Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A PROCESS FOR OXIDATION OF A LOWER ALKENE AT LOW TEMPERATURES IN AMMONIA-CONTAINING GAS MIXTURES
Document Type and Number:
WIPO Patent Application WO/2018/234045
Kind Code:
A1
Abstract:
In a process for the oxidation of a lower alkene, such as ethylene, over a catalyst containing Cu and one or more zeolite or zeotype materials, the oxidation is conducted in the presence of ammonia in the feed gas at a process temperature below 350°C. The oxidation can be performed in a continuous process.

Inventors:
BEATO, Pablo (Under Elmene 1, 2.tv, 2300 Copenhagen, 2300, DK)
JANSSENS, Ton V.W. (Gunnarsvej 3, 2880 Bagsværd, 2880, DK)
Application Number:
EP2018/064958
Publication Date:
December 27, 2018
Filing Date:
June 07, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HALDOR TOPSØE A/S (Haldor Topsøes Allé 1, 2800 Kgs. Lyngby, 2800, DK)
International Classes:
C07D301/08; C07B33/00; C07B41/00
Domestic Patent References:
WO2012009052A12012-01-19
WO2015154828A12015-10-15
WO1995005896A11995-03-02
WO2004078737A12004-09-16
WO2012141942A12012-10-18
WO2015154829A12015-10-15
WO2015154828A12015-10-15
WO2015154827A12015-10-15
Foreign References:
US20010044557A12001-11-22
US20110152546A12011-06-23
EP2980082A12016-02-03
US20090050535A12009-02-26
Other References:
M.H. GROOTHAERT ET AL., J. AM. CHEM. SOC., vol. 127, 2005, pages 1394
P.J. SMEETS ET AL., CATAL. TODAY, vol. 110, 2005, pages 303
E.M.C. ALAYON ET AL., ACS CATAL., vol. 4, 2014, pages 16
LE, H. ET AL., ACS CATAL., vol. 7, 2017, pages 1403 - 1412
MARKOVITS, M. A. C. ET AL., TOP. CATAL., vol. 59, 2016, pages 1554 - 1563
GAO, F. ET AL., J. CATAL., vol. 319, 2014, pages 1 - 14
JANSSENS, T.V.W. ET AL., ACS CATAL., vol. 5, 2015, pages 2832 - 2845
PAOLUCCI, C. ET AL., J. AM. CHEM. SOC., vol. 138, 2016, pages 6028 - 6048
SHWAN, S. ET AL., ACS CATAL., vol. 5, 2015, pages 16 - 19
MARKOVITS, M.A.C. ET AL., TOP. CATAL., vol. 59, 2016, pages 1554 - 1563
Download PDF:
Claims:
Claims :

1. A process for the oxidation of a lower alkene over a catalyst containing Cu and one or more zeolite or zeotype materials, wherein the oxidation is conducted in the presence of ammonia in the feed gas at a process

temperature below 350°C.

2. Process according to claim 1, wherein a zeolite or zeotype material is mixed with an oxide of Cu .

3. Process according to claim 1 or 2, wherein the zeotype is a silico-alumino phosphate material.

4. Process according to any of the claims 1-3, in which the oxidation is performed in a continuous process.

5. Process according to any of the claims 1-4, wherein the lower alkene is ethylene.

6. Process according to any of the claims 1-5, wherein the reaction product is ethylene oxide.

7. Process according to any of the claims 1-5, wherein the reaction product is ethylene glycol.

8. Process according to any of the claims 1-5, wherein the reaction product is acetaldehyde . 9. Process according to any of the claims 1-4, wherein the lower alkene is propylene.

10. Process according to any of the claims 1-4 and 9, wherein the reaction product is propylene oxide.

11. Process according to any of the claims 1-10, wherein the content of ammonia in the feed gas is between 1 and 5000 ppmv.

12. Process according to any of the claims 1-10, wherein the content of oxygen in the feed gas is 10 vol% or lower.

13. Process according to any of the claims 1-10, wherein the content of water in the feed gas is 10 vol% or lower .

14. Process according to any of the claims 1-10, wherein the process temperature is 250°C or lower.

15. Process according to any of the preceding claims, wherein one or more zeolite or zeotype materials in the catalyst have structures selected from the group consisting of AEI, AFX, CHA, KFI, ERI, GME, LTA, IMF, ITH, MEL, MFI, SZR, TUN, *BEA, BEC, FAU, FER, MOR and LEV. 16. Process according to claim 15, wherein the Cu- zeolite catalyst is selected from the group consisting of Cu-CHA, Cu-MOR, Cu-MFI, Cu-BEA, Cu-ZSM-5 and Cu-FER.

17. Process according to claim 15, wherein the Cu-based catalyst is Cu-CHA.

Description:
Title: A process for oxidation of a lower alkene at low temperatures in ammonia-containing gas mixtures

The present invention relates to a process for oxidation of a lower alkene, such as ethylene or propylene, in ammonia- containing gas mixtures and catalysts for use in the process. The invention is based on the finding that oxygen can be activated by mobile Cu-ammonia complexes formed inside the cavities of a zeolite. The term "lower alkene" refers to an alkene containing from 1 to 5 carbon atoms in the molecule.

Partial oxidation of ethylene ( C2H4 ) to ethylene oxide ( C2H4O ) is industrially catalyzed by silver, and it is an important industrial process with a large production capacity. Due to the global capacity of this process, even slight improvements in the selectivity would have large scale economical benefits. Processes and catalysts for the oxidation of ethylene to ethylene oxide are described e.g. in WO 95/05896 Al, WO 2004/078737 Al, WO 2012/141942 Al and EP 2 980 082 Al .

The overall reaction comprises three reactions: (1) the selective oxidation of ethylene to ethylene oxide ( C2H4 + ½ O2 < - - > C2H4O ) , (2) the unselective oxidation of ethylene to C0 2 and H 2 0 (C 2 H 4 + 3 0 2 --> 2 C0 2 + 2 H 2 0) and (3) the over-oxidation of ethylene oxide to CO2 and ¾0 ( C2H4O + 2.5 0 2 --> 2 C0 2 + 2 H 2 0) . The industrial catalyst consists of silver particles supported on low surface alumina (a-Al 2 03) , with the addition of alkali compounds as promoters. During the process, chlorine is added in ppm amounts to the feed stream as a promoter in the form of chlorinated hydro ¬ carbons in order to enhance the ethylene oxide selectivity. Today, the ethylene oxide selectivity of the industrial catalyst lies in the range of 80-90%.

One of the challenges of the current process is the high heat of reaction, which limits the conversion of ethylene to below 10% in order to avoid local overheating and hence sintering of the Ag particles, which ultimately leads to a decrease in activity.

Recently, it has been found that Cu-zeolites are able to oxidize methane directly to methanol at around 200°C (M.H. Groothaert et al . , J. Am. Chem. Soc. 127, 1394 (2005); P.J. Smeets et al . , Catal . Today 110, 303 (2005), E.M.C. Alayon et al., ACS Catal. 4, 16 (2014); Le, H. et al . , ACS Catal. 7, 1403-1412 (2017); Markovits, M. A. C. et al . , Top.

Catal. 59, 1554-1563 (2016)), which are very mild

conditions for the activation of methane. However, the procedure for the conversion to methanol requires an activation of the Cu-zeolite which comprises exposure of the Cu-zeolite to oxygen at temperatures above 400 °C to activate the oxygen. The current interpretation of this partial oxidation of methane to methanol is that the oxidation reaction requires the formation of dimeric Cu-0 species, such as Cu-O-Cu, Cu-O-O-Cu, or Cu-0 2 -Cu, where the actual oxidation of methane then takes place. Cu-zeolites are also well known catalysts for the selective catalytic reduction of NOx by ammonia (NH3-SCR) , which is the basis for the current technology for reduction of NOx emissions from diesel engines and power plants. The NH 3 -SCR reaction proceeds according to the equation:

4 NH 3 + 4 NO + 0 2 -> 4 N 2 + 6 H 2 0

According to this reaction equation, the NH 3 -SCR reaction also requires an activation of oxygen. On Cu-zeolites, the NH3-SCR reaction proceeds already around 200-250°C (Gao, F. et al. J. Catal. 319, 1-14 (2014); Janssens, T.V.W. et al . , ACS Catal. 5, 2832-2845 (2015); Paolucci, C. et al . J. Am.

Chem. Soc. 138, 6028-6048 (2016)). As can be inferred from the reaction equation, this reaction also requires an activation of oxygen on the Cu-zeolites, which implies that oxygen activation takes place at around 200-250°C in NH3 - SCR.

In NH3-SCR, it has been found that the interaction between NH3 and Cu plays a special role. Cu forms stable complexes with ammonia, such as Cu( H3 ) 4 2 + and Cu(N¾ ) 2 + complexes. The Cu(N¾ ) 2 + complex is weakly bound in the zeolite (Janssens, T.V.W. et al., ACS Catal. 5, 2832-2845 (2015); Paolucci, C. et al., J. Am. Chem. Soc. 138, 6028-6048 (2016)), which suggests that this complex is mobile under reaction

conditions for NH3-SCR.

Applicant's patent applications WO 2015/154829 Al, WO

2015/154828 Al and WO 2015/154827 Al describe methods for the preparation of Cu-zeolite and Cu-zeotype materials by mixing a given zeolite or zeotype material in the H + or NH 4 + form with CuO or CU2O powder, followed by exposure to N¾ or a mixture of N¾ with nitrogen oxides at temperatures below 300°C. The materials prepared in this way show an activity for NH 3 -SCR that is comparable to or exceeds the activity of materials prepared by conventional ion exchange procedures, which means that solid state ion exchange can take place between Cu oxides and zeolites at temperatures below 300°C in the presence of ammonia. It has been pro ¬ posed that the ability of performing ion-exchange at low temperatures is due to the mobility of the Cu( H3)2 + complex (Shwan, S. et al . , ACS Catal. 5, 16-19 (2015)). The role of the mobility for the activation of oxygen in NH 3 -SCR in Cu- zeolites has not been established yet.

The above-mentioned WO 2015/154829 Al discloses that the efficiency of the solid state ion exchange process de ¬ creases at temperatures above 350°C. Following the idea that the solid state ion exchange process is due to the mobility of the Cu( H3)2 + complex, it can be deduced from this result that the Cu( H3)2 + complex is not thermally stable above 350°C. This then leads to a loss of the mobility of the Cu-complex.

US 2009/0050535 describes a process for preparing an olefin oxide by reacting a feed comprising an olefin and oxygen. The process, which is carried out as a continuous process, comprises contacting the feed components with an absorbent comprising copper and an epoxidation catalyst comprising a carrier, which may be based on zeolites. A reaction

modifier such as ammonia may be present in the feed. This US document, however, relates to a traditional process, such as an ethylene oxide process, and even though copper is present as an absorber in the reactor, the process is very different from the present process. More specifically, the present invention is built on the observations that oxidation of ethylene at around 200°C requires an activation of oxygen on a Cu-zeolite or Cu- zeotype, which probably involves more than one Cu-center, and that the presence of ammonia enhances the mobility of the Cu-centers in a Cu-zeolite or Cu-zeotype.

By substituting silver (15-25% Ag on alumina in the prior art industrial catalyst) by Cu (3-5% in the zeolite) , the costs of the catalyst can be reduced by a very large factor .

Thus, the present invention concerns a process for the oxidation of a lower alkene over a catalyst containing Cu and a zeolite or a zeotype material at a process tempera ¬ ture below 350°C, wherein the oxidation is conducted in the presence of ammonia in the feed gas. The presence of ammonia is essential to the oxidation of the alkene on Cu- zeolite or Cu-zeotype materials, even though it does not directly take part in the oxidation of the alkene, and it is not necessarily a part of the reaction product. It is also noted that the process of the invention implies activation of oxygen at temperatures below 350°C, and does not require the oxygen activation above 400°C as described in Le, H. et al . , ACS Catal. 7, 1403-1412 (2017) and

Markovits, M.A.C. et al . , Top. Catal. 59, 1554-1563 (2016).

A lower alkene is a C1-C5 alkene. The preferred lower alkane is ethylene. Another preferred lower alkene is propylene.

A preferred reaction product is ethylene oxide. Another preferred reaction product is propylene oxide.

Other preferred reaction products are ethylene glycol and acetaldehyde .

A first embodiment of the invention is a process in which a gas mixture comprising oxygen, ammonia and a lower alkene is contacted with a Cu-zeolite material at a temperature below 350°C, resulting in an alkene concentration in the product stream that is lower than the concentration in the inlet stream.

Another embodiment of the invention is a process in which a gas mixture comprising oxygen, ammonia and a lower alkene is contacted with a Cu-zeotype material at a temperature below 350°C, resulting in an alkene concentration in the product stream that is lower than the concentration in the inlet stream. Another embodiment of the invention is a process in which a gas mixture comprising water, ammonia and lower alkene is contacted with a Cu-zeolite material at a temperature below 350°C, resulting in an alkene concentration in the product stream that is lower than the concentration in the inlet stream.

Another embodiment of the invention is a process in which a gas mixture comprising water, ammonia and lower alkene is contacted with a Cu-zeotype material at a temperature below 350°C, resulting in an alkene concentration in the product stream that is lower than the concentration in the inlet stream. A further embodiment of the invention is a catalyst

containing a mixture of a zeolite or a zeotype in the H + or NH 4 + form and an oxide of Cu .

Preferably the zeolite structure of the Cu-zeolite catalyst is one or more structures selected from the group

consisting of AEI, AFX, CHA, KFI, ERI, GME, LTA, IMF, ITH, MEL, MFI, SZR, TUN, *BEA, BEC, FAU, FER, MOR and LEV. It is especially preferred that the Cu-zeolite catalyst is selected from the group consisting of Cu-CHA, Cu-MOR, Cu- MFI, Cu-BEA, Cu-ZSM-5 and Cu-FER.

According to the present invention, the process feed gas mixture comprises oxygen, ammonia and a lower alkene. Other gaseous compounds, such as nitrogen, water, noble gases and other hydrocarbons, can be present in the feed gas mixture as well. An advantage of the present invention is that the process can be conducted continuously without any need of re ¬ activation of the Cu-zeolite or Cu-zeotype material.

Another advantage of the present invention is that the process can be conducted isothermally at a process

temperature between 150 and 350 °C. A preferred embodiment of the invention is a process in which the oxidation is performed at a temperature of 250°C or lower. A further embodiment of the invention is that the catalyst for the process comprises a mixture of a metal-free zeolite or zeotype material and an oxide of Cu . Another embodiment of the invention is a process in which a gas mixture comprising oxygen, ammonia and a lower alkene is contacted with a catalyst containing Cu and one or more zeolite or zeotype materials at a temperature below 350°C, in which the concentration of N¾ is between 1 and 5000 ppm .

Another embodiment of the invention is a process in which a gas mixture comprising oxygen, ammonia and a lower alkene is contacted with a catalyst containing Cu and one or more zeolite or zeotype materials at a temperature below 350°C, in which the concentration of oxygen is 10 vol % or lower. Another embodiment of the invention is a process in which a gas mixture comprising water, ammonia and a lower alkene is contacted with a catalyst containing Cu and one or more zeolite or zeotype materials at a temperature below 350°C, in which the concentration of water is 10 vol % or lower.