Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PREFABRICATED IN-LINE MEASUREMENT DEVICE
Document Type and Number:
WIPO Patent Application WO/2014/166734
Kind Code:
A1
Abstract:
Disclosed is a prefabricated in-line measurement device (2) comprising a first measurement sensor (4) for spectometrically determining the concentration of at least one component of a measured substance by means of an optical measurement principle, wherein the first measurement sensor is integrated into a measurement tube, which comprises a pipeline section that can be connected to a pipeline system.

Inventors:
ALTENDORF MATTHIAS (DE)
SEILER CHRISTIAN (DE)
Application Number:
PCT/EP2014/055982
Publication Date:
October 16, 2014
Filing Date:
March 25, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ENDRESS & HAUSER GMBH & CO KG (DE)
International Classes:
G01F1/66; G01N21/35
Domestic Patent References:
WO2001079830A22001-10-25
WO2012000645A12012-01-05
WO2006074850A22006-07-20
Foreign References:
US20020029003A12002-03-07
US20020108437A12002-08-15
US20080288182A12008-11-20
US3595078A1971-07-27
US20080288182A12008-11-20
DE102011006971A12012-10-11
Attorney, Agent or Firm:
ANDRES, ANGELIKA (DE)
Download PDF:
Claims:
Patentansprüche

1. Vorgefertigtes In-Line-Messgerät (2) umfassend einen ersten Messaufnehmer (4) zur, vorzugsweise spektrometrischen, Bestimmung der Konzentration wenigstens einer Komponente eines Messstoffs vermittels eines optischen Messprinzips, wobei der erste Messaufnehmer in ein Messrohr, welches einen Rohrleitungsabschnitt umfasst, integriert ist, welcher Rohrleitungsabschnitt an ein Rohrleitungssystem anschließbar ist.

2. Vorgefertigtes In-Line-Messgerät (2) nach dem vorherigen Anspruch,

wobei das vorgefertigte In-Line-Messgerät einen zweiten Messaufnehmer, der in das

Messrohr integriert ist, zur Bestimmung einer Durchflussgeschwindigkeit, eines Volumen- und/oder Massedurchflusses umfasst.

3. Vorgefertigtes In-Line-Messgerät (2) nach Anspruch 1 oder 2,

wobei in dem Rohrleitungsabschnitt wenigstens ein Fenster (F1 , F2) vorgesehen ist, welches für Wellenlängen im optischen Bereich durchlässig ist, und

welches Fenster (F1 , F2) dazu dient, ein optisches Messsignal, das zur Bestimmung der Konzentration der wenigstens einen Komponente des Messstoffs dient, in das Lumen des Messrohr, welches zum Führen des Messstoffs dient, einzukoppeln bzw. auszukoppeln.

4. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das Fenster (F1 , F2) fluchtend zur Wandung des Rohrleitungsabschnitts (1 ) angeordnet ist. 5. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das Fenster (F1 , F2) zum Einkoppeln des optischen Signals in das Lumen, d.h. den inneren Querschnitt, des Rohrleitungsabschnitts (1 ) angrenzt.

6. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das Fenster (F1 , F2) eine funktionalisierte Oberfläche aufweist, wobei aneinander angrenzende Bereiche der funktionalisierten Oberfläche sich hinsichtlich ihres

Adsorptionsverhaltens voneinander unterscheiden.

7. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das In-Line Messgerät (2) einen Reinigungsbetrieb aufweist, in dem das Fenster (F1 , F2) beheizbar ist.

8. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das In-Line Messgerät (2) einen Reinigungsbetrieb aufweist, in dem das Fenster (F1 , F2) in mechanische Schwingung versetzbar ist. 9. Vorgefertigtes In-Line-Messgerät (2) nach einem der Ansprüche 2 bis 8, wobei das InLine Messgerät eine Messelektronik umfasst, die zur Auswertung, Aufbereitung und/oder Messdatenerzeugung, der von dem ersten und/oder dem zweiten Messaufnehmer (4, 7) aufgenommenen Messsignale, dient. 10. Vorgefertigtes In-Line-Messgerät (2) nach einem der Ansprüche 2 bis 9, wobei das Messsignal des zweiten Messaufnehmer (4) oder ein daraus abgeleiteter Messwert dazu dient, das von dem ersten Messaufnehmer (7) gelieferte Messsignal bzw. den

entsprechenden Messwert, vorzugsweise anhand hinterlegter Daten, zur korrigieren, um die Konzentration der wenigstens einen Komponente zu bestimmen.

1 1. Vorgefertigtes In-Line-Messgerät (2) nach einem der Ansprüche2 bis 1 1 , wobei anhand wenigstens eines von dem ersten Messaufnehmer (7) aufgenommenen

Messsignals bzw. Messwerts der Konzentration wenigstens einer Komponente des Messstoffs der Messwert der Durchflussgeschwindigkeit, des Volumendurchflusses und/oder des Massedurchflusses, vorzugsweise anhand hinterlegter Daten, berechnet und/oder korrigiert wird.

12. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei das In-Line Messgerät (2) eine Vorrichtung zur Strömungskonditionierung enthält, um das Durchflussprofil des im Betrieb durch den Rohrleitungsabschnitt (1 ) fließenden Messstoffs zu beeinflussen.

13. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei es sich bei dem zweiten Messaufnehmer (4) um einen gem. dem Ultraschallprinzip arbeitenden Messaufnehmer oder um einen gem. dem Thermischen Messprinzip arbeitenden Messaufnehmer handelt.

14. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei es sich bei dem ersten Messaufnehmer (7) um einen TDLAS handelt oder wobei es sich bei dem ersten Messaufnehmer (7) einen Messaufnehmer zur Raman-Spektroskopie handelt.

15. Vorgefertigtes In-Line-Messgerät (2) nach einem der vorherigen Ansprüche, wobei die Konzentration der Komponenten des Messstoffs durch auswerten der Absorptionskennlinien beim Durchfahren des Messbereichs des ersten Messaufnehmers (7) ermittelt wird.

Description:
Vorgefertigtes In-Line Messgerät

Die Erfindung bezieht sich auf ein vorgefertigtes In-Line Messgerät. Zur Bestimmung der Zusammensetzung von Messstoffen, wie z.B. Gasen, ist es aus dem Stand der Technik bekannt geworden, optische Messverfahren wie bspw. die sog.

Tunable Diode Laser Absorption Spectroscopy zu verwenden. Eine zu diesem Zweck bestimmte Vorrichtung ist aus der Offenlegungsschrift US 2008/0288182 A1 bekannt geworden. Dort wird vorgeschlagen, Gas aus einer Rohrleitung zu entnehmen und einem Sensor zur Bestimmung der Konzentration einer Komponente des entnommenen Gases zuzuführen.

Ferner sind In-Line Messgeräte zur Durchflussmessung, bei denen der Messaufnehmer in ein Messrohr integriert ist bzw. bei dem das Messrohr Teil des Durchflussmessgerätes ist, sind aus dem Stand der Technik bspw. aus der WO 2006074850 A1 und der DE

10201 1006971 A1 sowie aus einer Vielzahl anderer Veröffentlichungen bekannt geworden.

Ein Durchflussmessgerät umfasst bei derartigen In-Line Bauformen zumindest einen Messaufnehmer, der in das Messrohr integriert ist, so dass zur Inbetriebnahme des InLine Messgerätes, das Messrohr nur in ein bestehendes Rohrleitungssystem eingebaut werden muss. Dies geschieht oftmals, indem das Messrohr über entsprechende

Prozessanschlüsse zw. zwei Rohrleitungsabschnitte eingespannt wird. Aufgrund der unzureichenden Kenntnis der Zusammensetzung eines Messstoffes oder des nicht bekannten Strömungsprofils ist jedoch eine nur ungenaue Bestimmung der gewünschten Messgröße möglich. Dies trifft einerseits auf die Durchflussmessung zu, bei der bspw. der Durchfluss, bspw. anhand der Strömungsgeschwindigkeit des Messstoffs, der Volumendurchflusses und/oder der Massendurchflusses des Messstoffs ermittelt wird, andererseits ergeben sich, insbesondere durchflussabhängige, Messungenauigkeiten bei der Bestimmung einer anderweitigen Messgröße des Messstoffs wie bspw. der

Konzentration einer Komponente des Messstoffs.

Zudem ist es problematisch und unter Umständen aufwendig, mehrere Messaufnehmer, die z.B. in unterschiedliche Messgeräte integriert sind, in eine Rohrleitung einzubauen und diese aufeinander abzustimmen, insbesondere zu kalibrieren. Daher bedingt das Nachrüsten einer Anlage mit einem weiteren Messaufnehmer oftmals eine erneute Kalibrierung und somit einen unter Umständen längeren Anlagenstillstand. Außerdem erfordert der nachträgliche Einbau eines Messaufnehmers insbesondere eines auf einem optischen Messprinzip beruhenden Messaufnehmers oder eines anderen Messaufnehmers zur Bestimmung der Konzentration einer Komponente des Messstoffs in ein bestehendes Rohrleitungssystem oftmals nicht nur einen Stillstand der Anlage sondern auch eine Kalibrierung vor Ort sowie unter Umständen den Einsatz dafür erforderlicher Fluide, wie bspw. bestimmter Flüssigkeiten oder Gase.

Es ist somit Aufgabe der vorliegenden Erfindung, die Nachteile des Stands der Technik zu überwinden.

Die Aufgabe wird durch ein vorgefertigtes In-Line-Messgerät umfassend einen ersten Messaufnehmer zur, vorzugsweise spektrometrischen, Bestimmung der Konzentration wenigstens einer Komponente eines Messstoffs vermittels eines optischen Messprinzips gelöst, wobei der erste Messaufnehmer in ein Messrohr, welches einen

Rohrleitungsabschnitt umfasst, integriert ist, welcher Rohrleitungsabschnitt an ein Rohrleitungssystem anschließbar ist.

Das vorgeschlagene In-Line-Messgerät wird also werksseitig, bspw. vom Hersteller des Messgerätes, zusammengesetzt, so dass es nur noch das Messrohr des Messgerätes in ein bereits bestehendes Rohrleitungssystem eingesetzt werden muss. Ferner kann auch eine Kalibrierung des Messgeräts werksseitig erfolgen. Die entsprechenden

Kalibrierdaten können in dem Messgerät hinterlegt werden. Das Messgerät kann daher bereits zusammengesetzt in eine Anlage, insbesondere an eine dafür vorgesehene Messstelle, gebracht und besonders einfach in Betrieb genommen werden.

Bei dem vorgeschlagenen vorgefertigten In-Line-Messgerät handelt es sich bevorzugt um ein Messgerät zur Gasanalyse, wobei die Konzentration wenigstens einer Komponente des Gases anhand eines spektrometrischen Verfahrens ermittelt wird. Die Bestandteile des Gases bzw. des Gasgemisches können somit bestimmt werden. Es wird also in einer Ausführungsform der Erfindung ein vorgefertigtes In-Line Gas-Spektrometer

vorgeschlagen.

Bei dem Messrohr bzw. dem Rohrleitungsabschnitt handelt es sich besonders bevorzugt um einen Rohrleitungsabschnitt in Form um eines sog. Spoolpiece, auch als Pipe Spool bezeichnet, das an seinen Enden Verbindungsmittel, wie bspw. Flansche oder

Anschläge, aufweist, die zum Anschließen des Rohrleitungsabschnitts an ein

Rohrleitungssystem dienen. Das Problem der Ausrichtung des ersten Messaufnehmers und/oder der Ausrichtung des Messpfads zwischen einer Sende- und/oder

Empfangseinheit des ersten Messaufnehmers kann somit beseitigt werden, da der Messaufnehmer samt Messgerät vorgefertigt wird. Zur Inbetriebnahme muss das vorgefertigte Messgerät nun nur noch an ein Rohrleitungssystem angeschlossen werden.

In einer Ausführungsform umfasst das vorgefertigte In-Line-Messgerät einen zweiten Messaufnehmer, der in das Messrohr integriert ist, und der zur Bestimmung einer

Durchflussgeschwindigkeit, eines Volumen- und/oder Massedurchflusses dient. Der erste und der zweite Messaufnehmer können somit aufeinander abgestimmt und/oder gemeinsam kalibriert werden. In einer Ausführungsform umfasst das vorgefertigte In-Line-Messgerät einen

Rohrleitungsabschnitt, der zum Führen des Messstoffs dient, in welchem

Rohrleitungsabschnitt ein Fenster vorgesehen ist, welches für Wellenlängen im optischen Bereich durchlässig ist, und welches Fenster dazu dient, ein optisches Messsignal, das zur Bestimmung der Konzentration der wenigstens einen Komponente des Messstoffs dient, in den Messstoff einzukoppeln. Es können auch zwei Fenster vorgesehen sein, eines für eine Sendeeinheit, das andere für eine Empfängereinheit. Anstelle eines zweiten Fensters kann auch ein Reflektor wie bspw. ein Spiegel für das optische

Messsignal des ersten Messaufnehmers dienen. Das optische Messsignal kann bspw. durch das Messrohr und den im Betrieb darin geführten Messstoff entlang eines, vorzugsweise geradlinigen, Messpfads durch das Messrohr hindurch geleitet werden. Zudem kann an einem Ende des Messpfads eine Empfangseinheit zum Empfangen des optischen Signals angeordnet sein, welche Empfangseinheit bspw. ebenfalls über ein in das Messrohr integriertes Fenster mit dem Lumen des Messrohrs, in dem im Betrieb der Messstoff geführt wird, befindet koppeln, um das optische Messsignal zu empfangen. Andererseits kann der Messpfad entlang eines messtechnisch optimierten Winkels durch das Messrohr hindurch verlaufen. Ferner kann bspw. ein Spiegel vorgesehen sein, der das optische Messsignal zurück zum Sender reflektiert.

In einer weiteren Ausführungsform ist das wenigstens eine Fenster fluchtend zur Wandung des Messrohrs angeordnet. Somit kann eine nicht-invasive bzw. minimal invasive Bauform erreicht werden, so dass der im Messrohr geführte Messstoff beim durchfließe des Messrohrs nicht behindert wird.

In einer weiteren Ausführungsform ist der Messpfad des ersten Messaufnehmers und der/die Messpfade für die Durchflussmessung in einem Winkel zueinander angeordnet, so dass sie sich nicht gegenseitig behindern und die Baugrösse so klein wie möglich gehalten werden kann. In einer weiteren Ausführungsform ist das In-Line Messgerät über einen

Prozessanschluss an einem Ende des Rohrleitungsabschnitts in den Verlauf eines Rohrleitungssystems einspannbar. Bspw. können an den beiden Messrohrenden Flansche vorgesehen sein, um einen Anschluss an ein Rohrleitungssystem zu ermöglichen. Aus dem Stand der Technik sind auch Bauformen bekannt geworden bei denen ein Messrohr über seine Enden, über die bspw. Hülse gestülpt werden, mit einem Rohrleitungssystem verbunden wird.

In einer weiteren Ausführungsform grenzt das Fenster zum Einkoppeln des optischen Signals an das Lumen, d.h. den inneren Querschnitt, des Rohrleitungsabschnitts an.

Vorzugsweise grenzt das Fenster zum Auskoppeln des optischen Messsignals ebenfalls an das Lumen des Messrohrs an.

In einer weiteren Ausführungsform weist das Fenster eine funktionalisierte Oberfläche auf, wobei sich aneinander grenzende Bereiche dieser Oberfläche sich hinsichtlich ihres Adsorptionsverhaltens voneinander unterscheiden. Dadurch kann eine ggf. in dem Messrohr an dem Fenster auftretenden Kondensation von Flüssigkeit verhindert werden, bzw. der Strahlengang des optischen Messsignals frei von Kondensat gehalten werden. Bspw. können diese Bereiche ringförmig sein, so dass ein Kondensat stets nach außen, d.h. in Richtung der Wandung des Messrohrs abtransportiert wird.

Bevorzugt ist das Fenster Teil eines Einschraubsensors. Der erste Messaufnehmer, bei dem es sich wie bereits gesagt um einen optischen Sensor handelt, wird bspw. in eine vorgesehene Öffnung des Messrohrs geschraubt, so dass er mit dem Lumen koppelt. Das Fenster kann hierbei im optischen Sensor integriert sein. Alternativ ist das Fenster in die Wandung des Messrohrs integriert und der Sensor, d.h. die optische Sende- und/oder Empfangseinheit, kann koppelnd mit dem Fenster verbunden werden.

In einer weiteren Ausführungsform weist das In-Line-Messgerät einen Reinigungsbetrieb auf, in dem das Fenster beheizbar ist. Bspw. können Heizdrähte verwendet werden, die dazu dienen, das Fenster in einem Reinigungsbetrieb von einer Ablagerung zu befreien. Alternativ kann die Temperatur des Fensters an diejenige des Messstoffs angepasst werden, so dass eine Kondensation des Messstoffs vermieden wird. In einer weiteren Ausführungsform weist das In-Line-Messgerät einen Reinigungsbetrieb auf, in dem das Fenster in mechanische Schwingung versetzbar ist.

In einer weiteren Ausführungsform umfasst das In-Line Messgerät eine Messelektronik, die zur Auswertung, Aufbereitung und/oder Messdatenerzeugung, der von dem ersten und/oder dem zweiten Messaufnehmer aufgenommenen Messsignale, dient. Die

Messelektronik dient also dazu, sowohl die Signale des ersten Messaufnehmers als auch die Signale des zweiten Messaufnehmers zu verarbeiten. Es können auch verschiedene Betriebsmodi vorgesehen sein, um zeitweise entweder nur die Signale des ersten Messaufnehmers oder nur die Signale des zweiten Messaufnehmers zu verarbeiten. In der Ausführungsform des vorgeschlagenen vorgefertigten In-Line-Messgerätes bei dem nur ein erster Messaufnehmer Bestandteil des Messgerätes ist, kann ebenfalls eine Messelektronik vorgesehen sein, die dann dazu dient, nur die Messsignale dieses ersten Messaufnehmers zu verarbeiten.

In einer weiteren Ausführungsform liefert die Messelektronik anhand der Messsignale des ersten und des zweiten Messaufnehmers einen Wert eines Energiegehalts den

Rohrleitungsabschnitt durchströmenden Messstoffs. In einer weiteren Ausführungsform dient das Messsignal des zweiten Messaufnehmers zur Bestimmung der Durchflussgeschwindigkeit, des Volumen- und/oder

Massedurchflusses dazu, das von dem ersten Messaufnehmer gelieferte Messsignal bzw. den entsprechenden Messwert, vorzugsweise anhand hinterlegter Daten, zu korrigieren, um die Konzentration der wenigstens einen Komponente, insbesondere genauer als bei herkömmlichen Analysegeräten dieser Art, zu bestimmen.

Bspw. kann anhand eines Messwerts des zweiten Messaufnehmers zumindest ein Messwert des ersten Messaufnehmers anhand von Erfahrungs- oder Kalibrierwerten korrigiert werden, weil z.B. bekannt ist, dass bei einer bestimmten

Durchflussgeschwindigkeit oder bei einem bestimmten Massendurchfluss ein besonders großer Messfehler oder eine Messabweichung in eine bestimmte Richtung vorliegt. Zu diesem Zweck kann bspw. eine Speichereinheit vorgesehen sein, die in das Messgerät integriert ist oder entfernt von dem Messgerät angeordnet ist, mit dem Messgerät aber in einer Kommunikationsverbindung steht. Zusätzlich oder alternativ kann auch eine

Rechenvorschrift, bspw. in Form eines Korrekturpolynoms, vorgegeben oder auch hinterlegt sein, in der der Durchfluss als Variable enthalten ist. Somit kann ein Messwert des ersten Messaufnehmer anhand eines Messwerts des zweiten Messaufnehmers bestimmt werden. In einer weiteren Ausführungsform wird anhand wenigstens eines von dem ersten Messaufnehmer aufgenommenen Messsignals bzw. Messwerts der Konzentration wenigstens einer Komponente des Messstoffs der Messwert der

Durchflussgeschwindigkeit, des Volumendurchflusses und/oder des Massedurchflusses, vorzugsweise anhand hinterlegter Daten, berechnet und/oder korrigiert. Bspw. können anhand von in ebenfalls einer Speichereinheit hinterlegten Daten die einer bestimmten gemessenen Konzentration zugehörigen Messstoffeigenschaften entnommen werden. Diese können dann zur Bestimmung oder Korrektur des Messwert und/oder Messsignals des zweiten Messaufnehmers verwendet werden. Bspw. kann im Falle eines thermischen Durchflussmessaufnehmers anhand des von dem beheizbaren Temperaturfühler gelieferten Messsignals und der ermittelten Messstoffeigenschaften, wie bspw. die dynamische Viskosität, die thermische Leitfähigkeit, die Wärmeleitfähigkeit, etc. (die aus der ermittelten Konzentration der wenigstens einer Komponente des Messstoffs abgeleitet werden) der Massend urchfluss mit verbesserter Genauigkeit ermittelt werden.

In einer weiteren Ausführungsform enthält das In-Line Messgerät eine Vorrichtung zur Stromungskonditionierung, um das Durchflussprofil des im Betrieb durch den

Rohrleitungsabschnitt fließenden Messstoffs zu beeinflussen. Diese

Stromungskonditionierung kann stromaufwärts von dem ersten Messaufnehmer und dem zweiten Messaufnehmer angeordnet sein. Dadurch können gleichbleibende

Messverhältnisse im Bereich des ersten Messaufnehmers geschaffen werden, welcher erste Messaufnehmer bevorzugt zur Bestimmung der Konzentration wenigstens einer Komponente anhand eines optischen Messprinzips dient. In einer weiteren Ausführungsform handelt es sich bei dem zweiten Messaufnehmer um einen gem. dem Ultraschallprinzip arbeitenden Messaufnehmer.

In einer weiteren Ausführungsform handelt es sich bei dem zweiten Messaufnehmer um einen gem. dem Thermischen Messprinzip arbeitenden Messaufnehmer.

In einer weiteren Ausführungsform handelt es sich beim ersten Messaufnehmer um einen gem. dem Laseranemometrischen Messprinzip (LDA: Laser-Doppler-Anemometrie) arbeitenden Messaufnehmer. In einer weiteren Ausführungsform handelt es sich bei dem ersten Messaufnehmer um einen TDLAS. TDLAS steht dabei für Tunable Diode Laser Absorption Spectroscopy. In einer weiteren Ausführungsform wird Konzentration der Komponenten des Messstoffs durch Auswerten der Absorptionskennlinien beim Durchfahren des Messbereichs des ersten Messaufnehmers ermittelt. Dadurch können die Konzentrationen sämtlicher Komponenten bestimmt werden, die eine charakteristische Absorptionskennlinie im Messbereich des ersten Messaufnehmers aufweisen.

Vorteilhaft wird hier die Verwendung von Halbleiter-Diodenlasern vorgeschlagen, deren Wellenlänge sich selbst in definierter Bandbreite , z.B. mittels Temperaturänderung, einstellen oder durch externe Maßnahmen z.B. mittels eines MEMS Systems verändern lässt. Als Beispiel können hier sogenannte External Cavity Diodenlaser, Distributed Bragg Reflector Laser oder Quantum Kaskadenlaser genannt werden. Alternativ kann es sich bei dem ersten Messaufnehmer auch um einen Messaufnehmer zur Raman-Spektroskopie handeln. Die Raman-Spektroskopie kann auch zur

Bestimmung der Zusammensetzung des Messstoffs, das heißt der Konzentration einer Komponente des Messstoffs herangezogen werden. Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:

Fig. 1 : eine schematische Darstellung eines In-Line Messgerätes.

Figur 1 zeigt eine schematische Darstellung eines vorgefertigten In-Line Messgeräts 2 mit einem Messaufnehmer 4 in Form eines auf dem Ultraschallprinzip beruhenden

Durchflussmessaufnehmers und einem Messaufnehmer 7 in Form eines auf dem

Messprinzip der Laserspektroskopie basierenden Messaufnehmers zur Ermittlung der Konzentration wenigstens einer Komponente eines durch das Messrohr strömenden Messstoffs.

Der erste und der zweite Messaufnehmer 4, 7 sind dabei in das Messrohr 1 bzw. dessen Wandung integriert. Das Messrohr 1 weist zur Aufnahme des ersten bzw. des zweiten Messaufnehmers 4, 7 entsprechende Anschlüsse 3 auf. Bspw. kann wie in Figur 1 gezeigt, die entsprechenden Messaufnehmer 4, 7 in einen entsprechenden Anschluss 3 am Messrohr 1 geschraubt werden.

Der erste und der zweite Messaufnehmer 4, 7 sind dabei bevorzugt an eine gemeinsame Signal- bzw. Datenverarbeitungseinheit, nicht gezeigt, angeschlossen, so dass die Messsignale bzw. Messwerte an diese Signal- bzw. Datenverarbeitungseinheit übertragbar sind und dort abwechselnd oder gleichzeitig verarbeitet werden können. Entsprechende Anschlüsse zur Signalübertragung können dabei an den

Messaufnehmern 4, 7 vorgesehen sein.

Das In-Line Messgerät wird werkseitig Zusammengesetzt und muss nur noch in ein bestehendes Rohrleitungssystem integriert werden.

Vermittels des Ultraschall-Durchflussmessaufnehmers 4 kann somit bspw. die mittlere Durchflussgeschwindigkeit des Messstoffs bspw. vermittels der Signal- bzw.

Datenverarbeitungseinheit ermittelt werden. Ferner kann durch den Messaufnehmer 7 zur Bestimmung der Konzentration wenigstens einer Komponente des Messstoffs die Zusammensetzung des Messstoffs oder eben die Konzentration der wenigstens einen Komponente ermittelt werden. Vorzugsweise werden der Volumendurchfluss bzw. die (mittlere)

Durchflussgeschwindigkeit und/oder der Massendurchfluss und die Konzentration der Komponente/Komponenten des Messstoffs vermittels des Messaufnehmers 7 annähernd zum selben Zeitpunkt bestimmt, wie das Messsignal bzw. der Messwert der

Durchflussgeschwindigkeit bzw. des Volumen- und/oder Massedurchflusses durch den Messaufnehmer 4.

Somit können für einen gegebenen durch das Messrohr 1 fließenden Messstoff sowohl dessen Durchflussgeschwindigkeit bzw. ein daraus abgeleiteter Wert oder auch der Volumendurchfluss und/oder der Massendurchfluss als auch dessen Komposition, d.h. Zusammensetzung, bestimmt werden - und zwar für genau eine bestimmte Menge des Messstoffs, nämlich diejenige, die sich zum Zeitpunkt der Messung sich in dem Messrohr befindet.

Damit ist eine hochgenaue und an die heutigen Bedürfnisse angepasste Messung der gewünschten Messgröße möglich, da heutzutage oftmals Messstoffe mit sich ändernder Konzentration einer Komponente verarbeitet werden. Wie bspw. bei der Förderung oder dem Transport von Gasen.

Ferner ist es eine weitere Idee der vorliegenden Erfindung anhand der Messsignale bzw. der Messwerte des Messaufnehmers 7 das/den von dem Messaufnehmer 4 gelieferte Messsignal/Messwert zu korrigieren, bzw. das/den von dem zweiten Messaufnehmer gelieferten Messsignal/Messwert zur Berechnung der Durchflussgeschwindigkeit, des Volumen- bzw. Massendurchflusses zu verwenden. Anhand der ermittelten Konzentration einer oder mehrere Komponenten des Messstoffs können bspw. in einer Datenbank oder einer sonstigen Speichereinheit die zu dieser Konzentration zugehörigen chemischen und/oder physikalischen Eigenschaften des Messstoffs ermittelt werden. Bspw. kann in Abhängigkeit der Zusammensetzung des Messstoffs die thermische Leitfähigkeit, die Viskosität, die Dichte, die Wärmeleitfähigkeit oder eine andere für die Auswertung und Messwertberechnung erforderliche Größe bestimmt werden, indem diese Werte anhand der Konzentration(en) der Komponenten des Messstoffs berechnet oder aus einer Speichereinheit abgerufen werden. Diese Messstoffeigenschaften können anschließend zur Berechnung oder Korrektur der gewünschten Messgröße verwendet werden.

Außerdem ist es möglich, anhand des ermittelten Durchflussmesssignals, wie bspw. der (mittleren) Durchflussgeschwindigkeit, des Volumendurchflusses und/oder des

Massedurchflusses das Messsignal/den Messwert des Messaufnehmers 7 zu korrigieren oder zur Berechnung desselben zu verwenden. Bspw. ist es aus dem Stand der Technik bekannt, dass auf einem optischen Messprinzip beruhende Messaufnehmer im Fall eines bewegten Messstoffs einer Messwertverfälschung unterliegt. Durch die kombinierte Bauform des vorgeschlagenen In-Line Messgerätes 2 kann nun anhand des

Durchflussmesssignals eine entsprechende Korrektur falls erforderlich, bspw. ab einem gewissen Schwellwert des gemessenen Durchflusses, erfolgen.

Anstelle des in Figur 1 gezeigten auf dem Ultraschall-Messprinzip beruhenden

Messaufnehmers 4 kann auch ein auf einem anderen Messprinzip beruhender

Messaufnehmer 4 verwendet werden. Bspw. kann ein auf dem Thermischen

Durchflussmessprinzip beruhender Messaufnehmer verwendet werden, oder ein auf dem magnetisch-induktiven Messprinzip beruhender Messaufnehmer verwendet werden. Auch die Verwendung anderer hier nicht genannter Messaufnehmer ist denkbar.

Bei dem Messaufnehmer 7 handelt es sich bevorzugt um einen Messaufnehmer, der auf einem optischen Messprinzip beruht, vorzugsweise mit einem Sender LD und einem Empfänger PD eines optischen Messsignals. Das optische Messsignal wird entlang eines Messpfads, in Figur 1 durch die gestrichelte Linie zwischen Sender LD und Empfänger PD wiedergegeben, zwischen dem Sender LD und dem Empfänger PD zumindest durch einen Teil des Lumens, das im Messbetreib zumindest teilweise von dem Messstoff gefüllt ist, geführt.

In Figur 1 ist dabei eine sog. Cross Duct Ausführung gezeigt, bei der das optische Messsignal von einer Seite des Messrohrs 1 auf die gegenüberliegende Seite übertragen wird. Es ist jedoch auch möglich eine sog. Messlanze zu verwenden. Es ist auch möglich das Messrohr entlang eines Messpfads zu durchstrahlen, der kürzer ist als der

Durchmesser des Messgeräts. Handelt es sich bei dem Messstoff um ein Gas, kann eine Gasanalyse mittels multispektralen pyroelektrischen Infrarot-Detektoren vorgenommen werden.

Es ist natürlich auch möglich, dass nur der auf einem optischen Messprinzip beruhende Messaufnehmer 7 zur Bestimmung der Konzentration der wenigstens einen Komponente des Messstoffs in das Messrohr integriert ist. Der Vorteile der Erfindung und der Ausführungsform des in Figur 1 gezeigten Ausführungsbeispiels sowie der zugehörigen Beschreibung gelten dann entsprechend.

Bezugszeichenliste

1 M ess roh r/M ess roh rwa nd u ng

2 In-Line Messgerät

3 Anschluss für den ersten oder zweiten Messaufnehmer

4 zweiter Messaufnehmer

7 erster Messaufnehmer

17 Messrohrachse

LD Sendeeinheit für optisches Signal

PD Empfangseinheit für optisches Signal

S Strömungsrichtung

F1 Erstes Fenster

F2 Zweites Fenster