Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
POWER SUPPLY WITH FAST DISCHARGING FOR CONFIGURABLE OUTPUT VOLTAGE
Document Type and Number:
WIPO Patent Application WO/2015/179027
Kind Code:
A1
Abstract:
A universal serial bus (USB) charger provides power to a client device. A USB connector interfaces with a client device and receives a request for the output voltage of the USB charger to be at a specific value. If the requested voltage level is lower than the current output voltage level, the output voltage level is set to the requested level and a bleeder circuit is enabled to discharge the output capacitor of the USB charger.

Inventors:
YAO JIANMING (US)
CHEN YIMIN (US)
LI YONG (US)
ZHENG JUNJIE (US)
WONG DICKSON T (US)
Application Number:
US2015/024406
Publication Date:
November 26, 2015
Filing Date:
April 05, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DIALOG SEMICONDUCTOR INC (US)
International Classes:
H02H9/00
Foreign References:
US20130334881A12013-12-19
US20080232182A12008-09-25
US7200015B12007-04-03
US3792309A1974-02-12
US20050264256A12005-12-01
US20080144420A12008-06-19
US20130154515A12013-06-20
US20110127950A12011-06-02
Attorney, Agent or Firm:
McNelis, John, T. et al. (Silicon Valley Center801 California Stree, Mountain View CA, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A universal serial bus (USB) charger for providing power to a client device

comprising:

a USB connector configured to interface with the client device, and to receive a

request for an output voltage at a first voltage level;

a converter circuit, an output of the converter circuit coupled to the USB connector, the converter circuit configured to convert an input voltage level to an output voltage level, the converter circuit comprising an output capacitor;

a bleeder circuit coupled to the converter circuit, the bleeder circuit configured to discharge the output capacitor of the converter circuit responsive to the output voltage level of the converter circuit being greater than the first voltage level; and

an output controller configured to control the output voltage level of the converter circuit, and configured the turn the bleeder circuit on and off.

2. The USB charger of claim 1, wherein the bleeder comprises:

a first switch coupled to the output controller; and

a bleeder resistor coupled to the output capacitor and the first switch, the bleeder resistor configured to discharge the output capacitor when the first switch is closed.

3. The USB charger of claim 2, wherein the output controller is configured to turn on the first switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level.

4. The USB charger of claim 3, wherein the output controller is further configured to turn off the first switch responsive to determining that the output voltage level of the USB charger is within a threshold level of the first voltage level.

5. The USB charger of claim 2, wherein the bleeder further comprises:

a bleeder capacitor, the bleeder capacitor coupled in parallel to the bleeder resistor, the bleeder capacitor configured to receive a portion of charge stored in the output capacitor when the first switch is closed. The USB charger of claim 2, wherein the bleeder further comprises:

a second switch coupled to the output controller; and

a bleeder capacitor coupled to the output capacitor and the second switch, the bleeder capacitor configured to receive a portion of the charge stored in the output capacitor when the second switch is closed.

The USB charger of claim 6, wherein the output controller is further configured to: turn on the first switch and the second switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level; and

turn off the first switch responsive to determining that the output voltage of the USB charger is within a threshold level of the first voltage level.

The USB charger of claim 2, wherein the bleeder further comprises:

a second switch coupled to the output controller; and

a second bleeder resistor coupled to the output capacitor and the second switch, the second bleeder resistor having a resistance higher than the bleeder resistor, the second bleeder resistor configured to provide a slow discharge of the output capacitor when the first switch is opened.

The USB charger of claim 8, wherein the output controller is further configured to: turn on the first switch and the second switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level;

turn off the first switch responsive to determining that the output voltage level of the

USB charger is at a third voltage level, the third voltage level higher than the first voltage level and lower than the second voltage level; and

turn off the second switch responsive to determining that the output voltage level of the USB charger is within a threshold level of the first voltage level.

The USB charger of claim 8, wherein the output controller is further configured to: turn on the first switch and the second switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level; and

turn off the first switch and the second switch responsive to determining that the first switch and the second switch have been on for a set amount of time.

11. A method for providing power to a client device in a plurality of voltage levels comprising:

receiving a request, at a universal serial bus (USB) charger via a USB port, for an output voltage at a first voltage level; and

responsive to determining that the requested first voltage level is lower than an output voltage level of the USB charger:

setting the output voltage level to the first level, and

enabling a bleeder circuit, the bleeder circuit configured to discharge an output capacitor of the USB charger.

The method of claim 11, wherein the bleeder comprises:

a first switch; and

a bleeder resistor coupled the output capacitor the first switch, the bleeder resistor configured to discharge the output capacitor when the first switch is closed.

The method of claim 11, wherein enabling the bleeder circuit comprises:

closing the first switch responsive to determining that the output voltage level of the

USB charger is at a second voltage level, the second voltage level higher than the first voltage level.

The method of claim 13, further comprising:

opening the first switch responsive to determining that the output voltage level of the USB charger is within a threshold level of the first voltage level.

The method of claim 12, wherein the bleeder further comprises:

a bleeder capacitor, the bleeder capacitor coupled in parallel to the bleeder resistor, the bleeder capacitor configured to receive a portion of charge stored in the output capacitor when the first switch is closed.

The method of claim 12, wherein the bleeder further comprises:

a second switch; and

a bleeder capacitor coupled to the output capacitor and the second switch, the bleeder capacitor configured to receive a portion of the charge stored in the output capacitor when the second switch is closed.

17. The method of claim 16, further comprising:

closing the first switch and the second switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level; and

opening the first switch responsive to determining that the output voltage of the USB charger is within a threshold level of the first voltage level.

18. The method of claim 11 , further comprising:

responsive to determining that the requested first voltage is higher than the output voltage level setting the output voltage level to the first level.

19. A method for providing power to a client device in a plurality of voltage levels

comprising:

determining, by a universal serial bus (USB) charger, whether the client device is connected to the USB charger; and

responsive to determining that the client device is not connected:

determining whether an output voltage is at a second voltage level, the second voltage level higher than a first voltage level; and responsive to determining that the output voltage level is at the second voltage level:

setting the output voltage level to the first voltage level; and enabling a bleeder circuit, the bleeder circuit configured to discharge an output capacitor of the USB charger.

20. The method of claim 19, wherein the bleeder comprises:

a first switch; and

a bleeder resistor coupled the output capacitor the first switch, the bleeder resistor configured to discharge the output capacitor when the first switch is closed.

21. The method of claim 20, wherein enabling the bleeder circuit comprises:

closing the first switch responsive to determining that the output voltage level of the USB charger is at a second voltage level, the second voltage level higher than the first voltage level.

22. The method of claim 21, further comprising:

opening the first switch responsive to determining that the output voltage level of the USB charger is within a threshold level of the first voltage level.

23. The method of claim 20, wherein the bleeder further comprises:

a bleeder capacitor, the bleeder capacitor coupled in parallel to the bleeder resistor, the bleeder capacitor configured to receive a portion of charge stored in the output capacitor when the first switch is closed.

Description:
POWER SUPPLY WITH FAST DISCHARGING FOR CONFIGURABLE

OUTPUT VOLTAGE

BACKGROUND

1. FIELD OF ART

[0001] The disclosure generally relates to the field of universal serial bus (USB) chargers, and specifically to providing multiple charging voltages for faster charging.

2. DESCRIPTION OF THE RELATED ART

[0002] Universal serial bus (USB) is a connection standard used that can be used to interconnect multiple computing devices (e.g., a personal computer, a smartphone) and peripherals (e.g., a mouse, a keyboard, a camera) to each other. In addition to being able to connect computing devices and peripherals, a USB connector can also be used to deliver power. For instance, a USB connector may be used to provide power to charging the battery of mobile devices. Power can be provided from a host computing device or by a dedicated power supply (e.g., a charger).

[0003] When charging the battery of a mobile device, the charging speed is limited by the voltage and current provided through the USB connector. Current USB chargers only output a voltage of 5V, as specified by the USB standard, when delivering power to a mobile device. This greatly limits the speed of charging the mobile device.

[0004] Thus, it would be advantageous to be able to deliver an output voltage at a higher voltage level, in addition to the voltage specified by the USB standard, upon request from the mobile device for increasing the charging speed of the mobile device.

SUMMARY

[0005] A universal serial bus (USB) charger provides power to a client device. A USB connector interfaces with a client device and receives a request for the output voltage of the USB charger to be at a specific value. If the requested voltage level is lower than the current output voltage level, the output voltage level is set to the requested level and a bleeder circuit is enabled to discharge the output capacitor of the USB charger.

[0006] The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings and specification. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the inventive subject matter.

BRIEF DESCRIPTION OF DRAWINGS

[0007] The disclosed embodiments have other advantages and features which will be more readily apparent from the detailed description, the appended claims, and the

accompanying figures (or drawings). A brief introduction of the figures is below.

[0008] Figure (FIG.) 1 illustrates an illustration of a universal serial bus (USB) connector.

[0009] FIG. 2 illustrates a circuit diagram of a USB charger that is capable of providing an output voltage at multiple voltage levels, according to one embodiment.

[0010] FIG. 3A, 3B, 3C, 3D, and 3E illustrate five different embodiments of a bleeder circuit, according to one embodiment.

[0011] FIG. 4A illustrates a graph of the output voltage of the USB charger using the bleeder circuit of FIG. 3 A, according to one embodiment.

[0012] FIG. 4B illustrates a graph of the output voltage of the USB charger using the bleeder circuit of FIG. 3B or FIG. 3C, according to one embodiment.

[0013] FIG. 5 illustrates a flow diagram for providing an output voltage at multiple levels, according to one embodiment.

DETAILED DESCRIPTION

[0014] The figures (FIGS.) and the following description relate to preferred embodiments by way of illustration only. It should be noted that from the following discussion, alternative embodiments of the structures and methods disclosed herein will be readily recognized as viable alternatives that may be employed without departing from the principles of what is claimed.

[0015] Reference will now be made in detail to several embodiments, examples of which are illustrated in the accompanying figures. It is noted that wherever practicable similar or like reference numbers may be used in the figures and may indicate similar or like functionality. The figures depict embodiments of the disclosed system (or method) for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles described herein.

UNIVERSAL SERIAL BUS (USB) CHARGER

[0016] FIG. (Figure) 1 is an illustration of a universal serial bus (USB) connector. The USB connector 100 allows communication between two devices, such as a computer and a peripheral device. Additionally, USB connectors can also be used to provide energy to the peripheral device. USB connector 100 includes first terminal 1 1 1 , second terminal 1 13, third terminal 1 15 and fourth terminal 1 17. Even though specific embodiments are described using a USB connector, other types of connectors that are capable of providing energy to a peripheral device may also be used.

[0017] In some embodiments, first terminal 1 1 1 and fourth terminal 1 17 are used for transferring power and second terminal 1 13 and third terminal 1 15 are used for transferring data. For instance, first terminal 1 1 1 may be used for transferring a supply voltage (e.g. V dd ) and fourth terminal 1 17 may be used for transferring a ground reference voltage (GND). Additionally, second terminal 1 13 may be used for transferring a differential data signal at plus or positive side and the third terminal 1 15 may be used for transferring a differential signal at minus or negative side.

[0018] In some embodiments, other types of USB connectors may be used instead of the one illustrated in FIG. 1. For example, a mini-USB or a micro-USB connector may be used instead of the USB connector of FIG. 1 .

[0019] FIG. 2 is a circuit diagram of a USB charger 200 that is capable of providing an output voltage at different voltage levels. In one embodiment, the USB charger 200 is capable of supplying an output voltage (V out ) at two different voltage levels. For instance, the USB charger 200 may be able to supply an output voltage of 5 V for normal USB charging, and may also be able to supply an output voltage of 12V for an accelerated USB charging. In other embodiments, the USB charger 200 is capable of supplying an output voltage V out at more than two different voltage levels.

[0020] In one embodiment, if no client device is connected to the USB charger 200, the USB charger outputs the lower voltage level (e.g., 5V). When a device is disconnected from the USB charger 200, and the output voltage level of the USB charger is not at the lower level when the client device is disconnected, the USB charger 200 lowers the output voltage to the lower voltage level.

[0021] USB charger 200 includes a USB connector 100, a bleeder circuit 203, an output voltage controller 205, and a charger controller 207. USB connector 100 allows the client device to receive power from the USB charger 200.

[0022] The output voltage controller 205 receives a signal from the client device 201 indicating which output voltage level the client device 201 can accept and sends a signal to the controller 207 to generate the desired output voltage. In some embodiments, the output voltage controller 205 senses the output voltage level of the USB charger 200 and determines an error value between the voltage level requested by the client device and the output voltage level of the USB charger 200. This error value may be provided to the controller 207 to produce the desired output voltage V ou t- If the client device 201 requests an output voltage Vout lower than the voltage level currently being outputted by the USB charge 200, the output voltage controller 205 may turn on and off bleeder 203 to decrease the output voltage level to the value requested by the client device 201. In some embodiments, the current voltage controller 205 senses the output voltage V ou t and turns off the bleeder 203 when the output voltage reaches the value requested by the client device 201.

[0023] Bleeder 203 creates a discharging path for output capacitor (C out ) to discharge. When the client device 201 requests for an output voltage level, lower than the current voltage level being outputted by the USB charger 200, the bleeder 203 is turned on by the output voltage controller 205 and the charge stored in the output capacitor C ou t is discharged, thus lowering the voltage of the output of the USB charger 200. Different embodiments of the bleeder 203 are illustrated in FIG.s 3A, 3B, and 3C. In some embodiments, the bleeder is turned on when a client device is disconnected and the output voltage of the USB charger is not at a lower voltage level (e.g. at 5V).

[0024] Controller 207 receives a V OUT SETTING signal from the output voltage controller 205 and turns on and off transistor Ti accordingly. In some embodiments, the V OUT SETTING signal is an error value between the output voltage level of the USB charger 200 and the voltage level requested by the client device 201. In other embodiments, the V OUT SETTING signal may be a signal indicating which output voltage level to generate. For instance, the V OUT SETTING may be a digital signal indicating that the client device requested a first voltage level (e.g. 5V) or a second voltage level (e.g. 12V). While in the specific embodiment of FIG. 2, the controller 207 controls the primary side of the USB charger 200, in some embodiments, other configurations that regulate the output voltage of the USB charger 200 may use the controller 207 to control the secondary side of the USB charger 200.

[0025] FIG. 3A, 3B, 3C. 3D, and 3E illustrate five different embodiments of the bleeder 203. The bleeder of FIG. 3 A includes resistor Rl and switch SI . In some embodiments, Rl is a physical resistor. In other embodiments, Rl is a resistance of switch SI when switch SI is closed. In yet other embodiments, resistor Rl includes the resistance of a physical resistor and a resistance of switch S 1 when switch S 1 is closed. Switch S 1 is controlled by output voltage controller 205. When switch SI is closed, a discharging path for C ou t is created through Rl . The discharging speed of C ou t can be determined based on the value of the resistance of resistor Rl . For instance, the output voltage may be

t

Vout = V 0 e c ° ut (1) where Vo is the value of the output voltage V ou t when switch S 1 is turned on. Therefore, the amount of time to reduce the output voltage from Vddi to Vdd2 is given by

After the output voltage reaches the desired voltage level, the output voltage controller may turn off switch SI to prevent further discharge of C out through Rl .

[0026] FIG. 4A illustrates a graph of the output voltage 401 of the bleeder circuit of FIG. 3 A as a function of time. At t 0 , when switch SI is closed, the output voltage starts lowering from a first voltage level Vddi to a second voltage level Vdd2- In one embodiment, the output voltage 401 reduces according to equation (1). Once the output voltage 401 reaches the second voltage level Vdd2, switch SI is opened and the output voltage 401 is held constant at Vdd2- After switch SI is opened, the voltage level of output voltage 401 may be sensed by output voltage controller 205 and output voltage controller 205 may generate the

corresponding V OUT SETTING signal. After switch SI is opened, any discharge of output capacitor C ou t may be done through a load connected via the USB connector 100.

[0027] The bleeder circuit of FIG. 3B includes resistor Rl, capacitor CI connected in parallel to resistor Rl, and switch SI . When switch SI is closed, part of the charge stored in Cout is transferred to CI . The amount of charge transferred to CI, and thus, the output voltage after the charge is transferred, is proportional to the capacitance of C ou t and the capacitance of CI . For instance, the output voltage (Vi) after the charge has been transferred to CI is given by C, out

x V 0

c, + CI (3) out

Furthermore, the amount of time to transfer the charge from C out to CI may depend on a value of the parasitic resistance of C ou t and/or CI .

[0028] Additionally, the charge stored in C ou t and the charge stored in CI is discharged through Rl . As a result, the output voltage of the USB charger 200 is given by

where Vi is the output voltage level after the charge has been transferred from C ou t to CI . Therefore, the amount of time to reduce the output voltage from Vi to Vdd2 is given by

[0029] FIG. 4B illustrates a graph of the output voltage 403 of the bleeder circuit of FIG. 3B as a function of time. At t 0 , when switch SI is closed, charge is transferred from output capacitor C out to capacitor CI of FIG. 3B, thus lowering the voltage level of the output voltage 403. As a result the output voltage 403 rapidly decreases from the first voltage level Vddi to an intermediate voltage level VI. In one embodiment, the charge transfer speed is determined based on the value of the parasitic resistance of output capacitor C ou t and the parasitic resistance of capacitor C 1. After the charge has been transferred from the output capacitor C ou t to the capacitor CI, the charge stored in output capacitor C ou t and capacitor CI is dissipated through resistor Rl lowering the output voltage from the intermediate voltage level Vi to the second voltage level V M 2- In one embodiment, the output voltage 403 reduces according to equation (4). Once the output voltage 403 reaches the second voltage level Vdd2, switch SI is opened and the output voltage 403 is held constant at Vw2. Since the rate 405 at which the output voltage 403 reduces from Vddi to Vi is proportional to the parasitic resistance of output capacitor C ou t and the parasitic resistance of capacitor C 1 , and the rate 407 at which the output voltage reduces from Vi to Vdd2 is proportional to resistor Rl, the rate 405 at which the output voltage 403 reduces from Vddi to Vi is usually larger than the rate 407 at which the output voltage reduces from Vi to Vw2. Thus, the bleeder circuit of FIG. 3B beneficially allows the output voltage of USB charger 200 to reduce faster compared to a USB charger using the bleeder circuit of FIG. 3 A.

[0030] The bleeder circuit of FIG. 3C includes resistor Rl, capacitor CI, switch SI connected in series with Rl, and switch S2 connected in series with CI. If output voltage controller 205 determines that the output voltage of the USB charger 200 is larger than the voltage requested by the client device 201, the output voltage controller 205 closes switch SI and S2. When switch S2 is closed, a portion of the charge stored in output capacitor C ou t is transferred to capacitor CI . The amount of charge transferred from C ou t to CI is proportional to the capacitance of output capacitor C ou t and capacitor CI . Additionally, when switch SI is closed, the charge stored in output capacitor C out and capacitor CI is discharged through Rl . Output capacitor C ou t and capacitor CI are discharged until the output voltage of the USB charger 200 reaches the voltage requested by client device 201. When the output voltage of the USB charger 200 reaches the voltage level requested by the client device 201, output voltage controller 205 opens switch SI to prevent output capacitor C out and capacitor CI to be discharged through Rl .

[0031] The bleeder circuit of FIG. 3D includes resistor Rl and R2, switch SI connected in series with Rl, and switch S2 connected in series with R2. Resistor Rl may have a small resistance and may be used to provide a fast discharge path to the output capacitor C out .

Resistor R2 may have a large resistance and may be used to provide a slow discharge path to the output capacitor C ou t.

[0032] The bleeder circuit of FIG 3E includes resistor Rl, switch SI connected in series with Rl, and resistor R2 with switch S2 connected in parallel with switch S2. Resistor Rl may have a small resistance and resistor R2 may have a large resistance. When switch SI is closed, resistor Rl provides a small resistance path for a fast discharge of output capacitor Cout- Additionally, when switch SI is opened and switch S2 is closed, the series combination of resistor Rl and resistor R2 provides a large resistance path for a slow discharge of output capacitor C out .

[0033] In the bleeder circuits of FIGS. 3D and 3E, if the output voltage controller 205 determines that the output voltage of the USB charger 200 is larger than the voltage requested by the client device 201, the output voltage controller 205 closes switch SI and switch S2. When the output voltage reaches a certain threshold voltage, the output voltage controller 205 opens switch S 1 and keeps switch S2 closed. When the output voltage of the USB charger 200 reaches the voltage level requested by the client device 201, output voltage controller 205 opens switch S2 to prevent output capacitor C ou t to be discharged through R2. Using a fast discharge resistor followed by a slow discharge resistor beneficially allows the bleeder circuit 203 to smoothly discharge output capacitor C ou t and reduces the amount of undershoot in the output voltage. Although the bleeder circuits of FIGS. 3D and 3E are described as having two resistors or two discharging stages, any number of resistors or discharging stages may be used depending on the amount of control desired for the discharging of the output voltage.

[0034] While the switches in the bleeder circuits 203 of FIGS. 3 A through 3E are described as being controlled based on the output voltage, the switches of the bleeder circuits 203 may also be controlled by a timer, a logic circuit, or any combination thereof. For instance, by using a timer, excessive discharging and excessive heating may be reduced if the target voltage is not reached as expected.

[0035] FIG. 5 illustrates a flow diagram for providing an output voltage at multiple levels, according to one embodiment. A determination is made whether a client device 201 is connected to the USB charger 200. If a client device is connected, a determination is made whether the client device is requesting an output voltage at a higher voltage level (e.g. 12V). If the client device is requesting an output voltage at a higher voltage level, the controller 207 is set 510 to generate an output voltage V ou t at the higher voltage level Vdd2- [0036] If the client device 201 requested an output voltage at a lower level, or a client device 201 is not connected to the USB charger 200, a determination is made whether the output voltage is at a higher voltage level. If the output voltage is at a higher level, the bleeder 203 is enabled 520 and the controller 207 is set 530 to generate an output voltage V ou t at the lower voltage level Y < m.

ADDITIONAL CONFIGURATION CONSIDERATIONS

[0037] Throughout this specification, plural instances may implement components, operations, or structures described as a single instance. Although individual operations of one or more methods are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Structures and functionality presented as separate components in example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements fall within the scope of the subject matter herein.

[0038] Certain embodiments are described herein as including logic or a number of components, modules, or mechanisms. Modules may constitute either software modules (e.g., code embodied on a machine-readable medium or in a transmission signal) or hardware modules. A hardware module is tangible unit capable of performing certain operations and may be configured or arranged in a certain manner. In example embodiments, one or more computer systems (e.g., a standalone, client or server computer system) or one or more hardware modules of a computer system (e.g., a processor or a group of processors) may be configured by software (e.g., an application or application portion) as a hardware module that operates to perform certain operations as described herein.

[0039] In various embodiments, a hardware module may be implemented mechanically or electronically. For example, a hardware module may comprise dedicated circuitry or logic that is permanently configured (e.g., as a special-purpose processor, such as a field programmable gate array (FPGA) or an application-specific integrated circuit (ASIC)) to perform certain operations. A hardware module may also comprise programmable logic or circuitry (e.g., as encompassed within a general-purpose processor or other programmable processor) that is temporarily configured by software to perform certain operations. It will be appreciated that the decision to implement a hardware module mechanically, in dedicated and permanently configured circuitry, or in temporarily configured circuitry (e.g., configured by software) may be driven by cost and time considerations.

[0040] The various operations of example methods described herein may be performed, at least partially, by one or more processors that are temporarily configured (e.g., by software) or permanently configured to perform the relevant operations. Whether temporarily or permanently configured, such processors may constitute processor-implemented modules that operate to perform one or more operations or functions. The modules referred to herein may, in some example embodiments, comprise processor-implemented modules.

[0041] The one or more processors may also operate to support performance of the relevant operations in a "cloud computing" environment or as a "software as a service" (SaaS). For example, at least some of the operations may be performed by a group of computers (as examples of machines including processors), these operations being accessible via a network (e.g., the Internet) and via one or more appropriate interfaces (e.g., application program interfaces (APIs).)

[0042] The performance of certain of the operations may be distributed among the one or more processors, not only residing within a single machine, but deployed across a number of machines. In some example embodiments, the one or more processors or processor- implemented modules may be located in a single geographic location (e.g., within a home environment, an office environment, or a server farm). In other example embodiments, the one or more processors or processor-implemented modules may be distributed across a number of geographic locations. [0043] Some portions of this specification are presented in terms of algorithms or symbolic representations of operations on data stored as bits or binary digital signals within a machine memory (e.g., a computer memory). These algorithms or symbolic representations are examples of techniques used by those of ordinary skill in the data processing arts to convey the substance of their work to others skilled in the art. As used herein, an "algorithm" is a self-consistent sequence of operations or similar processing leading to a desired result. In this context, algorithms and operations involve physical manipulation of physical quantities. Typically, but not necessarily, such quantities may take the form of electrical, magnetic, or optical signals capable of being stored, accessed, transferred, combined, compared, or otherwise manipulated by a machine. It is convenient at times, principally for reasons of common usage, to refer to such signals using words such as "data," "content," "bits," "values," "elements," "symbols," "characters," "terms," "numbers," "numerals," or the like. These words, however, are merely convenient labels and are to be associated with appropriate physical quantities.

[0044] Unless specifically stated otherwise, discussions herein using words such as "processing," "computing," "calculating," "determining," "presenting," "displaying," or the like may refer to actions or processes of a machine (e.g., a computer) that manipulates or transforms data represented as physical (e.g., electronic, magnetic, or optical) quantities within one or more memories (e.g., volatile memory, non- volatile memory, or a combination thereof), registers, or other machine components that receive, store, transmit, or display information.

[0045] As used herein any reference to "one embodiment" or "an embodiment" means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. The appearances of the phrase "in one embodiment" in various places in the specification are not necessarily all referring to the same embodiment.

[0046] Some embodiments may be described using the expression "coupled" and "connected" along with their derivatives. For example, some embodiments may be described using the term "coupled" to indicate that two or more elements are in direct physical or electrical contact. The term "coupled," however, may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other. The embodiments are not limited in this context.

[0047] As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having" or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

[0048] In addition, use of the "a" or "an" are employed to describe elements and components of the embodiments herein. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.

[0049] Upon reading this disclosure, those of skill in the art will appreciate still additional alternative structural and functional designs for a system and a process for providing a USB power supply voltage at multiple voltage levels through the disclosed principles herein. Thus, while particular embodiments and applications have been illustrated and described, it is to be understood that the disclosed embodiments are not limited to the precise construction and components disclosed herein. Various modifications, changes and variations, which will be apparent to those skilled in the art, may be made in the arrangement, operation and details of the method and apparatus disclosed herein without departing from the spirit and scope defined in the appended claims.