Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR THE PREPARATION OF 2-ETHYL-1,3-HEXANE DIOL
Document Type and Number:
WIPO Patent Application WO/1995/007254
Kind Code:
A1
Abstract:
The invention relates to a process for the preparation of 2-ethyl-1,3-hexane diol from n-butyraldehyde by aldol condensation in the presence of an alkali metal hydroxide or alkali earth metal hydroxide catalyst. To promote the reaction and to improve its controllability, a neutral phase-transfer catalyst is additionally used in the process according to the invention. 2-Ethyl-1,3-hexane diol is used in insecticides and, for example, in the preparation of polyesters.

Inventors:
KULMALA KARI (FI)
ANKNER KJELL (SE)
RINTALA LEA (FI)
LAHTINEN LEILA (FI)
HEINOLA KALEVI (FI)
Application Number:
PCT/FI1994/000387
Publication Date:
March 16, 1995
Filing Date:
September 02, 1994
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NESTE OY (FI)
KULMALA KARI (FI)
ANKNER KJELL (SE)
RINTALA LEA (FI)
LAHTINEN LEILA (FI)
HEINOLA KALEVI (FI)
International Classes:
C07B61/00; B01J31/02; C07C29/141; C07C29/38; C07C31/20; C07C45/72; (IPC1-7): C07C31/20
Foreign References:
US4215076A1980-07-29
Other References:
PATENT ABSTRACTS OF JAPAN, Vol. 14, No. 86, C-690; & JP,A,1 299 240 (KYOWA YUKA K.K.), 4 December 1989 (04.12.89).
Download PDF:
Claims:
Claims
1. A process for the preparation of 2ethyll, 3hexane diol from nbutyraldehyde by aldol condensation in the presence of an alkali metal hydroxide or alkali earth metal hydroxide cat¬ alyst and by hydrogenation of the obtained intermediate prod¬ uct, characterized in that a neutral phasetransfer catalyst is additionally used in the aldol condensation step.
2. A process according to Claim 1, characterized in that the neutral phasetransfer catalyst is used in an amount of 0.5 10 % by weight, preferably 15 % by weight, of the amount of nbutyraldehyde.
3. A process according to Claim 1, characterized in that the neutral phasetransfer catalyst is polyethylene glycol.
4. A process according to Claim 1, characterized in that the alkali metal hydroxide or alkali earth metal hydroxide cata lyst is used in a proportion of 0.015 % by weight, preferably 0.11 % by weight, to the nbutyraldehyde.
5. A process according to Claim 1, characterized in that the preparation process comprises the following steps: 1) the nbutyraldehyde is caused to react with itself in an aldol condensation reaction in the presence of an alkali metal hydroxide or alkali earth metal hydroxide catalyst and a neutral phasetransfer catalyst, in consequence of which a 2 ethyl3hydroxyhexanal intermediate product is formed, 2) the 2ethyl3hydroxyhexanal obtained from step 1) is hy¬ drogenated by means of a reducing agent or by catalytic hydro¬ genation into 2ethyll, 3hexane diol.
6. A process according to Claim 5, characterized in that the hydrogenation is carried out by using a Raney nickel hydro¬ genation catalyst.
7. A process according to any of Claims 16, characterized in that the yield obtained for 2ethyll, 3propane diol is over 50 %.
Description:
Process for the preparation of 2-ethyl-l, 3-hexane diol

The object of the invention is a new, technically simple but efficient process for the preparation of 2-ethyl-l, 3-hexane diol from n-butyraldehyde by aldol condensation in the pres¬ ence of an alkali metal hydroxide or an alkali earth metal hydroxide. The efficiency of the invention is based on the use of correctly selected catalyst combinations in the reaction.

2-ethyl-l,3-hexane diol is a compound known per se, which is a slightly oil-like, colorless liquid. 2-Ethyl-1, 3-hexane diol is used in the main in insecticides, but it can also be used in the preparation of polyesters and in the paint industry as one component in the preparation of pulverous paints .

The preparation of 2-ethyl-l, 3-hexane diol from n-butyraldehy¬ de by aldol condensation in the presence of a catalytic amount of an alkali metal hydroxide or an alkali earth metal hydroxi¬ de and by subsequent hydrogenation (reduction) is known per se in organic chemistry. The hydrogenation of the intermediate can be carried out either by using reducing agents, e.g. sodium borohydride, or by catalytic hydrogenation.

JP patent publication 2 040 333 describes a process for the preparation of 2-ethyl-l, 3-hexane diol by an aldol condensati¬ on reaction from n-butyraldehyde in a homogenous system in the presence of an alkali metal hydroxide and by reducing the formed 2-ethyl-3-hydroxyhexanal. n-Butyraldehyde and potassium hydroxide were allowed to react in butanol at 40 °C, whereaf- ter the intermediate formed with a yield of 50.4 %, 2-ethyl-3- hydroxyhexanal, was hydrogenated by using Raney nickel at a temperature of 100 °C and a pressure of 50 atm for 1 h.

JP patent publication 1 299 240 discloses a process for the preparation of 2-ethyl-l, 3-propane diol from n-butyraldehyde by aldol condensation by using alkali metal alkoxides as the catalyst. The reaction was performed in the presence of sodium methoxy in a butanol solution at 40 °C. 2-Ethyl-3-hydroxyhexa- nal formed with a yield of 52.6 %, and it was hydrogenated

with Raney nickel at a temperature of 100 °C and a pressure of 50 atm.

The process according to the present invention is thus inten- ded for the preparation of 2-ethyl-l, 3-hexane diol by a tech¬ nically simple but efficient process as the result of which a good yield of the end product is obtained. This objective presupposes that the course of the reaction can be controlled significantly better in the aldol condensation step, so that the amount of the hazardous byproduct, 2-ethyl-2-hexanal, formed even in the process according to the JP patent publica¬ tion described above, can be decreased and thus the yield of the end product can be increased.

It has now been observed, surprisingly, that this objective is attained by correct selection of the catalyst combination used in the aldol condensation step of n-butyraldehyde. Thus the process according to the invention uses, in addition to an alkali metal hydroxide or alkali earth metal hydroxide cata- lyst, a neutral phase-transfer catalyst for promoting the reaction, whereby the course of the reaction can be rendered more controllable, i.e. the amount of the hazardous byproduct can be considerably decreased and thus the yield of the end product can be increased. The process according to the inven- tion is thus characterized in what is stated in the characte¬ rizing clause of Claim 1. Such a combination of alkali metal hydroxide or alkali earth metal hydroxide catalysts and neut¬ ral phase-transfer catalysts is a novel and surprising techni¬ cal solution for the preparation of 2-ethyl-l, 3-hexane diol from n-butyraldehyde.

In the process according to the present invention, the prepa¬ ration of 2-ethyl-l, 3-hexane diol takes place in two steps, which are 1) an aldol condensation step and 2) hydrogenation. In step 1) , a 2-ethyl-3-hydroxy-hexanal intermediate in accor¬ dance with Formula (II) is formed by aldol condensation from n-butyraldehyde (Formula I) , and thereafter in step 2) the intermediate according to Formula (II) is hydrogenated by

catalytic hydrogenation into 2-ethyl-l,3-hexane diol (Formula III) . These steps can be described by using the following reaction formulae:

OH CH 2 CH 3 cat . 1 1 1 1

Step 1) 2 CH 3 CH 2 CH 2 CHO - - > 2 CH 3 CH 2 CH 2 CH-CH-CHO

( I ) ( ID

10

OH CH 2 CH 3 OH CH 2 CH 3

1 C I I XT I I

- -> I I n Α H22 I iI ! iI

Step 2 ) CH 3 CH 2 CH 2 CH-CH-CHO - - > CH 3 CH 2 CH 2 CH-CH-CH 2 OH

( ID ( III )

20 In the preparation process according to the invention it is very important that the hydroxy ions of the alkali metal hydr¬ oxide or alkali earth metal hydroxide catalysts can be trans¬ ferred from the aqueous phase to the organic phase so that there will not form in the mixture even a local concentrated

25 hydroxy-ion spot which would cause in the exothermal reaction too high a reaction temperature in consequence which water would crack from the desired intermediate according to Formula

(II) , 2-ethyl-3-hydroxy-hexanal, whereafter it would form 2- ethyl-2-hexenal according to Formula (IV) , which is the worst

30 byproduct of the reaction. 2-Ethyl-2-hexenal is further redu¬ ced in the hydrogenation step into 2-ethyl-hexanol according to Formula (V) and not into the desired 2-ethyl-l,3-hexane diol.

35 j j -H 2 o !

CH 3 CH 2 CH 2 CH-CH- CHO - - >

( II ) ( IV)

40

CH J CHT

! H 2 !

CH 3 CH 2 CH 2 CH-CH=C-CHO - - > CH 3 CH 2 CH 2 CH- C- CH 2 OH

45 j

H ( IV) (V)

By using, in accordance with the present invention, in the aldol condensation step a neutral phase-transfer catalyst to¬ gether with an alkali metal hydroxide or alkali earth metal hydroxide catalyst the amount of the non-desirable hexenal according to Formula (IV) is decreased to as low a level as below 2 per cent, and the yield of the final product is in¬ creased to nearly 60 per cent. These results can be deemed to be considerably better than the results obtained without a phase-transfer catalyst, as shown by the examples given below.

In a multiple-phase system, which is thus the type also of the preparation process disclosed in the present invention, it is possible to accelerate and promote the action of alkali metal hydroxide or alkali earth metal hydroxide catalysts either a) by carrying out the reaction in a homogenous system (usually homogenized by using short-chain alcohols) or b) by using chemical phase-transfer catalysts in a heterogenous system. Chemical phase-transfer catalysts are thus chemical compounds having the property of catalyzing inter-phase transfer of material. Phase-transfer catalysts may be cationic, anionic or neutral.

In the process according to the present invention, the inter¬ esting phases are the organic phase and the aqueous phase. It has now been observed that in this case an advantageous end result, i.e. efficiency, speed and controllability of the reaction, is achieved by using in the aldol condensation step of the initial-material aldehyde a neutral phase-transfer catalyst together with an alkali metal hydroxide or alkali earth metal hydroxide. Polyethylene glycol (PEG) , for example, is a usable neutral phase-transfer catalyst.

Neutral phase-transfer catalysts do not have a charge as do, for example, cationic phase-transfer catalysts. The principle of action of a neutral phase-transfer catalyst between an or¬ ganic phase and an aqueous phase can be described as follows, using polyethylene glycol as an example: Polyethylene glycol serves as a phase-transfer catalyst by attaching to a positive

ion and by forming a so-called crown ether structure. The free electrons of the oxygen atoms of the polyethylene glycol at¬ tract the positive ions . The crown ether formed owing to the structure of the polyethylene glycol passes into the organic phase. To maintain the electron equilibrium in the phase, also the negative ions pass into the organic phase. When, for ex¬ ample, sodium hydroxide is used in the reaction, polyethylene glycol forms with Na + a crown ether, which passes into the organic phase, and the OH " ions follow to maintain the electron equilibrium. Since the reaction taking place in the organic phase consumes hydroxyl ions, the above cycle repeats to main¬ tain the electron equilibrium.

The preparation of 2-ethyl-l, 3-hexane diol thus takes place in two steps, as shown above in the reaction formulae. In the first reaction step, n-butyraldehyde reacts with itself, form¬ ing as the product of the aldol reaction an intermediate- product jβ-hydroxyaldehyde according to Formula II, i.e. 2- ethyl-3-hydroxy-hexanal . This intermediate-product -hydroxy- aldehyde is hydrogenated (reduced) into the corresponding alcohol, i.e. into 2-ethyl-l, 3-hexane diol according to Formu¬ la III. The efficiency, speed and controllability of the aldol step can thus be improved significantly by using an alkali metal hydroxide or alkali earth metal hydroxide catalyst to- gether with a neutral phase-transfer catalyst. The use of this catalyst combination renders the control of the exothermal forming reaction of the intermediate-product 3-aldehyde maxi¬ mally efficient, and thus the amount of readily forming hazar¬ dous byproducts can be minimized. In step 2, the intermediate- product aldehyde is hydrogenated completely into the desired end-product alcohol either by using a reducing agent or by catalytic hydrogenation. By this procedure, the desired objec¬ tive, i.e. the surprisingly high yield of 2-ethyl-l, 3-hexane diol, is achieved.

According to the present invention, 2-ethyl-l, 3-hexane diol is thus prepared from n-butyraldehyde. 0.5-10 % by weight, pref¬ erably 5-15 % by weight, of a neutral phase-transfer catalyst

is added to n-butyraldehyde, one such catalyst being, for ex¬ ample, polyethylene glycol (PEG 400) , whereafter the mixture is cooled to 0-20 °C. The reaction may also be started from room temperature, but preferably so that the mixture is first cooled. Most preferably the reaction mixture is cooled to a temperature of 5-15 °C, and thereafter an aqueous solution of an alkali metal hydroxide or alkali earth metal hydroxide catalyst is added to the mixture drop by drop at such a rate that the reaction clearly starts, i.e. the temperature of the mixture clearly rises from its original value. The alkali metal hydroxide or alkali earth metal hydroxide is used in a proportion of 0.01-5 % by weight, preferably 0.1-1 % by weig¬ ht, to n-butyraldehyde. The adding of the aqueous solution of the catalyst is discontinued when the temperature of the mixture has risen to the range 25-45 °C, preferably, however, to the range 30-40 °C. After the discontinuation of the adding of the catalyst, the mixture is further stirred for 0-5 h, preferably 0.2-3 h, whereafter the organic phase and the aqueous phase are separated from each other. Before the sepa- ration of the phases the reaction mixture may be neutralized with a mineral acid or an organic acid. The organic phase is recovered, and it is hydrogenated by catalytic hydrogenation at a temperature of 30-200 °C and a pressure of 5-100 bar, preferably at a temperature of 60-140 °C and a pressure of 10- 60 bar. The hydrogenation may be carried out by using, for example, a Raney nickel catalyst. After the hydrogenation the product is vacuum distilled. The boiling point of 2-ethyl-l, 3- hexane diol is 100 °C/6 mbar, and a yield of up to more than 55 % is obtained. When the process according to the invention is used, the worst byproduct, 2-ethyl hexanol via 2-ethyl hexenal, is formed at maximum at a rate of 2.6 %. The rest of the reaction mixture is unreacted n-butyraldehyde which has become reduced to 1-butanol.

If a neutral phase-transfer catalyst is not used in accordance with the invention in the reaction, the controllability of the reaction is considerably poorer and the 2-ethyl hexenal bypro¬ duct may form in an amount of up to tens of percent .

The process according to the invention described above for the preparation of 2-ethyl-l,3-hexane diol is a simple, reliable and efficient method, with a high yield, for the preparation of the said compound.

The following examples describe the preparation process accor¬ ding to the invention in greater detail. However, they are in¬ tended only to illustrate the invention, and they must not be deemed to limit the invention.

Example 1

101.0 g of n-butyraldehyde and 5.0 g of polyethylene glycol (PEG 400) were placed in a reactor. The mixture was cooled to 11 °C, and a total of 171.0 g of a 0.25 % aqueous solution of NaOH was added to it at such a rate that the temperature of the mixture remained at 30-32 °C. After 2 hours the mixture was neutralized with hydrochloric acid, the phases were sepa¬ rated, and the organic phase was hydrogenated with Raney nickel at 100 °C and at a hydrogen pressure of 20 bar. The product was analyzed gas chromatographically. The 2-ethyl-l, 3- hexane diol yield was 57.7 g, which corresponded to a yield of 56.9 %. The worst byproduct, 2-ethyl hexanol, formed in an amount of 1.8 %, and the unreacted n-butyraldehyde had become reduced to 1-butanol.

Example 2

The reaction was carried out by a procedure corresponding to that in Example 1, except that the 0.25 % aqueous solution of NaOH was used in an amount of 72.3 g, and after the temperatu- re of the mixture had risen to 32 °C, it was maintained at that temperature for 3 h. The neutralization and hydrogenation were carried out as in Example 1. The 2-ethyl-l, 3-hexane diol yield was 56.3 %. The worst byproduct, 2-ethyl hexanol, formed in an amount of 2.6 %, and the unreacted n-butyraldehyde had become reduced to 1-butanol.

Example 3, comparative example

100.2 g of n-butyraldehyde was cooled to 10 °C, and 81.0 g of

a 1.24 % aqueous solution of NaOH was added so that the tempe¬ rature of the mixture rose to 35 °C. The mixture was stirred at this temperature for 2.5 h. The phases were separated, and the organic phase was hydrogenated with Raney nickel, at a temperature of 100 °C and a pressure of 40 bar. The product was analyzed gas chromatographically. The yield of 2-ethyl- 1,3-hexane diol was 49.6 %. 2-Ethyl hexanol formed in an amount of 10.0 %, and the balance was 1-butanol.

Example 4, comparative example

The reaction was carried out as in Example 3, except that the stirring was continued for 20 h instead of 2.5 h. After hydro¬ genation the products were analyzed gas chromatographically. The yield of 2-ethyl-l, 3-hexane diol was only 17.4 %, 2-ethyl hexanol formed in as high an amount as 58.9 %, and the balance was 1-butanol.