includes a spectral and spatial pattern.

5. The system of claim 2, wherein the measured spectral signature includes a measured spectral intensity at a third wavelength.

6. The system of claim 1 , wherein the sensor includes at least one of smartphone and a tablet.

7. The system of claim 1 , wherein at least one of the first and second wavelengths in the emitted radiation is within a spectrum of visible light.

8. The system of claim 1 , wherein at least one of the first and second wavelengths in the emitted radiation is within a spectrum of non-visible light.

9. The system of claim 1 , wherein the sensor includes an imaging device.

10. The system of claim 1, wherein the photoluminescent label is configured to be incorporated into a currency.

1 . The system of claim 1 , wherein the decay time is at least one second.

12. A photoluminescent label, comprising:

a photoluminescent material configured to absorb an incident radiation and emit an emitted radiation having a spectral signature,

the photoluminescent material having a decay time and being configured to be detected during the decay time of the photoluminescent material so that the spectral signature can be measured.

13. The photoluminescent label of claim 12, wherein the spectral signature includes a spectra! intensity at a first wavelength and a spectral intensity at a second wavelength to define a code.

14. The photoluminescent label of claim 12, wherein the photoluminescent material is disposed on a fabric.

15. The photoluminescent label of claim 14, wherein the label includes a plurality of threads, at least two of the plurality of threads having differing types of photoluminescent material disposed thereon.

16. The photoluminescent label of claim 15, wherein the plurality of threads are selected, patterned, and combined to obtain the spectral signature.

17. The photoluminescent label of claim 13, wherein the spectral signature includes a spectral and spatial pattern.

18. The photoluminescent label of claim 12, wherein the decay time is at least one second. 9. The photoluminescent label of claim 12, wherein the being measured includes at least one of being scanned and imaged.

20. A method for authenticating an item, comprising:

irradiating, with a radiation source, a label including a photoiuminescent material having a decay time and configured to absorb an incident radiation and to emit an emitted radiation having a spectral signature after removal of the radiation source;

measuring, with a sensor, the spectral signature in the emitted radiation during the decay time;

generating, with a computing device, a code based on the spectral signature; and

comparing, with the computing device, the code to a predetermined reference code.

21. The method of claim 20, wherein the iabel is further configured such that the spectral signature includes a spectral intensity at a first wavelength, a spectral intensity at a second wavelength, and a spectral intensity at a third wavelength.

22. The method of claim 20, wherein the sensor includes at least one of a smartphone and a tablet.

Description:
U.S. NON-PROVISIONAL APPLICATION

FOR

PHOTOLUMINESCENT AUTHENTICATION DEVICES, SYSTEMS. AND

METHODS

FIELD

[0001] The present application generally relates to devices, apparatus, systems and methods for authenticating items. Specifically, the present application relates to a photoluminescent label for authenticating items.

BACKGROUND

[0002] Counterfeiting is a growing business and economic concern. Various products and items are subject to counterfeiting. For example, tax stamps for products such as liquor and tobacco, apparel, footwear, ink cartridges, currency, automotive parts, and electronics can all be subject to counterfeiting. Counterfeit products are often difficult to detect and are typically of inferior quality. Counterfeit products have an adverse impact on both consumers and manufacturers, and could even be harmful and/or dangerous to unsuspecting consumers.

[0003] Manufacturers attempt to discourage and prevent counterfeiting through various techniques. For example, some manufacturers of products targeted by counterfeiters have utilized specific markings, holograms, stamps, or other features on their products. Nevertheless, these techniques can typically be circumvented by counterfeiters. Another anti-counterfeiting technique that has been the use of radio frequency identification (RFID) tags; however, RFID tags can be expensive, and the technology needed to identify the data transmitted by each RFID tag is not readily available to consumers.

[0004] Accordingly, there is a need for cost-effective and accurate authentication of products that is accessible and easy to use by consumers, while being difficult for counterfeiters to circumvent.

BRIEF SUMMARY

[0005] In general, in one aspect, exemplary embodiments of the present invention may provide a system for authentication, including a photoluminescent label including a photoluminescent material having a decay time, the photoluminescent material may be configured to absorb an incident radiation from a radiation source and to emit an emitted radiation having a spectral signature after removal of the radiation source, and a sensor configured to measure the spectral signature in the emitted radiation during the decay time.

[0006] Implementations of various exemplary embodiments of the present invention may include one or more of the following features. The measured spectral signature may include a measured spectral intensity at a first wavelength and a measured spectral intensity at a second wavelength to define a measured code. According to certain aspects, the measured spectral signature may include a measured spectral intensity at a third wavelength. These wavelengths may be in the spectrum of visible light or non-visible light. The sensor may be configured to perform the measurement during the decay time of the photoluminescent material. This decay time may be at least one second, and the spectral signature may include a spectral and spatial pattern. Further, the measured code may be compared to a predetermined code to determine authentication. The sensor may be a smartphone or a tablet, and the sensor may be an imaging device. Further, the photoluminescent label may be configured to be incorporated into a currency.

[0007] In general, in another aspect, exemplary embodiments of the invention may provide a photoluminescent label including a photoluminescent material configured to absorb an incident radiation and emit an emitted radiation having a spectral signature, the photoluminescent material having a decay time and being configured to be detected during the decay time of the photoluminescent material so that the spectral signature can be measured.

[0008] Implementations of various exemplary embodiments of the present invention may include one or more of the following features. The spectral signature may include a spectral intensity at a first wavelength and a spectral intensity at a second wavelength to define a code, and the spectral signature may include a spectral and spatial pattern. Further, the photoluminescent material may be disposed on a fabric, and the label may include a plurality of threads, where at least two of the plurality of threads have differing types of photoluminescent material disposed thereon. Further, plurality of threads may be selected, patterned, and combined to obtain the spectral signature. Additionally, the decay time may be at least one second, and the measuring can include scanning and/or imaging.

[0009] In general, in another aspect, exemplary embodiments of the invention may provide a method for authenticating an item including irradiating, with a radiation source, a label including a photoluminescent material having a decay time and being configured to absorb an incident radiation and to emit an emitted radiation having a spectral signature after removal of the radiation source, measuring, with a sensor, the spectral signature in the emitted radiation during the decay time, generating, with a computing device, a code based on the spectral signature, and comparing, with the computing device, the code to a predetermined reference code.

[0010] Implementations of various exemplary embodiments of the present invention may include one or more of the following features. The label may be further configured such that the spectral signature includes a spectral intensity at a first wavelength, a spectral intensity at a second wavelength, and a spectral intensity at a third wavelength. Further, the sensor may be a smartphone or a tablet.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] Figure 1 A is an illustration of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention;

[0012] Figure B is an illustration of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention;

[0013] Figure C is a diagram of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention;

[0014] Figure 2A is an illustration of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention;

[0015] Figure 2B is an illustration of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention; [0016] Figure 2C is a diagram of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention;

[0017] Figure 2D is an illustration of an exemplary spatial pattern of an exemplary photoluminescent label according to certain exemplary embodiments of the present invention

[0018] Figure 3 is a diagram of an exemplary photoluminescent authentication system according to certain exemplary embodiments of the present invention;

[0019] Figure 4A is a graph showing certain representative spectral characteristics of an exemplary radiation source according to certain exemplary embodiments of the present invention;

[0020] Figure 4B is a graph showing certain representative spectral characteristics of exemplary emitted radiation according to certain exemplary embodiments of the present invention;

[0021] Figure 4C is a graph showing certain representative spectral characteristics of exemplary emitted radiation according to certain exemplary embodiments of the present invention

[0022] Figure 5 is a flow diagram of an exemplary method according to certain exemplary embodiments of the present invention;

[0023] Figure 6 is a diagram of an exemplary photoluminescent authentication system according to certain exemplary embodiments of the present invention; and [0024] Figure 7 is an illustration of an exemplary screenshot of an exemplary photoluminescent authentication application according to certain exemplary embodiments of the present invention. DETAILED DESCRIPTION

[0025] Exemplary embodiments of the present invention are generally directed to devices, apparatus, systems, and methods for authentication using photoluminescence. Specifically, exemplary embodiments of the present invention provide a label including a photoluminescent material and associated detecting/sensing mechanisms that may be used to authenticate an item to which the label is affixed. Although the exemplary embodiments of the present invention are primarily described with respect to authentication and/or preventing counterfeiting, it is not limited thereto, and it should be noted that the exemplary photoluminescent label may be used to encode other types of information for other applications. Further, the exemplary embodiments of the present invention may be used in conjunction with other authentication measures, e.g., holograms, watermarks, and magnetic encoding.

[0026] An exemplary embodiment of the present invention provides a label including a photoluminescent material and a sensor or scanner to image and/or read a code encoded on the label. According to an exemplary embodiment of the present invention, the photoluminescent label includes a photoluminescent material. The photoluminescent material may be configured to absorb an incident radiation, and emit an emitted radiation having a spectral signature after removal of the source of the incident radiation. According to certain exemplary embodiments of the present invention, the spectra! signature may include spectral intensities at certain wavelengths, and the photoluminescent material may be selected and configured such that the emitted radiation has known intensities at specific wavelengths. For example, the photoluminescent material may be excited by irradiating the photoluminescent material with an incident radiation such as, e.g., visible light, which is absorbed by the photoluminescent material, and the photoluminescent material may then emit radiation having a spectral signature, such as, each of red ("R"), green ("G"), and blue ("B") light at known spectral intensities. Alternatively, the photoluminescent materia! may be applied in a specific spatial pattern, and the spectral signature may include spectral intensities emitted by the patterned photoluminescent material. The spectral signature, which may include, e.g., spectral intensities at the particular wavelengths or a patterned spectral signature, can effectively be used as a code. This code, for example, may be used to authenticate the item to which the label is attached. This code can be created with any number of selected spectral intensities, and thus, more complex and intricate codes can be created by using a greater number of selected spectral intensities at particular wavelengths. Thus, the photoluminescent material may be specifically selected for the incident radiation and the desired spectral intensities in the emitted radiation. According to exemplary embodiments of the present invention, the desired spectral intensities may include the particular wavelengths and the relative and absolute amplitudes of the spectral intensities at the particular wavelengths.

[0027] Preferably, the photoluminescent material has a long decay time during which emitted radiation is emitted, e.g., greater than 1 second, such as a phosphorescent material. According to certain exemplary embodiments of the present invention, the photoluminescent material may have a decay time of any length, such as a tenth of a second, a quarter of a second, half a second, one second, or multiple seconds, e.g., 2, 3, 4, 5, or more seconds. The long decay time would enable a user sufficient time to scan or image the photoluminescent label during the decay time so that the user can obtain a measurement of the spectral intensities at particular wavelengths of the emitted radiation. Further, the photoluminescent material may be applied to virtually any surface or material, thus allowing the use of the exemplary photoluminescent label for a wide range of applications. Accordingly, the exemplary photoluminescent label is not limited to flat and/or smooth surfaces and can be used on flexible materials such as fabrics, paper, and other substrates, and may be incorporated onto the item itself. According to certain exemplary embodiments, the coating can be disposed under the surface of the label and may be excited and scanned and/or imaged through the surface of the label.

[0028] In accordance with exemplary embodiments of the present invention, Figures 1A and 1 B show exemplary photoluminescent labels 100 and 1 10 attached to consumer products. Although label 100 is a holographic label attached to a printer ink cartridge, label 100 can be attached to any product or product packaging and can be part of other types of labels, such as, e.g., barcode labels and QR-codes. Figure 1 B shows photoluminescent label 110 as a tax stamp affixed to a tobacco product. As with photoluminescent label 100, photoluminescent label 1 10 can be incorporated onto other labels, such as stamps, on virtually any product. Figure 1C shows a magnified, generalized cross-sectional view of photoluminescent labels 100 and 1 10. As shown in Figure 1C, the photoluminescent material 02 may be applied to the back of the label 100. [0029] According to certain exemplary embodiments of the present invention, photoluminescent material 102 may include storage phosphors and long decay phosphors containing rare earths metals and transition metals, and various hosts including glasses such as phosphates and aluminosilicates. Further, this photoluminescent material may be added as a coating to any label during the manufacturing process of the label, and in particular, may be included in a binder material attached to the bottom of the label. Preferably, an adhesive, or other affixing element 104 may be applied over the photoluminescent material so that the label can be affixed to a product or a package. Alternatively, photoluminescent material 102 may be applied to the front or top of the label, and a protective coating may be applied over the photoluminescent material 102. According to yet another embodiment of the present invention, photoluminescent material 02 may be directly applied to an item, such as currency, which may require the item itself, rather than the packaging, to be authenticated.

[0030] Figures 2A and 2B show further exemplary photoluminescent labels 200 and 210 according to certain exemplary embodiments of the present invention. As shown in Figures 2A and 2B, photoluminescent labels 200 and 210 are fabric labels that may be attached to certain apparel, such as the photoluminescent label 200 as shown in Figure 2A, or footwear, such as the photoluminescent label 210 as shown in Figure 2B.

[0031] Similar to photoluminescent labels 00 and 10, photoluminescent labels 200 and 210 may include a photoluminescent materia! which may be applied as a coating having a printed or spatial pattern onto the fabrics that make up photoluminescent labels 200 and 210. Alternatively, as shown in Figure 2C, photoluminescent labels 200 and 210 may be constructed from individual threads bearing photoluminescent material. For example, according to an exemplary embodiment of the present invention, at least one of threads 201 , 202, 203, and 204 may contain a photoluminescent material, and threads 201-204 can be woven together to create photoluminescent labels 200 and 2 0. According to certain exemplary embodiments, threads 201 , 202, 203, and 204 may all contain the same photoluminescent material. Alternatively, each of threads 201 , 202, 203, and 204 may contain a different photoluminescent material, each of which may have differing absorption and emission characteristics. Further, the denier of the threads, e.g., 20-80, may be varied to vary the amount of photoluminescent material that is contained on each thread. Accordingly, the denier of the threads and the types of photoluminescent material applied to each of the threads may be specifically selected and/or patterned to obtain a spectral and spatial signature, such as specific emission characteristics to yield certain spectral intensities or a spectral and spatial pattern, to create unique codes. For example, threads 201 and 203 may have a certain denier and contain a first type of photoluminescent material, and threads 202 and 204 may have a different denier and contain a second type of photoluminescent material. Alternatively, threads 201- 204 may each contain a different type of photoluminescent material. In some embodiments, some of threads 201-204 may not contain any photoluminescent material. Accordingly, any combination or permutation of different den ' iers and photoluminescent materials may be utilized and patterned to specifically obtain a spectral and spatial signature, such as desired emission characteristics and spectral intensities or a desired spectral and spatial pattern, in the radiation emitted by the photoluminescent labels 200 and 210 in creating unique codes. Figure 2D shows an exemplary label 220, with the shaded portions representing an exemplary spectral and spatial pattern 222 which may be emitted by photoluminescent labels 200 and 210.

[0032] Figure 3 shows an exemplary system 300 in accordance with exemplary embodiments of the present invention. As shown in Figure 3, system 300 may include a radiation/excitation source 302, a sensor 304, and a photoluminescent label 306. Radiation/excitation source 302 may be any source supplying radiation 308, such as, e.g., visible light, ultraviolet, radio, or microwave, which is to be absorbed by photoluminescent label 306. The photoluminescent label 306 may re-emit emitted radiation 310 at the same wavelengths or emit emitted radiation 310 at different wavelengths. Sensor 304 may include any detecting, sensing, imaging, or scanning device that is able to receive, image, and/or measure the spectrum of the radiation emitted by the photoluminescent label 304, such as a photometer or digital camera. According to certain exemplary embodiments of the present invention, radiation/excitation source 302 may include the flash of a digital camera, and sensor 304 may include the optical components and sensors of the digital camera. In one exemplary embodiment, the radiatton/excitation source 302 may include the light source of a smartphone or tablet camera, e.g., Apple iPhone, Apple iPad, Samsung Galaxy or other Android devices, and sensor 304 may include the camera of the smartphone or tablet. For example, the light source and the lens of a smartphone or tablet camera can be moved across a surface of the photoluminescent label 306 to sequentially excite photoluminescent label 306 by irradiating photoluminescent label 306 with the light source of the smartphone or tablet and, after the excitation has been removed, measure the spectrum of the emitted radiation with the smartphone or tablet camera in a single motion. Further, photoluminescent label 306 may include any of photoluminescent labels 100, 110, 200, or 210 described herein, and may be attached or affixed to any product or item, e.g., tax stamps, apparel, currency, or footwear, for which authentication may be desirable.

[0033] Figures 4A, 4B, and 4C are exemplary graphs representing certain representative characteristics of the incident and emitted radiations according to exemplary embodiments of the present invention. The depictions in graphs 400, 410, and 420 are merely representative, and exemplary embodiments of the present invention may employ any variation of decay times, as well as spectral intensity characteristics, such as the number of spectral intensities used, the wavelengths at which the spectral intensities are measured, and the amplitude of the spectral intensities. Figure 4A shows an exemplary graph 400 of representative spectral intensities of an exemplary incident radiation/excitation source. For example, graph 400 shows the spectral intensities of a smartphone camera light source used in two different modes. As shown in graph 400, the exemplary incident radiation includes higher spectral intensities near the 450 nm and the 550 nm wavelengths, which generally correspond to blue and green light, respectively. It should be noted that the spectral intensities of various light sources may vary widely, and the spectral intensities of the incident radiation absorbed by the photoluminescent label may affect the spectral characteristics of the radiation emitted by the photoluminescent label. [0034] Figure 4B shows an exemplary graph 410 of representative spectral intensities of emitted radiation that may be used to compose an exemplary code in accordance with exemplary embodiments of the present invention, and Figure 4C shows an exemplary graph 420 of representative relative decay times of certain wavelengths of the emitted radiation. As shown in Figure 4B, exemplary graph 410 depicts representative relative spectral intensities of an exemplary spectrum of radiation. According to certain exemplary embodiments of the present invention, the spectral intensities at points A, B, and C, or any other point in the spectrum, may be used to create a unique code encoded on a photoluminescent label. According to certain exemplary embodiments of the present invention, wavelengths in the visible light spectrum or the non-visible light spectrum may be used.

[0035] Figure 4C shows an exemplary graph 420 of representative relative decay times of certain wavelengths of the emitted radiation. As shown in graph 420, each of the wavelengths of radiation in the emitted radiation may decay at a different rate. In view of the variable decay times of certain wavelengths, it may be advantageous to select specific wavelengths based on their respective decay times. For example, wavelengths that have decay times that would allow sufficient time for a user to scan and/or image the radiation emitted by the photoluminescent label are preferable to those that decay quickly and would not provide a user sufficient time to scan and/or image the photoluminescent label.

[0036] Figure 5 shows an exemplary flow diagram 500 illustrating an exemplary operation of a photoluminescent system, such as system 300 shown in Figure 3, for authenticating an item. As described in step 510, a radiation/excitation source 302 may irradiate photoiuminescent label 306. After the photoiuminescent label 306 has absorbed the radiation, the photoiuminescent material emits emitted radiation. Accordingly, as shown in step 520, sensor 304 is used to measure the spectral signature in the emitted radiation. As described herein, the spectral signature, which may include a patterned spectrum or a spatial pattern or certain spectral intensities, defines the code encoded in photoiuminescent label 306. In step 530, the code is determined from the measured spectral signature. In step 540, the code, which was determined from the measured spectral signature, is compared against reference codes stored in a database. This comparison provides authentication of the item to which photoiuminescent label 306 is attached depending on whether or not the deciphered code and the stored reference codes match. Optionally, the process can be repeated to authenticate a subsequent item if the item is found not to be authentic.

[0037] Figure 6 shows an exemplary system 600 that may be employed to authenticate an item using the photoiuminescent labels described herein. For example, system 600 includes a computing device 602, which may include radiation/excitation source 302 and sensor 304. Computing device 602 may be any computing device that could incorporate a radiation/excitation source 302 and sensor 304, such as a smartphone, a tablet, or a personal data assistant (PDA). Alternatively, radiation/excitation source 302 and sensor 304 may be stand-alone devices that operate independent of a computing device. As described herein, the radiation/excitation source 302 may irradiate an exemplary photoiuminescent label, and sensor 304 may measure the radiation emitted by the photoiuminescent label, including the spectral signature. The computing device 602 may then determine the code from the measured spectral signature of the radiation emitted by the photoluminescent label. Alternatively, this processing may be performed by a remote computing device. Subsequently, the code or the measured spectral signature may be compared to a database of reference codes or spectral signatures. The database of reference codes may be stored locally on the scanning, imaging, or sensing device or remotely on a separate computing device. As shown in Figure 6, to complete the authentication, the computing device 602 may compare the code or the measured spectral intensities to the reference codes or spectral signature stored in a database 604. Although Figure 6 illustrates this comparison being performed via a network 606 to a remote database 604, other embodiments contemplate database 604 being local to computing device 602.

[0038] Further, in some embodiments, the item being authenticated may include an identifying label, such as, e.g., a barcode, a QR code, or a magnetic code, to enable correlation of the code or the measured spectral intensities to the item being authenticated. In a particular embodiment where computing device 602 is a smartphone or tablet, the transmission via the network 606 may be done over a cellular data connection or a Wi-Fi connection. Alternatively, this can be performed with a wired connection or any other data transport mechanisms.

[0039] In certain embodiments of the present invention where a computing device, such as a smartphone or tablet, is utilized for authenticating an item, a software application may be used to simplify the authentication process. Figure 7shows an exemplary screen shot of a software application that may be utilized on a smartphone for authenticating an item. The exemplary application may be configured to be executed on any mobile platform, such as Apple's iOS or Google's Android mobile operating system. When the application is run, the software application may provide instructions to a user on properly irradiating/exciting and scanning or imaging the photoluminescent label. Once irradiating and scanning of the photoluminescent label is complete, the application may facilitate comparison of the measured spectral signature and/or the measured code with a reference database storing certain reference codes or spectral signatures to authenticate the item. Further, the application may provide a message or other indicator informing the user of the result of the authentication. For example, the application may provide a text, graphical, or other visual indicator on the screen of the smartphone showing the results of the authentication. Alternatively, the application may provide audible and/or tactile indicators conveying the results of the authentication.

[0040] According to certain exemplary embodiments of the present invention, the exemplary photoluminescent label may also have a tamper resistant feature. For example, the photoluminescent label may be configured such that after the photoluminescent material is adhered to a surface, an individual may be prevented from detaching the photoluminescent material and/or the photoluminescent label in a manner that maintains the integrity of the photoluminescent material and/or the photoluminescent label. For example, any of photoluminescent labels 100, 110, 200, or 210 may be configured such that the label may not be removed intact such that if an individual were to tamper with the label, it would render the photoluminescent label inoperable or create a clear visual indication that the photoluminescent label had been tampered with. [0041] The embodiments and examples above are illustrative, and many variations can be introduced to them without departing from the spirit of the disclosure or from the scope of the appended clams. For example, elements and/or features of different illustrative and exemplary embodiments herein may be combined with each other and/or substituted with each other within the scope of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there are illustrated exemplary embodiments of the invention.