Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR MELTING A METAL CHARGE IN A ROTARY KILN, AND ROTARY KILN FOR IMPLEMENTING SUCH PROCESS
Document Type and Number:
WIPO Patent Application WO/1995/034791
Kind Code:
A1
Abstract:
The process implemented in a rotary kiln (1) provided with an oxyburner (5) comprises the steps of adding to the metal charge in the kiln a solid fuel charge in proportions higher than 1.5 % and injecting, in the direction of the combined charge in the kiln, at least one oxygen jet by means of at least one nozzle (2) situated under the burner (5).

Inventors:
MARLES FRANCO JOAN (ES)
Application Number:
PCT/FR1995/000791
Publication Date:
December 21, 1995
Filing Date:
June 15, 1995
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AIR LIQUIDE (FR)
MARLES FRANCO JOAN (ES)
International Classes:
C21C1/08; C21C5/46; F23L7/00; F27B7/20; F27D7/02; (IPC1-7): F27B7/20; C21C1/08
Foreign References:
FR2694802A11994-02-18
EP0553632A21993-08-04
DE4142401A11993-06-24
US4414026A1983-11-08
Download PDF:
Claims:
Revendications
1. Procédé de fusion d'une charge métallique dans un four rotatif équipé d'au moins un oxybruleur, caractérisé en ce qu'il comprend les étapes d'adjoindre à la charge métallique une charge de combustible solide et d'injecter au moins un jet d'oxygène en direction de la charge combinée dans le four.
2. Procédé selon la revendication 1, caractérisé en ce que la proportion de charge de combustible solide dans la charge métallique est comprise entre 1,5% et 9%.
3. Procédé selon la revendication 2, caractérisé en ce que la proportion de charge de combustible solide dans la charge métallique est comprise entre 2 et 6%.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'oxygène est injecté à une vitesse supersonique.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que le jet d'oxygène est injecté entre la flamme du brûleur et la charge combinée dans le four.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'oxygène est injecté dès la mise en oeuvre du brûleur.
7. Procédé selon l'une des revendications 1 à 7, caractérisé en ce que au moins l'oxygène injecté par la lance provient d'une unité de séparation de gaz de l'air par adsorption.
8. Four rotatif pour la mise en oeuvre d'un procédé selon l'une des revendications précédentes, comprenant, à une extremet, au moins un oxybruleur (5) , caractérisé en ce qu'il comporte en outre au moins une lance à oxygène (2) agencée pour diriger au moins un jet d'oxygène vers le bas du four.
9. Four selon la revendication 8, caractérisé en ce que la lance comporte au moins deux canaux (6, 7) d'éjection d'oxygène.
10. Four selon la revendication 8 ou 9, caractérisé en ce que la lance (2) est disposée audessous du brûleur (5).
11. Four selon l'une des revendications 8 à 9, caractérisé en ce que la lance (2) est incorporée dans la brûleur.
12. Four selon l'une des revendications 8 à 11, caractérisé en ce que le brûleur comprend une pluralité ,d'éjecteurs angulairement repartis (10).
Description:
"Procédé de fusion d'une charge métallique dans un four rotatif et four rotatif pour la mise en oeuyre d'un tel procédé"

La présente invention concerne les procédés de fusion de charges métalliques dans un four rotatif équipé d'au moins un oxybruleur.

Dans les procédés connus, l'oxybruleur, réglé dans des conditions de stoechiométrie, assure la fusion de la charge métallique contenant éventuellement, et pour des considérations purement métallurgiques, de faibles quantités de combustibles solides, n'excédant généralement pas 1% de la charge métallique pour limiter la formation de composés volatils non brûlés indésirables qui, également au niveau de la mise en oeuvre de 1Oxybruleur, limitent les conditions dans lesquelles la combustion est effectuée et, par voie de conséquence, la vitesse de fusion de la charge dans le four.

La présente invention a pour objet de composer un procédé perfectionné permettant d'augmenter de façon significative la vitesse et l'efficacité de fusion dans un four donné tout en réduisant la consommation d'énergie globale.'

Pour ce faire, selon une caractéristique de l'invention, le procédé comprend les étapes d'adjoindre à la charge métallique à fondre une charge de combustible solide et d'injecter au moins un jet d'oxygène en direction de la charge combinée dans le four.

Selon d'autres caractéristiques de l'invention : la proportion de charge de combustibles solides dans la charge métallique est comprise entre 1,5 et 9%, avantageusement entre 2 et 6%;

- l'oxygène est injecté a une vitesse proche de la vitesse du son ou supersonique; - le jet d'oxygène est injecté, dès la mise en oeuvre du brûleur, entre la flamme du brûleur et la charge combinée dans le four.

La présente invention a également pour objet un four rotatif pour la mise en oeuvre d'un tel procédé, comprenant, outre un oxybruleur, au moins une lance à oxygène agencée pour diriger au moins un jet d'oxygène vers le bas du four.

Avec le procédé selon l'invention on étend la combustion dans la charge elle-même, où l'oxygène injecté par la lance vient interagir avec le combustible solide qui brûle en contact direct avec le métal, augmentant ainsi de façon extrêmement importante la surface de réaction et promouvant ainsi une fusion accélérée sans affecter les conditions de température au niveau du réfractaire du four et ne réduisant donc pas la durée de vie de ce dernier. D'autre part, une part notable, dépassant 35% de l'énergie totale de la combustion, étant assurée dans la charge, par le combustible solide, la puissance du brûleur, et donc son coût, peuvent être réduits de façon significative.

D'autre caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation, faite en relation avec les dessins annexés sur lesquels : la Figure 1 est une vue schématique en coupe longitudinale d'un mode de réalisation d'un four de fusion de métal selon l'invention ; - les Figures 2 et 3 sont des vues respectivement de coté et en coupe d'un mode de réalisation d'une lance à oxygène multitube ;

- la Figure 4 est une vue partielle en coupe longitudinale d'un brûleur à lance intégrée selon l'invention ;

- la Figure 5 est une vue en bout du brûleur de la Figure 4 ;

- la Figure 6 est une vue en coupe longitudinale d'un autre mode de réalisation d'un brûleur à lance intégrée selon l'invention ;

- la Figure 7 est une vue en bout du brûleur de la Figure 6 ;

- les Figures 8 à 11 sont des graphes illustrant des paramètres de fonctionnement selon les conditions des Tableaux 1 à 3 ;

- la Figure 12 est un graphe illustrant les relations entre la vitesse de fusion et le pourcentage en énergie de combustion dans la charge combinée du four.

Sur la Figure 1, on a représenté un four rotatif 1 dans la porte d'extrémité 4 duquel sont montés un ,oxybrûleur 5 orienté vers la charge et une lance à oxygène 2 positionnable de façon réglable grâce à un dispositif de guidage 3. Selon l'invention, la lance 2 est orientée de façon à diriger, dans le four 1, un jet d'oxygène haute vitesse, typiquement supersonique, vers une charge combinée de métal, typiquement d'acier, à fondre et d'un combustible solide dans des proportions typiquement supérieures à 2% de la charge métallique. Ce combustible solide est typiquement de l'anthracite, du graphite, notamment d'électrode, ou d'autres produits contenant du carbone et de l'hydrogène, notamment des polyoléfines solides. Des exemples de conditions opératoires sont donnés plus loin en relation avec les Tableaux 1 à 3 et les Figures 8 à 12.

Sur les Figures 2 et 3, on a représenté un mode de réalisation particulier d'une lance à oxygène 2 comprenant une amenée principale supérieure d'oxygène 7 et deux amenées inférieures d'oxygène 6 permettant d'éjecter des jets d'oxygène différenciés en direction de la charge et au-dessous de la flamme du brûleur 5. Le corps de lance 2 comporte une rainure 8a coopérant avec une nervure 8b du dispositif de guidage 3 pour le maintien d'une orientation correcte des tubes 6 et 7 lors des réglages vers l'avant ou vers l'arrière de la lance 2 dans le four 1.

Sur les Figures 4 et 5, on a représenté un oxybruleur comportant une amenée centrale 12 de gaz combustible dans une virole formant un canal 9a d'oxygène introduit par une entrée 9, le gaz combustible étant éjecté par des injecteurs 10 s'étendant dans des orifices de sortie d'oxygène dans le nez du brûleur, ici angulairement répartis autour de l'axe du brûleur. Dans la partie

inférieure de ce dernier, les orifices d'éjection combinés oxygène/combustible gazeux sont remplacés par au moins une lance 2 telle que décrite en relation avec les Figures 2 et 3 et dont la partie amont s'étend dans l'amenée centrale de combustible 12. En 11 on a représenté l'extrémité d'un circuit central de refroidissement du nez du brûleur.

Sur les Figures 6 et 7, on a représenté un oxybruleur refroidi comportant un chemisage périphérique 11 de circulation d'eau introduite en 13 et évacuée en 14. Comme dans le mode de réalisation des Figures 4 et 5, le brûleur comprend une amenée centrale 12 de gaz combustible s'étendant dans un canal d'éjection d'oxygène 9a et débouchant vers l'extérieur par une série d'éjecteurs 10, ici angulairement et régulièrement répartis. Ici, au moins une, en l'occurrence deux lances à oxygène 2 s'étendent dans la partie inférieure du canal principal d'oxygène 9a et débouchent à l'extérieur du brûleur au-dessous des éjecteurs 10. Dans ce mode de réalisation, l'oxygène principal dans le canal 9a, refroidi par le chemisage 11, participe au refroidissement des lances à oxygène 2.

Selon la géographie du four, la lance d'oxygène est réglée de façon à éjecter les jets d'oxygène dans la direction vers la charge suivant un angle compris entre 5 et 25° par rapport à l'axe du four. Le débit des jets d'oxygène éjectés par la lance est choisi entre 25 et 150% du débit d'oxygène de l'oxybruleur.

Selon les dimensions du four, on peut prévoir une seconde lance à oxygène, également dirigée vers la charge, dans l'extrémité du four opposée au brûleur. L'oxygène d'alimentation, tant de la lance que de 1'oxybruleur, est avantageusement de l'oxygène à une pureté entre 88 et 95% fourni sur site par une unité de séparation de gaz de l'air par adsorption du type dit PSA.

On va maintenant décrire des conditions opératoires particulières. Le combustible solide, dans des proportions de 3,2% de la charge d'acier, en l'occurrence 5,3 tonnes environ, est de l'anthracite et l'oxygène injecté par la

lance 2 est éjecté à une vitesse supersonique à un angle d'environ 10° par rapport à l'axe du four.

La combustion généralisée de la charge d'anthracite est obtenue environ 10 minutes après la mise en oeuvre à pleine puissance du brûleur pour redistiller ainsi les 7% de composés volatils qu'elle contient. Par la suite, lorsque la charge combinée dans le four atteint la bonne température, les 86,5% de carbone de la charge solide sont

,convertis en monoxyde de carbone en remontant vers la surface de la charge. L'oxygène éjecté par la lance crée sous la flamme du brûleur une zone de combustion intense particulièrement rayonnante et quasi intégralement renvoyée vers la charge par l'effet d'écran assuré par la flamme du brûleur qui protège ainsi les parois du four. Ainsi, conformément aux objets de l'invention, on obtient un rendement thermique élevé de combustion par l'oxygène injecté des résidus non-brûlés, une augmentation conséquente du rendement énergétique par unité de temps pendant toute la durée du processus, une consommation réduite du réfractaire du four et des pertes moindres des composants métalliques de la charge.

Dans les Tableaux suivants, les références 1 à 18 correspondent à des procédés de fusion sans injection d'oxygène avec des charges réduites d'anthracite, les références 19 à 22 mettant en oeuvre une injection d'oxygène dirigée vers une charge métallique contenant 1,5% d'anthracite, portée à 3% dans les références 23 à 28.

Les valeurs indiquées sur les Tableaux 1 à 3 sont les suivantes : anthracite : poids en kg pour une charge de métal, temps:respectivement:fusion/maintien en température /temps total, température : "C, vitesse fusion : °C/minute/5,3 tonne de charge consommation totale : propane/oxygène, consommation spécifique : m 3 /100°C/5,3 T (brûleur + lance) , analyse acier : Ce/C/Si.

Table 1

Table 2

Réf. Anthracite Temps Temp. Consommation Spéc. Oxygène lance Oxygène total

Propane/oxyg.

1 80 55/41/96 1.361 7.88/39.38

2 80 55/37/92 1.367 7.50/37.60

3 80 55/55/110 1.321 9.30/46.48

4 80 55/42/97 1.370 7.90/39.56

5 80 55/42/97 1.346 8.05/40.27

6 80 55/42/97 1.321 8.20/41.03

7 80 55/43/98 1.376 7.95/39.75

8 80 55/42/97 1.362 7.95/39.75

9 80 55/46/101 1.341 8.41/42.06

10 80 55/44/99 1.340 8.25/41.27

1 1 80 55/49/104 1.405 8.26/41.35

12 80 55/42/97 1.324 8.18/40.94

13 80 55/35/90 1.291 7.79/38.96

14 80 55/44/99 1.324 8.35/41.77

15 80 55/53/108 1.298 9.29/46.47

16 80 55/50/105 1.379 8.50/42.49

17 80 55/44/99 1.377 8.02/40.16

18 80 55/43/98 1.345 8.13/40.67

19 80 55/30/85 1.399 5.93/38.74

20 80 55/30/85 1.364 6.09/39.74

21 80 55/29/84 1.381 5.94/38.81

22 80 L 55/30/85 1.370 6.06/39.56

23 150 40/40/80 1.360 5.81/29.19 233 630

24 150 40/32/72 1.360 5.29/26.32 223 581

25 150 40/35/75 1.367 5.49/27.43 230 605

26 150 Changement

27 150 40/35/75 1.436 5.22/26.11 219 594

28 150 33/32/65 1.422 4.57/22.86 203 528

29 170 33/27/60 1.330 4.51/22.41 234 532

Table 3

La Figure 8 qui illustre les vitesses de fusion en °C/minute pour une charge de 5,3T pour chacune des références 1 à 29 des Tableaux précédents, montre que la vitesse passe d'au-dessus de 15 à plus de 20 pour les références 28 et 29, ce qui permet de réduire le temps de rotation discontinu du four de 55 minutes à 33 minutes et la pause entre rotations de 5 à 3 minutes.

La Figure 9, qui illustre la consommation de propane courbe du bas) et d'oxygène (courbe du haut) pour chacune des références 1 à 29, montre que la consommation spécifique de propane peut descendre jusqu'à 4,6m 3 pour une consommation d'oxygène sensiblement stable.

La Figure 10 montre que l'efficacité de fusion passe d'un peu plus de 50% jusqu'à plus de 60-65%. La Figure 11 montre que la consommation en énergie, en K h peut être ramené d'environ 700 KWh à moins de 600 K h.

La Figure 12 montre que, selon les références 1 à 29, le pourcentage énergie dans la charge passe de moins de 20 à plus de 40 avec corrélativement une augmentation de la vitesse de fusion de 15 à 22°C/minute.




 
Previous Patent: WOOD DRYER

Next Patent: ROTARY DRUM SUSPENDED WITHIN LIVE-RING