Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POWER MANAGEMENT LOCK SYSTEM AND METHOD
Document Type and Number:
WIPO Patent Application WO/2008/121181
Kind Code:
A1
Abstract:
A power management lock system including an electronic lock unit configured to lock and unlock a door and further including at least one sensor in communication with the electronic lock unit, the sensor configured to sense an open condition of the door and a closed condition of the door, wherein the electronic lock unit is configured to receive door data pertaining to the open condition and the closed condition from the at least one sensor, and where the electronic lock unit is further configured to manage the provision of power within the electronic unit based upon the door data.

Inventors:
ROOSLI PHILIPP A (US)
LARSON ERIC (US)
SAGAR RAVI (US)
Application Number:
PCT/US2008/001657
Publication Date:
October 09, 2008
Filing Date:
February 07, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
INNCOM INTERNATIONAL INC (US)
ROOSLI PHILIPP A (US)
LARSON ERIC (US)
SAGAR RAVI (US)
International Classes:
G07C9/00
Domestic Patent References:
WO2006006834A12006-01-19
WO2000077330A12000-12-21
Foreign References:
US20060164206A12006-07-27
US20070146115A12007-06-28
Attorney, Agent or Firm:
DREXLER, Daniel, F. (20 Church St. 22nd Floo, Hartford CT, US)
Download PDF:
Claims:
What is claimed is:

1. A power management lock system comprising: an electronic lock unit, said electronic lock unit being configured to lock and unlock a door, the electronic lock unit comprising a plurality of electronically powered lock components, at least some of said lock components being disposed at the door; and at least one sensor in communication with said electronic lock unit, said sensor configured to sense an open condition of said door and a closed condition of said door, wherein said electronic lock unit is configured to receive door data pertaining to said open condition and said closed condition from said at least one sensor; and wherein said electronic lock unit is further configured to manage the provision of power within at least some of the lock components disposed at the door based upon the door data.

2. The system of claim 1, wherein said electronic lock unit is configured to operate in an open power save mode when said door data indicates said door to be in said open condition.

3. The system of claim 2, wherein said electronic lock unit includes a control assembly configured to receive said door data pertaining to said open condition and said closed condition of said door, wherein said control assembly is configured to initiate at least a partial disablement of said electronic lock unit when in said open power save mode.

4. The system of claim 3, wherein said control assembly is configured to control a credential sensing mechanism of said electronic lock unit, and said at least partial disablement of said control assembly includes a disablement of said credential sensing mechanism, and wherein said credential sensing mechanism is configured to sense at least one of a magnetic stripe card, a smart card, and a proximity card.

5. The system of claim 3, wherein said at least partial disablement of said electronic lock unit includes a complete power shut down of said control assembly and any component of said electronic lock unit that is controlled by said control assembly.

6. The system of claim 3, further comprising a power signal generator, wherein said electronic lock unit includes an energy storage device, said power signal generator being configured to provide power to said energy storage device via a power signal transmitted from said power signal generator to said energy storage device, wherein at least a portion of said control assembly receives power from said energy storage device, and wherein said at least one sensor is configured to sense at least one of presence and a strength of said power signal.

7. The system of claim 6, wherein said at least one sensor transmits power data pertaining to said presence or said strength of said power signal to said control assembly when said at least one sensor senses that said door is in said closed position.

8. The system of claim 6, wherein said control assembly is configured to accept power from an emergency battery when said control assembly receives said power data from said at least one sensor that indicates at least one of an absence and a weakness of said power signal, wherein said control assembly is configured to initiate a slowing in operation of at least one function or performance reduction such as distance for reading credentials of said electronic lock unit when said power data from said at least one sensor indicates at least one of said absence and said weakness of said power signal, wherein said electronic lock unit includes a real time clock that allows said control assembly to initiate said slowing, and wherein said real time clock is powered by said emergency battery when said power data from said sensor indicates at least one of said absence and said weakness of said power signal.

9. The system of claim 6, wherein said power signal generator is disposed remotely to said door and said control assembly.

10. The system of claim 6, wherein said power signal generator is configured to wirelessly transmit said power signal to said energy storage device.

11. The system of claim 6, wherein said power signal is an electromagnetic signal and said at least one sensor is a magnetic field sensor configured to sense said electromagnetic signal.

12. The system of claim 1, wherein said at least one sensor is a plunger associated with said door, said plunger sensing said closed condition when said plunger is depressed, and said plunger sensing said open condition when said plunger is extended.

13. The system of claim 8, wherein said door comprises a single unit of a multi-unit building, wherein said control assembly is connected to a network associated with said multi-unit building, and wherein said control assembly is configured to transmit said door data, said power data, and battery data pertaining to power levels of said emergency battery over said network.

14. A power management lock system comprising: a power signal generator configured to generate a wireless power signal; an electronic lock unit configured to lock and unlock a door, said electronic lock unit including a control assembly, and an energy storage device, said power signal generator being configured to provide power to said energy storage device via the wireless power signal transmitted from said power signal generator to said energy storage device; a plunger associated with said door, said plunger sensing a closed condition of said door when said plunger is depressed, and said plunger sensing an open condition of said door when said plunger is extended; and a power sensor configured to sense at least one of a presence and strength of said wireless power signal; wherein said control assembly of said electronic lock unit is configured to receive door data pertaining to said open condition and said closed condition from said plunger, and wherein said electronic lock unit is configured to operate in an open power save mode when said door data indicates said door to be in said open condition, and wherein said power sensor is configured to transmit power data pertaining to at least one of said presence and said strength of said wireless power signal to said control assembly when said power sensor senses that said door is in said closed position, and wherein at least a portion of said control assembly receives power from said energy storage device.

15. The system of claim 14, wherein said open power save mode includes at least partial disablement of said electronic lock unit, wherein said control assembly is configured to accept power from an emergency battery when said control assembly receives said power data from said power sensor that indicates at least one of an absence and a weakness of said wireless power signal, wherein said control assembly is configured to initiate a slowing in operation of at least one function of said electronic lock unit when said power data from said power sensor indicates at least one of said absence and said weakness of said wireless power signal, wherein said electronic lock unit includes a real time clock that allows said control assembly to initiate said slowing, and wherein said real time clock is powered by at least one of said emergency battery and said power source when said power data from said power sensor indicates at least one of said absence and said weakness of said power signal.

16. A method for managing power consumption in an electronic lock system, the method comprising: sensing an open condition of a door, at which at least some electronically powered lock components of the electronic lock system are disposed; transmitting open door data pertaining to said open door condition to a control assembly of an electronic lock unit; and at least partially disabling at least some of said lock components disposed at the door when said open door data is transmitted to said control assembly.

17. The method of claim 16, further comprising: sensing a closed condition of said door; sensing at least one of a presence and a strength of a wireless power signal generated by a power signal generator and transmitted to an energy storage device; transmitting closed door data pertaining to said closed door condition to a control assembly of said electronic lock unit, said control assembly being at least partially powered by said energy storage device; transmitting power data pertaining to at least one of said presence and said strength of said power signal to said control assembly; and regulating a power consumption of said electronic lock unit based upon said power data.

18. The method of claim 17, further including powering said power signal generator via a power source, said power signal generator and said power source being disposed remotely of said control assembly and said door.

19. The method of claim 17, wherein said regulating comprises accepting power from an emergency battery and/or slowing operation of at least one function of said electronic lock unit when said control assembly receives said power data from said at least one sensor that indicates at least one of an absence and a weakness of said power signal.

20. The power management lock system of claim 1, wherein said lock components comprise a communications transceiver disposed in the door and wherein the electronic lock unit is configured to manage the provision of power of the communications transceiver.

Description:

POWER MANAGEMENT LOCK SYSTEM AND METHOD

FIELD OF THE INVENTION

[0001] The invention relates generally to lock systems and, more particularly, to power management of an electronic lock system configured to allow access to an individual unit of a multi-unit building.

BACKGROUND OF THE INVENTION

[0002] Traditional electronic door locks of the type typically used in hotel guest rooms do not effectively manage lock power consumption in a manner that compensates for open and closed conditions of hotel doors. As properly powered and functioning electronic locks are obviously critical to hotel operation, power supply to hotel door locks is always a concern. This concern is heightened in applications where power is at a premium, such as in the case of inductively powered door locks with only a small emergency battery. In these types of applications, power management that is specific to open and closed conditions of hotel doors is desirable.

[0003] Using inductively powered door locks as an example, when a door is closed (i.e. in the frame), inductively powered door locks have sufficient power available from induction to operate lock electronics. However, when a door is open, inductive power transfer ceases because the distance between transmitter and receiver in the inductive system exceeds the size of the corresponding magnetic field. With the lock operating in a normal manner during open conditions, a storage device disposed in the door lock that has been charged by inductive power transfer might be depleted at too fast a rate, particularly when a door is left open for a relatively long period of time (such as during room cleaning). If the storage device is depleted, the system necessarily falls back on the small emergency battery mentioned above. Fall back to the emergency battery is undesirable in that it could lead to a rapidly depleted battery, and thus a non-functioning lock. This may generate a need to equip the locks with more powerful batteries, and thus generate greater expense to the hotel.

[0004] However, an electronic lock of an open door obviously does not have to operate in a normal manner. That is, there may be no need to operate some of the lock's electronics, such as a credential

sensing mechanism, during open conditions. Accordingly, electronic lock system power management strategies that take power needs during open and closed conditions into account would be advantageous.

SUMMARY OF THE INVENTION

[0005] The invention generally provides a power management lock system including an electronic lock unit configured to lock and unlock a door and further including at least one sensor in communication with the electronic lock unit, the sensor configured to sense an open condition of the door and a closed condition of the door, wherein the electronic lock unit is configured to receive door data pertaining to the open condition and the closed condition from the at least one sensor, and where the electronic lock unit is further configured to manage the provision of power within the electronic unit based upon the door data.

[0006] The invention further generally provides a power management lock system including a power signal generator configured to generate a wireless power signal, an electronic lock unit configured to lock and unlock a door, the electronic lock unit including a control assembly, and an energy storage device, the power signal generator being configured to provide power to the energy storage device via the wireless power signal transmitted from the power signal generator to the energy storage device, a plunger associated with the door, the plunger sensing a closed condition of the door when the plunger is depressed, and the plunger sensing an open condition of the door when the plunger is extended, and a power sensor configured to sense at least one of a presence and strength of the wireless power signal, wherein the control assembly of the electronic lock unit is configured to receive door data pertaining to the open condition and the closed condition from the plunger, and wherein the electronic lock unit is configured to operate in an open power save mode when the door data indicates the door to be in the open condition, and wherein the power sensor is configured to transmit power data pertaining to at least one of the presence and the strength of the wireless power signal to the control assembly when the power sensor senses that the door is in the closed position, and wherein at least a portion of the control assembly receives power from the energy storage device.

[0007] The invention further provides a method for managing power consumption in an electronic lock system corresponding to the various exemplary embodiments referenced above. Particularly, the method is generally described as comprising sensing an open condition of a door, transmitting open door data pertaining to the open door condition to a control assembly of an electronic lock unit, and at least partially disabling the electronic lock unit when the open door data is transmitted to the control assembly.

[0008] The above discussed and other features and advantages of the present invention will be appreciated and understood by those skilled in the art from the following detailed description and drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] Referring now to the drawings wherein like numerals designate like components:

[0010] Figure 1 is a schematic representation of a lock system in one exemplary embodiment of the invention;

[0011] Figure 2 shows the lock system of Figure 1 disposed relative to a door in a closed condition;

[0012] Figure 3 the arrangement of Figure 2 with door in an open condition; and

[0013] Figure 4 is a schematic representation of a lock system in another embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0014] Figures 1-2 show an exemplary power management electronic lock system 10 in accordance with an embodiment of the invention. The system 10 includes an electronic lock unit 11 disposed in a door 15 and a power generating system 18 disposed external to the door 15. The electronic lock unit 11 comprises, among other elements, a locking mechanism 12, a corresponding lock control assembly 14, a credential sensing mechanism 16, at least one sensor

20a, 20b, and an energy storage device 28. The power generating system 18 generally includes a power source 22 and a power signal generator 24.

[0015] Generally, the electronic lock unit 11 and/or the power generating system 18, in one embodiment of the invention, are similar to that disclosed in U.S. Patent Application Serial Nos. 11/082,559 and 11/082,577, both filed on March 17, 2005, the entire contents of both said applications is incorporated by reference herein.

[0016] As will be discussed herein at length, the control assembly 14, which includes a microprocessor (not shown) and an electronic memory (not shown), receives data from the sensors 20a-b, is primarily powered inductively by the power generating system 18, and generally controls the electronic lock unit 11 and is responsible for internal communication within the unit 11 as well as external communication, for example, with a network, etc.

[0017] As mentioned, in the present exemplary embodiment, the power generating system 18 includes a power source 22 and a power signal generator 24. Also as mentioned, the power source 22 and power signal generator 24 are disposed externally of the electronic lock unit 11. For example, with specific reference to Figure 2, the electronic lock unit 11 is disposed within the door 15 of a multi-unit building, while the power source 22 and a power signal generator 24 of the power generating system 18 are disposed outside of but proximate to the door 15. For example, the power generating system 18 is preferably disposed outside of the door 15, within a wall or door frame, in a position generally adjacent to the electronic lock unit 11.

[0018] The power source 22, which could be, for example, a switch mode power supply, a transformer, a traditional or rechargeable battery pack or any combination thereof, provides power to the power signal generator 24. Typically, the power source 22 is the hardwired electronic system of the multi-unit building. The power signal generator 24 uses the power provided by the power source 22 to generate a power signal 26, which is received by the energy storage device 28 of the electronic lock unit 11 which is connected to the control assembly 14 and disposed within the door 15. The power signal generator 24 generally comprises any device capable of wirelessly transmitting the power signals 26. The power signals 26 may take any suitable form such as radio frequency (RF) signals,

light signals, etc. The energy storage device 28 generally comprises any corresponding device capable of receiving such power signals 26 and configured for converting the signals 26 into electrical energy. For example, the power signal generator 24 and the energy storage device 28 may include traditional AM/FM antennae where the power signals 26 include RF signals. Alternatively and/or additionally, the power signal generator 24 may comprise a controlled or uncontrolled light source such that the power signals 26 include light signals. The energy storage device 28 may then correspondingly comprise a solar panel arrangement for receiving the light signals 26 and converting them to electrical power. Alternatively and/or additionally, the power signal generator 24 and the energy storage device 28 may comprise split air gap transformers or any other type of inductive, magnetic, or capacitive coupling arrangements suitable for facilitating transmission and reception of the electromagnetic signal 26. In any event, the energy storage device 28 receives the power signals 26 (which are electromagnetic in an exemplary embodiment) from the power signal generator 24 and converts those signals 26 to stored electrical energy.

[0019] As mentioned above the energy storage device 28 is connected to the control assembly 14. Under normal operation of the system 10, the energy storage device 28 powers the control assembly 14. That is, the energy storage device receives the wireless power signal 26 from the generator 28, converts it electrical power, and then provides such power to the control assembly 14 as needed. The control assembly 14 is configured such that, when powered, the assembly 14 can actuate the locking mechanism 12 into locked and unlocked positions, communicate with the network via a wireless network connection 48, receive data from the credential sensing mechanism 16 which is disposed for reading data from access cards 30 such as magnetic stripe cards, smart cards, and proximity cards, and the control assembly 14 is further configured to evaluate this data and, based thereupon, grant or deny access.

[0020] As mentioned above, lock unit 11 of the power management system 10 also includes at least one sensor 20a-b, which will now be discussed in detail hereinbelow, beginning with the sensor 20a. In this embodiment, the sensor 20a is disposed in the door 15 and is arranged in logical association with the control assembly 14 The sensor 20a is used to sense an open 32 and a closed 34 condition of the door 15, and may comprise any device capable of sensing such conditions 32 and 34. For

example, the sensor 20a may be a spring biased plunger (such as in the exemplary embodiment of Figures 1-3) disposed with the door 15, wherein depression of the plunger 20a indicates (via data transmission discussed below) to the control assembly 14 that the door 15 is in the closed condition 34, and wherein extension of the plunger 20a indicates to the control assembly 14 that the door 15 is in the open condition 32. That is, in this embodiment, the plunger 20a is essentially a physical protrusion extending from the door 15 and disposed to engage the door frame when the door 15 is brought into the closed condition 34. In this condition, the plunger 20a contacts the door frame and is biased thereby into a retracted position within a body of the door 15. When the door is placed in the open condition 34, the plunger 20a is released from the door frame and an internal spring arrangement biases the plunger 20a outward into a protruded position.

[0021] Of course this plunger configuration of the sensor 20a is merely exemplary. For example, the plunger 20a may be disposed in the door frame rather than in the door 15. In this configuration, the sensor 20a would then communicate the opened and closed conditions 32, 34 wirelessly to the control assembly 14. Alternatively and/or additionally, the sensor 20a may be an optical sensor disposed on either the door 15 or the door frame, where the optical sensor is configured to sense at least a portion of the door frame or door, respectively, and indicate to the control assembly 14 upon such detection (via wired or wireless connection) that the door 15 is in the closed condition 34. The optical sensor 20a is further configured to indicate to the control assembly 14 that the door 15 is in the open condition 32 when the mentioned portion of the door frame or door is not detected.

[0022] Regardless of the manner by which the sensor 20a senses the open 32 and closed 34 conditions of the door 15, the sensor 20a transmits door data 36 pertaining to the open and closed conditions 32, 34 of the door 15 to the control assembly 14 as illustrated schematically in Figure 1. When the door data 36 from the sensor 20a indicates that the door 15 is in the open condition 32, the control assembly 14 initiates an open power save mode and at least partially disables at least a portion of the electronic lock unit 11. For example, since the credential sensing mechanism 16 is not necessary during the open condition 32 of the door 15, the control assembly 14 may disable the credential sensing mechanism 16 while the door 15 is in the open condition 32. Alternatively and/or additionally, since the locking mechanism 12 is not necessary during the open condition 32 of the door 15, the control assembly 14

may disable the locking mechanism 12 while the door 15 is in the open condition 32. Alternatively and/or additionally, the control assembly 14 may be configured to disable itself, and thus by extension, disable all components of the electronic lock unit 11 (i.e., the energy storage device 28, credential sensing mechanism 16, locking mechanism 12, etc.) while the door 15 is in the open condition 32. Any disablement of the electronic locking unit 11 or some or all of its various components while the door 15 is in the open condition 32 may last throughout the duration of this condition 32 and cease once the sensor 20a transmits additional door data 36 to the control assembly 14 that indicates that the door 15 has re-entered the closed condition 34.

[0023] Disablement of the electronic lock unit 11 or some or all of its components during the open condition 32 of the door 15 effectively results in power not be drawn from the energy storage device 28 or the emergency battery 42 by the various unit 11 components. This preserves the powered stored within the electronic lock unit 11.

[0024] When the sensor 20a indicates that the door 15 is in the closed position, the control assembly 14 and the various lock components (the locking mechanism 12, credential sensing mechanism, etc.) are enabled and are thus rendered available to receive electronic power from the energy storage device 28 and/or from the emergency battery 42, as necessary.

[0025] The sensor 20b is used to sense overall power failure within the system 10 when the door is brought into the closed condition 34. The power sensor 20b senses presence of the power signal 26 and may comprise any device capable of sensing this signal. For example, if the power signal 26 is an electromagnetic signal, such as in the exemplary embodiment of Figure 1-3, the power sensor 20b is a sensor configured to sense an electromagnetic field.

[0026] The power sensor 20b is connected communicatively with the control assembly 14, and may be disposed anywhere within range of the power signal 26, such as on the sensor 20a (i.e. on the plunger), in the door 15, or on the doorframe. As with the sensor 20a, if the sensor 20b is disposed outside of the door 15, the connection with the control assembly 14 is wireless. When the door 15 is in the closed condition 32, as detected by the sensor 20a, the control assembly 14 activates the power sensor 20b which transmits power data 40 pertaining to presence/strength of the power signal 26 to the

control assembly 14. If the power signal 26 is present and strong, the power data 40 will indicate this condition to the control assembly 14 and normal operation of the electronic locking unit 11 will continue. If however, the power signal 26 is absent/weak, the power data 40 will indicate this condition to the control assembly 14 which will initiate a power fail mode within the electronic locking unit 11. When placed in power fail mode, the control assembly 14 initiates receipt of power from an emergency battery 42 disposed in the electronic locking unit 11. Alternatively and/or additionally, the control assembly 14 may initiate a slowing of operation of the electronic locking unit 11 during the power fail mode. This slowing may be accomplished using a real time clock (RTC) 44, included within the electronic locking unit 11, connected to the control assembly 14, and powered by the emergency battery 42 during the power fail mode. For example, using the RTC 44, the control assembly 14 may poll the credential sensing mechanism 16 for card insertion at greater intervals of time than a standard twice per second.

[0027] It should be appreciated that, in alternative embodiment, the sensor 20b may also transmit power data 40 to the control assembly when the door 15 is in the open condition 32. In this embodiment, the system may or may not include the sensor 20a. That is, the sensor 20b effectively detects the open condition 32 by sensing the weak or absent power signal 26. Accordingly, the power fail mode mentioned above may substantially correspond to the open condition 32, in response to which the control assembly 14 may disable certain components of the lock unit 11 or slow operation, etc.

[0028] As generally referred to above, the control assembly 14 may be connected to, and in communication with, a network (LAN, WAN, etc.), an associated server, and/or additional peripheral devices by the network connection 48. Via this network connection 48 the control assembly 14 of the door 15 may be associated with the network/server of the multi-unit building. The control assembly 14 may transmit door data 36, power data 40, and battery data 50 pertaining to power levels of the emergency battery 42 over the network connection 48, and communicate with the network (or the like) via any suitable protocol (e.g., TCP/IP, UDP/IP, Inncom International, Inc.'s proprietary P5 Protocol, etc.). The connection 48 may be wired or wireless, as desired. Wireless communication between the control assembly 14 and the network and/or between the control assembly 14 and any component of

the electronic locking unit 12 or sensors 20a-b is preferably conducted via radio frequency (RF) communication, but may alternatively and/or additionally utilize infrared (IR) or other types of communication (e.g., ultrasound (U/S), etc.). Such wireless RF communication may utilize, for example, 802.1 Ib radio frequency protocol, WI-FI, Bluetooth® , 802.15.4, or any other suitable wireless protocol.

[0029] A power managing lock system 100 in an alternative embodiment of the invention is shown in Figure 4. The system 100 resembles the system 10 and includes many of the features and provisions thereof. Common elements are represented herein and throughout by consistent reference numerals and, for the sake of brevity, are not reintroduced nor unnecessarily re-described. The system 100 significantly differs from the system 10 in that the control assembly 14 of the system 100 includes a portion 102 of the control assembly 14 disposed outside of lock unit 11 and preferably disposed outside of the door 15 and in connection with the power generating system 18.

[0030] That is, in this embodiment, the control assembly 14 is divided into a primary access control assembly 102 and a secondary access control assembly 104, each including a microprocessor and an electronic memory (not shown). The primary access control assembly 102 is be disposed outside of the door 15 in the wall or door frame, and is therefore remote of the lock unit 11. The secondary control assembly 104 is disposed within the door 15 and is arranged in communication with the locking mechanism 12 and energy storage device 28. The credential sensing mechanism 16 is be disposed within the door 15 and is in direct connection with the secondary control assembly 104 (as shown in Figure 4). Alternatively, the credential sensing mechanism may be disposed outside of the door 15 (i.e. on the wall in proximity to the door 15) and in direct connection with the primary control assembly 102.

[0031] The primary and secondary control assemblies 102 and 104 of the system 100 may comprise some or all of the features of the primary and secondary access control electronics disclosed in U.S. Patent Application Serial No. 11/082,577 and some or all of the features of the access control electronics and the control circuitry and data communication section as disclosed in U.S. Patent

Application Serial No. 11/082,559, both of which said applications are herein incorporated by reference in their entirety.

[0032] As shown in Figure 4, the primary control assembly 102 is in logical association with the secondary control assembly 104 via any form of wireless communication 106, such as the radio frequency (RF) or infrared (IR) communications discussed above. The primary control assembly 102 is also directly connected with the power source 22, from which it receives its power. The power signal generator 24 may also receive power directly from the power source 22, or, as shown in Figure, from the primary control assembly 102. The primary control assembly 102 is further disposed in communication with the power signal generator 24.

[0033] The electronic lock unit 11 of the system 100 includes the sensors 20a and 20b discussed above concerning the system 10. That is, the sensors 20a and 20b are disposed in the door 15 of the system 100 and are arranged in communication with the secondary control assembly 104. As discussed, the sensor 20a is configured to detect and to alert the control assembly 104 of the open and closed conditions 32, 24 of the door 15. The power sensor 20b is configured to detect and alert the secondary control assembly 104 of the weak or absent power signal 26. The secondary control assembly 104 reacts to these alerts as discussed above with regard to the control assembly 14 of the system 10.

[0034] In an alternate embodiment, one or more of the sensors 20a and 20b of the power management electronic lock system 100 are disposed outside of the door 15 in the adjacent wall or door frame proximate to the primary control assembly 102 and/or proximate to the power generating system 18. In this configuration (shown in dashed lines in Figure 4), the sensors 20a and 20b respectively monitor the open/closed condition of the door and the strength of the power signal 26 from outside of the door 15 and communicate wirelessly or via wired connection with the primary control assembly 102. The primary control assembly 102 receives this communication from the sensors 20a and 20b and then send appropriate wireless commands 106 to the secondary control assembly which, in response thereto, disables or slows operation of the various components of the lock unit 11 as discussed previously concerning the system 10.

[0035] In still another embodiment, one or more of the sensors 20a and 20b is be disposed in the wall or door frame outside of the door 15 and is configured to monitor respectively the condition of the door and the strength of the power signal 26 and to communicate wirelessly directly with the secondary control assembly 104 without routing commands through the primary control assembly 102. In such configuration, the sensors 20a and 20b may communicate with the secondary control assembly entirely independent of the primary control assembly 102 or may conduct some communications directly with the secondary control assembly 104 and some communications via the primary control assembly 102.

[0036] The primary control assembly 102 and/or secondary control assembly 104 may be connected to, and in communication with, a network (LAN, WAN, etc.), an associated server, and/or additional peripheral devices via a network connection 48. Via this network connection 48 the primary control assembly 102 and/or secondary control assembly 104 of the system 100 may be associated with the network/server of the multi-unit building.

[0037] As mentioned, the sensors 20a and 20b may be disposed within the door 15 in both power management electronic lock systems 10 and 100. In either system 10 or 100, the sensors 20a and 20b configured as such can communicate with the control assembly 14 and with the secondary control assembly 104, respectively, via a hard wired connection extending through the door 15 or via a wireless communication.

[0038] While the invention has been described with reference to preferred embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best modes contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another.