Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS AND APPARATUS FOR VACUUM DISTILLATION OF HIGH-PURITY MAGNESIUM
Document Type and Number:
WIPO Patent Application WO/2013/107644
Kind Code:
A1
Abstract:
A starting material (2) in the form of a magnesium-containing metal melt is present together with the upper region (32) of a condensation vessel (3) in the upper region (11) of a retort (1) heated by the external heating element (5), and the steam raised according to arrows (91), according to arrow (92), enters the upper region (32) of the condensation vessel (3) through the orifice (31) below the cover (4) which provides protection from unwanted ingress of contaminated magnesium melt, and is heated in the lower region (12) of the retort which is heated by a second heating element (51), below the line (8) corresponding to the melting point isotherm of magnesium to give the high-purity magnesium melt (21) in the lower region (33) of the condensation vessel (3). By opening a barrier unit (6), the interior of the retort (1) can be connected temporarily to the supply chamber (13), and also via a line (73) and a valve (72) to a vacuum pump (73), via a further line (74) to a pressure measuring instrument (75), and via a third line (76) via a valve (77) and a pressure and/or flow regulator (77) to an inert gas source (79).

Inventors:
LOEFFLER JOERG (CH)
UGGOWITZER PETER (CH)
WEGMANN CHRISTIAN (CH)
BECKER MINH (CH)
FEICHTINGER HEINRICH (CH)
Application Number:
PCT/EP2013/000131
Publication Date:
July 25, 2013
Filing Date:
January 17, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ETH ZUERICH (CH)
International Classes:
C22B9/04; C22B26/22
Foreign References:
EP1335030A12003-08-13
EP1335032A12003-08-13
US5698158A1997-12-16
EP1335030A12003-08-13
EP1335032A12003-08-13
Download PDF:
Claims:
Patentansprüche

1. Verfahren zur Erzeugung von hochreinem Magnesium durch Destillation unter vermindertem Druck, dadurch gekennzeichnet, dass ein Ausgangsmaterial in Form einer magnesiumhaltigen Metallschmelze sich mit dem oberen Bereich eines tiegeiförmigen Kondensationsgefässes aus einem gegen Magnesium inerten Material mit einer gegen Zutritt verunreinigter refluxierender

Magnesiumschmelze durch eine gegen Magnesium inerte Abdeckung geschützten, den Eintritt von Magnesiumdampf gestattenden Oeffnung, im oberen Teil einer vakuumdichten, von aussen durch eines oder mehrere Heizelemente in horizontaler Richtung auf unterschiedliche Temperaturen beheizbaren Retorte aus einem gegen Magnesium weitgehend inerten oder zumindest nicht verdampfungsfähige Verunreinigungen abgebenden Material bei einer Temperatur oberhalb des Schmelzpunkts sowie im unmittelbaren Bereich der magnesiumhaltigen Schmelze und der Oeffnung des tiegeiförmigen Kondensationsgefässes oberhalb des Siedepunkts von Magnesium befindet, wobei sich der untere Bereich des tiegeiförmigen Kondensationsgefässes in einem sich verjüngenden, seinen unteren Bereich eng umschliessenden Bereich der Retorte, in einem Temperaturgradient zwischen dem Siede- und Schmelzpunkt von Magnesium befindet und dass die Retorte zumindest zeitweise über ein Sperrorgan mit einer Vorkammer in Verbindung gesetzt werden kann, welche ihrerseits über Leitungen und ein Ventil mit einer

Vakuumpumpe, über eine weitere Leitung mit einem Vakuummessgerät und über eine dritte Leitung und ein Ventil mit einer Inertgasquelle in Verbindung gesetzt werden kann, wobei der Druck innerhalb der Retorte während des Destillationsprozesses in einem Solldruckbereich gehalten, d.h. einerseits so weit vermindert wird, dass der Siedepunkt des Magnesiums auf eine für das Material der Retorte thermisch tragbare Temperatur abgesenkt und

andererseits durch wahlweise Zugabe von Inertgas auf einem Mindestwert gehalten wird, bei dem der Siedepunkt der im unteren Bereich des tiegelartigen Kondensationsgefässes befindlichen Reinmagnesiumschmelze nicht überschritten wird.

2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass sich das

Sperrorgan zum Zwecke des Druckausgleichs zwischen der Retorte und der Vorkammer in Intervallen öffnet, wonach der vom Vakuummessgerät erfasste und von einem Wandler in ein elektrisches Signal umgewandelte Druck nach Vergleich mit einem Solldruckbereich über einen Regelkreis die Retorte entweder über ein elektrisch ansteuerbares Ventil mit der Vakuumpumpe oder über ein anderes elektrisch ansteuerbares Ventil mit einer Inertgasquelle so lange in Verbindung setzt, bis der Solldruckbereich erreicht ist, wobei die

Grösse der während der letzten Schliessperiode des Sperrorgans erfolgten Druckänderung wahlweise die Dauer der nächsten Schliessperiode bestimmt.

3. Verfahren nach Anspruch 1 wahlweise in Kombination mit Anspruch 2, dadurch gekennzeichnet, dass in den Spalt zwischen der inneren Mantelfläche des unteren Bereichs der Retorte und der äusseren Mantelfläche des unteren Bereichs des tiegelartigen Kondensationsgefässes Inertgas über ein Nadelventil in einer Strömungsmenge eingeleitet wird, welche verhindert, dass

Magnesiumdampf und/oder Magnesiumschmelze in diesen Spalt eindringt.

4. Vorrichtung nach Anspruch 1 , wahlweise in Kombination mit Anspruch 2

und/oder 3, dadurch gekennzeichnet, dass ein Ausgangsmaterial in Form einer magnesiumhaltigen Metallschmelze zusammen mit dem oberen Bereich eines tiegelartigen Kondensationsgefässes mit einer oberhalb seiner Oeffnung befindlichen Abdeckung innerhalb des oberen Bereichs einer Retorte

angeordnet ist, wobei die sich in ihrem unteren Bereich verjüngende Retorte den unteren Teil des tiegelartigen Kondensationsgefässes eng umschliesst, und dass die Retorte über ein Sperrorgan mit einer Vorkammer in Verbindung steht, welche über eine Leitung und ein Ventil mit einer Vakuumpumpe, über eine zweite Leitung mit einem Vakuummessgerät und über eine dritte Leitung und ein Ventil, wahlweise in Serie mit einer Strömungs- und/oder

Druckregulierungsvorrichtung, mit einer Inertgasquelle in Verbindung steht, und dass zumindest ein Teil des oberen Bereichs der Retorte durch zumindest ein aussen um diesen Bereich angeordnetes und auf konstante Temperatur regelbares Heizelement beheizbar ist, während der untere Bereich der Retorte entweder durch zumindest ein aussen um diesen Bereich angeordnetes und auf konstante Temperatur regelbares Heizelement direkt und/oder eine um diesen Bereich angeordnete und gegen Wärmeentzug schützende Isolation indirekt zur Erzielung eines gewünschten Temperaturprofils beheizbar ist.

5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass das bei einer Temperatur oberhalb der Schmelztemperatur befindliche Sperrorgan zwischen der unterhalb befindlichen oberen Stirnseite der Retorte und unterhalb der unteren Stirnseite der Vorkammer angeordnet ist, und dass die Vorkammer durch einen an ihrer oberen Stirnseite angeordneten und wahlweise gekühlten Flansch gegen aussen abgedichtet werden kann , wobei das Sperrorgan durch eine durch den Flansch vakuumdicht nach aussen geführte Stange betätigt und nach Ende des Destillationsprozesses bzw. einer Ofenreise nach erfolgter Abkühlung zusammen mit dem Flansch entfernt werden kann, und dass die lichte Oeffnung des Sperrorgans so gross bemessen ist, dass durch diese Oeffnung sowohl neues magnesiumhaltiges Material in die Verdampfungszone eingebracht wie auch das kondensierte und erstarrte Reinmagnesium nach zeitweiser Entfernung der oberhalb seiner Oeffnung angeordneten Abdeckung aus dem tiegelartigen Kondensationsgefäss entfernt werden kann.

6. Vorrichtung nach Anspruch 4, wahlweise in Kombination mit Anspruch 5,

dadurch gekennzeichnet, dass die Retorte und das Sperrorgan aus rostfreiem Stahl oder einem warmfesten Stahl oder einer Superlegierung bestehen.

7. Vorrichtung nach Anspruch 4, wahlweise in Kombination mit Anspruch 5

und/oder 6, dadurch gekennzeichnet, dass das tiegelartige

Kondensationsgefäss und die oberhalb seiner Oeffnung angeordnete

Abdeckung aus einem hochreinen Graphit bestehen.

8. Vorrichtung nach Anspruch 4, sowie einem der Ansprüche 5 - 7, einzeln oder in Kombination, dadurch gekennzeichnet, dass das tiegelartige

Kondensationsgefäss eine sich nach oben konisch öffnende innere

Mantelfläche besitzt.

9. Vorrichtung nach Anspruch 4, sowie einem der Ansprüche 5 - 8, einzeln oder in Kombination, dadurch gekennzeichnet, dass das Kondensationsgefäss zumindest in seinem unteren Bereich eine sich nach oben öffnende konische äussere Mantelfläche besitzt, welche auf der entsprechend konisch

ausgebildeten inneren Mantelfläche des unteren Bereichs der Retorte in dichtender Weise aufsitzt.

10. Vorrichtung nach Anspruch 4, sowie einem der Ansprüche 5 - 8, einzeln oder in Kombination, dadurch gekennzeichnet, dass das Kondensationsgefäss zumindest in seinem unteren Bereich eine zylindrische oder sich nach unten öffnende konische Mantelfläche besitzt, welche auf der entsprechend konisch ausgebildeten inneren Mantelfläche des unteren Bereichs der Retorte in weitgehend dichtender Weise aufsitzt und dass an der unteren Stirnseite der Retorte ein wahlweise mit einer Inertgasleitung versehener Flansch angeordnet ist, nach dessen zeitweiser Entfernung das tiegelartige Kondensationsgefäss zwischen zwei Ofenreisen und nach erfolgter Abkühlung nach unten aus der Retorte entfernbar ist.

11. Vorrichtung nach Anspruch 4, sowie einem der Ansprüche 5 - 10, einzeln oder in Kombination, dadurch gekennzeichnet, dass das tiegelartige

Kondensationsgefäss mit seiner Längsachse entlang der Längsachse der zentralsymmetrischen Retorte angeordnet ist, wobei der im oberen Bereich des Kondensationsgefässes befindliche Teil des tiegelartigen

Kondensationsgefässes durch eine ihn eng umgebende und unten dicht mit der Retorte verbundene Trennwand von dem ihn in konzentrischer Weise umgebenden Ausgangsmaterial in Form der magnesiumhaltigen

Metallschmelze getrennt ist, wobei diese Trennwand vorzugsweise aus demselben Material wie die Retorte besteht.

Description:
Verfahren und Vorrichtung zur Vakuumdestillation von hochreinem Magnesium

Die Erfindung betrifft ein Verfahren zur Herstellung von hochreinem Magnesium über den Weg der Destillation unter vermindertem Druck sowie Vorrichtungen zur

Durchführung des Verfahrens.

Magnesium hat einen im Vergleich mit den meisten anderen Metallen niedrigen Siedepunkt und dies ist der Grund, warum viele Verfahren zur Gewinnung des Rohmetalls oder auch zur Recyclierung von Magnesium aus Schrott über den Verfahrensschritt einer Vakuumdestillation führen, denn auf diese Weise kann in einem Schritt ein von weniger flüchtigen Metallen weitgehend gereinigtes Magnesium gewonnen werden. Will man auch diese flüchtigen Stoffe zur Erzeugung von hochreinem Magnesium entfernen, wie dies z.B. für die Halbleiterindustrie erwünscht ist, werden Vakuumdestillationsanlagen mit mehreren seriell angeordneten

Kondensationsbereichen eingesetzt, sodass man unter mehreren mit anderen flüchtigen Metallen wie z.B. Zink und Cadmium stärker verunreinigten Fraktionen auch hochreine Fraktionen erhält, bei denen die Verunreinigungen nur noch im ppm- Bereich liegen. Ein solches Verfahren wird z.B. in EP 1 335 030 A1 beschrieben, wobei der aus einem Tiegel mit einer verunreinigter Magnesiumschmelze

aufsteigende Dampf über eine Vielzahl aufeinanderfolgender und auf abnehmende Temperaturen erhitzte Abscheidungsbleche geleitet wird und sich in fraktionierter Form auf diesen Blechen abscheidet.

Die Verdampfungstemperatur von Magnesium kann bei Verminderung des Drucks bis unter die Temperatur des Schmelzpunkts abgesenkt werden und es ist eine Besonderheit dieses Metalls, dass sein Dampfdruck auch unterhalb des

Schmelzpunkts noch so hoch liegt, dass er für eine technisch nutzbare

Resublimation hochreiner Magnesiumkristalle ausreicht. Demgemäss führen die meisten bekannten Vakuumdestillationsverfahren entsprechend dem Stand der Technik zur Herstellung von hochreinem Magnesium zur Abscheidung von festen Magnesiumkristallen.

Solche Magnesiumkristalle sind zwar - in Anbetracht ihres niedrigen Gehalts an Fremdelementen - im chemischen Sinn als hochrein zu bezeichnen, jedoch besitzen die Kristalle ein hohes Oberflächen/Volums-Verhältnis und beim Umschmelzen

BESTÄTIGUNGSKOPIE solcher Kristalle zum Zwecke der Herstellung von Halbzeug oder endkonturnahen Körpern werden die aufgrund der hohen Reaktivität ursprünglich auf der Oberfläche der Magnesiumkristalle vorhandenen Oxidhäute in der Schmelze als nichtmetallische Einschlüsse verteilt und verbleiben im erstarrten Material. Obwohl sie nur geringe Konzentrationswerte aufweisen, können solche Einschlüsse jedoch z.B. das

Korrosionsverhalten des sonst hochreinen Magnesiums in ungünstiger Weise beeinflussen.

Entsprechend EP 1335032 A1 gibt es ein Verfahren, bei dem eine verunreinigte Magnesiumschmelze in einem Verdampfergefäss aus hochreinem Graphit verdampft, wobei dieser Dampf sich anschliessend als flüssige Schmelze in einem ebenfalls aus Graphit bestehenden Kondensationstiegel niederschlägt. Beide Tiegel werden von einer Glocke aus Graphit umgeben, welche verhindert, dass der

Magnesiumdampf mit der kalten Wand der die Glocke umgebenden Vakuumretorte in Kontakt kommt und dort kondensiert. Um sowohl den Verdampfungs- wie auch den Kondensationstiegel auf die für den Prozess nötigen Temperaturen zu bringen und gleichzeitig die Retorte kalt zu halten, befinden sich zwei Heizelemente im Zwischenraum zwischen der Retortenwand und der Graphitglocke. Insbesondere durch die Montage der Heizelemente innerhalb des Unterdruckbereichs sowie den Schutz der eigentlichen Verdampfungs- und Kondensationszone durch die

Graphitglocke entsteht ein erhöhter konstruktionstechnischer Aufwand, zudem muss die Evakuierung des Innenvolumens durch Undichtigkeiten der Graphitglocke erfolgen, wodurch an diesen Stellen auch Magnesiumdampf nach aussen zu den Heizelementen und der kalten Retortenwand gelangen kann.

Im Gegensatz zu den meisten Verfahren entsprechend dem Stand der Technik erfolgt die Kondensation des hochreinen Magnesiums beim erfindungsgemässen Verfahren im flüssigen Zustand, wobei eine hochreine, von nichtmetallischen

Einschlüssen freie Magnesiumschmelze resultiert, welche nach der Erstarrung einen kompakten Block bildet, der z.B. im Sinne von Halbzeug als Ausgangsmaterial für Umformungsprozesse geeignet ist, ohne dass das Material grössere Mengen an nichtmetallischen Einschlüssen enthält, welche einerseits die mechanischen Eigenschaften und andererseits das Korrosionsverhalten negativ beeinflussen können.

Insbesondere im Vergleich zum weiter oben zitierten Verfahren entsprechend EP 1335032 A1 besitzt das Verfahren den Vorteil, dass die Retorte von aussen beheizt werden kann, wobei der Magnesiumdampf ohne Probleme mit der

Innenwand der Retorte in Kontakt kommen kann, da diese sich auf so hoher Temperatur befindet, dass es auf ihr nicht zur Abscheidung fester

Magnesiumkristalle kommen kann. Desgleichen kann die Retortenwand auch aus einem Material bestehen, welches in geringem Masse in der Magnesiumschmelze löslich ist, wodurch die Magnesiumschmelze verunreinigt wird. Bedingung ist allerdings, dass die Retorte aus einem Material besteht, welches keine flüchtigen Verunreinigungen an den Magnesiumdampf abgibt.

Durch die Möglichkeit, die Beheizung ausserhalb der Retorte anzuordnen und auch den Kontakt mit der heissen, die Magnesiumschmelze geringfügig verschmutzenden Innenwand der Retorte zuzulassen, entsteht im Gegensatz zum Stand der Technik ein im Aufbau besonders einfaches und kostengünstiges Verfahren.

Das erfindungsgemässe Verfahren wird im folgenden anhand von drei

Vorrichtungsbeispielen erläutert.

Bild 1 zeigt ein prinzipielles Schema einer erfindungsgemässen Vorrichtung mit den wesentlichen Erfindungsmerkmalen entsprechend der Lehre des unabhängigen Patentanspruchs.

Bild 2 zeigt einen Querschnitt durch eine beispielhafte Vorrichtung zur Herstellung von hochreinem Magnesium.

Bild 3 zeigt einen Querschnitt durch eine weitere beispielhafte Vorrichtung zur Herstellung von hochreinem Magnesium.

In Bild 1 sind die Elemente des ersten Vorrichtungsbeispiels bewusst in geometrisch einfacher Form zur Darstellung gebracht, um die Tatsache zu betonen, dass der zentrale Erfindungsgedanke weniger auf der spezifischen Form dieser Teile sondern auf der Funktionalität dieser Teile im Zusammenhang mit der Temperaturverteilung innerhalb der Retorte beruht. Das Ausgangsmaterial 2 in Form einer

magnesiumhaltigen Metallschmelze befindet sich zusammen mit dem oberen

Bereich 32 eines Kondensationsgefässes 3, vorzugsweise aus einem hochreinen Graphit, im oberen Bereich 11 einer z.B. aus rostfreiem Stahl hergestellten Retorte 1 mit beliebigem Querschnitt, wobei ein zylindrischer Querschnitt in der Praxis am günstigsten ist. Der obere Bereich 11 der Retorte wird durch ein sie umgebendes Heizelement 5, z.B. in Form eines Widerstandsofens, innerhalb der Grenzen der Niveaulinien 8 und 81 auf eine Temperatur oberhalb des Siedepunkts des

Magnesiums gebracht und dann konstant gehalten, sodass aus der kochenden magnesiumhaltigen Metallschmelze 2 Dampf entsprechend der F^eile 91 aufsteigt und den Innenraum des oberen Bereichs 11 der Retorte 1 erfüllt, wobei er oberhalb der Niveaulinie 81 auch flüssig kondensieren kann und dann wieder nach unten in die Schmelze 2 zurückfliesst. Da rostfreier Stahl in geringfügiger Weise mit flüssigem Magnesium reagiert, kommt es im Kontakt mit der Magnesiumschmelze zu ihrer Verunreinigung mit dessen Legierungselementen, da diese Elemente jedoch einen im Vergleich mit Magnesium ungleich niedrigeren Dampfdruck besitzen, macht sich diese Verunreinigung nicht im Dampf bemerkbar.

Um zu verhindern, dass aus dem Bereich oberhalb der Niveaulinie herabtropfende verunreinigte Schmelze in die Oeffnung 31 des Kondensationsgefässes 3 gelangt, ist diese durch eine wahlweise ebenfalls aus Graphit bestehende Abdeckung 4 geschützt, welche das unreine Magnesium wieder zurück in die Schmelze 2 leitet. Die Abdeckung 4 kann sich dabei direkt auf den oberen Bereich 32 des

Kondensationsgefässes 3 abstützen oder auch seitlich oder oben mit der Innenwand der Retorte in Verbindung stehen. In jedem Fall muss die Befestigung jedoch so ausgeführt sein, dass die Abdeckung zur Entnahme des erstarrten hochreinen Magnesiums 21 aus dem Kondensationsgefäss 3 problemlos temporär entfernt werden kann.

Die Schmelze des magnesiumhaltigen Ausgangsmaterials 2 steht bei diesem

Vorrichtungsbeispiel während des Destillationsprozesses direkt mit der Aussenfläche des Kondensationsgefässes 3 im Bereich 32 in Kontakt. Da bei Ende des

Destillationsvorgangs praktisch sämtliches Ausgangsmaterial verdampft ist, ist das Kondensationsgefäss wieder frei. Etwa in den Spalt zwischen dem Bereich 31 des Kondensationsgefässes und dem Bereich 12 der Retorte eingedrungene Schmelze ist dabei ohne Belang, da das Kondensationsgefäss zur Herausnahme des erstarrten Magnesiums nicht unbedingt aus der Retorte entfernt werden muss. Der

entsprechend Pfeil 92 in den oberen Bereich 32 des Graphittiegels eindringende Dampf kondensiert unterhalb der Niveaulinie 8 und sammelt sich als hochreine Schmelze 21 im unteren Bereich 33 des Graphittiegels. Um ein Kochen dieser hochreinen Schmelze 21 zu verhindern, kann innerhalb der Retorte durch ein

Inertgas, z.B. Argon ein Mindestdruck beibehalten werden, welcher den Siedepunkt des Magnesium oberhalb der im Bereich 33 herrschenden Temperatur bringt. Dabei wird das Temperaturprofil insbesondere des unteren Teils 33 des

Kondensationsgefässes 3 durch ein separat einstellbares Heizelement 51 bestimmt.

Ueber ein Sperrorgan 6, z.B. in Form eines Plattenventils, welches über eine von aussen betätigbare und durch eine Vakuumdurchführung 63 verschiebbare

Schubstange 61 gegen einen Sitz 62, z.B. in Form einer Keramik- oder Graphitfilz- Packung gepresst wird, kann die Retorte 1 bei Bewegung der Schubstange 61 in Richtung des Pfeils 93 mit der Vorkammer 13 in Verbindung gebracht werden. Dabei befindet sich das Sperrorgan 6 mit der Ventilplatte und dem Sitz 62 im vorliegenden Beispiel zusammen mit dem oberen Bereich 1 der Retorte 1 oberhalb der

Niveaulinie 81 , d.h. bei einer Temperatur oberhalb des Schmelzpunkts von

Magnesium, sodass es nicht zur Abscheidung von festem Magnesium im Bereich des Sperrorgans kommen kann, wodurch seine Funktion gewährleistet ist.

Die Vorkammer 13 besitzt in ihrem kälteren Bereich oberhalb der Niveaulinie 82, welche die Isotherme der Schmelztemperatur symbolisiert, einen Deckel 14, vorzugsweise in Gestalt eines entfernbaren Vakuumflansches, welcher neben der Vakuumdurchführung 63 mehrere Anschlüsse. Dabei führt ein Anschluss über eine Leitung 71 und ein Ventil 72 zu einer Vakuumpumpe 73, ein weiterer Anschluss über eine Leitung 74 zu einem Vakuummessgerät 75 und ein dritter Anschluss über eine Leitung 76, ein Ventil 77 und eine Druck- und oder Strömungsregulierung 78 zu einer Inertgasquelle 79, z.B. in Form einer Argondruckflasche.

Nachdem die Retorte 1 über die Vorkammer 13 evakuiert und anschliessend auf die für den Destillationsvorgang nötigen Temperaturen gebracht wurde, wird das

Sperrorgan 6 nur noch kurzzeitig zum Zwecke der Druckeinstellung und der Druckkorrektur geöffnet, um eine übermässige Kondensation von Magnesiumdampf in der Vorkammer 13 zu vermeiden. Die Dauer der Schliessperioden hängt dabei vom Anstieg des Drucks in den Schliesszeiten ab. Im Idealfall, bei ausreichender Entgasung stärker gasabgebender, z.B. aus einem Graphit minderer Qualität bestehender Teile bzw. bei Verwendung von Teilen aus hochreinem Graphit, kann das Sperrorgan 6 langzeitig geschlossen bleiben und wird in langzeitigen Intervallen nur kurz zum Zweck der Drucküberwachung geöffnet. Falls der Druck in der

Zwischenzeit über einen oberen Sollwert angestiegen ist, wodurch der

Verdampfungsprozess des Ausgangsmaterials 2 beeinträchtigt wird, kann die

Retorte 1 durch Oeffnung des Ventils 72 so lange mit der Vakuumpumpe 73 in Verbindung gesetzt werden, bis der Druck wieder in den Sollbereich abgesunken ist. Falls der Druck jedoch unter den Sollbereich abgesunken ist, wodurch die Gefahr der Verdampfung der im unteren Bereich 33 des Kondensationsgefässes 3 befindlichen hochreinen Magnesiumschmelze besteht, wird die Retorte 1 durch Oeffnung des Ventils 77 mit der Inertgasquelle 79 über die Strömungs- und/oder Druckregulierung 78 in Verbindung gesetzt, bis der Druck wieder in den Sollbereich angestiegen ist. In beiden Fällen wird das Sperrorgan 6 nach Erreichung des Solldruckbereichs sofort geschlossen, um übermässiges Eindringen von Magnesiumdampf in die

Vorkammer 31 zu verhindern.

Sobald der Destillationsprozess entsprechend dem Vorrichtungsbeispiel von Bild 1 beendet und die Retorte 1 mit ihrem Inhalt auf Raumtemperatur abgekühlt ist, kann die Retorte z.B. durch einen Sägeschnitt entlang der gestrichelten Niveaulinie 83 geöffnet werden, worauf das im unteren Bereich 33 des Kondensationsgefässes 3 befindliche hochreine Magnesium 21 nach Entfernung der Abdeckung 4 dem Tiegel entnommen werden kann, z.B. indem man die ganze Vorrichtung auf den Kopf stellt. In gleicher weise kann durch die Oeffnung auch neues Ausgangsmaterial 2 in den Verdampfungsbereich 111 der Retorte eingebracht werden. Anschliessend muss die Retorte 1 wieder z.B. durch einen Schweiss- oder Lötvorgang mit der Vorkammer 13 vakuumdicht zusammengefügt werden.

Bei den in diesem Beispiel entsprechend Bild 1 verwendeten Heizelemente 5 und 51 handelt es sich um auf konstante Temperaturen geregelte Widerstandsheizelemente, die durch an den für den Destillationsprozess relevanten Stellen der Retorte, also z.B. im von der Schmelze des Ausgangsmaterials kontaktierten Bereich des oberen Bereichs der Retorte zur Einstellung der Temperatur des Verdampfungsprozesses, im unteren Bereich 33 des Kondensationsgefässes 3 sowie der unmittelbaren Umgebung des Sperrorgans 6 zur Kontrolle, ob die Temperatur in diesen Bereichen sich oberhalb des Schmelzpunkts von Magnesium befindet. Anstelle der

Widerstandsheizelemente 5 und 51 können natürlich auch zwei Induktionspulen oder eine einzige, der Temperaturverteilung entsprechend gewickelte Induktionsspule treten, welche die Retorte und/oder die in ihr befindlichen Materialien erhitzen.

Bild 2 zeigt ein besonders für den rationellen Betrieb unter industriellen Bedingungen geeignetes Beispiel einer erfindungsgemässen Vorrichtung, wobei gleiche Ziffern Teile gleicher Funktion wie in Bild 1 bezeichnen. Dabei ist die Retorte 1 als zentralsymmetrischer Rohrkörper mit einem oberen Bereich 11 mit grösserem

Durchmesser sowie einem unteren Bereich 12 mit geringerem Durchmesser aus einer Superlegierung zusammengeschweisst, wobei sich der untere Bereich 12 in einem rohrförmigen Fortsatz 15 bis in den oberen Bereich 11 der Retorte erstreckt. Auf diese Weise befindet sich die Schmelze des Ausgangsmaterials 2 in einem ringförmigen Tiegel, dessen Seitenwände durch den Wandbereich 111 des oberen Bereichs 11 der Retorte 1 und den rohrförmigen Fortsatz 15 gebildet werden, sodass die Schmelze mit der Aussenwand des Kondensationsgefässes nicht in Kontakt kommt.

In diesem Beispiel der erfindungsgemässen Vorrichtung besitzen der Rohrfortsatz 15 und der untere Bereich 12 der Retorte innen eine Innenwand mit durchgehender Konizität, sodass das Kondensationsgefäss 3 in Form eines Tiegels aus hochreinem Graphit, welches eine entsprechende Konizität der äusseren Mantelfläche besitzt, keinen Spalt für das Eindringen kondensierender Magnesiumschmelze zur

Verfügung stellt. Im Gegensatz zum Vorrichtungsbeispiel entsprechend Bild 1 , wo das Kondensationsgefäss 3 eine zylindrische Innenbohrung besitzt, da der erstarrte Reinmagnesiumblock infolge der grossen Schwindung in der Regel einfach zu entfernen ist, besitzt das Kondensationsgefäss 3 beim vorliegenden

Vorrichtungsbeispiel auch eine konische Innenfläche, sodass die Entfernung des hochreinen Magnesiumblocks 21 nach der Erstarrung noch einfacher möglich ist.

Die Oeffnung 31 des Kondensationsgefässes 3 wird durch eine dachförmige

Graphitabdeckung 41 mit schräg nach oben führenden radialen Bohrungen für den Eintritt des Magnesiumdampfs entsprechend Pfeil 92 abgedeckt. Die Abdeckung 41 kann auch aufwendiger als im Bild gestaltet werden, etwa indem man auch seitliche Blenden vor die radialen Bohrungen setzt, sodass keine Spritzer der stark

kochenden Schmelze des Ausgangsmaterials 2 direkt in das Kondensationsgefäss 3 geschleudert werden können.

Das Sperrorgan ist hier in Form eines konischen Metallstopfens 64 ausgebildet, welcher gegen den konischen Sitz 113 der Zwischenwand 112 dichtet. Dieser Dichtungsvorgang wird noch dadurch unterstützt, dass im Dichtungsspalt zwischen dem Metallstopfen 64 und dem Sitz 113 flüssiges Magnesium kondensiert, welches den Durchgang von Magnesiumdampf verhindert. Die Schubstange 61 , mit welcher das Sperrorgan in Richtung des Pfeils 92 geschlossen werden kann, wird durch eine Vakuumdurchführung 63 mit Dichtungsring 631 von aussen betätigt, wobei dies manuell oder automatisch über einen Steuerimpuls erfolgen kann. Anstelle des Dichtungsrings 631 könnte die Schubstange 61 auch z.B. mit einem Metallbalg dichtend durch den Flansch 14 in die Vorkammer 13 eingeführt werden. Der Flansch 14 wird im Beispiel mit einem Dichtungsring 141 gegen die zylindrische Vorkammer 13 gedichtet.

Die Leitungen 71 , 74 und 76 führen wie im vorherigen Beispiel zu einer

Vakuumpumpe 73, einem Vakuummessgerät 75 und wahlweise zu einer

Inertgasquelle, nur dass es sich hier um elektrisch ansteuerbare Ventile 72 und 77 handelt, sodass neben dem Absperrorgan 64 zur Verbindung der Retorte 1 mit der Vorkammer 13 auch die Senkung und die Steigerung des Drucks in Richtung auf einen Solldruckbereich in dem beim vorherigen Beispiel beschriebenen Sinne im Rahmen eines Regelkreises automatisch erfolgen können.

Abweichend vom vorherigen Beispiel wird bei dieser Vorrichtung nur der obere Bereich 11 der Retorte 1 mit einem Heizelement 5, z.B. in Form eines rohrförmigen Widerstandsheizofens beheizt, während der ihr unterer Bereich 12 von einer Isolationsschicht 52 umgeben ist, die so bemessen ist, dass die vom oberen Bereich durch Wärmeleitung durch die Retortenwand 12 und die Wand 32 des

Kondensationsgefässes sowie durch die Kondensation des Magnesiumdampfs nach unten gelangende Wärme im Verein mit der Kühlwirkung des unten nicht isolierten Bereichs der Retortenwand 12 die Temperatur der kondensierten hochreinen Magnesiumschmelze im gewünschten Bereich zwischen der Schmelz- und der Siedetemperatur hält. Das Temperaturprofil innerhalb der Retorte 1 kann übrigens durch Verschiebung derselben in vertikaler Richtung gegenüber Ofen und Isolation in gewünschter Weise innerhalb eines gewissen Bereichs geändert werden.

Ueber einen Temperaturmessfühler 53, z.B. ein Mantelthermoelement vom Typ K oder J, welches über eine Ausstülpung der Wand 12 bis in den Fuss des unteren Bereichs 32 des Kondensationsgefässes 3 hineinreicht, kann die Temperatur der hochreinen Magnesiumschmelze 21 kontrolliert und gegebenenfalls so geregelt werden, dass sie nicht unter den Schmelzpunkt des Magnesiums absinkt. Mit dem Mit einem zweiten Temperaturmessfühler 54, z.B. ebenfalls einem

Mantelthermoelement, welches über eine Ausstülpung der Wand des Bereichs 111 der Retorte die Temperatur innerhalb der Schmelze des Ausgangsmaterials 2misst, kann der Moment bestimmt werden, in dem der letzte Rest des Ausgangsmaterials verdampft ist. In diesem Moment, wo die Kühlwirkung des Verdampfungsprozesses aussetzt, kommt es nämlich zu einer plötzlichen Erhöhung der Temperatur dieses Thermoelements. Der dritte Temperaturfühler 55 sitzt in einer Ausstülpung des unteren Bereichs der Wand der Vorkammer 13 dicht oberhalb des Sperrorgans 64 und erlaubt die Kontrolle, ob dieses Sperrorgan sich oberhalb der Temperatur des Schmelzpunkts von Magnesium befindet, denn nur dann ist die einwandfreie

Funktion dieses Sperrorgans gesichert. Bei Ende einer Ofenreise, d.h. vor Abkühlung der Anlage, sollte das Sperrorgan 64 von der Sitzfläche 13 abgehoben werden, damit es nicht mit dieser verlötet wird.

Im ersten Beispiel einer Vorrichtung wurde eine Variante der Beheizung mit zwei unabhängigen Heizelementen gezeigt, im vorliegenden zweiten Beispiel erfolgt die Beheizung des oberen Retortenbereichs mit einem Heizelement 5, wobei der untere, von der thermischen Isolation umgebene Bereich 12 indirekt durch den oberen Bereich mitbeheizt wird, wobei auch die durch die Kondensation des

Magnesiumdampfs eingebrachte Wärme beiträgt. Im Sinne des erfindungsgemässen Verfahrens sind auch Vorrichtungen mit mehreren, in vertikaler Richtung

aufeinanderfolgender Oefen möglich, sodass z.B. der obere und der untere Teil der Retorte und zusätzlich auch der Bereich des Sperrorgans 6 jeder mit einem eigenen Heizelement separat auf ihre spezifische Temperatur regelbar sind. Bild 3 zeigt ein drittes Beispiel einer erfindungsgemässen Vorrichtung, welches der in Bild 2 gezeigten Vorrichtung weitgehend ähnlich ist. Im Unterschied zu dieser dort gezeigten Vorrichtung besitzt das Kondensationsgefäss 3 jedoch beim vorliegenden Beispiel eine zylindrisch Aussenfläche, wodurch ein ringförmiger Spalt zwischen dieser Aussenfläche und der inneren Mantelfläche des unteren Bereichs 12 der Retorte 1 entsteht. Durch Entfernung eines wahlweise wassergekühlten

Flansches 15 kann der Tiegel nach unten aus der Retorte herausgezogen werden. Um zu verhindern, dass Magnesiumdampf in diesen Spalt eindringt und in seinem unteren Bereich flüssig, bzw. unterhalb des Tiegelbodens 34 fest kondensiert, besitzt dieser Flansch 15 eine Zuleitung 761 mit einem Strömungsregulierungselement 781 , durch welches aus einer Inergasquelle stammendes Gas in den Raum unterhalb des Bodens 34 des Kondensationsgefässes 3 eingeführt werden kann. Die Menge des zugeführten Inertgases wird dabei so bemessen, dass seine Geschwindigkeit im Spalt ausserhalb des Kondensationsgefässes 3 so hoch ist, dass sie die

Diffusionsgeschwindigkeit des in Gegenrichtung potentiell migrationsbereiten

Magnesiumdampfs übertrifft. Durch diese Zugabe von Inertgas wird zwar der

Druckanstieg innerhalb der Retorte beschleunigt, wodurch die Intervalle, innerhalb derer das Sperrorgan 64 zum Zwecke der Druckkontrolle und -regelung geöffnet werden muss, etwas kürzer werden, jedoch ist diese Verkürzung unerheblich, da nur geringe Inertgasmengen zur Freihaltung des Spalts notwendig sind.

In den Bildern nicht gezeigt sind die Regelkreise und -mechanismen, welche zur Konstanthaltung der Temperaturen und des Drucks der Vorrichtungen nötig sind, da ihre Funktionsweise - abgesehen von der für die Durchführung des Verfahrens nötigen Genauigkeit - für die Durchführung des Verfahrens unerheblich ist.

Leqende

1 Retorte, allgemein

11 oberer Bereich Retorte

111 mit Ausgangsmaterial in Kontakt stehender Bereich von 11

112 Zwischenwand von 11 und 13

113 Konussitz für 64 in 112

114 Ausstülpung der Retortenwand als Schutz für Temperaturmessfühler 54

12 unterer verjüngter Bereich Retorte

121 Ausstülpung der Vorkammerwand als Schutz für Temperaturmessfühler 53

13 Vorkammer

131 Ausstülpung der Retortenwand als Schutz für Temperaturmessfühler 55

14 Vakuumflansch

141 Dichtungsring

15 Vakuumflansch

151 Dichtungsring

2 magnesiumhaltige metallische Ausgangsschmelze

21 hochreine Magnesiumschmelze

3 Kondensationsgefäss, allgemein

31 Oeffnung Kondensationstiegel

32 obere Zone Kondensatortiegel

33 untere Zone Kondensationstiegel Abdeckung

1 Abdeckung mit seitlichen Oeffnungen Heizung Bereich 11

1 Heizung Bereich 12

2 Isolation Bereich 12

3 Temperaturmessfühler Bodenzone Kondensationsgefäss

31 Schutzrohr für Temperaturmessfühler

4 Temperaturmessfühler Verdampfungszone

5 Temperaturmessfühler Bereich Sperrorgan 64 Sperrorgan

Schiebestange Sperrorgan

Dichtungssitz Sperrorgan

Vakuumdurchführung Schiebestange

Dichtungsring

Sperrorgan mit konischem Sitz Verbindungsleitung zu Vakuumpumpe

Sperrorgan zu Vakuumpumpe

Vakuumpumpe

Verbindungsleitung zu Vakuummessgerät

Vakuummessgerät

Verbindungsleitung zu Sperrorgan

Verbindungsleitung zu Strömungsregulierung Inertgas

Sperrorgan

Strömungsregulierung Inertgas

Strömungsregulierung Inertgas

Inertgasquelle untere Niveaugrenze Temperaturbereich oberhalb Siedetemperatur obere Niveaugrenze Temperaturbereich oberhalb Siedetemperatur obere Niveaugrenze Temperaturbereich oberhalb Schmelztemperatur Niveaulinie von möglichem Sägeschnitt Pfeil, Dampferzeugung

Pfeil, Dampfeintritt in Kondensationsgefäss

Pfeil, Heberichtung Sperrorgan 6