Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PHOTOSTABILIZING SILICONE FLUIDS
Document Type and Number:
WIPO Patent Application WO/2009/033019
Kind Code:
A2
Abstract:
A silicone fluid comprising a chromophore-substituted polyorganosiloxane having a formula (2) wherein x is an integer in the range of 60 to 2000, \ is an integer in the range of 5 to 100, a ratio \ y is in a range of about 10 1 to about 20 1, and X is a photostabilizing chromophore

Inventors:
BONDA CRAIG A (US)
O'LENICK ANTHONY J (US)
PAVLOVIC ANNA (US)
Application Number:
PCT/US2008/075395
Publication Date:
March 12, 2009
Filing Date:
September 05, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HALLSTAR INNOVATIONS CORP (US)
BONDA CRAIG A (US)
O'LENICK ANTHONY J (US)
PAVLOVIC ANNA (US)
International Classes:
C09B11/02; C09B69/10; C08G77/20; C08G77/388; C08L83/08
Domestic Patent References:
WO2007014848A22007-02-08
Foreign References:
US4218392A1980-08-19
US5827509A1998-10-27
US20070224147A12007-09-27
Attorney, Agent or Firm:
ANDERSON, Richard, H. (Gerstein & Borun LLP233 S. Wacker Drive, Suite 6300,Sears Towe, Chicago IL, US)
Download PDF:
Claims:
What is Claimed is:

1. A photostabilizing chromophore comprising a formula (1 ]

)

wherein R is selected from the group of methoxy and ethoxy, R' is an organic linker, / and k are each either zero or one, wherein / and k are not both equal to 1 , w is an integer in a range from two to about twenty

2. The photostabilizing chromophore of claim 1 , wherein the organic linker is selected from the group consisting of CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH(CH 3 )CH 2 , CH 2 C(CHa) 2 CH 2 , CH 2 OCH 2 , CH 2 CH 2 OCH 2 CH 2 , and mixtures thereof

3. The photostabilizing chromophore of claim 2, wherein the organic linker is CH 2 C(CHs) 2 CH 2

4. A silicone fluid comprising a chromophore-substituted polyorganosiloxane having a formula (2)

Sι--O— Sr o— Si-fo— Si — (2) I x

wherein x is an integer in the range of 60 to 2000, v is an integer in the range of 5 to 100, a ratio \ y is in a range of about 10 1 to about 20 1 , and X is a photostabilizing chromophore

5. The silicone fluid of claim 4, wherein the ratio x y is about 10 1

6. The silicone fluid of claim 5, wherein \ is an mtegeπn the range of 60 to about 300 and > is an integer in the range of 6 to 30

7. The silicone fluid of claim 6, wherein x is an integer in the range of 60 to about 150

8. The silicone fluid of claim 7, wherein x is an integer in the range of 60 to about 100

9. The silicone fluid of claim 8, wherein \ is about 60

10. The silicone fluid of claim 8, wherein x is about 80

11. The silicone fluid of claim 8, wherein \ is about 100

12. A silicone fluid comprising a chromophore-substituted polyorganosiloxane having a formula (2)

wherein x and y, same or different, are integers of from 2 to 2000, and wherein X is a photostabilizing chromophore of formula (3)

wherein R is selected from the group of methoxy and ethoxy, R' is an organic linker, I or k equals 1 and the other is zero, m is an integer in a range of zero to about ten, and n is an integer in a range from two to about twenty

13. The silicone fluid of claim 12, wherein m is equal to one and the organic linker is selected from the group consisting of CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH(CH 3 )CH 2 , CH 2 C(CHa) 2 CH 2 , CH 2 OCH 2 , CH 2 CH 2 OCH 2 CH 2 , and mixtures thereof

14. The silicone fluid of claim 13, wherein the organic linker is CH 2 C(CH 3 ) 2 CH 2

15. A composition comprising a silicon fluid according to claim 4

16. The composition of claim 15, further comprising an additive selected from the group consisting of cosmetically acceptable emollients, stabilizers, emulsifiers, thickeners, humectants, surfactants, preservatives, vitamins, antifoaming agents, fragrances, anti- irπtants, organomodified silicones, chelators, opacifiers, polar oils, nonpolar oils, waxes, alcohols, polyols, propellants, colorants, pigments, and combinations thereof

17. The composition of claim 15, further comprising a dibenzoylmethane derivative

18. The composition of claim 17, wherein said dibenzoylmethane derivative is selected from the group consisting of 2-methyldιbenzoylmethane, 4-methyldιbenzoylmethane, 4-ιsopropyldιbenzoylmethane, 4-tert-butyldιbenzoylmethane, 2,4-dιmethyldιbenzoylmethane, 2,5-dιmethyldιbenzoylmethane, 4,4'-dιιsopropyldιbenzoylmethane, 4,4'- dimethoxydibenzoylmethane, 4-tert-butyl-4'-methoxydιbenzoylmethane, 2-methyl-5-ιsopropyl- 4'-methoxydιbenzoylmethane, 2-methyl-5-tert-butyl-4'-methoxydιbenzoylmethane, 2,4- dιmethyl-4'-methoxydιbenzoylrnethane, 2,6-dιmethyl-4-tert-butyl-4'- methoxydibenzoylmethane, and combinations thereof

19. The composition of claim 15, further comprising a photoactive compound selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof, anthranilate and derivatives thereof, salicylate and derivatives thereof, cinnamic acid and derivatives thereof, dihydroxycinnamic acid and derivatives thereof, camphor and salts and derivatives thereof, trihydroxycinnamic acid and derivatives thereof, dibenzalacetone naphtholsulfonate and salts and derivatives thereof, benzalacetophenone naphtholsulfonate and salts and derivatives thereof, dihydroxy-naphthoic acid and salts thereof, naphthalene dicarboxylic acids, derivatives, dimers, oligimers, polymers, and salts and combinations thereof, o-hydroxydiphenyldisulfonate and salts and derivatives thereof, p- hydroxydiphenyldisulfonate and salts and derivatives thereof, coumaπn and derivatives thereof, diazole derivatives, quinine derivatives and salts thereof, quinoline derivatives, hydroxy-substituted benzophenone derivatives, methoxy-substituted benzophenone derivatives, uric acid derivatives, vilouπc acid derivatives, tannic acid and derivatives thereof, hydroquinone, benzophenone derivatives, 1 , 3, 5-tπazιne derivatives, phenyldibenzimidazole tetrasulfonate and salts and derivatives thereof, terephthalylidene dicamphor sulfonic acid and salts and derivatives thereof, methylene bis-benzotπazolyl tetramethylbutylphenol and salts and derivatives thereof, bis-ethylhexyloxyphenol methoxyphenyl triazine and salts and derivatives thereof, diethylamino hydroxybenzoyl hexyl benzoate and salts and derivatives thereof, and combinations thereof

20. A method of photostabilizing a photodegradable UV-absorbing compound or polymer comprising adding a photostabilizing amount of a silicon fluid according to claim 4 to the photodegradable compound or polymer

21. A silicone fluid comprising a chromophore-substituted polyorganosiloxane having a formula (4)

X-Si- O— Si- -O— Si-X (4)

wherein z is an integer in a range from 60 to about 1000, and X is a photostabilizing chromophore

22. The silicone fluid of claim 21 , wherein z is an integer in the range from 60 to about 300

23. The silicone fluid of claim 22, wherein z is an integer in the range from 60 to about 100

24. The silicone fluid of claim 21 , wherein the photostabilizing chromophore comprises a formula (5)

wherein R is selected from the group of methoxy and ethoxy, R' is an organic linker, / and k are each either zero or one, wherein / and k are not both equal to 1 , m is an integer in a range of zero to about ten, and n is an integer in a range from two to about twenty

25. The silicone fluid of claim 24, wherein m is equal to one and the organic linker is selected from the group consisting of CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH(CH 3 )CH 2 , CH 2 C(CH 3 ) 2 CH 2 , CH 2 OCH 2 , CH 2 CH 2 OCH 2 CH 2 , and mixtures thereof

26. The silicone fluid of claim 25, wherein the organic linker is CH 2 C(CH 3 ) 2 CH 2

27. A composition comprising a silicon fluid according to claim 21

28. The composition of claim 27, further comprising an additive selected from the group consisting of cosmetically acceptable emollients stabilizers, emulsifiers thickeners humectants, surfactants, preservatives, vitamins, antifoaming agents, fragrances, anti- irπtants, organomodified silicones, chelators, opacifiers, polar oils, nonpolar oils, waxes, alcohols, polyols, propellents, colorants, pigments, and combinations thereof

29. The composition of claim 27, further comprising a dibenzoylmethane derivative

30. The composition of claim 29, wherein said dibenzoylmethane derivative is selected from the group consisting of 2-methyldιbenzoylmethane, 4-methyldιbenzoylmethane, 4-isopropyldιbenzoylmethane, 4-tert-butyldιbenzoylmethane, 2,4-dιmethyldιbenzoylmethane, 2,5-dιmethyldιbenzoylmethane, 4,4'-dιιsopropyldιbenzoylmethane, 4,4'- dimethoxydibenzoylmethane, 4-tert-butyl-4'-methoxydιbenzoylmethane, 2-methyl-5-ιsopropyl- 4'-methoxydιbenzoylmethane, 2-methyl-5-tert-butyl-4'-methoxydιbenzoylmethane, 2,4- dιmethyl-4'-methoxydιbenzoylmethane, 2,6-dimethyI-4-tert-butyl-4'- methoxydibenzoylmethane, and combinations thereof

31. The composition of claim 27, further comprising a photoactive compound selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof, anthranilate and derivatives thereof, salicylate and derivatives thereof, cinnamic acid and derivatives thereof, dihydroxycinnamic acid and derivatives thereof, camphor and salts and derivatives thereof, tπhydroxycmnamic acid and derivatives thereof, dibenzalacetone naphtholsulfonate and salts and derivatives thereof, benzalacetophenone naphtholsulfonate and salts and derivatives thereof, dihydroxy-naphthoic acid and salts thereof, naphthalene dicarboxylic acids, derivatives, dimers, ohgimers, polymers, and salts and combinations thereof, o-hydroxydiphenyldisulfonate and salts and derivatives thereof, p- hydroxydiphenyldisulfonate and salts and derivatives thereof, coumarin and derivatives thereof, diazole derivatives, quinine derivatives and salts thereof, quinoline derivatives, hydroxy-substituted benzophenone derivatives, methoxy-substituted benzophenone derivatives, uric acid derivatives, vilouric acid derivatives, tannic acid and derivatives thereof, hydroquinone, benzophenone derivatives, 1 ,3,5-trιazιne derivatives, phenyldibenzimidazole tetrasulfonate and salts and derivatives thereof, terephthalylidene dicamphor sulfonic acid and salts and derivatives thereof, methylene bis-benzotπazolyl tetramethylbutylphenol and salts and derivatives thereof, bis-ethylhexyloxyphenol methoxyphenyl triazine and salts and derivatives thereof, diethylamino hydroxybenzoyl hexyl benzoate and salts and derivatives thereof, and combinations thereof

32. A method of photostabilizing a photodegradable UV-absorbing compound or polymer comprising adding a photostabilizing amount of a silicon fluid according to claim 21 to the photodegradable compound or polymer

33. A silicone fluid comprising a photostabilizing-chromophore-substituted linear, random copolymer of formula IV

wherein the random copolymer comprises end caps (E), multiple mer(A) units, and multiple mer(B) units, wherein the end caps (E) are independently selected from the group consisting of -Sι(CH 3 ) 3 and -Sι(CH 3 ) 2 (X), the mer(A) units are -OSi(CH 2 J 2 -, the mer(B) units are -OSi(CH 2 )(X)-, a ratio of the number of units of mer(A) mer(B) is at least 10 1 , a sum of the number of mer(A) units and mer(B) units is in the range of 60 to 300, and X is a photostabilizing chromophore

34. The silicone fluid of claim 33, wherein the sum of the number of units of mer(A) and mer(B) is in the range of 60 to 150

35. The silicone fluid of claim 34, wherein the sum of the number of units of mer(A) and mer(B) is in the range of 80 to 120

36. The silicone fluid of claim 33, wherein the photostabilizing chromophore comprises a formula (6)

wherein R is selected from the group consisting of methoxy and ethoxy, R' is an organic linker, one of / and k is equal to one and the other is zero, m is an integer in a range of zero to about ten, and n is an integer in a range of 2 to about 20

37. The silicone fluid of claim 36, wherein m is equal to one and the organic linker is selected from the group consisting of CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH(CH 3 )CH 2 , CH 2 C(CHa) 2 CH 2 , CH 2 OCH 2 , CH 2 CH 2 OCH 2 CH 2 , and mixtures thereof

38. The silicone fluid of claim 37, wherein the organic linker is CH 2 C(CH 3 ) 2 CH 2

39. A composition comprising a silicon fluid according to claim 33

40. The composition of claim 39, further comprising an additive selected from the group consisting of cosmetically acceptable emollients, stabilizers, emulsifiers, thickeners, humectants, surfactants, preservatives, vitamins, antifoaming agents, fragrances, anti- irπtants, organomodified silicones, chelators, opacifiers, polar oils, nonpolar oils, waxes, alcohols, polyols, propellants, colorants, pigments, and combinations thereof

41. The composition of claim 39, further comprising a dibenzoylmethane derivative

42. The composition of claim 41 , wherein said dibenzoylmethane derivative is selected from the group consisting of 2-methyldιbenzoylmethane, 4-methyldιbenzoylmethane, 4-ιsopropyldιbenzoylmethane, 4-tert-butyldιbenzoylmethane, 2,4-dιmethyldιbenzoylmethane, 2,5-dιmethyldιbenzoylmethane, 4,4'-dιιsopropyldιbenzoylmethane, 4,4'- dimethoxydibenzoylmethane, 4-tert-butyl-4'-methoxydιbenzoylmethane, 2-methyl-5-ιsopropyl- 4'-methoxydιbenzoylmethane, 2-methyl-5-tert-butyl-4'-methoxydιbenzoylmethane, 2,4- dιmethyl-4'-methoxydιbenzoylmethane, 2,6-dιmethyl-4-tert-butyl-4'- methoxydibenzoylmethane, and combinations thereof

43. The composition of claim 39, further comprising a photoactive compound selected from the group consisting of p-aminobenzoic acid and salts and derivatives thereof, anthranilate and derivatives thereof, salicylate and derivatives thereof, cinnamic acid and derivatives thereof, dihydroxycinnamic acid and derivatives thereof, camphor and salts and derivatives thereof, tπhydroxycinnamic acid and derivatives thereof, dibenzalacetone naphtholsulfonate and salts and derivatives thereof, benzalacetophenone naphtholsulfonate and salts and derivatives thereof, dihydroxy-naphthoic acid and salts thereof, naphthalene dicarboxylic acids, derivatives, dimers, oligimers, polymers, and salts and combinations thereof, o-hydroxydiphenyldisulfonate and salts and derivatives thereof, p- hydroxydiphenyldisulfonate and salts and derivatives thereof, coumarin and derivatives thereof, diazole derivatives, quinine derivatives and salts thereof, quinoline derivatives, hydroxy-substituted benzophenone derivatives, methoxy-substituted benzophenone derivatives, uric acid derivatives, vilouπc acid derivatives, tannic acid and derivatives thereof, hydroquinone, benzophenone derivatives, 1 , 3, 5-tπazιne derivatives, phenyldibenzimidazole

tetrasulfonate and salts and derivatives thereof, terephthalylidene dicamphor sulfonic acid and salts and derivatives thereof, methylene bis-benzotriazolyl tetramethylbutylphenol and salts and derivatives thereof, bis-ethylhexyloxyphenol methoxyphenyl tπazine and salts and derivatives thereof, diethylamino hydroxybenzoyl hexyl benzoate and salts and derivatives thereof, and combinations thereof

44. A method of photostabilizing a photodegradable UV-absorbing compound or polymer comprising adding a photostabilizing amount of a silicon fluid according to claim 33 to the photodegradable compound or polymer

Description:

PHOTOSTABILIZING SILICONE FLUIDS

CROSS-REFERENCE TO RELATED APPLICATION

[0001] The present application claims the benefit of priority of U S Provisional Patent Application No 60/935,917 filed on September 6, 2007 The entire text of the priority application is incorporated herein by reference in its entirety

BACKGROUND OF THE INVENTION Field of the Disclosure

[0002] The disclosure generally relates to silicone polymer fluids and silicone polymer fluid- containing compositions for sunscreening and photoprotection More specifically, to silicone polymers containing pendant α-cyano-β, β-diphenylacrylate derivatives for the photostabilization of photoprotective (UV-absorbing) compounds

Brief Description of Related Technology

[0003] Ultraviolet radiation (light) can cause various types of chronic and acute damage to human skin Overexposure to ultraviolet light having a wavelength from about 280 nm or 290 nm to about 320 nm (UV-B) can produce sunburn, while chronic overexposure can lead to skin cancer and weakening of the immune system UV-B radiation is capable of causing damage to DNA by chemically altering the DNA structure Both UV-A radiation (about 320 nm to about 400 nm) and UV-B radiation can damage collagen fibers and vitamin A in the skin, leading to a reduction of skin elasticity and accelerated aging of the skin

[0004] Additionally, ultraviolet radiation from the sun or artificial sources can damage coatings containing photoactive substances, such as photoactive pigments and dyes, by altering chemical bonds in the structure of a component, such as a polymer, a pigment, or a dye This photodegradation can lead to color fading, loss of gloss, and loss of physical and protective properties of a coating

[0005] The inclusion of UV-absorbing and photoprotective compounds in compositions such as sunscreens and coatings can serve to reducing the damaging effects of UV radiation These photoprotective compounds are often chromophore-containing organic molecules but themselves are prone to photodegradation and, thereafter, can absorb little or no additional

UV light The photostabilization of these photoprotective molecules require the molecules to return to the ground state faster than the photodegradation occurs There are known photostabihzing sunscreen additives, e g octocrylene, that quench the photoexcited state of sunscreening molecules For example, octocrylene is known to photostabilize avobenzone

[0006] The photostabilization of cosmetic sunscreen compositions containing dibenzoylmethane derivatives, e g , avobenzone, requires at least 1% by weight of an α- cyano-β, β-diphenylacrylate, e g , octocrylene, and a 4 5 mole ratio of the α-cyano-β, β- diphenylacrylate to the dibenzoylmethane derivative Obviously, increasing the weight percentage of the photoprotective molecule in the composition requires an increase in the weight percentage of the photostabilizing molecule, but these increases can lead to degradation of cosmetic, and/or structural properties of compositions containing the molecules

[0007] While octocrylene can photostabilize, to some degree, dibenzoylmethane derivatives, there still exists a need in the photoactive composition art to find one or more compounds that photostabilize photoactive materials Moreover, enhanced photostabilizing compounds are needed for material and dermatologic protection

[0008] Quite surprisingly, it has been found that silicon polymers containing α-cyano-β, β- diphenylacrylate groups, preferably alkoxy-substituted α-cyano-β, β-diphenylacrylate groups efficiently photostabilize UV-absorbing organic molecules even at low loadings compared to the quantity of UV-absorbing compounds Additionally, the disclosed silicone fluids enhance the photoprotection provided by UV-absorbing organic molecules thereby lessening the required loading necessary to provide sufficient UV protection

SUMMARY OF THE INVENTION

[0009] Disclosed herein are silicone fluids and compositions thereof that enhance the photoprotection provided by and photostabihty of photodegradable UV-absorbing compounds

[0010] One aspect of the compositions and methods described herein is to provide a method of decreasing the photodegradation of a UV-absorbing compound or photodegradable polymer by the addition thereto of an effective amount, e g , 0 05% to 25%, based on the weight of the photodegradable UV-absorbing compound or photodegradable polymer, preferably 0 1 to 10%, of a compound of formula (I)

[0011] Another aspect of the compositions and methods described herein is to provide a method for photostabilizing a photodegradable UV-absorbing compound or photodegradable polymer that includes a photoprotective compound, such as a dibenzoylmethane derivative, by the addition of a compound of formula (I)

[0012] Yet, another aspect of the compositions and methods described herein is to provide a method for photostabilizing a photodegradable UV-absorbing compound or photodegradable polymer that does not include a photoprotective compound, such as a dibenzoylmethane derivative, by the addition of compound of formula (I)

[0013] Still another aspect of the compositions and methods described herein is to provide a method for enhancing the photostability of a photodegradable UV-absorbing compound or photodegradable polymer that includes a phostostabilizing compound, e g , octocrylene, through synergistic effects by the addition of compound of formula (I)

[0014] Additional features of the compositions and methods described herein may become apparent to those skilled in the art from a review of the following detailed description, taken in conjunction with the drawings, the examples, and the appended claims

BRIEF DESCRIPTION OF THE DRAWING

[0015] For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawing wherein

[0016] The drawing is a comparison of sunscreen formulations prior to and post exposure to irradiation, showing the UV absorbance of the sunscreen formulation, the decrease in UV absorbance upon irradiation and the photoprotective and photostabilizing effects of silicone fluids on the sunscreen formulation Remarkably, the synergistic photostability provided by the mixture of silicon fluid and octocrylene was nearly 100%

[0017] While the disclosed silicone fluids are susceptible of embodiments in various forms, there are illustrated in the drawing (and will hereafter be described) specific embodiments of the invention, with the understanding that the disclosure is intended to be illustrative, and is not intended to limit the invention to the specific embodiments described and illustrated herein

DETAILED DESCRIPTION OF THE INVENTION

[0018] Ranges may be expressed herein as from "about" or "approximately" one particular value and/or to "about" or "approximately" another particular value When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment

[0019] The invention generally relates to photoprotective and photostabilizing silicone fluids and compositions thereof The silicone fluids described herein contain photostabilizing chromophores attached to silicone polymers Compositions including the silicone fluids,

together with another UV-absorbing, photodegradable compound, have enhanced photostabitity and provide prolonged photoprotection

[0020] The silicone fluids described herein can be prepared by attaching one or more particular photostabilizing chromophores to silicone polymers The photostabilizing chromophores that are covalently bonded to the silicone polymer to form the photostabilizing silicone polymers described herein are compounds of the formula (I):

wherein R is a methoxy or an ethoxy group, R' is an organic linker, k, I, m, and n are integers with k and /, are equal to 0 or 1 , wherein k and / are not both equal to 1 , m is an integer in the range of 1 to about 10, and n is an integer in the range of 2 to about 20. By way of non- limiting examples, the photostabilizing chromophore can have the following specific structures:

[0021] Suitable organic linkers (R') can be for example, linear, cyclic, and/or branched alkyl chains, alkyl chains containing aromatic groups, aromatic groups, glycolates, dialkylthioethers, dialkylamines, and mixtures thereof Preferred organic linkers are linear alkyl chains, branched alkyl chains, and glycolates In particular, organic linkers can be groups having 1 to 20 carbon atoms and assembled individually or from a mixture of the following fragments Of CH 2 , CH 2 CH 2 , CH 2 CH 2 CH 2 , CH 2 CH(CH 3 )CH 2 , CH 2 C(CH 3 ) 2 CH 2 , CH 2 OCH 2 , CH 2 CH 2 OCH 2 CH 2 Non-limiting examples include ethyl (CH 2 CH 2 ), ethylene glycolate (CH 2 CH 2 OCH 2 CH 2 ), 2-methylpropyl (CH 2 CH(CH 2 )CH 2 ), and ethylpropylglycolate (CH 2 CH 2 OCH 2 CH 2 CH 2 ) In particular, branched alkyl chains are preferred and one preferred branched alkyl chain is 2,2-dιmethylpropyl (CH 2 C(CH 3 ) 2 CH 2 )

[0022] Suitable processes for the preparation of photostabilizing chromophores have been described Briefly, precursors to the photostabilizing chromophore are prepared by reacting substituted benzophenones with ethyl cyanoacrylate through a Knoevengael reaction An esteπfication reaction then provides the photostabilizing chromophore of formula (I)

[0023] Additionally relevant photostabilizing chromophores include those molecules that contain alternative functional groups for attachment to a silicon atom For example, the

addition of alkyne containing chromophores to silicon has been reported In particular, various functional groups for attachment to silicon atoms are known to those skilled in the art and are applicable herein provided that the photoprotective and photostabilizing properties of the resulting silicone fluid are not adversely effected

[0024] Herein, the photostabilizing chromophore is attached to a linear or cyclic silicone polymer providing a photostabilizing silicone fluid ("silicone fluid") The linear silicone polymer can have either of the following general formula (II) or (III)

(II) X—Si—O— Sr-O- Si— X (III) or the silicone polymer can be a linear, random, silicone copolymer For silicone polymers X designates a reactive functional group that is substituted by or reacted with a photostabilizing chromophore-containing compound for the attachment of the photostabilizing chromophore The silicone polymers of formula (II) or (III) are linear silicone polymers where x, y and z are integers

[0025] In a first embodiment, where k and / of the chromophore of formula (I) are both equal to zero, the x-integer of silicone fluids of formula (II) can be in the range of 60 to 2000, the>- tnteger can be in the range of 5 to 100, and the ratio of x is at least 10 Preferably, the A- integer is in the range of 60 to 300 and the v-integer is in the range of 6 to 30, more preferably, the is in the range of 60 to 150, and even more preferably, the x-integer is in the range of 60 to 100 As an example, x is about 60 to about 100, and y is 5 to 10, wherein the ratio of - is always at least 10 Preferably, the x ratio is about 10/1 to about

15/1 Additionally, while formula (II) depicts a methyl substituted silicone polymer, other substitutions are understood by those of ordinary skill in the art Suitable Si polymer substituents include C 1 -Ci 0 alkyl, phenyl, and 3,3,3-trιfluoropropyl-all can be attached to the Si atoms of the polymer at any position Moreover, partial substitution of the methyl groups is available and known to those of ordinary skill

[0026] In a second embodiment of the compositions and methods described herein, where k or / of the chromophore of formula (I) is equal to one (R is an alkoxy, preferably methoxy or ethoxy), the x and y integers of silicone fluids of formula (II) are integers of 2 to 2000, same or different, and the ratio of x can be any number, preferably 0 5/1 to about 50/1

[0027] The silicone polymers of formula (III) are linear silicone polymers where z is an integer In the first embodiment described above (no alkoxy in the chromophore group of formula (I) k and / equal 0), the z-integer can be in the range of about 50 to about 1000

Preferably, the r-integer is in the range of 60 to 300, more preferably the r-integer is in the range of 60 to 100 Additionally, while formula (III) depicts a methyl substituted polymer, other substitutions are possible, as understood by those of ordinary skill in the art Suitable substitutions include C 1 -C 10 alkyl, phenyl, and 3,3,3-trιfluoropropyl, as well as partial substitution of the methyl groups

[0028] In the second embodiment described above, one R of formula (I) is an alkoxy in the chromophore group, and z can be any integer, preferably 2 to 2000, more preferably 5 to 100

[0029] The linear, random, silicone copolymer of formula IV is a polymer composed of two polymer end caps(E), and at least two different internal groups, designated mer(A) and mer(B)

[0030] The end caps (E) can be the same or different and, individually, can contain a reactive functional group for the attachment of the photostabilizing chromophore For example, and similar to formulas Il and III, the end caps (E) can be tπmethylsilyl groups (- Sι(CH 3 ) 3 ) or dimethylsilyl-functionalized groups (-Sι(CH 3 ) 2 (X)) Mer(A) preferably has the formula -O-Sι(CH 3 ) 2 -, mer(B) preferably has the formula -0-Si(CH 3 )(X)- Additionally and similar to formulas Il and III, the methyl groups on the end caps and the internal groups can be substituted with applicable substitutions, as described above Moreover, the sum of mer(A) plus mer(B) of the internal groups, e g , mer(A) + mer(B), wherein one R of the chromophore group of formula (I) is not an alkoxy, is in the range of 60 to about 2000 Preferably, the sum is in the range of 60 to 300, more preferably 60 to about 150, and even more preferably is in the range of 80 to 120 The ratio of mer(A) mer(B) is preferably about 10 1 When one R of the chromophore group of formula (I) is an alkoxy, the sum of mer(A) and mer(B) can be any number preferably 2 to 1000, more preferably 5 to 100

[0031] Dependent on the photostabilizing chromophore and the silicone polymer the method of attaching the photostabilizing chromophore to the silicone polymer vanes When the silicone polymer has hydride (Si-H) functional groups a standard hydrosylation reaction can be employed Moreover, a hydrosylation reaction can be carried out with photostabilizing chromophores that contain alkenyl and alkynyl functionalities, examples of alkenyl containing photostabilizing chromophores are depicted above and often correspond to formula (I) Other methods of attaching the photostabilizing chromophore to the silicone polymer will be apparent to one of ordinary skill in the art

[0032] To achieve the full advantage of the compositions and methods described herein, the above described silicone fluids are combined with one or more photodegradable photoabsorbing compounds so that the silicone polymer photostabilizes the photodegradable compounds Additionally, the silicone fluids can be combined with dermatologically acceptable materials, e g sunscreens, to impart photostabilization or enhance or improve photoprotection For example, silicone fluids, materials containing silicone fluids, and other materials can be combined to provide photostabilized plastic, glass, cream, lotion, gel, non- viscous liquid, and/or viscous liquid compositions

[0033] Preferably, the silicone fluids are combined with cosmetically acceptable materials These cosmetically acceptable materials include emollients, stabilizers, emulsifiers, thickeners, humectants, surfactants, preservatives, vitamins, antifoaming agents, fragrances, anti-irritants, other organomodified silicones, chelators, opacifiers, polar oils, nonpolar oils, waxes, alcohols, polyols, propellants, colorants, and pigments

[0034] Additionally, preferable compositions include those where silicone fluid is combined with one or more dibenzoylmethane derivative Dibenzoylmethane derivatives include 2- methyldibenzoylmethane, 4-methyldιbenzoylmethane, 4-ιsopropyldιbenzoylmethane, 4-tert- butyldibenzoylmethane, 2,4-dιmethyldιbenzoylmethane, 2,5-dιmethyldιbenzoylmethane, 4,4'- dnsopropyldibenzoylmethane, 4,4'-dιmethoxydιbenzoylmethane, 4-tert-butyl-4'- methoxydibenzoylmethane, 2-methyl-5-ιsopropyl-4'-methoxydιbenzoylmethane, 2-methyl-5- tert-butyl-4'-methoxydιbenzoylmethane, 2,4-dιrnethyl-4'-methoxydιbenzoylmethane, and 2,6- dιmethyl-4-tert-butyl-4'-methoxydιbenzoylmethane

[0035] Additional compositions include those where the silicon fluid is combined with other photoactive compounds Examples of photoactive compounds are p-aminobenzoic acid and salts and derivatives thereof, anthranilate and derivatives thereof, salicylate and derivatives thereof, cinnamic acid and derivatives thereof, dihydroxycinnamic acid and derivatives thereof, camphor and salts and derivatives thereof, trihydroxycinnamic acid and derivatives thereof, dibenzalacetone naphtholsulfonate and salts and derivatives thereof, benzalacetophenone naphtholsulfonate and salts and derivatives thereof, dihydroxy- naphthoic acid and salts thereof, naphthalene dicarboxylic acids, derivatives, dimers, ohgimers, polymers, and saltaand combinations thereof, o-hydroxydiphenyldisulfonate and salts and derivatives thereof, p-hydroxydiphenyldisulfonate and salts and derivatives thereof, coumarin and derivatives thereof, diazole derivatives, quinine derivatives and salts thereof, quinoline derivatives, hydroxy-substituted benzophenone derivatives, methoxy-substituted benzophenone derivatives, uric acid derivatives, vilouπc acid derivatives, tannic acid and derivatives thereof, hydroqutnone, benzophenone derivatives, 1 , 3, 5-tπazιne derivatives, phenyldibenzimidazole tetrasulfonate and salts and derivatives thereof, terephthalylidene dicamphor sulfonic acid and salts and derivatives thereof, methylene bis-benzotπazolyl

tetramethylbutylphenol and salts and derivatives thereof, bis-ethylhexyloxyphenol methoxyphenyl tπazine and salts and derivatives thereof, diethylamino hydroxybenzoyl hexyl benzoate and salts and derivatives thereof

[0036] As will be appreciated by persons of ordinary skill in the art, dermatocosmetic compositions comprising silicone fluids may also contain one or more film-forming polymers, rheology-modrfying agents, plasticizers, structuring agents, viscosity modifiers, thickener, gellants, surfactants, anti-aging ingredients (e g , ingredients that help to reduce the appearance of fine lines and wrinkles caused by environmental or intrinsic aging, including botanical extracts, short-chain peptides), moisturizers and/or humectants, self-tanning agents (e g , dihydroxyacetone), and vitamins and/or vitamin derivatives These ingredients are listed in the International Cosmetic Ingredient Dictionary and Handbook, (11th Edition), published by the Cosmetics Fragrance and Toiletries Association, as well as in US Patent Nos 6,492,326 and 6,277,892 and US Patent Application Publication Nos 2004/0180020 and 2005/0142095

[0037] Surprisingly, the additional of the silicone fluid to photoprotective materials or materials containing photoprotective compounds enhanced the photostabihty of the material and/or compounds Importantly, the added photostabihty decreased the amount of photoprotective compounds necessary to fully protect the material or its wearer from UV radiation

Examples

[0038] The following examples are provided to illustrate the invention, but are not intended to limit the scope thereof

[0039] One general method for preparing photoprotective chromophores can be understood from the specific procedures outlined below In a large flask are combined 4-ethoxy benzophenone and ethyl cyanoacetate in a ratio of 1 1 35 The materials are then dissolved in a 5 1 mixture of toluene and acetic acid, followed by the addition of 0 1 mole equivalence of an ammonium acetate catalyst The mixture is heated and any water formed during the reaction is distilled from the reaction mixture Then the reaction mixture is cooled to room temperature and ethyl acetate is added to dissolve the solids and the mixture is washed with water Then solvents are removed by distillation The final solid product is re-crystallized from either hot methanol or a toluene/methanol mixture The overall reaction is summarized as follows

[0040] The ethyl α-cyano-β, β-dtphenylacrylate can then be converted into a photostabilizing chromophore of formula (I) by treating it with 10-undecen-1-ol in the presence of a catalyst, e g , monobutyl tin dihydroxychloπde (C 4 H 9 )Sn(OH) 2 CI The reactants and catalyst are heated at a temperature of about 150 0 C to about 200 0 C, preferably from about 180 0 C to about 190 0 C, for five to six hours Then excess 10-undecen-1-ol is removed under vacuum and a mixture of silica gel, aluminum oxide, magnesium oxide and potassium oxide is added The product is then obtained by filtration It has been observed that the products from this reaction are remarkably pure, e g analysis has shown one such product to be 99 81 % pure, and have very low moisture content, about 0 028%, and a Gardner scale color of 3 5

[0041] An alternative photostabilizing chromophore of formula (I) can be made by first treating, for example, ethyl α-cyano-β, β-diphenylacrylate with 2,2-dιmethyl-1 ,3-propanedιol (neopentyl glycol) Here, a five-fold excess of neopentyl glycol is combined with the ethyl α- cyano-β, β-diphenylacrylate and a catalytic amount of sodium carbonate The mixture is heated and ethanol generated by the reaction is removed by distillation When the reaction is completed, toluene is added and the sodium carbonate is filtered off while the solution is still hot The product solution is washed several times with water and then the solution is concentrated to afford crystallization of a product This product can then be treated with 10- undecenoic acid, and methanesulphonic acid in toluene, heated and any water formed during the reaction is distilled from the mixture This product mixture is then washed twice with a solution of NaCI in water The product is then filtered and dried The final photostabilizing chromophore made by the above procedure is greater than 99% pure and does not require further purification The overall reaction described above is summarized as follows

[0042] A standard hydrosilylation reaction can be used to make the silicone fluids of the present invention This type of reaction is known to persons of ordinary skill in the art and is described, generally, in US Patent No 6,841 ,649 (to O'Lenick Jr ) the disclosure of which is incorporated herein by reference in its entirety

[0043] A general hydrosilation procedure involves combining a photostabilizing chromophore of formula (I) and a silicone polymer containing a hydride functionality, often in a solvent - typically isododecane or cyclopentasiloxane The temperature of the mixture is then increased to about 50 0 C and a Kamstedt catalyst is added (Karnstedt catalyst is an article of commerce known to persons of ordinary skill in the art and described in US Patent No 3,715,334 ) The reaction is run until completion and then sodium bicarbonate is added The product is then filtered through a 4-mιcron pad When a solvent is used the product can remain in the solvent or the solvent can be removed by vacuum distillation

[0044] Unexpectedly, it was observed that the silicone fluids of the present invention have a synergistic photostabilizing effect when combined with secondary photostabilizing materials, e g , octocrylene, in sunscreening formulations The synergistic effect was observed by measuring the loss of UVA, UVB and SPF protection for formulations (A) having a mixture of a silicone fluid and octocrylene, (B) having of octocrylene but no silicone fluid, (C) having silicone fluid and no octocrylene, and (D) having neither silicone fluid nor octocrylene Illustrative comparative measurements on these sunscreen emulsion formulations before and after irradiation with the equivalent of 35 MED of midday sun on a mid-summer day (more particularly, noon sun on July 3rd in Albuquerque, NM) are shown below and in the drawing

Formulation Formulation Formulation Formulation Example A Example B Example C Example D

Avobenzone 3 00% 3 00% 3 00% 3 00%

Octisalate 5 00% 5 00% 5 00% 5 00%

Homosalate 7 50% 7 50% 7 50% 7 50%

Benzophenone-3 0 49% 0 49% 0 49% 0 49%

Octocrylene 2.75% 2.75% 0.00% 0.00%

Silicone Fluid 3.00% 0.00% 5.75% 0.00%

Phenylethyl benzoate ~ αoo% 0.00% 0.00% 2.75%

Dimethicone (350 cSt) 0.00% 1.25% 0.00% 1.25%

Methyl trimethicone 0.00% 1.75% 0.00% 1.75%

VP/Eicosene copolymer 1.00% 1.00% 1.00% 1 00%

Cetearyl alcohol 0.36% 0 36% 0.36% 0.36%

Steareth-21 0.80% 0.80% 0.80% 0.80%

Steareth-2 0.60% 0.60% 0.60% 0.60%

Potassium cetyl phosphate &

3.00% 3.00% 3.00% 3.00%

Hydrogenated palm glycerides

Disodium EDTA 0.10% 0.10% 0.10% 0.10%

Glycerin 4.00% 4.00% 4.00% 4.00%

Benzyl alcohol 1.00% 1.00% 1.00% 1.00%

Methylparaben 0.10% 0.10% 0.10% 0.10%

Propylparaben 0.05% 0.05% 0.05% 0.05%

Water 62.25% 62.25% 62.25% 62.25%

Acrylamide/Sodium acryloyldimethyl taurate 2.50% 2.50% 2.50% 2.50% copolymer

Aluminum starch octenyl

2.50% 2.50% 2.50% 2.50% succinate

Loss of UVA

-2.62% -10.01% -30.36% -63.77% protection

Loss of UVB

-0.38% -6.42% -11.74% -11.16% protection

Loss of SPF -2.17% -9.65% -18.16% -21.82%

[0045] Formulation Examples A - D were each made according to the following general procedure of mixing together Avobenzone, Octisalate, Homosalate, Benzophenone-3, Octocrylene, Silicone Fluid, and Phenylethyl benzoate and heating to 9O 0 C. Then VP/Eicosene copolymer, Cetearyl alcohol, Steareth-21 , Steareth-2, Potassium cetyl phosphate & Hydrogenated palm glycerides are added sequentially. In a different vessel disodium EDTA and Glycerin are added to the water and the solution warmed to 9O 0 C. The first mixture is then added to the water mixture and stirred vigorously until the temperature is below 55 0 C. When cool, a mixture of Benzyl alcohol, Methylparaben, and Propylparaben is added to the earlier mixture. Acrylamide/Sodium acryloyldimethyl taurate copolymer is then added followed by Aluminum starch octenyl succinate. Finally, Dimethicone (350 cSt) and Methyl trimethicone are added and the mixture mixed until uniform.

[0046] The foregoing description is given for clearness of understanding only, and no unnecessary limitations should be understood therefrom, as modifications within the scope of the invention may be apparent to those having ordinary skill in the art.