Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PLASMA ENHANCED ANNEAL CHAMBER FOR WAFER OUTGASSING
Document Type and Number:
WIPO Patent Application WO/2017/180511
Kind Code:
A1
Abstract:
Implementations described herein provide for thermal substrate processing apparatus with in-situ cleaning capability. Apparatus described herein may include a thermal process chamber defining a process volume and a substrate support may be disposed within the process volume. One or more remote plasma sources may be in fluid communication with the process volume and the remote plasma sources may be configured to deliver a cleaning plasma to the process volume.

Inventors:
HAWRYLCHAK LARA (US)
SCOTNEY-CASTLE MATTHEW D (US)
TAM NORMAN L (US)
SPULLER MATTHEW (US)
CHAN KONG LUNG SAMUEL (US)
IU DONGMING (US)
MOFFATT STEPHEN (GB)
Application Number:
PCT/US2017/026796
Publication Date:
October 19, 2017
Filing Date:
April 10, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
APPLIED MATERIALS INC (US)
International Classes:
H01L21/67; H01L21/02; H01L21/3065; H01L21/324
Foreign References:
US20120046774A12012-02-23
US20030129106A12003-07-10
CN103632998A2014-03-12
US20130333616A12013-12-19
US20120222813A12012-09-06
Attorney, Agent or Firm:
PATTERSON, B. Todd et al. (US)
Download PDF:
Claims:
What is claimed is:

1 . A substrate processing apparatus, comprising:

a first thermal process chamber defining a first process volume;

a second thermal process chamber defining a second process volume;

a first remote plasma source coupled to the first thermal process chamber by a first plasma conduit;

an exhaust coupled to the first thermal process chamber by a first exhaust conduit and to the second thermal process chamber by a second exhaust conduit; a common exhaust conduit coupling the first exhaust conduit and the second exhaust conduit to the exhaust;

a total exhaust flow controller disposed in the common exhaust conduit; and a chamber exhaust flow controller disposed in the first exhaust conduit.

2. The apparatus of claim 1 , further comprising a first pressure sensor disposed in the first thermal process chamber and a second pressure sensor disposed in the second thermal process chamber.

3. The apparatus of claim 2, further comprising a controller coupled to the first and second pressure sensors and the total exhaust flow controller and the chamber exhaust flow controller.

4. The apparatus of claim 3, further comprising a second remote plasma source coupled to the second thermal processing chamber by a third conduit, wherein the first remote plasma source is also coupled to the second thermal processing chamber by a second plasma conduit.

5. The apparatus of claim 4, further comprising a plasma flow controller disposed in the second plasma conduit, wherein the first remote plasma source is also coupled to the second thermal processing chamber by a second plasma conduit.

6. The apparatus of claim 5, further comprising a first composition sensor disposed in the first thermal processing chamber and a second composition sensor disposed in the second thermal processing chamber, wherein a first gas source is coupled to the first plasma source by a first source conduit, a second gas source is coupled to the second plasma source by a second source conduit, a first source flow controller is disposed in the first source conduit, and a second source flow controller is disposed in the second source conduit.

7. The apparatus of claim 6, wherein the controller is also coupled to the plasma flow controller, the first source flow controller, the second source flow controller, the first composition sensor, and the second composition sensor.

8. A substrate processing apparatus, comprising:

a first thermal process chamber defining a first process volume;

a second thermal process chamber defining a second process volume;

a first remote plasma source coupled to the first thermal process chamber by a first plasma conduit;

a second remote plasma source coupled to the second thermal process chamber by a second plasma conduit;

a carrier gas source coupled to the first thermal process chamber by a first carrier gas conduit and to the second thermal process chamber by a second carrier gas conduit;

an exhaust coupled to the first thermal process chamber by a first exhaust conduit and to the second thermal process chamber by a second exhaust conduit; a common exhaust conduit coupling the first exhaust conduit and the second exhaust conduit to the exhaust;

a total exhaust flow controller disposed in the common exhaust conduit; and a chamber exhaust flow controller disposed in the first exhaust conduit;

a first pressure sensor disposed in the first thermal process chamber; and a second pressure sensor disposed in the second thermal process chamber.

9. The apparatus of claim 8, further comprising a first gas source coupled to the first remote plasma source by a first source conduit, and a second gas source coupled to the second remote plasma source by a second source conduit, wherein the carrier gas source is also coupled to the first source conduit and the second source conduit.

10. The apparatus of claim 9, wherein the carrier gas source is coupled to the first source conduit by a first carrier gas flow controller and the carrier gas source is coupled to the second source conduit by a second carrier gas flow controller.

1 1 . The apparatus of claim 10, further comprising a third remote plasma source coupled to the first thermal processing chamber, a fourth remote plasma source coupled to the second thermal processing chamber, a third gas source coupled to the third remote plasma source by a third source conduit, and a fourth gas source coupled to the fourth remote plasma source by a fourth source conduit, wherein the carrier gas source is also coupled to the third source conduit by the first carrier gas flow controller and the carrier gas source is also coupled to the fourth source conduit by the second carrier gas flow controller.

12. The apparatus of claim 1 1 , further comprising a controller coupled to the total exhaust flow controller, the chamber exhaust flow controller, the first pressure sensor, the second pressure sensor, the first carrier gas flow controller, and the second carrier gas flow controller, wherein the first flow controller is a three-way valve and the second flow controller is a three-way valve.

13. A substrate processing apparatus, comprising:

a first thermal process chamber defining a first process volume;

a second thermal process chamber defining a second process volume;

a first remote plasma source coupled to the first thermal process chamber by a first plasma conduit and to the second thermal processing chamber by a second plasma conduit;

an exhaust coupled to the first thermal process chamber by a first exhaust conduit and to the second thermal process chamber by a second exhaust conduit; and a common exhaust conduit coupling the first exhaust conduit and the second exhaust conduit to the exhaust;

a total exhaust flow controller disposed in the common exhaust conduit; and a chamber exhaust flow controller disposed in the first exhaust conduit;

a first pressure sensor disposed in the first thermal process chamber; and a second pressure sensor disposed in the second thermal process chamber.

14. The apparatus of claim 13, further comprising a controller coupled to the total exhaust flow controller, the chamber exhaust flow controller, the first pressure sensor, and the second pressure sensor, and a second remote plasma source coupled to the second thermal processing chamber.

15. The apparatus of claim 14, further comprising a first composition sensor disposed in the first thermal processing chamber and a second composition sensor disposed in the second thermal processing chamber, wherein the controller is further coupled to the first and second composition sensors.

Description:
PLASMA ENHANCED ANNEAL CHAMBER FOR WAFER OUTGASSING

BACKGROUND

Field

[0001] Implementations of the present disclosure generally relate to semiconductor processing chambers. More specifically, implementations described herein relate to a plasma enhanced anneal chamber for substrate outgassing.

Description of the Related Art

[0002] Thermal processing of semiconductor substrates is commonly employed in semiconductor manufacturing for a variety of purposes. Different types of thermal processing include rapid thermal processing, laser processing, soak annealing, and the like. Temperatures employed during thermal processing may be configured to alter various properties of the substrates and materials disposed thereon. For example, dopant diffusion, crystallographic material modification, and surface modification are just some of the types of processing that may be achieved by thermal processing.

[0003] In certain thermal processes, materials may be outgassed from the substrates being thermally processed. The outgassed materials are generally exhausted from the process volume of a thermal process chamber, however, the outgassed materials may also deposited on chamber walls and components disposed within the chamber. The deposited materials may generated particles within the chamber and redeposit on the substrates which may lead to failure of microelectronic devices ultimately formed on the substrate. Cleaning of the chambers often required substantial downtime during preventative maintenance which reduces the efficiency of thermal processing.

[0004] Thus what is needed in the art are improved thermal process chambers. SUMMARY

[0005] In one implementation, a substrate processing apparatus is provided. The apparatus includes a first thermal process chamber defining a first process volume. A first substrate support may be disposed within the first process volume, a first remote plasma source may be fluidly coupled to the first process volume, and a first gas source may be fluidly coupled to the first remote plasma source. The apparatus also includes a second thermal process chamber defining a second process volume. The second thermal process chamber shares a wall with the first thermal process chamber. A second substrate support may be disposed within the second process volume, a second remote plasma source may be fluidly coupled to the second process volume, and a second gas source may be fluidly coupled to the second remote plasma source. An exhaust may also be fluidly coupled to the first process volume and the second process volume.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to implementations, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only exemplary implementations and are therefore not to be considered limiting of its scope, may admit to other equally effective implementations.

[0007] Figure 1 schematically illustrates a dual chamber thermal processing apparatus having remote plasma sources according to one implementation described herein.

[0008] Figure 2 schematically illustrates a dual chamber thermal processing apparatus having a remote plasma source according to one implementation described herein. [0009] Figure 3 schematically illustrates a dual chamber thermal processing apparatus having remote plasma sources according to one implementation described herein.

[0010] Figure 4 schematically illustrates a dual chamber thermal processing apparatus having remote plasma sources according to one implementation described herein.

[0011] Figure 5 schematically illustrates a dual chamber thermal processing apparatus having remote plasma sources according to one implementation described herein.

[0012] Figure 6 schematically illustrates a dual chamber thermal processing apparatus having remote plasma sources according to one implementation described herein.

[0013] To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements and features of one implementation may be beneficially incorporated in other implementations without further recitation.

DETAILED DESCRIPTION

[0014] Implementations described herein provide for thermal substrate processing apparatus with in-situ cleaning capability. Apparatus described herein may include a thermal process chamber defining a process volume and a substrate support may be disposed within the process volume. One or more remote plasma sources may be in fluid communication with the process volume and the remote plasma sources may be configured to deliver a cleaning plasma to the process volume.

[0015] Figure 1 schematically illustrates a dual chamber thermal processing apparatus 100 having remote plasma sources 126, 132 according to one implementation described herein. The apparatus 100 includes a first thermal processing chamber 102 which defines a first process volume 1 10. Walls of the first chamber 102, such as first sidewalls 120 and a first ceiling 1 18, further define the first process volume 1 10. The walls 120 and ceiling 1 18 may be formed from a material suitable to withstand elevated processing temperatures. For example, the first chamber 102 may be formed form stainless steel, aluminum, or another suitable metallic material. Surfaces of the first chamber 102 which define the process volume 1 10 may be coated with various materials to either enhance or prevent deposition thereon in certain implementations. Although not illustrated, it is also contemplated that various process kits, shields and the like may be disposed within the first process volume 1 10 to further improve particle management and thermal processing of substrates.

[0016] The first process volume 1 10 may be configured to perform thermal processing on a substrate disposed therein by heating the substrate to temperatures above about 400°C, such as between about 700°C and about 1200°C, for example, between about 850°C and about 1 100°C. A first substrate support 106 is disposed within the first process volume 1 10. The first substrate support 106 may be configured to retain a substrate thereon during thermal processing by various methods, such as vacuum chucking or electrostatic chucking. It is also contemplated that a substrate may be positioned and/or retained on the first substrate support 106 by various other apparatus, such as rings or pins and the like. The first substrate support 106 may also include resistive heating apparatus, such as a coil or the like, to facilitate heating of substrates disposed thereon. Other heating methods, such as electromagnetic energy from lamps, may be used in combination with the resistive heating apparatus to heat the substrate.

[0017] A first remote plasma source 126 may be coupled to and in fluid communication with the first process volume 1 10. The first remote plasma source 126 may be configured to generate a plasma remotely from the first process volume 1 10 and deliver plasma products to the first process volume 1 10. Although not illustrated, the first remote plasma source 126 may be coupled to an RF power source. It is contemplated that the first remote plasma source 126 may be a capacitively coupled plasma generator or an inductively coupled plasma generator, depending upon desired plasma characteristics and chamber architecture. Various other plasma generation apparatus, such as RF chokes or grounding apparatus and the like, are not illustrates so as to no obscure the illustrated implementations.

[0018] The plasma products may be delivered to the first process volume 1 10 via a first conduit 130 which is fluidly coupled the first remote plasma source 126 and the first process volume 1 10. In one implementation, the first conduit 130 may extend from the first remote plasma source 126 to the first ceiling 1 18 of the first chamber 102. The first conduit 130 may be a conduit of any suitable shape and may be formed from a material which is predominantly inert to the plasma products generated by the first remote plasma source 126. In one implementation, the first conduit 130 may be formed from a quartz material, a ceramic material, or a metallic material. Surfaces of the first conduit 130 exposed to the plasma products may also be coated with various materials inert or substantially inert to the plasma products to reduce or prevent damage, etching, or deposition of the first conduit 130.

[0019] The first remote plasma source 126 may also be in fluid communication with a first gas source 128. The first gas source 128 delivers one or more precursor gases to the first remote plasma source 126. The first gas source 128 may deliver precursor gases such as argon, oxygen, nitrogen, helium, and fluorine containing gases, such as nitrogen trifluoride or the like. The precursor gases may be delivered to the first remote plasma source 126 individually or in combination and/or sequentially or concurrently.

[0020] In operation, materials may be outgassed from the thermally processed substrates and material may eventually deposit and build up on surfaces of the first chamber 102. In certain implementations, it may be desirable to remove the deposits and a suitable precursor gas may be selected to be delivered to the first remote plasma source 126 from the first gas source 128. The first remote plasma source 126 may generate a plasma a deliver the plasma/plasma products through the first conduit 130 to the first process volume 1 10. Although not illustrated, various liners, diffusers, and/or showerheads may receive the plasma/plasma products and distribute the plasma/plasma products about the first process volume 1 10 to facilitate cleaning of the first process volume 1 10.

[0021] Materials outgassed from the thermally processed substrates and materials removed from the surfaces of the first chamber 102 via the plasma may be exhausted from the first process volume 1 10 by an exhaust conduit 1 14 to an exhaust 1 16. The exhaust 1 16 may be a pump, such as a turbopump, configured to generate a reduced pressure environment in the first process volume 1 10 and to remove gases and other materials from the first process volume 1 10.

[0022] The apparatus 100 also includes a second process chamber 104 which is substantially identical to the first process chamber 102. The second process chamber 104 defines a second process volume 1 12, has second sidewalls 124 and a second ceiling 122, and may have a second substrate support 108 disposed therein. The materials and configuration of the second process chamber 104 may be identical to or substantially similar to the materials and configuration of the first process chamber 102.

[0023] In one embodiment, the first process chamber 102 and the second process chamber 104 share a wall. In such an embodiment, the sidewall 120A of the first process chamber 102 and the sidewall 124A of the second process chamber 104 are joined, or are the same wall.

[0024] A second remote plasma source 132 may be coupled to and in fluid communication with the second process volume 1 12. The second remote plasma source 132 may be configured to generate a plasma remotely from the second process volume 1 12 and deliver plasma products to the second process volume 1 12. The plasma products may be delivered to the second process volume 1 12 via a second conduit 136 which is fluidly coupled to the second remote plasma source 132 and the second process volume 1 12. In one implementation, the second conduit 136 may extend from the second remote plasma source 132 to the second ceiling 122 of the second chamber

104. The second conduit 136 may be a conduit of any suitable shape and may be formed from a material which is predominantly inert to the plasma products generated by the second remote plasma source 132. In one implementation, the second conduit 136 may be formed from a quartz material, a ceramic material, or a metallic material. Surfaces of the second conduit 136 exposed to the plasma products may also be coated with various materials inert or substantially inert to the plasma products to reduce or prevent damage, etching, or deposition of the second conduit 136.

[0025] The second plasma source 132 may also be in fluid communication with a second gas source 134. The second gas source 134 delivers one or more precursor gases to the second remote plasma source 132. In one implementation, the first gas source 128 and the second gas source 134 are separate gas sources. In another implementation, the first gas source 128 and the second gas source 134 are the same gas source. In either implementation, the first and second gas sources 128, 134 may be configured to deliver any desired combination of precursor gases. In one implementation, the second gas source 134 may deliver precursor gases such as argon, oxygen, nitrogen, helium, and fluorine containing gases, such as nitrogen trifluoride or the like. The precursor gases may be delivered to the second remote plasma source 132 individually or in combination and/or sequentially or concurrently.

[0026] In operation, materials may be outgassed from the thermally processed substrates and material may eventually deposit and build up on surfaces of the second chamber 104. As previously described, it may be desirable to remove the deposits and a suitable precursor gas may be selected to be delivered to the second remote plasma source 132 from the second gas source 134. The second remote plasma source 132 may generate a plasma and deliver the plasma/plasma products through the second conduit 136 to the second process volume 1 12. Although not illustrated, various liners, diffusers, and/or showerheads may receive the plasma/plasma products and distribute the plasma/plasma products about the second process volume 1 12 to facilitate cleaning of the second process volume 1 12. [0027] The second process volume 1 12 is also connected to the exhaust 1 16 via the exhaust conduit 1 14. Thus, the first process volume 1 10 and the second process volume 1 12 are commonly pumped by the exhaust 1 16. It is contemplated that the exhaust 1 16 may generate a reduced pressure environment in the second process volume 1 12 similar or identical to the reduced pressure environment of the first process volume 1 10. Because the exhaust 1 16 is in fluid communication with the first process volume 1 10 and the second process volume 1 12, the exhaust conduit 1 14 couples both of the process volumes 1 10, 1 12 to the exhaust 1 16. The exhaust conduit 1 14 may be coupled to the first and second chambers 102, 104 through sidewalls 120, 124 or a bottom of the chambers 102, 104 which is disposed opposite the ceilings 1 18, 122.

[0028] Figure 2 schematically illustrates a dual chamber thermal processing apparatus 200 having a remote plasma source 202 according to one implementation described herein. In the illustrated implementation, the remote plasma source 202 is in fluid communication with the first process volume 1 10 and the second process volume 1 12. The remote plasma source 202 may be fluidly coupled to the first process volume 1 10 via a first conduit 208 and may also be fluidly coupled to the second process volume 1 12 via a second conduit 206. In one implementation, the first conduit 208 may extend from the remote plasma source 202 to the first ceiling 1 18 of the first chamber 102 and the second conduit 206 may extend from the remote plasma source 202 to the second ceiling 122 of the second chamber 104. A gas source 204 may be in fluid communication with the remote plasma source 202 and deliver various precursors to the remote plasma source 202. The gas source 204 may be a single gas source or may be configured to provide a plurality of different gases.

[0029] The remote plasma source 202 may generate an amount of plasma/plasma products suitable to supply the first and second process volumes 1 10, 1 12. In one implementation, a single precursor may be delivered to the remote plasma source 202 from the gas source 204 and a plasma may be subsequently generated and delivered to the process volumes 1 10, 1 12. In another implementation, multiple precursors may be delivered at the same time to the remote plasma source 202 from the gas source and a plasma of the precursors may be generated and delivered to the process volumes 1 10, 1 12.

[0030] In yet another implementation, a first precursor may be delivered to the remote plasma source 202 and the resulting plasma may be delivered to the process volumes 1 10, 1 12. Subsequently, a second precursor different from the first precursor may be delivered to the remote plasma source 202 from the gas source 204 and the resulting plasma may be sequentially delivered to the process volumes 1 10, 1 12. It is contemplated that any combination of precursors in any order (i.e. sequentially, concurrently) may be delivered to the remote plasma source 202 from the gas source 204. The plasma and plasma products generated by the remote plasma source 202 may be delivered to the process volumes 1 10, 1 12 continuously or in a pulsed manner.

[0031] The remote plasma source 202 may be similar to the first plasma source 126 or the second plasma source 132 described with regard to Figure 1 . Similarly, the first conduit 208 and the second conduit 206 may be formed from the same or similar materials to the first 130 or second conduit 136. In operation, the first chamber 102 and the second chamber 104 may thermally process substrates. After thermal processing is performed, the remote plasma source 202 generates a cleaning plasma and delivers the plasma and plasma products to the process volumes 1 10, 1 12 of each of the first chamber 102 and the second chamber 104. The plasma products and other effluent may then be evacuated from the process volumes 1 10, 1 12 via the exhaust 1 16.

[0032] Figure 3 schematically illustrates a dual chamber thermal processing apparatus 300 having remote plasma sources 302, 310 according to one implementation described herein. In the illustrated embodiment, a first plasma source 302 may be in fluid communication with the first chamber 102 via a first conduit 306 and the second chamber 104 via a second conduit 308. In one implementation, the first conduit 306 may extend from the first remote plasma source 302 and the first ceiling of the first chamber 102 and the second conduit 308 may extend from the first remote plasma source 302 and the second ceiling 122 of the second chamber 104. The first remote plasma source 302 is also in fluid communication with a first gas source 304.

[0033] A second remote plasma source 310 may be in fluid communication with the second chamber 104 via a third conduit 314 and the first chamber 102 via a fourth conduit 316. In one implementation, the third conduit 314 may extend from the second remote plasma source 310 to the second ceiling of the second chamber 104 and the fourth conduit 316 may extend from the second remote plasma source 310 to the first ceiling 1 18 of the first chamber 102. A second gas source 312 is in fluid communication with the second remote plasma source 312. The second gas source 312 may be configured to deliver any of the precursors previously described to the second remote plasma source 310. The second remote plasma source 310 may generate a plasma and deliver the plasma products to both the second chamber 104 and the first chamber 102.

[0034] Similarly, the first gas source may be configured to deliver any of the precursors previously described to the first remote plasma source 302. The first remote plasma source 302 may generate a plasma and deliver the plasma products to both the first chamber 102 and the second chamber 104. The first and second remote plasma sources 302, 310 may generate any type or combination of cleaning plasma and deliver the plasma products in any desirable manner, such as a pulsed delivery, an alternating plasma type delivery, or a continuous delivery of one or more plasma types. In one implementation, the first remote plasma source 302 may generate a first plasma type and the delivery the plasma products to the chambers 102, 104. The second remote plasma source 310 may generate a second plasma type different from the first plasma type and deliver the plasma products to the chambers 102, 104. [0035] Figure 4 schematically illustrates a dual chamber thermal processing apparatus 400 having remote plasma sources 402, 408, 414, 420 according to one implementation described herein. In the illustrated implementation, a first remote plasma source 402 may be in fluid communication with the first process volume 1 10 of the first chamber 102 via a first conduit 406. In one implementation, the first conduit 406 may extend from the remote plasma source 402 to the first ceiling 1 18 of the first chamber 102. The first remote plasma source 402 is also in fluid communication with a first gas source 404. A second remote plasma source 408 may also be in fluid communication with the first process volume 1 10 of the first chamber 102 via a second conduit 412. In one implementation, the second conduit 412 may extend from the second remote plasma source 408 to the first ceiling 18 of the first chamber 102. The second remote plasma source 408 is also in fluid communication with a second gas source 410.

[0036] The gas sources 404, 410 may provide any of the previously described precursors in any combination to the remote plasma sources 402, 408. In one implementation, the first gas source 404 may provide a first precursor to the first remote plasma source 402 and a first plasma may be generated and delivered to the first process volume 1 10. The second gas source 410 may provide a second precursor different from the first precursor to the second remote plasma source 408 and a second plasma may be generated and delivered to the first process volume 1 10.

[0037] For example, the first gas source 404 may deliver argon, helium, or a combination thereof to the first remote plasma source 402. The first remote plasma source 402 may generate a first plasma remotely from the first process volume 1 10 and deliver the plasma products (i.e. radicals and/or ions) to the first process volume 1 10 via the first conduit 406. The second gas source 410 may deliver oxygen, NF 3 , or a combination thereof to the second remote plasma source 408. The second remote plasma source 408 may generate a second plasma remotely from the first process volume 1 10 and deliver the plasma products to the first process volume 1 10 via the second conduit 1 12. The first and second plasma may be delivered to the first process volume 1 10 at the same time, in an alternating manner, or in any desired sequence configured to clean the first chamber 102 and articles disposed therein.

[0038] Similarly, a third remote plasma source 414 may be in fluid communication with the second process volume 1 12 of the second chamber 104 via a third conduit 418. In one implementation, the third conduit 418 may extend from the third remote plasma source 414 to the second ceiling 122 of the second chamber 104. The third remote plasma source 414 is also in fluid communication with a third gas source 416. In one implementation, the third gas source 416 may be similar to the first gas source 404. A fourth remote plasma source 420 may also be in fluid communication with the second process volume 1 12 of the second chamber 104 via a fourth conduit 424. In one implementation, the fourth conduit 424 may extend from the fourth remote plasma source 420 to the second ceiling 122 of the second chamber 104. The fourth remote plasma source 420 is also in fluid communication with a fourth gas source 422. In one implementation, the fourth gas source 422 may be similar to the second gas source 410. It is contemplated that the third and fourth remote plasma sources 414, 420 and third and fourth gas sources 416, 422 may be implemented and operated similarly to the first and second remote plasma sources 402, 408 and the first and second gas sources 404, 410.

[0039] Figure 5 schematically illustrates a dual chamber thermal processing apparatus 500 having remote plasma sources 502, 508, 514 according to one implementation described herein. In the illustrated implementation, a first remote plasma source 502 may be in fluid communication with the first process volume 1 10 of the first chamber 102 via a first conduit 506. In one implementation, the first conduit 506 may extend from the first plasma source 502 and the first ceiling 1 18 of the first chamber 102. A first gas source 504 is also in fluid communication with the first remote plasma source 502. The first gas source 504 may deliver a first precursor type to the first remote plasma source 502 and the first remote plasma source 502 may generate and deliver plasma products to the first process volume 1 10.

[0040] Similarly, a second remote plasma source 508 may be in fluid communication with the second process volume 1 12 of the second chamber 104 via a second conduit 512. In one implementation, the second conduit 512 may extend from the second plasma source 508 and the second ceiling 122 of the second chamber 104. A second gas source 510 is also in fluid communication with the second remote plasma source 508. The second gas source 510 may deliver a second precursor type to the second remote plasma source 508 and the second remote plasma source 508 may generate and deliver plasma products to the second process volume 1 12. In one implementation, the second precursor type may be the same as the first precursor type. In another implementation, the second precursor type may be different than the first precursor type.

[0041] A third remote plasma source 514 is in fluid communication with the first process volume 1 10 and the second process volume 1 12 of the first and second chambers 102, 104, respectively, via a third conduit 518. Thus, the third conduit 518 fluidly couples the first process volume 1 10 and the second process volume 1 12 to the third remote plasma source 514. In the illustrated implementation, the third conduit 518 extends between the third remote plasma source 514 and the first sidewall 120 of the first chamber 102 and the second sidewall 124 of the second chamber 104. The position where the third conduit 518 couples to the sidewalls 120, 124 may be in a plane above a plane (i.e. closer to the first ceiling 1 18) occupied by a slit valve (not shown). In another implementation, the third conduit 518 may extend between the third remote plasma source 514 and the first ceiling 1 18 and the second ceiling 122 of the first and second chambers 102, 104, respectively.

[0042] A third gas source 516 may also be in fluid communication with the third remote plasma source 514. The third gas source 516 may deliver any desirable precursor type to the third remote plasma source 514. In one implementation, the third gas source 516 may deliver a third precursor type similar to the first and second precursor types provided by the first and second gas sources 504, 510. In another implementation, the third gas source 516 may deliver the third precursor type which is different from the first and second precursor types.

[0043] Injecting remote plasma into the sidewalls 120 and 124 of the process chambers 102 and 104 enables delivering gases from the remote plasma source 514 below the substrate supports 106 and 108, respectively. If the remote plasma source 514 is delivering cleaning gases, and the substrate supports 106 and 108 are actuated in an axial direction, the substrate supports 106 and 108 may be extended such that the supporting area of the substrate support is above the inlet for gases from the remote plasma unit 514, exposing lower regions of the process chambers 102 and 104 to cleaning gases. In this way, one or both of the process chambers 102 and 104 may be subjected to cleaning in the lower areas of the chambers.

[0044] Figure 6 schematically illustrates a dual chamber thermal processing apparatus 600 having remote plasma sources 602, 608, 614, 620 according to one implementation described herein. In the illustrated implementation, a first remote plasma source 602 may be in fluid communication with the first process volume 1 10 of the first chamber 102 via a first conduit 606. In one implementation, the first conduit 606 may extend from the first plasma source 602 and the first ceiling 1 18 of the first chamber 102. A first gas source 604 is also in fluid communication with the first remote plasma source 602. The first gas source 604 may deliver a first precursor type to the first remote plasma source 602 and the first remote plasma source 602 may generate and deliver plasma products to the first process volume 1 10.

[0045] Similarly, a second remote plasma source 608 may be in fluid communication with the second process volume 1 12 of the second chamber 104 via a second conduit 612. In one implementation, the second conduit 612 may extend from the second remote plasma source 608 and the second ceiling 122 of the second chamber 104. A second gas source 610 is also in fluid communication with the second remote plasma source 608. The second gas source 610 may deliver a second precursor type to the second remote plasma source 608 and the second remote plasma source 608 may generate and deliver plasma products to the second process volume 1 12. In one implementation, the second precursor type may be the same as the first precursor type. In another implementation, the second precursor type may be different than the first precursor type.

[0046] A third remote plasma source 614 is in fluid communication with the first process volume 1 10 via a third conduit 618. In the illustrated implementation, the third conduit 618 extends between the third remote plasma source 614 and the first sidewall 120 of the first chamber 102. The position where the third conduit 618 couples to the first sidewall 120 may be in a plane above a plane (i.e. closer to the first ceiling 1 18) occupied by a slit valve (not shown).

[0047] A third gas source 616 may also be in fluid communication with the third remote plasma source 614. The third gas source 616 may deliver any desirable precursor type to the third remote plasma source 614. In one implementation, the third gas source 616 may deliver a third precursor type similar to the first and second precursor types provided by the first and second gas sources 604, 610. In another implementation, the third gas source 616 may deliver the third precursor type which is different from the first and second precursor types.

[0048] A fourth remote plasma source 620 is in fluid communication with the second process volume 1 12 via a fourth conduit 624. In the illustrated implementation, the fourth conduit 624 extends between the fourth remote plasma source 620 and the second sidewall 124 of the second chamber 104. The position where the fourth conduit 624 couples to the second sidewall 124 may be in a plane above a plane (i.e. closer to the second ceiling 122) occupied by a slit valve (not shown).

[0049] A fourth gas source 622 may also be in fluid communication with the fourth remote plasma source 620. The fourth gas source 622 may deliver any desirable precursor type to the fourth remote plasma source 620. In one implementation, the fourth gas source 622 may deliver a fourth precursor type similar to the first, second, and third precursor types provided by the first, second, and third gas sources 604, 610, 616. In another implementation, the fourth gas source 622 may deliver the fourth precursor type which is different from the first, second, and third precursor types. In one implementation, the first and second gas sources 604, 610 may deliver a first precursor type and the third and fourth gas sources 616, 622 may deliver a second precursor type different from the first precursor type.

[0050] Implementations described herein provide for an improved thermal processing chamber with integrated plasma cleaning capabilities and the associated apparatus suitable to perform such processes. Thus in-situ plasma cleaning of a non-plasma processing thermal chamber may be achieved. The various implementations may be utilized in combination with one another and certain aspects from certain implementations may be combined with certain implementations from other implementations, all of which are implementations contemplated in the instant disclosure.

[0051] While the foregoing is directed to implementations of the present disclosure, other and further implementations of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.