Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS AND APPARATUS FOR SEPARATING ENTRAINED AMINES FROM A GAS STREAM
Document Type and Number:
WIPO Patent Application WO/2016/068699
Kind Code:
A1
Abstract:
The present invention relates to a process for removing acid gases from a gas stream enriched in acid gases, wherein: (a) the gas stream enriched in acid gases is contacted in an absorption zone with an absorption medium, wherein the absorption medium is an aqueous medium comprising an amine, to form a gas stream depleted in acid gases which comprises an entrained amine and an absorption medium enriched in acid gases; and (b) treating the gas stream depleted in acid gases which comprises an entrained amine in a first scrubbing zone with a first scrubbing medium, wherein the first scrubbing medium is an aqueous medium comprising an amine, the amount of amine comprised by the scrubbing medium being about 0.1 to about 50.0 wt.%, wherein the aqueous medium is saturated with carbon dioxide such that at least 75 wt.% of the amine, based on the total amount of amine comprised by the aqueous medium, is in its carbamate or carbonate form, to form a gas stream depleted in acid gases and in amine and a first scrubbing medium enriched in amine.

Inventors:
JURG IMMANUEL (NL)
Application Number:
PCT/NL2015/050744
Publication Date:
May 06, 2016
Filing Date:
October 27, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CARBONORO B V (NL)
International Classes:
B01D53/14; F23J15/04
Foreign References:
US20140060328A12014-03-06
US20140013945A12014-01-16
EP2338583A22011-06-29
US5618506A1997-04-08
EP2514509A12012-10-24
US7074258B22006-07-11
US7601315B22009-10-13
US20100288126A12010-11-18
US20130011314A12013-01-10
US6117404A2000-09-12
US8523979B22013-09-03
US20110308389A12011-12-22
US8529857B22013-09-10
US20140060328A12014-03-06
US20140013945A12014-01-16
US20110158891A12011-06-30
Other References:
J. ZHANG ET AL., CHEM. ENG. TECHNOL., vol. 34, 2011, pages 1481
J. ZHANG ET AL., CHEM. ENG. RES. DES., vol. 90, 2012, pages 743
T. CHENG ET AL., J. CHEM. INF. MODEL, vol. 47, 2007, pages 2140
J. SANGSTER, J. PHYS. CHEM. REF. DATA, vol. 18, 1989, pages 111
See also references of EP 3212309A1
Attorney, Agent or Firm:
NEDERLANDSCH OCTROOIBUREAU (LS The Hague, NL)
Download PDF:
Claims:
Claims

1. A process for removing acid gases from a gas stream enriched in acid gases, wherein:

(a) the gas stream enriched in acid gases is contacted in an absorption zone with an absorption medium, wherein the absorption medium is an aqueous medium comprising an amine, to form a gas stream depleted in acid gases which comprises an entrained amine and an absorption medium enriched in acid gases; and

(b) treating the gas stream depleted in acid gases which comprises an entrained amine in a first scrubbing zone with a first scrubbing medium, wherein the first scrubbing medium is an aqueous medium comprising an amine, the amount of amine comprised by the scrubbing medium being about 0.1 to about 50.0 wt.%, wherein the aqueous medium is saturated with carbon dioxide such that at least 75 wt.% of the amine, based on the total amount of amine comprised by the aqueous medium, is in its carbamate or carbonate form, to form a gas stream depleted in acid gases and in amine and a first scrubbing medium enriched in amine.

2. The process according to Claim 1, wherein the amount of amine comprised by the scrubbing medium is about 0.1 to about 10.0 wt.%.

3. The process according to Claim 1 or Claim 2, wherein the first scrubbing medium is produced by treating an aqueous medium comprising an amine with carbon dioxide.

4. The process according to Claim 3, wherein the aqueous medium comprising the amine is saturated with carbon dioxide such that at least 90 wt.% of the amine is in its carbamate or carbonate form.

5. The process according to any one of Claims 1 - 4, wherein step (b) is performed countercurrently.

6. The process according to any one of Claims 1 - 5, wherein the first scrubbing zone is a packed column.

7. The process according to any one of Claims 1 - 6, wherein the first scrubbing medium originates from a stripper column.

8. The process according to any one of Claims 1 - 7, wherein the first scrubbing medium enriched in amine is returned to a stripper column.

9. The process according to any one of Claims 1 - 8, wherein the amine has a partition coefficient log P of more than -0.5 and not higher than 3.

10. The process according to any one of Claims 1 - 9, wherein the amine is selected from the group consisting of primary amines, secondary amines, tertiary amines and mixtures thereof.

11. The process according to Claim 10, wherein the amine is a cyclic amine.

12. The process according to Claim 11, wherein the amine is N,N- dimethylcyclohexylamine (DMCA), N-methylcyclohexylamine (MCA) or a combination thereof.

13. The process according to any one of Claims 1 - 12, wherein the acid gases are carbon dioxide, hydrogen sulfide or a mixture thereof.

14. The process according to any one of Claims 1 - 13, wherein the gas stream enriched in acid gases is a biogas.

15. The process according to any one of Claims 1 - 14, wherein the process comprises a step (c), said step (c) comprising treating the gas stream depleted in acid gases and in amine in a second scrubbing zone with a second scrubbing medium, wherein the second scrubbing medium is an aqueous medium comprising an amine, the amount of amine comprised by the second scrubbing medium being about 0 to about 6.0 wt.%, to form a second gas stream depleted in acid gases and in amine and a second scrubbing medium enriched in amine.

Description:
Process and apparatus for separating entrained amines from a gas stream

Field of the invention

The present invention relates to a process for separating entrained amines from a gas stream, in particular biogas and flue gas. The present invention also relates to an apparatus for performing such a process. Background of the invention

Post-combustion processes for removing acid gases, in particular carbon dioxide and hydrogen sulfide, from gas streams are known in the art. In a typical process, a gas stream enriched in acid gases is contacted (usually countercurrently) in an absorption column with an absorption medium which absorbs the acid gases. The gas stream depleted in acid gases leaves at the top of the absorption column. The absorption medium enriched in acid gases is subsequently fed to a stripper column where it is contacted (usually countercurrently) with a stripping agent (usually steam) to strip the acid gases from the absorption medium enriched in acid gases. The acid gases leave at the top of the stripper column and the stripped absorption medium is returned to the absorption column. Reference is made to the prior art cited in this document.

A common absorption medium is an aqueous stripping agent comprising an alkanolamine, e.g. monoethanolamine (MEA) and methyldiethanolamine (MDEA), or an amine, e.g. pentyl amine and dibutylamine. Alkanolamines have generally a higher boiling point than amines. The amine may be a primary, a secondary or a tertiary amine. Mixtures of alkanolamines and/or amines have been employed as well. Reference is made to US 7.074.258, incorporated by reference.

In the absorption column, primary and secondary amines react with carbon dioxide to carbamates:

2 RNH 2 + C0 2 → R H 3 + R HC0 2 "

2 R 2 H + C0 2 → R 2 H 2 + R 2 NC0 2 - Tertiary amines react with carbon dioxide to carbonates:

R 3 N + C0 2 + H 2 0→ R 3 N + HC0 3 - Hydrogen sulfide reacts in a similar fashion:

R H 2 + H 2 S→ R H 3 + HS "

R 3 N + H 2 S→R 3 H + HS "

These reactions are reversed at elevated temperatures, i.e. in the stripper column. These reactions and their kinetics are for example discussed in US 7.601.315, incorporated by reference.

Carbamates, carbonates and similar products have usually a higher water solubility than the amines.

The aqueous stripping agent usually comprises about 20 wt.% to about 50 wt.% of amine, based on the total weight of the aqueous stripping agent.

The stripping of absorption medium enriched in acid gases has a high energy consumption, i.e. that it must be performed at elevated temperature (> 100°C). One approach to reduce this high energy consumption is to employ an aqueous stripping agent comprising a lipophilic amine that is capable to induce a phase separation resulting in the formation of an aqueous phase and a non-aqueous phase, the latter comprising predominantly the lipophilic amine. In this way, the temperature for stripping could be reduced to less than about 80°C. Preferred lipophilic amines include N,N- dimethylcyclohexylamine (DMCA) an N-methylcyclohexylamine (MCA). Reference is made to J. Zhang et al., Chem. Eng. Technol. 34, 1481, 2011; J. Zhang et al., Chem. Eng. Res. Des. 90, 743, 2012; US 2010/288126, all incorporated by reference. Another approach is to use diamines. Reference is made to US 2013/011314, incorporated by reference.

The process described above has as a disadvantage that the gas stream depleted in acid gases that is formed in the absorption column contains small amounts of the active components of the absorption medium {i.e. lipophilic amine) and/or basic degradation products. In particular amines are entrained in the gas stream because of their relatively low volatility (amine slip). This is undesired for various reasons.

First, if the gas stream enriched in acid gases is a flue gas, the treated flue gas as well as the amines are released to the atmosphere. However, amines in particular have an unpleasant odour and are poisonous and are therefore undesired components in the environment.

Second, if the gas stream enriched in acid gases is synthesis gas, the amines may be poisonous for catalysts.

Additionally, if the gas stream enriched in acid gases is biogas (a biogas is a gas that is formed by aerobic digestion of biodegradable products, e.g. agricultural products, food industry waste, residues and waste materials of vegetable and/or animal origin, including sewage and landfill gases, and consist mainly of methane and carbon dioxide; the carbon dioxide content may be 30 - 50 % by volume), the treated biogas is intended to be used as a fuel source and the odour of the amines will mask the smell of the odorant which is usually added as a safety measure (methane itself is odourless).

Furthermore, any amine loss has to be compensated which increases operational costs.

US 6.117.404, incorporated by reference, discloses that the gas stream depleted in acid gases is brought into vapour-liquid contact with water in an amine recovering unit at a temperature of 20° to 60°C to remove entrained amines. The amines are alkanolamines, methylpyrollidone, amino acids and mixtures thereof. These amines are relatively hydrophilic and have a relatively low log P (typically less than -0.5). The water containing the recovered amines is reused in the process.

US 7.601.315, incorporated by reference, discloses that the gas stream depleted in acid gases may be washed with water in for example a packed section which is part of the absorption column. The water may be make-up water that is introduced in the process or it is a part of a condensate stream formed in the upper part of the stripper column.

US 8.523.979, incorporated by reference, discloses a process for removing carbon dioxide from flue gas, wherein the flue gas is treated with an absorption liquid to produce a flue gas depleted in carbon dioxide. The absorption liquid comprises an amine, a stripping aid and water. The amine comprises preferably a primary or a secondary amine such as alkanolamines, diamines and piperazines which all have a relatively low log P (typically less than -0.5). The stripping aid is a water-miscible liquid having a boiling point at atmospheric pressure below 100°C, in particular alcohols, ethers and ketones. The flue gas depleted in carbon dioxide is treated with a liquid aqueous phase, in particular water, to remove entrained stripping aid in a scrubbing column located on top of the absorption column. It is further disclosed that the liquid aqueous phase may comprise amine.

US 2011/308389, incorporated by reference, discloses a process for eliminating the emission of amines and basic degradation products in a plant for carbon dioxide capture from flue gas, wherein the flue gas depleted from carbon dioxide is washed with an acidic aqueous solution.

US 8.529.857, incorporated by reference, discloses a process for removing carbon dioxide from flue gas, wherein the flue gas is treated with an absorption medium to produce a flue gas depleted in carbon dioxide. The absorption medium comprises an aqueous solution comprising an amine. The amine is preferably an amine as disclosed in US 8.523.979, i.e. that the amine has a relatively low log P (typically less than -0.5). The flue gas depleted in carbon dioxide is treated in at least two scrubbing zones with a non- acidic aqueous phase to remove entrained amine or decomposition products thereof. Generally, the pH of the non-acidic aqueous phase is 7 to 11, preferably 8 to 10.

US 2014/0060328, incorporated by reference, discloses a process for removing acidic components from a gaseous effluent in an absorption section by using an aqueous solution comprising amines and amine degradation inhibiting compounds. The amines are selected from alkanolamines or aminoalkanols (which have a relatively low log P) or diisopropylamine (log P (calculated; XLOGP3) = 1.4), preferably monoethanolamine (log P (calculated; XLOGP3) = -1.3). The amine degradation inhibiting compounds are triazole or tetrazole compounds having a substituent comprising a sulphur atom. The purified gaseous effluent depleted in acidic components is washed in a wash section with water to remove entrained amines thereby forming an amine-laden water stream which can be used for several purposes in the process, i.e. it can be recycled to the wash section or to the absorption section or it can be mixed with a gas stream effluent from a regeneration column.

US 2014/0013945, incorporated by reference, discloses a process for removing carbon dioxide from a carbon dioxide containing flue gas by contacting the flue gas with a carbon dioxide absorbent which utilizes for example an alkanolamine (which have a relatively low log P) as a base. The purified flue gas is washed in a washing unit with a water stream comprising the carbon dioxide absorbent. This water stream originates from the bottom portion of the washing unit.

US 2011/0158891 , incorporated by reference, discloses a process for removing carbon dioxide from a carbon dioxide containing flue gas by contacting the flue gas with a carbon dioxide absorbent comprising a basic amine. The purified flue gas is washed in a washing unit with a water stream comprising the carbon dioxide absorbent. This water stream originates from the bottom portion of the washing unit.

However, there is still a need in the art for an improved scrubbing process.

Summary of the invention

The present invention relates to a process for separating entrained amines from a gas stream. In particular, the present invention relates to a process for removing acid gases from a gas stream enriched in acid gases, wherein:

(a) the gas stream enriched in acid gases is contacted in an absorption zone with an absorption medium, wherein the absorption medium is an aqueous medium comprising an amine, to form a gas stream depleted in acid gases which comprises an entrained amine and an absorption medium enriched in acid gases; and

(b) treating the gas stream depleted in acid gases which comprises an entrained amine in a first scrubbing zone with a first scrubbing medium, wherein the first scrubbing medium is an aqueous medium comprising an amine, the amount of amine comprised by the scrubbing medium being about 0.1 to about 50.0 wt.%, wherein the aqueous medium is saturated with carbon dioxide such that at least 75 wt.% of the amine, based on the total amount of amine comprised by the aqueous medium, is in its carbamate or carbonate form, to form a gas stream depleted in acid gases and in amine and a first scrubbing medium enriched in amine.

Brief description of the drawings

Figure 1 shows a schematic diagram of an embodiment of the process according to the invention.

Figure 2 shows a schematic diagram of another embodiment of the process according to the invention. Detailed description of the invention

The verb "to comprise" and its conjugations as used in this description and in the claims are used in their non-limiting sense to mean that items following the word are included, but items not specifically mentioned are not excluded.

In addition, reference to an element by the indefinite article "a" or "an" does not exclude the possibility that more than one of the element is present, unless the context clearly requires that there is one and only one of the elements. The indefinite article "a" or "an" thus usually means "at least one".

In this document, carbamates are to be understood as products formed by the reaction of primary and secondary amines with carbon dioxide according to the following general reactions:

2 RNH 2 + C0 2 → RNH 3 + RNHC0 2 - 2 R 2 H + C0 2 → R 2 H 2 + R 2 NC0 2 -

In this document, carbonates are to be understood as products formed by the reaction of tertiary amines with carbon dioxide according to the following general reaction:

R 3 N + C0 2 + H 2 0→ R 3 N + HC0 3 -

In this document, the term "carbamate" is used to designate the carbamate form, the carbonate form, or combinations thereof, of an amine. Scrubbing medium

According to the present invention, the first scrubbing medium is an aqueous medium which comprises a carbamate in an amount of about 0.1 to about 50.0 wt.%, based on the total weight of the aqueous medium. Preferably, the aqueous medium comprises a carbamate in an amount of about 0.1 to about 40.0 wt.%, more preferably of about 0.1 to about 30.0 wt.%, even more preferably in an amount of about 0.1 to about 20.0 wt.%), yet even more preferably in an amount of about 0.1 to about 10 wt.%> and most preferably in an amount of about 0.1 to about 5 wt.%>. The first scrubbing medium is produced by treating an aqueous medium comprising an amine in an amount of about 0.1 to about 50.0 wt.%, based on the total weight of the aqueous medium, with gaseous carbon dioxide. It is preferred that this treatment results into at least about 75 % saturation of the aqueous medium comprising the amine. More preferably, the treatment results in at least about 80 % saturation, even more preferably in at least about 90 % saturation and most preferably in at least about 100 % saturation. It is to be understood that the terminology "at least 75 % saturation" means that the aqueous medium is saturated with carbon dioxide such that at least 75 wt.% of the amine, based on the total amount of amine comprised by the aqueous medium, is in its carbamate or carbonate form.

It is preferred that the first scrubbing medium is in the liquid state.

The term "amine" is to be understood as an hydrocarbon containing at least an amino group. The amino group may be primary, secondary or tertiary. The hydrocarbon may be substituted by a functional group, in particular a hydroxy group. The hydrocarbon may be saturated or unsaturated, but is preferably saturated. The hydrocarbon may be linear, branched or cyclic.

According to a preferred embodiment of the present invention, the term "amine" is to be understood as monoamines, i.e. that they have the general formula R 3 N, wherein R represents a hydrogen atom or an alkyl group.

According to a preferred embodiment of the present invention, the amine has preferably a partition coefficient log P of more than -0.5, more preferably of more than 0, even more preferably more than 0.5 and in particular more than 1. The partition coefficient log P is preferably not higher than 3, more preferably not higher than 2.5.

The log P values disclosed in this document are the values computed with the XLOGP3 method (cf. T. Cheng et al, J. Chem. Inf. Model. 47, 2140, 2007; XLOGP3 v 3.2.0 User Manual, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences. 354 Fenglin Road, Shanghai 200032, China, P. R., December 2007). This method provides accurate results. For example, cyclohexylamine has a measured log P of 1.49 ± 0.10 (J. Sangster, J. Phys. Chem. Ref. Data 18, 111, 1989) and a calculated log P (XLOGP3) of 1.5.

It is preferred that the amine is selected from the group consisting of primary amines, secondary amines, tertiary amines and mixtures thereof. These amines are preferably C 3 - C20 alkyl amines, more preferably C 3 - C 16 alkyl amines, wherein the alkyl groups may be linear, branched or cyclic. Preferably, the amine is selected from the group consisting of secondary amines, tertiary amines and mixtures thereof.

Suitable examples of primary amines include n-pentylamine, n-hexylamine, n- heptylamine, n-octylamine, n-nonylamine, cyclopentylamine, cyclohexylamine, cycloheptylamine, cyclooctylamine, 2-methylcyclohexyl amine, 2-methyl-butylamine, 2-ethyl-l-hexylamine, 6-methyl-2-heptylamine and their skeletal isomers and regioisomers.

Suitable examples of secondary amines include dipropylamine, N- ethylbutylamine, dibutylamine, diisopropylamine, methylcyclohexylamine, dicyclohexylamine, bis(2-ethylhexyl)amine, bis(l,3-dimethylbutyl)amine, di-s- butylamine, N-methylcyclohexylamine, bis(2-ethylhexyl)amine, 4-t- butylcyclohexylamine and their skeletal isomers and regioisomers.

Suitable examples of tertiary amines include triethylamine, tripropylamine, tributylamine, Ν,Ν-dimethylcyclohexylamine, dimethyloctylamine, dimethyl-(l- methylheptyl)amine, N-ethyldiisopropylamine, tris(2-ethylhexyl)amine and their skeletal isomers and regioisomers.

Suitable examples of amines containing a functional group, in particular a hydroxy group, are alkanolamines such as monoethanolamine (MEA) and methyldiethanolamine (MDEA) and their skeletal isomers and regioisomers.

Skeletal isomers are compounds wherein the carbon skeleton is reordered. For example, skeletal isomers of n-pentylamine include 1, 1-dimethyl-propylamine.

Regioisomers are compounds wherein the functional substituent is attached to a different atom of the carbon skeleton. For example, regioisomers of n-pentylamine include 2-aminopentane.

It is preferred that the amine comprises a cyclic group (i.e. that the amine is a cyclic amine) which may include the nitrogen atom. This implies that the amine may constitute a pyrrolidinyl group or a piperidinyl group.

Most preferably, the amine is Ν,Ν-dimethylcyclohexylamine (DMCA), N- methylcyclohexylamine (MCA) or a combination thereof. DMCA has a (calculated; XLOGP3) log P of about 1.9 and MCA has a (calculated; XLOGP3) log P of about 1.6.

According to the present invention, the scrubbing medium can also be used for scrubbing the carbon dioxide which is released by a regeneration unit (described below). Process

According to the present invention, it is preferred that step (b) is performed countercurrently.

According to the present invention, it is preferred that the first scrubbing zone is a packed column.

According to the present invention, it is also preferred that the first scrubbing medium originates from a regeneration unit.

According to the present invention, it is furthermore preferred that the first scrubbing medium enriched in amine is returned to a regeneration unit.

Preferably, the acid gases are carbon dioxide, hydrogen sulphide or a mixture thereof.

According to the present invention, the gas stream enriched in acid gases is a biogas. Biogas is a gas that is formed by aerobic digestion of biodegradable products, e.g. agricultural products, food industry waste, residues and waste materials of vegetable and/or animal origin, including sewage and landfill gases, and consist mainly of methane and carbon dioxide; the carbon dioxide content may be 30 - 50 % by volume.

According to a preferred embodiment, the process according to the invention comprises also a step (c), said step (c) comprising treating the first gas stream depleted in acid gases and in amine in a second scrubbing zone with a second scrubbing medium, wherein the second scrubbing medium is an aqueous medium comprising an amine, the amount of amine comprised by the second scrubbing medium being about 0 to about 10.0 wt.%, to form a second gas stream depleted in acid gases and in amine and a second scrubbing medium enriched in amine. Preferably, the second scrubbing medium is either water or an aqueous medium comprising an amine, the amount of amine comprised by this second scrubbing medium being about 0.1 to about 10.0 wt.%.

Preferably, this aqueous medium comprises an amine in an amount of at least about 0.1 wt.%), more preferably about 0.2 wt.%. Preferably, this aqueous medium comprises an amine in an amount of about 6.0 wt.%> or less, more preferably about 4.0 wt.%> or less, even more preferably about 2.0 wt.%> or less and most preferably in amount of about 1.0 wt.%) or less.

It is preferred that the second scrubbing medium is in the liquid state.

It is preferred that the first scrubbing medium is in the liquid state. According to the present invention, it is preferred that the second scrubbing zone is a packed column.

According to the present invention, it is also preferred that the second scrubbing medium originates from a regeneration unit.

According to the present invention, it is furthermore preferred that the second scrubbing medium enriched in amine is returned to a regeneration unit.

Furthermore, the amine is selected from the group of monoamines as described previously.

Additionally, it is preferred that the first and/or second scrubbing steps (b) and (c) are independently performed over a temperature range of about 1°C to about 50°C, preferably about 5°C to about 40°C. Accordingly, the present invention includes a process comprising two scrubbing steps, wherein the two scrubbing steps (b) and (c) are performed within a different temperature range, e.g. step (b) is performed within a temperature range of about 20°C to about 50°C and step (c) is performed within a temperature range of about 1°C to less than about 20°C. The present invention also includes a process comprising two scrubbing steps, wherein the two scrubbing steps (b) and (c) are performed at a same temperature range, e.g. steps (b) and (c) are both performed within a temperature range of about 20°C to about 50°C or within a temperature range of about 1°C to less than about 20°C.

According to another preferred embodiment, the first and/or the second scrubbing medium enriched in amine are subjected to a separation process. In this separation process, when the amine has a partition coefficient log P of more than -0.5, the first and/or the second scrubbing medium enriched in amine is heated to a temperature in the range of about 40° to about 90°C which results into the formation of an aqueous phase depleted in amine and a non-aqueous phase enriched in amine, where after the two phases are separated. When the amine has a partition coefficient log P of -0.5 or less, the separation process may be conducted with a membrane.

Apparatus

The present invention also relates to an apparatus for performing the process according to the present invention. Figure 1 shows a schematic diagram of this process. A gas stream (1) enriched in acid gases is supplied to a carbon dioxide absorbing unit (2) comprising an absorption zone. The carbon dioxide absorbing unit (2) is located in the lower part of a carbon dioxide removal unit (3). An absorption medium (4) is supplied to the upper part of the carbon dioxide absorbing unit (2). The absorption medium (4) absorbs carbon dioxide from gas stream (1) enriched in acid gases thereby forming a gas stream (5) depleted in acid gases which leaves the carbon dioxide absorbing unit (2) at the upper part and an absorption medium (6) enriched in acid gases which leaves the carbon dioxide absorbing unit (2) at the lower part. The gas stream (5) depleted in acid gases comprises entrained amines which have to be removed.

The gas stream (5) depleted in acid gases is supplied to the lower part of a first amine scrubbing unit (7) comprising a first scrubbing zone. As is shown in Figure 1, the first amine scrubbing unit (7) is located in the upper part of the carbon dioxide removal unit (3). However, according to the present invention the carbon dioxide absorbing unit (2) and the first amine scrubbing unit (7) do not need to be part of a single carbon dioxide removal unit (3), i.e. they may be separate units and they may be located remotely (Figure 2).

A first scrubbing medium (8) is supplied to the upper part of the first amine scrubbing unit (7) to form a first gas stream (9) depleted in acid gases and in amine which leaves the first amine scrubbing unit (7) at the upper part and a first scrubbing medium (10) enriched in amine which leaves the first amine scrubbing unit (7) at the lower part.

The first gas stream (9) depleted in acid gases and in amine may be supplied to a second amine scrubbing unit (11) where it is contacted in a second scrubbing zone with a second scrubbing medium (12) enriched in amine to form a second gas stream (13) depleted in acid gases and in amine and a second scrubbing medium (14) enriched in amine (not shown). The second amine scrubbing unit (11) may be part of a single carbon dioxide removal unit (3) or it may be a separate and remote unit.

The absorption medium (6) enriched in acid gases is supplied to a heat exchanger

(13) and then to the upper part of a regeneration unit (14). Steam (15) is supplied to the lower part of regeneration unit (14) and strips absorption medium (6) at elevated temperature to form carbon dioxide which is released at the top of the regeneration unit

(14) and absorption medium (16) depleted in acid gases. Absorption medium (16) may be cooled in heat exchanger (13) and then be supplied to the carbon dioxide absorbing unit (2). After cooling, the absorption medium (16) may also be supplied to the first amine scrubbing unit (7) or the second amine scrubbing unit (11).

According to a preferred embodiment of the present invention, the regeneration unit (14) may also be a stirred tank comprising water wherein the carbon dioxide is removed without steam. This embodiment is in particular preferred when the amine is a lipophilic amine.

First scrubbing medium (10) enriched in amine and optionally second scrubbing medium (14) enriched in amine are reused in the process. For example, they are used for preparing absorption medium (4), first scrubbing medium (8) or second scrubbing medium (12).

Examples

DMCA is N,N-dimethylcyclohexylamine.

Molecular weight: 113.2 g/mol.

Water solubility (20°C): 54 g/1 (~ 0.48 mol/1).

Boiling point: 160°C.

Log P: 1.9. MCA is N-methylcyclohexylamine (MCA)

Molecular weight: 127.2 g/mol.

Water solubility (20°C): 10 g/1 (~ 0.08 mol/1).

Boiling point: 149°C.

Log P: 1.6.

Example 1

Aqueous samples containing MCA and/or DMCA were analysed by UPLC- MS/MS. The UPLC apparatus was a Waters Acquity system. Injection volume was 3 μΐ. Mobile phase A: 10 mM ammonium acetate, 0.1 wt.% formic acid in water. Mobile phase B: methanol. Column: Acquity UPLC HSB T3, 1.8 μ, 2.1 x 50 mm. Column temperature: 30°C. Gradient (Table 1). The mass spectrometer was a Absciex API 3200 apparatus. Table 1

Regression analysis of the calibration curve (concentration range MCA or DCMA: 10 - 200 μg/l) showed a correlation factor of 0.999.

Example 2

A mixture (200 ml) of MCA and DMCA (total amine concentration is 3 M; ratio MCA : DMCA is 1 : 3 wt./wt. ~ 1 : 2.67 mol/mol; total absolute amount MCA is 92.8 g/1; total amount of DMCA is 278.4 g/1) in water was saturated under stirring with carbon dioxide at ambient temperature and atmospheric pressure. During saturation the hazy two-phase solution turned clear. The amount of absorbed carbon dioxide was determined according to a direct Total Inorganic Carbon (TIC) analysis. In this analysis, carbon dioxide was stripped from samples by a nitrogen purge and the stripped carbon dioxide was first trapped in three sequential bottles containing KOH and then in a bottle containing CaCh. If not all carbon dioxide would not be trapped by the bottles containing KOH, a white deposit of CaC0 3 would be formed in the bottle containing CaCl 2 . However, formation of a white deposit of CaC0 3 was not observed. It turned out that 1 mol of amine absorbed 1 mol of carbon dioxide as expected. Full saturation (100 %) was achieved within about one hour.

Example 3 In this example, the entrainment of amines by a gas in the absorption step was simulated. In a closed system, a mixture (50 ml) of MCA and DMCA (composition according to Example 2) was flushed with nitrogen (34.5 1 N 2 /h) for 30 minutes at various temperatures. The amine mixture was preheated to the required temperature 20 minutes before the start of the test. The gaseous effluent was then flushed through three washing bottles in series which were filled with an aqueous 0.01 M formic acid solution to capture the entrained amines. The amount of captured amines in the washing bottles was determined according to the method described in Example 1. The results are shown in Table 2.

Table 2

a relative to total molar amount of MCA and DMCA in mixture.

Entries 4 and 5 show that this simulation is reproducible.

The data in Table 2 show that the amine content of the gaseous effluent decreases with decreasing stripping temperature. The absorption step is therefore preferably performed at low temperature. The data also show that the ratio of MCA : DMCA in the entrained amines is about 1 : 4.

However, it turned out that much amines condensed in tubing connecting the flask containing the mixture of MCA and DMCA and the first washing bottle filled with formic acid solution. For entry 5, the tubing was rinsed with demineralised water and the amount of amine determined according to the method described in Example 1. The amounts of amines (washing bottles and tubing) are shown in Table 3. Table 3

relative to total molar amount of MCA and DMCA in mixture

It appears that about 13 % of MCA is captured by the washing bottles and about 87 % condenses in the tubing. For DCMA, these numbers are about 55 % and 45 %, respectively.

Hence, not all of the amine stripped from the flask containing the mixture of MCA and DMCA is captured by the washing bottles.

It further turned out that almost all (usually > 95% for MCA and > 85% for DMCA) of the captured amine was captured by the first washing bottle.

Example 4

In this example, the scrubbing of entrained amines by an aqueous carbamate solution was simulated.

In a closed system, a mixture (50 ml) of MCA and DMCA (composition according to Example 2) was flushed with nitrogen (34.5 1 N 2 /h) for 30 minutes at 40°C as described in Example 3.

The nitrogen gas stream was then scrubbed with an aqueous carbamate solution which was prepared according to Example 2 (100 ml) at 25°C. The gaseous effluent was then flushed through three washing bottles in series which were filled with an aqueous 0.01 M formic acid solution to capture the entrained amines. The amount of captured amines in the washing bottles was determined according to the method described in Example 1. The various amounts of captured amine are shown in Table 4. Table 4

a relative to total molar amount of MCA and DMCA in mixture.

The data shown in Table 4 demonstrate that when the nitrogen gas stream is scrubbed with an aqueous carbamate solution, much of the amines are captured (compare Table 2, entries 4 and 5).

Example 5 In this example, the scrubbing of entrained amines by an aqueous carbamate solution was simulated.

In a closed system, a mixture (50 ml) of MCA and DMCA (composition according to Example 2) was flushed with nitrogen (34.5 1 N 2 /h) for 30 minutes at 40°C as described in Example 3. The nitrogen gas stream was then mixed with carbon dioxide (3.75 1/h) to a carbon dioxide concentration of 9.8 vol. % to convert entrained MCA and DMCA to MCA-carbamate and DMCA-carbonate.

The nitrogen gas stream was scrubbed with an aqueous carbamate solution which was prepared according to Example 2 (100 ml) at 40°C. The nitrogen gas stream was subsequently scrubbed with demineralised water (200 ml) at 5°C which contained 0, 2 or 5 wt.% amine (MCA : DMCA 25 wt.% : 75 wt.%) 100%) saturated with C0 2 or with demineralised water (200 ml) at 5°C which contained 0.5 or 1 wt.% amine (MCA : DMCA 20 wt.%) : 80 wt.%>). The amount of amines captured by the demineralised water (0 wt.%) amine) was determined according to the method described in Example 1. The gaseous effluent was then flushed through three washing bottles in series which were filled with an aqueous 0.01 M formic acid solution to capture the entrained amines. The amount of captured amines in the washing bottles was determined according to the method described in Example 1. The tubing was rinsed with demineralised water (see Example 3) and the amount of amine determined according to the method described in Example 1. The various amounts of amine are shown in Tables 5 (amine 100% saturated with C0 2 ) and 6. Table 5

condensate in the tubing contained 0.279 mol % MCA and 1.228 mol % DMCA.

Table 6

condensate in the tubing contained 0.065 mol % MCA and 0.261 mol % DMCA.

The data shown in Table 5 demonstrate that at 0 wt.% amine about 50 of the amines is captured by the two scrubbing steps (about 50 % is condensed in the tubing). Example 5

In this example, the scrubbing of amines entrained in a CO2 gas stream by an aqueous amine solution was simulated (regeneration unit).

This Example was performed as Example 4, provided that the mixture of MCA and DMCA was flushed with CO2 at 80°C and that in the subsequent washing step the CO2 gas stream was scrubbed with demineralised water (200 ml) at 40°C which contained 0, 2, 5 or 10 wt.% amine (MCA : DMCA 20 wt.% : 80 wt.%) 100% saturated with C0 2 . The various amounts of amine are shown in Table 5.

The same test was performed with demineralised water (200 ml) at 40°C which contained 10 wt.% amine (MCA : DMCA 20 wt.% : 80 wt.%) 75% saturated with C0 2 . Table 7

condensate in the tubing contained 0.065 mol % MCA and 0.261 mol % DMCA. c Demineralised water containing 10 wt.% amine (MCA : DMCA 20 wt.% : 80 wt.%) 75% saturated with C0 2 .

The data shown in Table 7 demonstrate that at 0 wt.% amine about 94 % of the amines is captured by the two scrubbing steps (about 6 % is condensed in the tubing). Example 6

A mixture (200 ml) of MCA and DMCA (total amine concentration is 3 M; ratio MCA : DMCA is 1 : 3 wt./wt. ~ 1 : 2.67 mol/mol; total absolute amount MCA is 92.8 g/1; total amount of DMCA is 278.4 g/1) in water was heated at various temperatures for 24 h during which phase separation occurred. The phases were separated and the aqueous phase was analysed for determining the amine content. As can be observed from the data in Table 8, the amount of amine decreases with increasing temperature. These data show that the amines can be separated at elevated temperature from the original mixture.

Table 8

Temperature MCA DMCA

(°C) (mg/1) (mg/ml)

40 6940 7210

50 5630 5090

60 5090 4200

70 4520 3530