Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PHOTOSENSITIVE PIXEL STRUCTURE WITH FRONT SIDE COATING
Document Type and Number:
WIPO Patent Application WO/2017/045756
Kind Code:
A1
Abstract:
The present invention refers to a photosensitive pixel structure (10) comprising a substrate layer (1 5) and an interface layer (50), wherein the interface layer (50) is provided at least partially on a first surface of the substrate layer (15) and wherein the interface layer (50) at least partially comprises a first material layer (51) and the interface layer (50) at least partially comprises a second material layer (52) covering the first material layer (51), such that the first material layer (51) is at least partially sandwiched between the second material layer (52) and the substrate (15). The invention further refers to an array and an implant comprising such a pixel structure as well as a method to provide a pixel structure, wherein further the second material layer comprises a thickness chosen from the range of 200nm-600nm, preferably from the range of 300nm-500nm, most preferably from the range of 320nm - 450nm.

Inventors:
DETERRE MARTIN (FR)
Application Number:
PCT/EP2016/001545
Publication Date:
March 23, 2017
Filing Date:
September 14, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PIXIUM VISION SA (FR)
International Classes:
A61N1/05; H01L27/146
Foreign References:
US20120109295A12012-05-03
EP2361440A12011-08-31
Other References:
WANG LELE ET AL: "Photovoltaic retinal prosthesis for restoring sight to the blind: implant design and fabrication", MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY XVII, SPIE, 1000 20TH ST. BELLINGHAM WA 98225-6705 USA, vol. 8248, no. 1, 8 March 2012 (2012-03-08), pages 1 - 8, XP060023539, DOI: 10.1117/12.909104
Attorney, Agent or Firm:
GRAF VON STOSCH, Andreas et al. (DE)
Download PDF:
Claims:
Claims

1 . Photosensitive pixel structure (1 0) comprising a substrate layer (1 5) and an interface layer (50), wherein the interface layer (50) is provided at least on a part of a front surface of the substrate layer (1 5) and wherei n the i nterface layer (50) at least partially comprises a fi rst material layer (51 ) and the interface layer (50) at least partial ly comprises a second material layer (52) covering the first material layer (51 ), such that the first material layer (51 ) is at least partial ly sandwiched between the second material layer (52) and the substrate (1 5), wherei n further the second material layer (52) has a thickness i n the range of 200nm-600nm, preferably i n the range of 300nm- 500nm, most preferably in the range of 320nm - 450nm.

2. Photosensitive pixel structure (1 0) according to claim 1 , wherei n the first material layer (51 ) is an oxide layer, preferably a layer comprisi ng SiCh.

3. Photosensitive pixel structure (1 0) according to one of claims 1 or 2, wherei n the second material layer (52) comprises a ceramic or ceramic-like material layer and/or the second material layer (52) comprises a polymer layer.

4. Photosensitive pixel structure (1 0) according to claim 3, wherei n the ceramic or ceramic-l ike material layer comprises at least one of SiC, diamond l ike carbon, diamond, alumi na and/or titanium oxide.

5. Photosensitive pixel structure (1 0) according to one of claims 3 or 4, wherei n the polymer layer comprises at least one of si licone, parylene, polyimide, and/or polyurethane.

6. Photosensitive pixel structure (1 0) according to claim 1 , characterized in that the first material layer (51 ) has a thickness of less than 1 00nm, preferably of less than 60nm, most preferably between 1 0nm and 60nm.

7. Photosensitive pixel structure (1 0) accordi ng to claim 1 , characterized i n that the first material layer (51 ) has a thickness of between 200nm-400nm, preferably between 250nm -350nm, and most preferably the thickness of the first material layer (51 ) is about 300nm.

8. Photosensitive pixel structure (1 0) according to claim 1 , characterized in that at least one additional material layer is provided at least on a part of the back surface of the substrate (1 5), wherein the additional material layer comprises a reflective layer. 9. Photosensitive pixel array (1) comprising at least one, preferably a plurality of pixel structures (10) according to one of claims 1 to 8, wherein the pixels structures (10) are arranged in a pixel array.

10. Implant with a photosensitive pixel array (1 ) according to claim 9.

11. Implant according to claim 10, wherein the implant is a subretinal implant.

12. Method for providing a pixel structure (10) according to one of claims 1 to 8, comprising the steps:

providing a substrate (15),

providing at least on a part of a front surface of the substrate (15) an interface layer (50) and wherein the interface layer (50) at least partially comprises a first material layer (51) and the interface layer (50) at least partially comprises a second material layer (52) covering the first material layer (51), such that the first material layer (51) is sandwiched between the second material layer (52) and the substrate (15).

13. Method according to claim 12, wherein the first material layer (51) is an oxide layer, preferably an Si02 layer, which is deposited by thermal growing.

14. Method according to one of claims 12 or 13, wherein the second material layer (52) is a ceramic layer or a ceramic-like layer, deposited by plasma enhanced chemical vapour deposition.

15. Method according to either one of the claims 12 to 14, wherein, the method comprises a step of providing, on the substrate (15), at least a photosensitive diode (12, 12') and/or a stimulating electrode (14).

Description:
Photosensitive pixel structure with front side coating

The present invention relates to a photosensitive pixel structure and an array and an implant with such a pixel structure. Further, the present invention refers to a method to provide a photosensitive pixel structure. Implant systems are known, which help to restore at least a fraction of vision to patients who have lost sight, for instance through degenerative diseases such as retinitis pigmentosa. Vision may at least to a certain degree be restored with an implant by exploiting the fact that although parts of the retinal tissue have degenerated most of the retina remains intact and may still be stimulated directly by light dependent electrical stimuli . This electrical stimulation can be provided by means of an implant system. Such a system typically comprises special goggles, which are placed in front of an eye of a patient and an implant, in particular a sub-retinal implant, which comprises a plurality of electrodes, which contact living tissue or cells.

In the goggles, typically a camera is provided. The camera is adapted to capture a scene in front of the patient. This captured scene may be translated from visual information into a predetermined IR light pulse signal. The implant in such a case is adapted to receive those IR light pulses and, in response, photosensitive areas on the implant are stimulated based on the scene content received by the camera. The implant then converts the received light into electrical current that may stimulate the residual cells in the retina.

For that purpose, the implants comprise one or more pixel arrays, wherein each individual pixel structure typically comprises one or more diode areas, a stimulating electrode and, possibly, a counter electrode. If a light pulse is directed to a pixel or rather to a photosensitive area of a pixel, a fraction of the photons of that light pulse wi l l be absorbed in the substrate and electron-hole pairs are generated due to the photoelectrical effect withi n the substrate. These electron-hole pairs migrate to respective poles of the pixel structure and an electrical charge may be generated on an electrode by the corresponding photodiode circuit i n response thereto. Consequently, the more photons are absorbed in the substrate, the higher may the charge be, which is generated by the pixel structure. The absorption or absorption rate for photons may depend on the wavelength of the i ncident light, material properties, incidence area, i .e. photoactive area, and the thickness of the absorbing substrate. In order to increase the absorption of incident l ight, and thus ultimately increase the charge generation i n the pixel structure, the thickness of the substrate may for instance be i ncreased. However, increase of the thickness of a substrate may not always be desired or possible in view of the intended application.

Cogan et al ("Plasma-enhanced chemical vapor deposited si licon carbide as an implantable dielectric coating" J Biomed Mater Res A. 2003 Dec 1 ;67(3):856-67) suggest providi ng a thick amorphous sil icon carbide layer on a substrate.

Wang et al ("Photovoltaic retinal prosthesis for restoring sight to the bli nd: implant design and fabrication" Proc. SPIE 8248, Micromachining and Microfabrication Process Technology XVII, 824805 (7 February 201 2)) suggest the use of a si l icon dioxide layer of 60nm thermal ly grown on a substrate, together with an additional si licon nitride layer of 70nm, designed to reduce reflectivity at a water-si l icon nitride interface. Implants are known for neural stimulation comprising photosensitive pixel structures or arrays. I n such implants, in order to reliably stimulate residual cel ls, the current density, i.e., the charge del ivered by the pixel structure per phase per electromagnetic pulse, e.g. per l ight pulse, i n particular I R pulse, i n a predetermi ned time, should be as high as possible in order to sufficiently stimulate residual cel ls. At the same ti me, the implants shal l be kept as smal l as possible for mi nimal i nvasivity, i n particular as thin as possible. As such, ideally, an implant has a thickness of less than 1 OOpm, ideal ly less than 50pm, and preferably of 30pm or less. Thin implants further al low a faci litated fabrication, in particular regarding structures, which shal l extend through the entire thickness of the implant.

Li kewise, in order to increase the resolution of a photosensitive array, the size of i ndividual pixels, i .e., the surface area requi red by each pixel i n order to detect sufficient light for charge generation, desirably shall be reduced. That may be applicable for implants as well as other photosensitive structure, such as photosensitive chips in cameras, detection devices and others. That requires high transmission rates and low absorption rates for the incident light in any layers on top of the photosensitive area of an implant.

It is therefore an object of the present invention to omit at least one of the problems of the prior art. In particular, it is an object of the invention to provide an enhanced pixel structure. Desirably, the transmission of light through an incident surface of the pixel structure shall be increased. Further, it may be an object to provide a photosensitive pixel structure with decreased size. Further it may be an object of the invention to provide a pixel array or an implant with an increased resolution.

The problem is solved according to the invention with a pixel structure according to independent claim 1 , a pixel array according to claim 9, an implant according to claim 1 0, and a method according to claim 12. Advantageous developments are subject to the dependent claims.

According to an aspect of the present invention, a photosensitive pixel structure is provided, which comprises a substrate layer and an interface layer. The interface layer is provided at least on a part of a front surface of the substrate layer. That front surface of the substrate may also be described as an incident surface or a first surface of the substrate. The interface layer at least partially comprises a first material layer and, further, the interface layer at least partially comprises a second material layer covering the first material layer. The first material layer is covered by the second material layer in such a way that the first material layer is, at least partially, sandwiched between the second material layer and the substrate. Consequently, the second material layer is a top layer on the pixel structure. Notably, in a pixel structure which comprises a stimulating and/or a return electrode, the interface layer comprising the first and/or second material layers, typically is provided on the substrate in those regions, which are not occupied by either of the electrodes deposited on the pixel structure. Further, the second material layer has a thickness within the range of between 200nm and 600nm. Preferably, the second material layer has a thickness of between 300nm and 500nm. Most preferably, the thickness of the second material layer is between 320nm and 450nm. Such a thickness range for the second material layer, while allowing to increase the transmittivity of the coating layers as a whole, i.e. a stack of the first material layer and the second material layer, will, at the same time, allow a hermetic sealing of those areas covered by the second material layer. Manufacturing of a second material layer within that range of 200nm to 600nm is further advantageous, as unavoidable fabrication tolerances are sti l l acceptable. The finding of the present i nvention thus allows to freely choose a thickness of the first material layer and to adapt the thickness of the second material layer, i n order to optimize the transmission coefficient of the material layer stack on the substrate.

With respect to the present invention, it shal l be noted that the terms "front", "upper" or "top" refer to a direction or position of the substrate, which is directed toward a direction of light- incidence on the pixel structure. By providi ng an interface layer comprisi ng at least two material layers, i.e. the first material layer and the second material layer, the pixel structure may be provided with a hermetic cover by one of the material layers, e.g. the second material layer. At the same time, a coating of the pixel structure with increased l ight-transmissive characteristics may be provided. That way, less light may be reflected from the pixel structure, which is incident on the pixel structure at a surface of i ncidence, and may therefore be transmitted i nto the light-absorbi ng substrate. That layer, i.e. the i nterface layer, may therefore also be referred to as an anti-reflection coating. According to the i nvention, a further material layer, i .e. the fi rst material layer, which is part of the interface layer, is provided, which may enhance charge generation within the substrate by reduci ng surface recombi nations. Thus, according to the i nvention, the pixel structure-, i.e. photodiode-, efficiency may be significantly i ncreased by both i ncreased l ight-transmission and decreased surface recombination of generated charges.

Further, the pixel structure or the second material layer which may form the outer surface layer of the pixel structure, may be provided as a biocompatible layer and/or as a layer bei ng resistant to corrosion and providi ng a hermetic seal i ng for the pixel structure.

Those ski lled in the art wi l l note that the first material layer may be provided on the i ncident surface of the substrate also partial ly, i n particular at those locations, where charge recombi nation may occur, i .e. at those positions where a diode is provided on the pixel structure. Accordi ngly, the second material layer may be provided at those positions of the pixel structure, where a biocompatible coati ng or a hermetic seal i ng or both is desired. Thus, the first material layer and the second material layer may be provided together, or, at least partial ly, separate from one another.

Accordi ngly, the first material layer, i .e. the material layer at least partially covering the surface of the substrate, may be an oxide layer, i .e. may comprise an oxide, such as a buried oxide. That oxide layer may preferably comprise or consist of Si0 2 , preferably thermally grown. Such an oxide layer, e.g. an Si02-layer, advantageously may also easily be grown on the substrate. Alternatively, besides Si02, other oxide or material layers may also be applied, such that the oxide of the substrate material allows to avoid surface recombination of charges. The choice of material may depend on the substrate material used.

In some developments of the present invention, the second material layer comprises a ceramic or ceramic-like material layer. In addition or alternatively, the second material layer may comprise a polymer layer.

Such a ceramic or ceramic-like material layer and/or polymer layer may provide increased biocompatibility and/or better hermeticity of the pixel structure. Thus, a use of the pixel structure for an implant, such as an implant to stimulate living tissue or cells, in particular nerve tissue or nerve cells, may be enabled.

The term "ceramic-like" within the context of the present invention shall refer to materials, which have similar properties as known from ceramic materials, such as hardness, wear-resistance, chemical behavior, thermal and electrical properties, and others, without being a ceramic in the technical or chemical sense.

In some embodiments of the present invention, the ceramic or ceramic-like material layer may comprise silicon carbide (SiC), diamond-like carbon, diamond, or oxides of aluminum or titanium, such as alumina and/or titanium oxide. The second material layer may also comprise an amorphous material, such as amorphous SiC, also referred to as a-SiC.

Further, in some embodiments of the present invention, the polymer layer, as far as provided, may comprise at least one of silicone, parylene, polyimide, polyurethane, and/or others.

The specific choice of material or materials may depend on the specific intention for application, while also the use of more than one material is possible within the scope of the present invention. Accordingly, the pixel structure according to the present invention may be adapted to various applications by respective choice of materials for either the first material layer and/or the second material layer and their respective components. Preferably, the first material layer, i.e. the oxide layer, is comparably thin, in order to increase the transmission of light through the material layer. In particular, the first material layer and the second material layer, thus the enti re i nterface layer, shal l be light-transmissive for light of a predetermined wavelength. Typical ly, pixel structures which shal l be used to stimulate neural tissue, in particular neural tissue of an eye, are designed to be receptive for a light of near-infrared wavelengths, such that any residual vision remaini ng to the eye is not compromised. Accordi ngly, the first material layer, i.e. the oxide layer, shal l be l ight-transmissive to infrared light, in particular near-i nfrared light, of a predetermined wavelength or wavelength range accordi ng to the present invention. Likewise, the second material layer shal l be l ight-transmissive for i nfrared light, i n particular near-infrared light, of corresponding wavelength. The transmissivity or transmission coefficient as considered in the present i nvention describes l ight transmission on an incident surface between two media with different i ndex of refraction, such as tissue and second material layer, second material layer and first material layer, and first material layer and substrate. Therei n, light is appl ied at a predetermined wavelength, such as, for instance 880nm, and with normal i ncidence on the i nterface between adjacent layers.

Preferably, the thicknesses of the first material layer and the second material layer are optimized such that the transmission is maximized. It could be shown that the transmissivity, i .e. the transmission coefficient, for a typical layer stack consisting of a tissue, such as a retina, a layer of SiC, a layer of Si0 2 , and a substrate layer of si licon, changes with i ncreasing thickness of the second material layer, i.e. the SiC-layer. That change of transmissivity, at a given thickness of the first material layer, is periodic with increasi ng thickness of the second material layer. Preferably, the oxide layer should be as thi n as possible in order to get the best transmission rates. Further, thi nner layers allow may al low to increase the precision of the deposited thickness of material, si nce the thi nner layer target thicknesses wil l cause less manufacturing tolerances in terms of absolute thickness variation, as wi l l be discussed below. The thickness of the first material layer, accordi ng to preferred embodiments, is less than 1 00nm. More preferably, the thickness of the first material layer is less than 60nm. Most preferably, the thickness of the first material layer is between 1 0nm and 60nm. Alternatively, it could be shown that the first material layer may also have a thickness of between 200nm and 400nm accordi ng to some embodiments of the present i nvention. Preferably, i n such embodiments, the thickness of the first material layer is between 250nm and 350nm. Most preferably, the thickness of the first material layer in such embodiments is about 300nm. As already indicated, the absolute transmissivity of the material layer stack, i .e. the first material layer and the second material layer i n-between a reti na and a si l icon substrate, depends on the thickness of the second material layer, which, in turn, may depend on the thickness of the first material layer.

The above preferred values for embodiments of the present invention are provided assumi ng a wavelength of incident light of 880nm. Similar conclusions and results may be expected for different wavelengths of incident l ight, with the respective values potential ly sl ightly varyi ng with respect to the preferred values as set out above. General ly, the wavelength of the i ncident light preferably is chosen from a range between 800 and 1 000 nm, preferably 830nm-91 5nm, more preferably 850nm-900 nm.]

I n alternative embodiments, in particular i n embodiments where hermeticity is not an issue or a coati ng with reduced hermeticity is acceptable, the thickness of the second material layer may be varied withi n the range of about 50nm to 300nm, in particular between 1 50nm to 260nm.

Simi larly, the thickness of the second material layer may also be above 600nm. Such comparably thick second layer structures of more than 600nm may provide a higher stabi lity to the pixel structure. For the above considerations regardi ng layer thicknesses, it wi l l have to be considered that, typically, production of the second material layer manufacturing constrai nts of thi n fi lm deposition yield thickness variations of up to +/-10%, at best +/-5% intra and inter depositions. This means that the second material layer, e.g., the SiC-layer, thickness can be precise at 0% typical ly and +1-5% at best. Simi larly, for the first material layer, e.g. Si02, a variabi lity in the thickness of +/-5% may be typically achieved. Therefore, during manufacturing, compromises may have to be met in terms of variabi l ity i n the thickness due to such fabrication tolerances. Considering these variations within a pixel structure or pixel array, in order to be enabled to provide pixel structures with comparable properties, it is attempted to provide layer thicknesses such that transmission is as close as possible to a local maximum. That way, variations of thickness have the least impact on transmission, as the rate of change with varying thickness of the i ndividual layers is smallest close to that local maximum.

The inventors of the present i nvention could also identify the proximate period of the variation of transmissivity of the stacked layer structure for predetermined thicknesses of the first material layer at least for those embodiments where the fi rst material layer is S1O2 and the second material layer comprises SiC. In these cases, a maximal transmission coefficient was identified to occur about each 1 70nm of additional material on the second material layer.

The i nventors of the present i nvention could further show that for higher thicknesses of the first material layer the position of the maximum transmission coefficient varies more significantly with the thickness of the second material layer than for thinner first material layer thicknesses.

That means that for each fi rst material thickness, an ideal second material thickness may be identified. Vice versa that means that for a desired second material layer thickness, for i nstance in order to provide sufficient hermeticity, an appropriate first material thickness may be identified.

According to an aspect of the present invention, a photosensitive pixel structure may be provided, which comprises at least one additional material layer at least on a part of the back surface (or second surface) of the substrate, wherein that additional material layer comprises a reflective layer. It wi ll be noted that the reflective layer may also be an integral part of the substrate, for i nstance by doping or thermal ly growing structures on the surface of the substrate itself. The reflective layer or the entire additional material layer may also be provided as separate layer on the surface of the substrate, for i nstance deposited by methods known from the art such as electrochemical deposition, vacuum deposition or others.

It wi ll be understood that any material, which may alter, and in particular i ncrease, the reflectivity of l ight transmitted through the substrate and i ncident on an i nterface between the substrate and the first material layer, i.e., the back surface of the substrate, may be considered a "reflective material" or a "reflective layer" in the context of such embodiments. Reflectivity values of such a reflectivity layer may be compared to the reflectivity inherent to the substrate material alone. Such materials suitable to be used as a reflective material i n the additional material layer may for instance comprise aluminium, titanium, plati num and/or pal ladium or alloys thereof, such as, e.g. a titanium-nickel alloy, also known as niti nol, or others. Further materials that may provide increased reflectivity may be ceramic layers, such as alumi nium oxide, si licon carbide or others, which may also provide a hermetic sealing and/or biocompatible characteristics suitable for an implant. In order to achieve such properties, the thickness of the respective layers may have to be varied, e.g. increased, in order to provide a hermetic coating.

As i ndicated above, a "front surface" shal l describe a surface onto which or through which i ncident l ight is appl ied, which is then transmitted from outside of the substrate i nto the substrate. Accordingly, a "back surface" is a surface of the substrate or any respective layer, which is on an opposite side of the substrate compared to the "front surface". Thus, the "back surface" of the substrate characterizes a surface to which the light incident on the front surface and transmitted through the substrate is incident from within the substrate. By providing a reflective layer or a reflective structure, e.g. a layer-like structure within the substrate or on the back surface of the substrate, the portion of the light, which is not absorbed when being transmitted through the substrate from the front surface of the substrate may, at least partially, be reflected back into the substrate. That way, an increased portion of the originally incident light on the front surface of the substrate may be absorbed. Thus, a higher charge may be generated by the pixel structure while, at the same time, not or negligibly thickening the substrate or the pixel structure as a whole.

It is to be understood that there exist various options in designing such a back surface material layer either with stacks of materials or specific manufacturing processes for such a material layer or material layers, which are also considered to be within the scope of the present invention.

According to another aspect of the present invention, a photosensitive pixel array is provided, which comprises at least one, preferably a plurality of pixel structures according to the first aspect of the present invention. In that pixel array, the plurality of pixel structures is arranged in an array in order to thus form the pixel array.

It will be noted by those skilled in the art that due to the improvements according to the present invention, e.g. by increasing the transmissivity on the incident surface of the substrate, more light may be transmitted into the substrate and therefore may be available for charge generation in the photoactive area of a pixel structure. That way, the pixel structure may also be decreased in size without reducing the efficiency of the pixel structure in terms of charge generation. Thus, the size of the individual pixel structures may be reduced and, for a given area, the number of individual pixel structures, e.g., within a pixel array, may be increased. That may allow to increase the resolution of a pixel array or an implant with a pixel array. In case the pixel structure comprises electrodes suitable to electrically stimulate tissue, such as nerve tissue, or cells, the number of individually stimulatable tissue regions or even individual cel ls may be increased. That may allow to increase the benefit of such a pixel array to a patient.

According to a third aspect of the present invention, an implant is provided which has a photosensitive pixel array according to the second aspect of the present invention or which has at least one photosensitive pixel structure according to the first aspect of the present invention. Such an implant may in particular be a subretinal implant according to some advantageous developments of the present invention.

Providing an implant comprising a pixel structure and/or a pixel array according to the above aspects of the present invention, may allow a differentiated stimulation of specific neural tissues or cells. While preferred embodiments of the implant according to the present invention are retinal implants, however, the idea according to the present invention is also adaptable to a variety of different kinds of tissue, such as neural tissue within the ear, in particular the inner ear, or muscle cells, such as the heart muscle or, generally, neural tissue, such as in the spine or other nerve fibers or cords.

According to a fourth aspect of the present invention, a method to provide a pixel structure according to the first aspect of the present invention is suggested. The method comprises the steps of providing a substrate and providing, at least on a part of a front surface of the substrate, an interface layer. The interface layer on the first surface of the substrate at least partially comprises a first material layer and second material layer. The second material layer is provided such that it covers the first material layer at least partially, such that the first material layer is sandwiched between the second material layer and the substrate. With that respect, the first material layer is provided in order to increase the efficiency of the photodiode by decreasing the surface recombination rate of charges generated in the substrate. The second material layer may, in contrast, serve for a hermetic coating and provide a biocompatibility, which is required when using the pixel structure within an implant to be implanted within a body. The first material layer in some embodiments of the present invention is an oxide layer, such as a buried oxide layer, preferably an SiCh-layer. That layer, according to a development of the suggested method, is deposited by thermal growing on the substrate.

According to further embodiments of the suggested method, the second material layer is a ceramic layer or a ceramic-like layer, which is deposited by plasma-enhanced chemical vapor deposition.

The methods used to provide the layer structure according to the present invention may, in addition to the methods already indicated, also include ion deposition, electrochemical deposition, physical vapour deposition, such as sputtering and electron beam evaporation, or other methods. The method to provide a pixel structure according to the present invention, or a pixel array for an implant, may further comprise a step of providing, on the substrate, at least a photosensitive diode and/or a stimulati ng electrode. Notably, the photosensitive diode may be provided by atom dopi ng or simi lar processes known from, e.g., semiconductor production processes.

The present i nvention exploits the fact that, the anti-reflection coating properties are determi ned by the indices of refraction and the thicknesses of the different layers. Specific choice of layer thickness therefore allows to use constructive and destructive interference of l ight at the layer i nterfaces in order to i ncrease transmittivity of the layer stack on the surface of the substrate.

Further details, preferred embodiments and advantages of the present invention wi ll be found i n the followi ng description with reference to the drawi ngs, i n which:

Figure 1 is an example of a photosensitive pixel with an electrode accordi ng to an embodiment of the present i nvention;

Figure 2 is a schematic cross-sectional view of a semiconductor structure with two adjacent pixels accordi ng to an embodiment of the i nvention; Figure 3 displays an electrode array accordi ng to an embodiment of the present i nvention;

Figure 4 shows a schematic cross section of (a) a common substrate provided below a retinal layer; (b) a photosensitive pixel structure according to an embodiment of the present invention below a retinal layer with an interface layer displayed; and (c) a photosensitive pixel structure according to an embodiment of the present invention below a retinal layer with individual i nterface layers displayed; and (d) a photosensitive pixel structure accordi ng to an embodiment of the present invention below a reti nal layer with individual interface layers displayed; Figure 5 shows a diagram representing the transmission coefficient through the material stack in dependence from the thickness of the second material layer on a front surface of a pixel structure accordi ng to an embodiment of the present invention for various thicknesses of a first layer material; Figure 6 shows a diagram representing the transmission coefficient through the material stack i n dependence from the thickness of the second material layer on a front surface of a pixel structure according to another embodiment of the present invention for various thicknesses of a first layer material.

Figure 1 shows an exemplified photosensitive pixel structure 10. The photosensitive pixel structure 1 0 according to the embodiment shown, in the following also referred to as a pixel, comprises two photosensitive diodes 12, 12', a central electrode 14 and a resistor 1 6. At an outer periphery of the pixel structure 10, a counter electrode 1 8 is provided, which is also often referred to as return electrode. The counter electrode 1 8 can be placed on each individual pixel structure 10, for instance at the periphery of each pixel structure 1 0, as shown in Figure 1 . That means, the return electrode is local and in-between the different central electrodes of an array 1 of pixel structures. This is typically also referred to as a "bipolar" configuration.

For such a bipolar arrangement, two configurations are possible. The return electrodes may be disconnected from one another. That means, pixels in that case are completely independent from one another. Alternatively, all or groups of return electrodes of individual pixel structures or groups of pixel structures may be connected together, in order to effectively creating a sort of grid-like structure. Such a structure may, for instance, comprise a plurality of hexagonal pixels, which may extend over a whole pixel array 1 . Examples for such pixel arrays are displayed in Figure 3.

As a further alternative, a central return electrode (not shown) may be placed separate from the pixel structure 1 0, for instance at a position on a pixel array remote from the pixel structure. Such a central return electrode may in particular be provided at a remote location on an implant or pixel array. Such a configuration may also be referred to as a monopolar configuration. It is to be noted that, in such embodiments, the return electrode does not necessari ly have to be in a geometrical centre of the implant. Further, it is possible that a plurality of such central return electrodes are distributed over the implant or the pixel array, each connected to multiple pixels. It will be understood that the present invention may be suitably used for either of these configurations.

The pixel structure 10 in the embodiment of Figure 1 has a generally symmetric hexagonal shape. That hexagonal shape is defined by trenches 20 arranged around the pixel structure and electrically isolating the pixel structure from adjacent structures. Adjacent to each of the sides of that hexagon of the embodiment shown in Figure 1 , further pixels 1 0' may be provided. An example for an embodiment of a pixel array 1 of pixels 1 0, also referred to as an electrode array in the context of the present invention, is shown in Figure 3. In alternative embodiments, the shape of the individual pixels may also differ. For example, the pixels may have an octagonal or rectangular shape. The pixels may also have circular or diamond shape or any other, even arbitrary, shape, without departing from the scope of protection of the present invention.

Individual pixels are separated from each other by means of the trenches 20. A trench 20 comprises an electrically isolating material. Individual, adjacent pixels 10, 10' preferably are electrically isolated from one another. The counter electrode 1 8 as shown in the embodiment of Figure 1 is arranged along the extension of the trench 20 surrounding the periphery of the active area of the pixel 10 thus with the same, here hexagonal, contour. A cross section through a pixel structure 1 0' with an adjacently arranged pixel structure 1 0' is shown Figure 2.

The two diodes 12, 12' according to the embodiment of Figure 1 are arranged inscribed within the area of the hexagonal pixel shape. Preferably, the diodes 1 2, 1 2' are symmetrically arranged. Between the diodes 12, 12', an isolating trench 20' is provided. The isolating trench 20' between the diodes 12, 1 2' generally has the same properties as the isolating trench 20. The different diodes 12, 12' of the pixel 10 are therefore basically electrically isolated from one another. It is to be understood that despite trenches 20' arranged within the pixel, i.e. in a substrate 1 5 of the photosensitive element, electrical contact between objects separated and isolated by trenches 20, 20' may sti ll be established. In the embodiment according to Figure 1 , for instance, the diodes 12, 12' are connected by an electrical contact 22. The diodes 1 2, 1 2', that way, are serially connected with respect to one another in the embodiment according to Figure 1 .

The diodes 12, 12' represent in the projection view of the embodiment according to Figure 1 a photosensitive area of the pixel 1 0. In that embodiment, the surface area, i.e. the photosensitive area, of the diodes 12, 12' is essentially symmetric around a symmetry axis of the pixel 1 0. In the embodiment of Figure 1 such a symmetry axis may for instance coincide with the trench 20' separating the diodes 1 2, 1 2' of the pixel 10. In other embodiments, the number of diodes may be different. In particular, there may be only one diode 1 2 provided. That would allow to increase the photosensitive area of the pixel, as no trenches 20' had to be provided to separate individual diodes within the pixel 1 0. In further embodiments, three diodes or more than three diodes may be provided in one pixel. If more than two diodes are provided in a pixel 1 0, the individual diodes may also be serially connected with one another, as already discussed for a two-diode pixel structure above. As may be further seen in Figure 1 , in the centre of the pixel structure 10, an electrode 14 is provided. Due to its central position, that electrode 1 4 is also referred to as central electrode. Further, as that electrode typically is used for stimulation, that electrode is also referred to as stimulating electrode. The stimulating electrode 14 in the shown embodiment is provided having a circular shape. The electrode may also have different shapes, such as a shape similar to the shape of the return electrode 1 8 or the trench 20 reflecting the contour of the pixel 1 0. The circular shape of the presently shown embodiment was chosen such that the electrical field from the stimulating electrode 14 may be homogenous. Depending on the intended application, the shape may also include such shapes which allow less homogenous, locally enhanced field distributions.

According to some embodiments of the present invention, the electrode 14 of the pixel 10 shall be adapted for stimulation of surrounding tissue, preferably neural tissue, in particular neural tissue of a retina in vivo. Typically, the electrode comprises platinum, iridium oxide and/or titanium nitride. Alternatively, iridium, platinum iridium, doped diamond or diamond-like carbon or PEDOTrPSS, or other known materials may be used as electrode material. The preferred structure of the electrode material may in particular be a highly porous structure, such as a porous or fractal TiN, a platinum structure or SIROF. Such structures are known and found to be described to be, e.g., "black platinum" or "porous platinum". The thickness of the electrodes may vary from about 100nm to 3pm. It is, however, also possible to have an electrode thickness up to or above 10pm as well, or below 100nm.

In the embodiment as shown in Figure 1 , the return electrode 1 8 is provided as an elongate electrode surrounding the pixel and following the contour of the pixels periphery, i.e., in the shown embodiment, the run of the trench 20. In alternative embodiments, the return electrode may also comprise a plurality of electrodes, which are distributed around the pixel structure 10 and around the stimulating electrode 1 4 in regular or arbitrary distribution. This may in particular be exerted at a peripheral portion of an electrode array. Further, between the stimulating electrode 1 4 and the counter electrode 1 8, the resistor 1 6, also referred to as a shunt resistor, is arranged. That resistor 1 6 according to the embodiment shown in Figure 1 of the present invention, is electrically connected to the stimulating electrode 1 4 and to the counter electrode 18. As indicated above, a plurality of diodes, for instance two or three diodes, within one pixel 1 0, may be provided, if the voltage, as response to a light signal received, needs to be increased. The diodes may, for such cases, be serially connected, wherei n the voltage of a number N of diodes is the factor N higher than the voltage created by one diode only. On the other hand, an increased number of diodes means that fewer l ight may be collected by each diode, per pixel. The electrical current created by each of those diodes connected in series may therefore be significantly lower when havi ng a plurality of diodes compared to having only one or a few diodes. Typical ly, the current in a circuit with N diodes is N times less than the current in a circuit with one diode. It is therefore a matter of choice, which of the parameters, i.e., current or voltage, is more desirable for an individual application. I n the specific case of neural stimulation, the required stimulation parameters may depend on the tissue and/or the individual cells, i n particular neural cel ls, to be excited, the position of an implant and even individual specifics of a patient, possibly age, state of disease and general physiological condition.

In order to i ncrease the current generated, thus, it is desired to increase the light absorption in the substrate for the i ndividual diodes. Figure 2 shows a sectional side view of a portion of an electrode array 1 , showi ng two adjacent pixels 1 0, 1 0'. The pixels 1 0, 1 0' correspond to the pixels of the pixel structure according to the embodiment as shown i n Figure 1 , havi ng two diodes 12, 1 2'. The same layer structure as shown in Figure 1 for a two-diode pixel may essentially also be provided for a one-diode or three-diode pixel, analogously. In addition, in Figure 2, an interface layer 50 is shown, which is provided on a first surface of the substrate, i .e. an outer surface of the substrate, onto which light from an external light source is i ncident. The interface layer 50 is provided in order to reduce the reflectivity of the surface of the pixel structure 1 0. The i nterface layer 50 comprises a first material layer 51 , which is provided on the first surface of the substrate 1 5.

The first material layer 51 is provided adjacent and subsequent to a front surface of the substrate 1 5. The first material layer 51 may, for i nstance, comprise a buried oxide layer, i n particular an S1O2 layer. The buried oxide layer may be thermal ly grown on the substrate 1 5. In particular, the substrate may comprise sil icon.

Generally, the substrate may be adapted to absorb infrared light, preferably infrared light of the near-infrared range. Specifical ly, the substrate may be configured to absorb infrared l ight withi n the range of about 780 to 1 000 nm, i n particular light of a wavelength between about 830 to 91 5 nm, preferably l ight of a wavelength of 880nm. As an alternative material for the substrate, german ium may also be used. Accordi ngly, the first material layer 51 comprises such a material and/or is provided on the substrate in such a way that the first material layer 51 is transparent for light of a wavelength which may be absorbed by the substrate 1 5.

With respect to the present invention and the descritpion, it shall be noted that the terms "front", "upper" or "top" refer to a direction or position of the substrate, which is directed toward a direction of light-incidence on the pixel structure, which is, according to Figure 2 the upper portion of Figure 2 as shown.

In the embodiment according to Figure 2, a second material layer 52 adjacent to the first material layer 51 is provided on a surface of the first material layer 51 which faces away from the substrate 1 5. Thus, the second material layer 52 is an outer, upper surface of the respective pixel structure 10, 1 0'. The second material layer 52 may for instance comprise SiC or another ceramic or ceramic-like material. As shown in Figure 2, the second material layer 52 may be provided on top of the entire pixel structure 1 0, except for those regions, where the electrodes 14, 1 8 or at least parts of the electrodes 1 4, 1 8 are provided or are intended to contact, e.g., surrounding tissue.

It will be understood that the definition as a "layer", in particular with respect to the first material layer 51 , is used in order to better describe the characteristics of the pixel structure 10. However, as a consequence of the methods used to produce the pixel structure 10 according to the invention, the individual layers such as the substrate 1 5, the first material layer 51 or the second material layer 52 may be integrated into another. Consequently, a pixel structure produced accordingly may actually not appear to allegorise a layer structure, or display separable layers, while, functionally, layers, e.g. according to embodiments of the present invention, are in fact provided therein.

The first material layer 51 and/or the second material layer 52 may thus be formed as an integral part of the substrate 1 5, as in the case of the embodiment shown in Figure 2, where the substrate 1 5 and the first material layer 51 are grown together by thermal oxidation of a layer of the substrate. Alternatively, the first material layer 51 may of course be a layer deposited on the substrate 1 5.

Figure 3 shows an array of pixel structures 1 0, 1 0', i.e., a pixel array 1 . In the embodiment shown in Figure 3, the pixel array 1 is an array of pixel structures 1 0, 1 0' wherein each of the pixel structures 10, 10' comprise a stimulating electrode 14 configured to stimulate cells or living tissue. Therefore, the pixel array 1 may also be referred to as an electrode array. The size of the individual pixel structures 1 0, 1 0' in the array 1 may differ and can thus be tuned to different applications, without departing from the scope of the present invention. In the array 1 displayed in Figure 3, the individual pixels 1 0, 1 0' are hexagonally formed, which allows a space efficient distribution on the substrate 1 5. That way, the space avai lable for light sensitive regions on the substrate 1 5 and within an array 1 may be increased and ideally maximized. A pixel array 1 as shown in Figure 3 may for instance be used in an implant in order to stimulate cells or tissue, in particular living tissue, such as neural tissue, or neural cells.

According to embodiments of the present invention, not visible in Figure 3, the first and/or the second material layer may be formed on the entire front surface of the array, i.e. the surface build by the plurality of front surfaces of the individual pixel structures. In addition, the first and/or second material layer may be formed around at least one edge of the array 1 , in order to provide a sealing and/or protection to the array 1 , as may be seen in Figure 2. Figure 4 (a) shows a schematic cross section of a pixel array 1 , which is embedded below a biological tissue, here for instance a retina 3. The pixel array 1 is represented by the substrate 1 5, wherein any surface structures, such as diodes or electrodes, are not displayed in the figure.

Commonly, when implanting a pixel array 1 , or an implant, into or below a retina 3, the substrate 1 5 is arranged such that incident light, represented by the arrow 40 in Figure 4 (a), which is incident on the eye, may traverse the retina and be incident on a front surface of the substrate 15. The light is transmitted through the front surface of the substrate 15, and enters and traverses the substrate 1 5 where it is absorbed depending on the material of the substrate 1 5, the wavelength of the incident light, and other factors. The substrate 1 5 typically used consists of or comprises si licon. If the substrate 1 5 is to be used in an implant in order to restore vision, the stimulation of a pixel structure 1 0 comprising the substrate 1 5 preferably is in the infrared or near-infrared region of the spectrum, such that residual vision of the retina is not disturbed.

At the interface between the retina 3 and the substrate 1 5, a fraction of the light is reflected, as indicated by the arrow 44 in Figure 4 (a). That refracted portion of the incident light may not be absorbed by the substrate and is therefore lost for photoelectric conversion. Another portion of the incident light, represented by the arrow 43 in Figure 4 (a), is transmitted through the surface of the substrate 1 5 and may be absorbed in the substrate in order to generate charges within the substrate or, to be more precise, in a diode area of the pixel structure 1 0. Figure 4 (b) shows a substrate 1 5 representing a pixel structure 1 0 according to the present invention, wherein an interface layer 50 is provided between the tissue, here the retina 3, and the substrate 1 5. The interface layer, according to the present invention is provided on the front surface of the substrate 1 5, in order to decrease the reflectivity of the surface of the substrate 1 5, i.e. to increase the transmission coefficient of the surface of the substrate 1 5. As is schematically displayed, by providing an appropriate interface layer 50 according to the present invention, the fraction of the light reflected from the incident surface is reduced and the fraction of the light transmitted through the interface and into the substrate 1 5 is increased. Figure 4 (c) shows the embodiment of Figure 4 (b), wherein the interface layer 50 is displayed as a stack of material layers. The first material layer 51 is disposed on the front surface of the substrate 1 5. The second material layer 52 is provided on the first material layer 51 , thus forming an outer layer of the pixel structure 1 0 according to the embodiment shown in Figure 4 (c). When adjusting the thickness of the first material layer 51 and the second material layer 52 according to preferred embodiments of the present invention, the transmitted fraction of light may be maximized. That way, the efficiency of the pixel structure, and, consequently of an array of pixels or an entire implant, may be enhanced.

Figure 4 (d) shows the embodiment of figure 4 (c), according to which on the back surface of a substrate 1 5 a first material layer 30 is provided on the substrate 1 5. Further, a second material layer 32 is provided on the first material layer 30. The first material layer 30 comprises at least a reflective material layer, which increases the reflectivity at the back surface of the substrate. The second material layer 32 allows for a further increase in reflectivity at the back surface of the substrate 1 5. Hence, the rate of absorption is further increased. Thereby, an increased fraction of the light initially transmitted through the substrate 1 5 without being absorbed may be reflected back into the substrate 1 5, as indicated by arrow 41 in figure 40. Accordingly, less light wi ll be lost (indicated by arrow 42) for a photoelectrical reaction. The second material layer 32 may be a material which allows for hermetic sealing in terms of optical transmission. Such a material may e.g. be titanium. By choosing such a material, the reflectivity at the back surface may be further increased, while, at the same time the pixel structure 10 or the entire pixel area 1 or implant may be optically sealed in terms of optic transmission through its back surface. Further, materials to provide a hermetic cover layer, coating or housing maybe ceramic layers, such as aluminum oxide, silicon carbide or others. It should though be mentioned, that instead of a first material layer 30 and a second material layer 32, only one material layer 30 or 32 may be located on the back surface of the substrate 1 5. An example for an interval i n which an adjustment of the thicknesses of first material layer 51 and second material layer 52 may be conducted, is shown i n the diagram of Figure 5. Therein, the S1O2 layer is provided as a fi rst material layer in various thicknesses of 1 0nm, 40nm, 70nm, l OOnm, and 1 30nm, respectively. As can be seen i n Figure 5, the transmission coefficient for light i ncident on a retina and a stack of material layers varies with the thickness of the second material layer, here an SiC-layer, plotted as an axis of abscissae in the diagram.

An example for layers of increased thickness of the first material layer is displayed i n the diagram of Figure 6. As for the diagram of Figure 5, the thickness of the second material layer 52 - here the SiC layer - against the transmission coefficient in percent for light i ncident on a reti na and a stack of material layers comprisi ng a SiC layer, an S1O2 layer and a substrate layer of Si. The first material layer, here S1O2, is shown for the thicknesses 250nm, 275 nm, 300nm, 325 nm and 350nm.

Notably, in both cases, at least local maxima of transmission through the stack of material layers occur periodical ly at a frequency of about all 1 70 nm. Accordingly, even if preferred embodiments are discussed for specific intervals of thicknesses of the second material layer, the present invention is intended to cover the entire possible range of thicknesses for the first and/or the second material layers.