Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR THE PREPARATION OF LONG-CHAIN RETINYL ESTERS FROM SHORT-CHAIN RETINYL ESTERS AND LONG-CHAIN ACIDS OR LONG-CHAIN ESTERS EMPLOYING LIPASES IN ORGANIC SOLVENTS
Document Type and Number:
WIPO Patent Application WO/2008/045185
Kind Code:
A2
Abstract:
Long-chain esters of retinol are prepared via a chemoenzymatic process from short-chain retinyl esters and an appropriate long-chain acid or ester in the presence of an enzyme. Use of various additives enhance the yield of the desired ester and facilitated its purification.

Inventors:
BOAZ NEIL WARREN (US)
CLENDENNEN STEPHANIE KAY (US)
Application Number:
PCT/US2007/020185
Publication Date:
April 17, 2008
Filing Date:
September 18, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EASTMAN CHEM CO (US)
International Classes:
C12P23/00
Domestic Patent References:
WO2004044212A12004-05-27
Foreign References:
US5902738A1999-05-11
Other References:
YIN, C ET AL.: "Synthesis of Vitamin A Esters by Immobilized Candida sp. Lipase in Organic Media", CHINESE JOURNAL OF CHEMICAL ENGINEERING, vol. 14, no. 1, February 2006 (2006-02-01), pages 81 - 86
Attorney, Agent or Firm:
NELSON, Brett, L. (Kingsport, TN, US)
Download PDF:
Claims:
We claim:

1. A process for preparing a long-chain retinyl ester, comprising: reacting a short-chain retinyl ester according to formula 2:

with a long-chain acid or long-chain ester in the presence of an organic solvent and an enzyme to form the long-chain retinyl ester, wherein R 4 is selected from the group consisting of hydrogen, C 1 -C 4 alky! groups and C2-C4 alkenyl groups.

2. The process according to claim 1 , wherein the C 1 -C 4 alkyl groups include at least one of methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, and s- butyl.

3. The process according to claim 1 , wherein the C 2 -C 4 alkenyl groups include at least one of vinyl, 1-propenyl, 1-isopropenyl, and 1-butenyl.

4. The process according to claim 1 wherein R is a methyl or an ethyl.

5. The process according to claim 1 , wherein R is a methyl.

6. The process according to claim 1 , wherein the short-chain retinyl ester is in neat form or in a diluent.

7. The process according to claim 6, wherein the diluent is a vegetable oil and is present in an amount of between 0 and 90%.

8. The process according to claim 1 , wherein the process is carried out in an inert solvent selected from the group consisting of an ether solvent, a hydrocarbon solvent, a polar aprotic solvent, and mixtures thereof.

9. The process according to claim 8, wherein the ether solvent is selected from the group consisting of diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran and mixtures thereof.

10. The process according to claim 8, wherein the hydrocarbon solvent is selected from the group consisting of benzene, toluene, xylene, nexane, heptane, cyclohexane, limonene, dichloromethane, dichloroethane, dibromoethane, tetrachloroethylene, chlorobenzene, and mixtures thereof.

11. The process according to claim 8, wherein the polar aprotic solvent is selected from the group consisting of acetonitrile, dimethyl formamide, dimethyl sulfoxide, and mixtures thereof.

12. The process according to claim 1 , wherein the process is carried out at a temperature between about -100 0 C and the boiling point of the solvent.

13. The process according to claim 12, wherein the temperature is between about 0-60 0 C.

14. The process according to claim 13, wherein the temperature is between about 20-50 0 C.

15. The process according to claim 1 , wherein the ' long-chain acid or long- chain ester is present in an amount between about 0.85 and 20 equivalents based on an amount of the short-chain retinyl ester.

16. The process according to claim 15, wherein the long-chain acid or long-chain ester is present in an amount between about 1.0 and 10 equivalents based on an amount of the short-chain retinyl ester.

17. The process according to claim 1 , wherein the enzyme is selected from the group consisting of a protease, a lipase, a phospholipase, and an esterase.

18. The process according to claim 17, wherein the lipase is in a whole cell, an isolated native enzyme, or immobilized on a support.

19. The process according to claim 1 , wherein the process is carried out in the presence of at least one of a molecular sieve and an ion exchange resin.

20. The process according to claim 19, wherein the molecular sieve is an organophilic molecular sieve.

21. The process according to claim 19, wherein the ion exchange resin is a basic ion exchange resin.

22. The process according to claim 21 , wherein the basic ion exchange resin is present in an amount between 10 and 1000 weight percent based on an amount of the short-chain retinyl ester.

23. The process according to claim 1 , further comprising isolating the retinyl ester via extraction, chromatography, distillation, or crystallization.

24. A process for the preparation of a long-chain retinyl ester represented by the general formula 1 :

comprising: reacting a short-chain retinyl ester with a long-chain acid or long-chain ester in the presence of an organic solvent and an enzyme to form the long- chain retinyl ester, wherein R is at least one selected from the group consisting of C 4 -C 2 4 alkyl, C 4 -C 24 alkenyl, C4-C24 dienyl, C 6 -C24 trienyl, C8-C24 tetraenyl, Ca-C 3 cycloalkyl, C 6 -C 2 o carbocyclic aryl, and C4-C20 heteroaryl wherein the heteroaryi includes at least one of sulfur, nitrogen and oxygen.

25. The process according to claim 24, wherein said alkyl, alkenyl, dienyl, trienyl,. tetraenyl, or cycloalkyl is substituted with one to three groups selected from CrC- 6 -alkoxy, cyano, C 2 -C 6 -alkoxycarbonyl, C 2 -C 6 -alkanoyloxy, hydroxy, aryl, heteroaryl, thiol, thioether, disulfide, and halogen.

26. The process according to claim 24, wherein said carbocyclic aryl includes at least one of phenyl, naphthyl, and anthracenyl.

27. The process according to claim 26, wherein the phenyl, naphthyl, or anthracenyl is substituted with one to three substituents selected from C 1 -C 6 - alkyl, substituted Ci-C 6 -alkyl, C 6 -C 1 O aryl, substituted C 6 -C 10 aryl, d-Cε-alkoxy, halogen, carboxy, cyano, CrCβ-alkanoyloxy, Ci-C 6 -alkylthio, Ci-C 6 -alkylsulfonyl, trifluoromethyl, hydroxy, C 2 -C 6 -alkoxycarboπyl, C 2 - Ce-alkanoylamino and -O-R 3 , S-R 3 , -SO 2 -R 3 , -NHSO 2 R 3 and -NHCO 2 R 3 , wherein R 3 is phenyl, naphthyl, or phenyl or naphthly substituted with one to three groups selected from Ci-C 6 -alkyl, C 6 -Ci 0 aryl, Ci-Ce-alkoxy and halogen.

28. The process according to claim 24, wherein said heteroaryl includes at least one of a 5- or 6- membered aromatic ring containing one to three heteroatoms selected from oxygen, sulfur and nitrogen.

29. The process according to claim 28, wherein the heteroaryl includes at least one of thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyrimidyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, and indolyl.

30. The process according to claim 24, wherein the process is carried out in an inert solvent selected from the group consisting of an ether solvent, a hydrocarbon solvent, a polar aprotic solvent, and mixtures thereof.

31. The process according to claim 30, wherein the ether solvent is selected from the group consisting of diethyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran and mixtures thereof.

32. The process according to claim 30, wherein the hydrocarbon solvent is selected from the group consisting of benzene, toluene, xylene, hexane, heptane, cyclohexane, limonene, dichloromethane, dichloroethane, dibromoethane, tetrachloroethylene, chlorobenzene, and mixtures thereof.

33. The process according to claim 30, wherein the polar aprotic solvent is selected from the group consisting of acetonitrile, dimethyl formamide, dimethyl sulfoxide, and mixtures thereof.

34. The process according to claim 24, wherein the process is carried out at a temperature between about -100 0 C and the boiling point of the solvent.

35. The process according to claim 34, wherein the temperature is between about 0-60 0 C.

36. The process according to claim 35, wherein the temperature is between about 20-50 0 C.

37. The process according to claim 24, wherein the long-chain acid or long-chain ester is present in an amount between about 0.85 and 20 ' equivalents based on an amount of the short-chain retinyl ester.

38. The process according to claim 37, wherein the long-chain acid or long-chain ester is present in an amount between about 1.0 and 10 equivalents based on an amount of the short-chain retinyl ester.

39. The process according to claim 24, wherein, the enzyme is selected from the group consisting of a protease, a lipase, a phospholipase, and an esterase.

40. The process according to claim 39, wherein the lipase is in a whole cell, an isolated native enzyme, or immobilized on a support.

41. The process according to claim 24, wherein the process is carried out in the presence of at least one of a molecular sieve and an ion exchange resin.

42. The process according to claim 41 , wherein the molecular sieve is an organophilic molecular sieve.

43. The process according to claim 41 , wherein the ion exchange resin is a basic ion exchange resin.

44. The process according to claim 43, wherein the basic ion exchange resin is present in an amount between 10 and 1000 weight percent based on an amount of the short-chain retinyl ester.

45. The process according to claim 24, further comprising isolating the retinyl ester via extraction, chromatography, distillation, or crystallization.

Description:

Preparation of Retinyl Esters

Field of the Invention

The present invention relates to the preparation of long-chain esters of retinol via chernoenzymatic processing from short-chain retinyl esters and an appropriate long-chain acid or ester in the presence of an enzyme.

Background

Retinol (Vitamin A) and retinyl esters have long been added to cosmetic compositions to provide topical benefits. Retinol itself is unstable and is toxic with excessive use. Long-chain retinyl esters, however, are preferred because they are more stable.

The classical chemical preparation of long-chain retinyl esters involves either the reaction of retinol with a long chain acid, acid chloride or an ester or by the transesterification of a short-chain retinyl ester with a long-chain fatty acid ester. These processes use either harsh reagents or high temperatures, which can cause difficulties due to the instability of retinol or the retinyl esters to these types of reaction conditions.

There have been several reports of chemoenzymatic syntheses of long-chain retinyl esters. Many of these syntheses utilize expensive and unstable retinol as the starting material (O'Connor et. al. Aust. J. Chem. 1992, 45, 641 ; Maugard, et. al. J. MoI. Catal. B: Enzymatic 2000, 8, 275; Maugard et. al., Biotechnol. Prog. 2000, 16, 358; Maugard et. al. Biotechnol. Prog. 2002, 18, 424.). Retinyl esters such as retinyl acetate are much more stable and significantly less expensive than retinol, and several reports have utilized this material as the starting material for a biocatalytic preparation of long- chain retinyl esters. An unexamined Japanese Patent Application (JP 62- 248495, 1987) utilized vitamin A acetate and a fatty acid in an organic solvent with a lipase modified with O-methoxypoly ethylene glycol to prepare long- chain retinyl esters. Although reasonable yields of the desired products are obtained, this process requires a separate modification of the lipase for

success. A process which did not require this modification would be more desirable. International Patent Application WO 2004/044212 A1 details a biocatalytic synthesis of long-chain retinyl esters from retinol or a retinyl ester and a fat or oil of animal or vegetable origins under solvent-free conditions. Unfortunately, this process utilizes elevated temperatures and results in only moderate conversions (17-44%) to the desired product, which could complicate isolation. A mild process for the preparation of long-chain retinyl esters from readily available precursors would therefore be of interest.

Summary of the Invention

A first embodiment of the present invention concerns a process for preparing a retinyl ester. The method includes reacting a short-chain retinyl ester according to formula 2:

with a long-chain acid or long-chain ester in the presence of an organic solvent and an enzyme to form the retinyl ester. R 4 is selected from the group consisting of hydrogen, C 1 -C 4 alkyl groups and C 2 -C 4 alkenyl groups.

Another embodiment concerns process for the preparation of long- chain retinyl ester compounds represented by the general formula 1 :

The method according to this embodiment includes reacting a short-chain retinyl ester with a long-chain acid or long-chain ester in the presence of an organic solvent and an enzyme and optionally in the presence of at least one molecular sieve and/or at least one ion exchange resin to form the retinyl ester. R is selected from at least one of the group consisting of C 4 -C 24 alkyl, C 4 -C 2 4 alkenyl, C 5 -C 24 dienyl, C 6 -C 2 4 trienyl, C 6 -C 24 tetraenyl, C 3 -C 8 cycloalkyl, C 6 -C 2O carbocyclic aryl, C 4 -C 2 O heteroaryl, and mixtures thereof, wherein the heteroaryl includes at least one of sulfur, nitrogen and oxygen.

Detailed Description of the Invention

The present invention concerns a process for the preparation of long- chain retinyl ester compounds represented by the general formula 1 :

wherein

R is selected from substituted and unsubstituted, branched- and straight-chain, saturated, unsaturated, and polyunsaturated C 4 -C 20 alkyl, substituted and unsubstituted C3-C8 cycloalkyl, substituted and unsubstituted C 6 -C 20 carbocyclic aryl, substituted and unsubstituted C 4 -C 2 o heteroaryl, and mixtures thereof wherein the heteroatoms are selected from sulfur, nitrogen, and oxygen;

Preferred species are denoted by structure 1 wherein R is selected from substituted and unsubstituted, branched- and straight-chain saturated, C 4 -C 24 alkyl, substituted and unsubstituted, branched- and straight-chain C 4 - C 24 alkenyl, substituted and unsubstituted, branched- and straight-chain C 4 - C 24 dienyl, substituted and unsubstituted, branched- and straight-chain C 6 -C 24

trienyl, and substituted and unsubstituted, branched- and straight-chain C 8 - C 24 tetraenyi or mixtures thereof.

The alky], alkenyl, dienyl, trienyl, and tetraenyi groups which may be represented by R may be straight- or branched-chain aliphatic hydrocarbon radicals containing up to about 24 carbon atoms and may be substituted, for example, with one to three groups selected from C-i-Cβ-alkoxy, cyano, C 2 -C 6 - alkoxycarbonyl, C 2 -C 6 -alkanoyloxy, hydroxy, aryl, heteroaryl, thiol, thioether, disulfide, and halogen. The terms "Ci-C 6 -alkoxy", "Ca-Cβ-alkoxycarbonyl", and "C 2 -C 6 -alkanoyloxy" are used to denote radicals corresponding to the structures -OR 2 , -CO 2 R 2 , and -OCOR 2 , respectively, wherein R 2 is Ci-C 6 - alkyl or substituted Ci-C 6 -alkyl. The term "C 3 - C 8 -cycloalkyl" is used to denote a saturated, carbocyclic hydrocarbon radical having three to eight carbon atoms.

The aryl groups which R may represent may include phenyl, naphthyl, or anthracenyl and phenyl, naphthyl, or anthracenyl substituted with one to three substituents selected from Ci-Cε-alkyl, substituted Ci-C 6 -alkyl, C 6 -Ci 0 aryl, substituted C 6 -Ci 0 aryl. Ci-C 6 -alkoxy, halogen, carboxy, cyano, Ci-C 6 - alkanoyloxy, C r C 6 -alkylthio, Ci-C 6 -alkylsulfonyl, trifluoromethyl, hydroxy, C 2 - C 6 -alkoxycarbonyl, C 2 -C 6 -alkanoylamino and -O-R 3 , S-R 3 , -SO 2 -R 3 , -NHSO 2 R 3 and -NHCO 2 R 3 , wherein R 3 is phenyl, naphthyl, or phenyl or naphthly substituted with one to three groups selected from Ci-C 6 -alkyl, C 6 -Ci 0 aryl, Ci-C 6 -alkoxy and halogen.

The heteroaryl radicals include a 5- or 6- membered aromatic ring containing one to three heteroatoms selected from oxygen, sulfur and nitrogen. Examples of such heteroaryl groups are thienyl, furyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, isothiazolyl, oxazolyl, isoxazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, pyridyl, pyrimidyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, indolyl and the like. The heteroaryl radicals may be substituted, for example, with up to three groups such as Ci-C 6 -alkyl, Cn-Cε-alkoxy, substituted Ci-C 6 -alkyl, halogen, d-Ce-alkylthio, aryl, arylthio, aryloxy, C 2 -C 6 -alkoxycarbonyl and C 2 -C 6 -alkanoylamino. The heteroaryl

radicals also may be substituted with a fused ring system, e.g., a benzo or naphtho residue, which may be unsubstituted or substituted, for example, with up to three of the groups set forth in the preceding sentence. The term "halogen" is used to include fluorine, chlorine, bromine, and iodine. The compounds of the invention which presently are preferred are formula 1 wherein R-CO is linoleoyl, stearoyl, linolenoyl, conjugated linoleoyl, palmoyl, oleoyl, arachidonyl, myristyl, lauryl, palmitoleoyl, lipoyl, 4- phenylbutyryl, cyclohexylacetyl, phenylacetyl, N-Boc 3-indolebutyryl, and pimeloyl or mixtures thereof. An embodiment of the process according to the present invention comprises the reaction of short-chain retinyl ester 2:

with a long-chain acid or long-chain ester in the presence of an organic solvent and an enzyme and optionally in the presence of at least one molecular sieve and/or at least one ion exchange resin to form the desired retinyl ester 1.

The substituent R 4 of the short-chain retinyl ester is chosen from among hydrogen, C 1 -C 4 substituted or unsubstituted alkyl groups and C 2 -C 4 alkenyl groups. Examples of the Ci-C 4 alkyl groups include methyl, ethyl, n- propyl, i-propyl, n-butyl, i-butyl, s-butyl and the like. Examples of the C 2 -C 4 alkenyl groups include vinyl, 1-propenyl, 1-isopropenyl, 1-butenyl and the like.

Preferred substituents R 4 include methyl and ethyl, with methyl the most preferred. The short-chain retinyl ester may be utilized in neat form or in the presence of a diluent such as a vegetable oil, wherein the percent diluent may be between 0 and 90%.

The process is carried out in an inert solvent chosen from cyclic or acyclic ether solvents such as diethyl ether, diisopropyl ether, tert-butyl methyl ether, ortetrahydrofuran, aromatic hydrocarbons such as benzene, toluene, or xylene, aliphatic or alicyclic saturated or unsaturated hydrocarbons such as hexane, heptane, cyclohexane, or limonene, halogenated hydrocarbons such as dichloromethane, dichloroethane, dibromoethane, tetrachloroethylene, or chlorobenzene, polar aprotic solvents such as acetonitrile, dimethyl formamide, or dimethyl sulfoxide, or mixtures thereof. The preferred solvents are toluene, limonene, and acetonitrile. The process may be carried out at a temperature between about -100 0 C and the boiling point of the solvent, preferably about 0-60 0 C, most preferably 20-50 0 C. The amount of long-chain acid or long-chain ester may be between 0.85 and 20 equivalents based on 2, and is preferably between 1 and 10 equivalents. The enzyme used in the process is chosen from a protease, a lipase, a phospholipase, or an esterase. Preferred enzymes are lipases. These lipases may be in the form of whole cells, isolated native enzymes, or immobilized on supports. Examples of these Upases include but are not limited to Lipase PS (from Pseudomonas sp), Lipase PS-C (from Psuedomonas sp immobilized on ceramic), Lipase PS-D (from Pseudomonas sp immobilized on diatomaceous earth), Lipoprime 5OT, Lipozyme TL IM 1 or Novozyme 435 (from Candida antarctica immobilized on acrylic resin).

The process may optionally be carried out in the presence of various addenda chosen from molecular sieves or ion exchange resins. Particularly preferred are weakly basic ion exchange resins, as the presence of these materials unexpectedly increased the conversion of 2 to 1 as compared to the same reactions without the ion exchange resins. Examples of these resins are Amberlite R or Amberlyst R weakly basic resins, such as Amberlite IRA-95, Amberlite IRA-94, and Amberlyst A-21 , although it appears that any weakly basic resin will be acceptable. The product of the process may be isolated using processes known to those of skill in the art, e.g., extraction, filtration, or crystallization. The

product 1 may be purified if necessary using processes known to those of skill in the art, e.g., extraction, chromatography, distillation, or crystallization.

Examples The novel processes provided by the present invention are further illustrated by the following examples.

Example 1 :

Preparation of Retinyl Linoleate with 1 eguiv of linoleic acid Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 ml_ of toluene.

Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred and heated at 5O 0 C for 1 h, at which point a sample was removed and analyzed by HPLC, indicating 49.8% conversion to retinyl linoleate with 39.8% retinyl acetate and 10.4% retinok HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 4.77 min (retinyl linoleate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 2: Preparation of Retinyl Linoleate with 1 eαuiv of linoleic acid in the presence of brαanoohilic Molecular Sieves

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene and added to 100 mg of organophilic molecular sieves. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred and heated at 50 0 C for 1h, at which point a sample was removed and analyzed by HPLC 1 indicating 53.2% conversion to retinyl linoleate with 14.4% retinyl acetate and 32.4% retinol.

Example 3:

Preparation of Retinyl Linoleate with 1 eαuiv of linoleic acid in the presence of

Amberlite IRA-95

Retinyl acetate (33 mg; 0.10 mmo!) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlite IRA-95. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for 2h, at which point a sample was removed and analyzed by HPLC, indicating 72.3% conversion to retinyl linoleate with 16.3% retinyl acetate and 11.3% retinol. Stirring for an additional 2 days afforded no further change.

Example 4:

Preparation of Retinyl Linoleate with 1 equiv of linoleic acid in the presence of

Amherlyst A-21 Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for2h, at which point a sample was removed and analyzed by HPLC, indicating 71.7% conversion to retinyl linoleate with 17.7% retinyl acetate and 10.6% retinol. Stirring for an additional 2 days afforded no further change.

Example 5:

Preparation of Retinyl Linoleate with 2 eαuiv of linoleic acid Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene.

Linoleic acid (56 mg; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at ambient temperature for 2h, at which point a sample was removed and analyzed by HPLC, indicating 63.4% conversion to retinyl linoleate with 30.5% retinyl acetate and 4.8% retinol.

Example 6:

Preparation of Retinyl Linoleate with 2 eαuiv of linoleic acid in the presence of

Amberlvst A-21

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 ml_ of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (56 mg; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for2h, at which point a sample was removed and analyzed by HPLC, indicating 79.0% conversion to retinyl linoleate with 14.1% retinyl acetate and 6.9% retinol. Stirring overnight afforded no further change.

Example 7: Preparation of Retinyl Linoleate in vegetable oil with 2 eαuiv of linoleic acid

Retinyl acetate (52% in vegetable oil, 63 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Linoleic acid (56 mg; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred and heated at 50 0 C for 1h, at which point a sample was removed and analyzed by HPLC, indicating 71.7% conversion to retinyl linoleate with 18.0% retinyl acetate and 10.2% retinol.

Example 8:

Preparation of Retinyl Linoleate with 5 eαuiv oflinoleic acid Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Linoleic acid (140 mg; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at ambient temperature for 2h, at which point a sample was removed and analyzed by HPLC, indicating 78.7% conversion to retinyl linoleate with 17.6% retinyl acetate and 3.7% retinol.

Example 9:

Preparation of Retinyl Linoleate with 5 equiv of linoleic acid in the presence of

Amberlyst A-21

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (140 mg; 5.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for 2h, at which point a sample was removed and analyzed by HPLC 1 indicating 87.4% conversion to retinyl linoleate with 9.2% retinyl acetate and 3.4% retinol. Stirring overnight afforded no further change.

Example 10: Preparation ofRetinyl Linoleate in vegetable oil with 5 eαuiv of linoleic acid

Retinyl acetate (52% in vegetable oil, 63 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Linoleic acid (140 mg; 5.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred and heated at 50 0 C for 1h, at which point a sample was removed and analyzed by HPLC, indicating 83.0% conversion to retinyl linoleate with 10.9% retinyl acetate and 6.2% retinol.

Example 11 :

Preparation of Retinyl Linoleate with 2 eouiv of linoleic acid in acetonitrile

Retinyl acetate (500 mg; 1.52 mmol) was dissolved in 3.5 mL of acetonitrile with sonication. Linoleic acid (850 mg; 3.04 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for 19h, at which point a sample was removed and analyzed by HPLC, indicating 28.7% conversion to retinyl linoleate with 70.8% retinyl acetate and 0.5% retinol .

Example 12:

Preparation of Retinyl Linoleate with 2 equiv of linoleic acid in acetonitrile with

Amberlyst A-21

Retinyl acetate (500 mg; 1.52 mmol) was dissolved in 3.5 rnL of acetonitrile with sonication. Dried Amberlyst A-21 (0.25 g) was added.

Linoleic acid (850 mg; 3.04 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for 19h, at which point a sample was removed and analyzed by HPLC, indicating 58.5% conversion to retinyl linoleate with 40.0% retinyl acetate and 1.6% retinol.

Example 13:

Preparation ofRetinyl Linoleate with 2 equiv oflinoleic acid in limonene Retinyl acetate (500 mg; 1.52 mmol) and linoleic acid (850 mg; 3.04 mmol; 2.0 equiv) were dissolved in 3.5 ml_ of limonene. Novozyme 435 (120 mg) was added and the reaction mixture was stirred at RT for 23h, at which point a sample was removed and analyzed by HPLC, indicating 65.8% conversion to retinyl linoleate with 32.3% retinyl acetate and 1.9% retinol.

Example 14: Preparation ofRetinyl Linoleate with 2 equiv oflinoleic acid in limonene with

Amberlvst A-21

Retinyl acetate (500 mg; 1.52 mmol) and linoleic acid (850 mg; 3.04 mmol; 2.0 equiv) were dissolved in 3.5 mL of limonene. Dried Amberlyst A-21 (0.25 g) and Novozyme 435 (120 mg) were added and the reaction mixture was stirred at RT for 23h, at which point a sample was removed and analyzed by HPLC 1 indicating 90.3% conversion to retinyl linoleate with 8.5% retinyl acetate and 1.2% retinol.

Example 15:

Preparation of Retinyl Linoleate with 2 equiv of linoleic acid and product isolation

Retinyl acetate (4.11 g; 12.5 mmol) and linoleic acid (7.01 g; 25.0 mmol; 2.0 equiv) were dissolved in 35 ml_ of toluene. Novozyme 435 (1.0 g) and dried Amberlyst A-21 (2.1 g) were added, and the reaction mixture was evacuated and filled with nitrogen ten times.. The reaction mixture was stirred in the dark at ambient temperature for 5.5 h, at which point HPLC analysis indicated 90.3% conversion to retinyl linoleate (9.1% retinyl acetate and 0.6% retinol). The reaction mixture was filtered and concentrated, then concentrated twice with heptane (10 ml_ each). The residue was dissolved in heptane (50 mL) and washed with 2 x 80 ml_ with a 1 :1 mixture of 10% aqueous potassium carbonate and methanol. The organic layer was washed further with a mixture of saturated sodium bicarbonate (10 mL), water (30 mL), and methanol (40 mL), dried (sodium sulfate) and concentrated to afford 5.14 g (75%) of a yellow oil. A portion of this material (4.00 g) was dissolved in 40 mL of heptane and washed with 20 mL of methanol. The heptane layer was concentrated to afford 3.77 g (71% overall) of retinyl linoleate. Analysis of this product indicated 90.9% retinyl linoleate (HPLC area percent), 0.26 wt% linoleic acid, and 0.06 wt% retinol. The initial aqueous extracts (using a 1 :1 mixture of 10% aqueous potassium carbonate and methanol) were acidified to pH 1 with 25 mL of 3 M HCL The resulting mixture was extracted with 20 mL of heptane. The organic solution was dried with sodium sulfate and concentrated to afford 3.91 g (56% of initial charge) of recovered linoleic acid, which was suitable for re-use.

Example 16:

Preparation of Retinyl Linoleate with leαuiv of methyl linoleate Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Methyl linoleate (30 mg; 1.0 equiv) was added followed by 120 mg of

Novozyme 435. The reaction mixture was stirred overnight at RT, at which

point a sample was removed and analyzed by HPLC, indicating 49.3% conversion to retinyl iinoleate with 36.9% retinyl acetate and 13.8% retinol.

Example 17: Preparation ofRetinyl Linoleate with 1 eαuiv oflinofeic acid using Lipase PS

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 1.4% conversion to retinyl linoleate with 97.5% retinyl acetate and 1.1 % retinol.

Example 18: Preparation ofRetinyl Linoleate with 1 eαuiv of linoleic acid using Lipase PS in the presence of Amberlvst A-21 Retinyl acetate (33 mg; 0.10 mmo!) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 10.0% conversion to retinyl linoleate with 87.3% retinyl acetate and 2.7% retinol.

Example 19: Preparation of Retinyl Linoleate with 1 eαuiv of linoleic acid using Lipase PS-

C Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene.

Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS- C (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 46.1% conversion to retinyl linoleate with 48.7% retinyl acetate and 5.2% retinol.

Example 20: Preparation ofRetinyl Linoleate with 1 equiv of linoleic acid using Lipase PS-

C in the presence of Amberlvst A-21

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 ml_ of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS-C (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 68.8% conversion to retinyl linoleate with 23.6% retinyl acetate and 7.6% retinol.

Example 21 : Preparation ofRetinyl Linoleate with 1 eguiv oflinoleic acid using Lipase PS-

D

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS- D (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 35.4% conversion to retinyl linoleate with 63.4% retinyl acetate and 1.2% retinol.

Example 22: Preparation of Retinyl Linoleate with 1 equiv oflinoleic acid using Lipase PS in the presence of Amberlvst A-21

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipase PS-D (Amano). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 69.2% conversion to retinyl linoleate with 25.8% retinyl acetate and 5.0% retinol.

Example 23:

Preparation of Retinyl Linoleate with 1 equiv of linoleic acid using Lipozyme Tl

IM

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 ml_ of toluene. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipozyme Tl IM (Novozyme). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 2.0% conversion to retinyl linoleate with 94.9% retinyl acetate and 3.2% retinol.

Example 24:

Preparation ofRetinyl Linoleate with 1 eguiv oflinoleic acid using Lipozvme Tl

IM in the presence of Amberlyst A-21

Retinyl acetate (33 mg; 0.10 mmol) was dissolved in 5 mL of toluene and added to 50 mg of dried Amberlyst A-21. Linoleic acid (28 mg; 1.0 equiv) was added followed by 120 mg of Lipozyme Ti IM (Novozyme). The reaction mixture was stirred at ambient temperature for 45 h, at which point a sample was removed and analyzed by HPLC, indicating 14.6% conversion to retinyl linoleate with 84.7% retinyl acetate and 0.7% retinol.

Example 25:

Semi-batch Preparation ofRetinyl Linoleate Retinyl acetate (22.0 g; 80% in oil; 53.6 mmol) and linoleic acid (Pamolyn 200; 15.0 g; 53.6 mmol; 1.0 equiv) were dissolved in 160 mL of toluene in a 500 mL flask. A dip tube in the flask was connected through a peristaltic pump to a column containing 6.0 g of Novozyme 435 which was connected in sequence to a second column containing 6.0 g of dried Amberlyst A-21. A tube from this second column returned to the original flask. The pump was started (flow rate 6 mL/min) sending the reaction mixture through the two columns and then back to the pot. After 6 h conversion had reached 71 %, and the pump was stopped and the Amberlyst resin was

regenerated by removing the column and washing the contents with 100 mL of 10% triethylamine in toluene (with 100 mL of toluene chaser). The apparatus was reassembled and the pump re-started. After 3 more hours conversion had reached 75% and the pump was stopped. Approximately 50% of the contents of the pot (80 mL) was removed and a mixture of 11.0 g of 80% retinyl acetate and 7.5 g of linoleic acid in 80 mL of toluene was added to the pot to serve as a first reactant replenishment. The Amberlyst resin was regenerated as above, the apparatus reassembled, and the pump started. After 9 h 73.6% conversion had been achieved and the pump was stopped. Approximately 50% of the contents of the pot (80 mL) was removed and a mixture of 11.0 g of 80% retinyl acetate and 7.5 g of linoleic acid in 80 mL of toluene was added to the pot to serve as a second replenishment. The Amberlyst resin was regenerated as above, the apparatus reassembled, and the pump started. After 12 h 75.0% conversion had been achieved and the reaction was stopped.

Example 26:

Preparation of the Conjugated Linoleic Acid Ester of Retinol (Retinyl-CLA) with Pamolvn 380 Conjugated Linoleic Acid in the presence of Amberlyst A-21 Retinyl acetate (1.00 g; 3.04 mmol) was dissolved in 8.5 mL of toluene and Pamolyn 380 conjugated linoleic acid (1.71 g; 6.09 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435 and 0.5g of dried Amberlyst A- 21. The reaction mixture was stirred at RT for 15h, at which point a sample was removed and analyzed by HPLC, indicating 87.2% conversion to retinyl- CLA with 10.9% retinyl acetate and 2.0% retinol. The reaction mixture was filtered and concentrated, then concentrated twice with heptane (10 mL each). The residue was dissolved in heptane (15 mL) and washed with 2 x 20 mL with a 1 :1 mixture of 10% aqueous potassium carbonate and methanol. The organic layer was washed further with a mixture of saturated sodium bicarbonate (2.5 mL), water (7.5 mL), and methanol (10 mL), dried (sodium sulfate) and concentrated to afford 1.34 g (80%) of a yellow oil. Analysis of

this product indicated 90.5% retinyl-CLA (HPLC area percent), 0.4 wt% conjugated linoleic acid, and 0.13% retinol.

HPLC (4.6 x 150 mm Zσrbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 4.39, 4.88, 5.65, 6.06 min (retinyl- CLA isomers); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 27:

Preparation of the Conjugated Linoleic Acid Ester of Retinol (Retinyl-CLA) with Tonalin FFA Conjugated Linoleic Acid in the presence of Amberlyst A-21 Retinyl acetate (1.00 g; 3.04 mmol) was dissolved in 8.5 mL of toluene and Tonalin FFA conjugated linoleic acid (1.71 g; 6.09 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435 and 0.5g of dried Amberlyst A- 21. The reaction mixture was stirred at RT for 15h, at which point a sample was removed and analyzed by HPLC, indicating 88.6% conversion to retinyl- CLA with 9.7% retinyl acetate and 1.7% retinol. The reaction mixture was filtered and concentrated, then concentrated twice with heptane (10 mL each). The residue was dissolved in heptane (15 mL) and washed with 2 x 20 mL with a 1 :1 mixture of 10% aqueous potassium carbonate and methanol. The organic layer was washed further with a mixture of saturated sodium bicarbonate (2.5 mL), water (7.5 mL), and methanol (10 mL), dried (sodium sulfate) and concentrated to afford 1.29 g (77%) of a yellow oil. Analysis of this product indicated 92.8% retinyl-CLA (HPLC area percent), 0.8 wt% conjugated linoleic acid, and 0.1% retinol.

Example 28:

Preparation of Retinyl Palmitate in the presence of Ambertyst A-21 Retinyl acetate (1.00 g; 3.04 mmol) was dissolved in 8.5 mL of toluene and palmitic acid (1.56 g; 6.09 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435 and 0.5g of dried Amberlyst A-21. The reaction mixture was stirred at RT for 15h, at which point a sample was removed and analyzed by HPLC, indicating 89.2% conversion to retinyl palmitate with 9.1 % retinyl

acetate and 1.7% retinol. The reaction mixture was filtered and concentrated, then concentrated twice with heptane (10 ml_ each). The residue was dissolved in heptane (15 ml_) and washed with 2 x 20 ml_ with a 1 :1 mixture of 10% aqueous potassium carbonate and methanol. The organic layer was washed further with a mixture of saturated sodium bicarbonate (2.5 mL), water (7.5 mL), and methanol (10 mL), dried (sodium sulfate) and concentrated to afford 1.25 g (78%) of a yellow oil. Analysis of this product indicated 91.2% retinyl paimitate (HPLC area percent), 0.4 wt% palmitic acid, and 0.2% retinol. HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 5.52 min (retinyl paimitate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 29: Preparation of Retinyl Oleaie in the presence ofAmberfvstA-21

Retinyl acetate (1.00 g; 3.04 mmol) and dried Amberlyst A-21 (0.5 g) were combined with 8.5 mL of toluene. Oleic acid (1.72 g; 6.09 mmol; 2.0 equiv) was added followed by 120 mg of Novozyme 435. The reaction mixture was stirred at RT for 15h, at which point a sample was removed and analyzed by HPLC, indicating 89.2% conversion to retinyl oleate with 9.0% retinyl acetate and 1.9% retinol. The reaction mixture was filtered and concentrated, then concentrated twice with heptane (10 mL each). The residue was dissolved in heptane (15 mL) and washed with 2 x 20 mL with a 1:1 mixture of 10% aqueous potassium carbonate and methanol. The organic layer was washed further with a mixture of saturated sodium bicarbonate (2.5 mL), water (7.5 mL), and methanol (10 mL), dried (sodium sulfate) and concentrated to afford 1.16 g (69%) of a yellow oil. HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 5.65 min (retinyl oleate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 30:

Preparation ofRetinyl Lipoate in the presence of Amberiyst A-21 Retinyl acetate (1.00 g; 3.04 mmol) and lipoic acid (1.26 g; 6.09 mmol; 2.0 equiv) were combined with dried Arnberlyst A-21 (0.5 g). Toluene (3.5 ml_) was added and the mixture was sonicated and 120 mg of Novozyme 435 was added. The reaction mixture was stirred at RT for 21 h, at which point a sample was removed and analyzed by HPLC 1 indicating 85.3% conversion to retinyl lipoate with 12.8% retinyl acetate and 1.9% retinol. The reaction mixture was filtered and concentrated, and the residue was dissolved in 1:1 ethyl acetate:heptane (20 mL). The solution was washed with 10 mL of a 10% aqueous potassium carbonate followed by 10 mL of a mixture of saturated sodium bicarbonate (5 mL) and water (5 mL). The organic solution was dried (sodium sulfate) and concentrated to afford 1.06 g (71 %) of a yellow oil. HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 2.68 min (retinyl lipoate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 31 : Preparation of Retinyl 4-Phenylbutyrate in the presence of Amberiyst A-21 Retinyl acetate (250 mg; 0.76 mmol) and 4-phenylbutyric acid (125 mg;

0.76 mmol; 1.0 equiv) were combined with dried Amberiyst A-21 (125 mg).

Toluene (2.5 mL) was added and 120 mg of Novozyme 435 was added. The reaction mixture was stirred at RT for 21 h, at which point a sample was removed and analyzed by HPLC, indicating 67.8% conversion to retinyl 4- phenylbutyrate with 24.3% retinyl acetate and 7.8% retinol.

A corresponding reaction without Amberiyst A-21 afforded 50.4% conversion.

HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 2.56 min (retinyl 4-phenylbutyrate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 32: Preparation of Retinyl Cvclohexylacetate in the presence of Amberlvst A-21

Retinyl acetate (500 mg; 1.52 mmol) and cyclohexylacetic acid (216 mg; 1.52 mmol; 1.0 equiv) were combined with dried Amberlyst A-21 (0.25 g). Toluene (3.5 mL) was added and.120 mg of Novozyme 435 was added. The reaction mixture was stirred at RT for 18h, at which point a sample was removed and analyzed by HPLC, indicating 64.6% conversion to retinyl cyciohexylacetate with 33.5% retinyl acetate and 1.8% retinol. A corresponding reaction without Amberlyst A-21 afforded 44.2% conversion. HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, elution with 80:20 methanol:water(0.1%TFA) for 15 min, gradient to 100% methanol over 10 min, hold at 100% methanol for 5 min, detection at 350 nm): t R 26.1 min (retinyl cyciohexylacetate); t R 21.1 min (retinyl acetate); t R 11.8 min (retinol).

Example 33:

Preparation of Retinyl Phenylacetate in the presence of Amberlvst A-21 Retinyl acetate (500 mg; 1.52 mmol) and phenylacetic acid (207 mg; 1.52 mmol; 1.0 equiv) were combined with dried Amberlyst A-21 (0.25 g). Toluene (3.5 mL) was added and 120 mg of Novozyme 435 was added. The reaction mixture was stirred at RT for 19h, at which point a sample was removed and analyzed by HPLC, indicating 58.5% conversion to retinyl phenylacetate with 40.0% retinyl acetate and 1.6% retinol. A corresponding reaction without Amberlyst A-21 afforded 28.7% conversion. HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, methanol eluent, detection at 350 nm): t R 4.67 min (retinyl phenylacetate); t R 2.32 min (retinyl acetate); t R 2.08 min (retinol).

Example 34:

Preparation of Retinyl N-Boc 3-lndolebutyrate

Retinyl acetate (33 mg; 0.10 mmol) and N-Boc indole-3-butyric acid (31 mg; 0.10 mmol; 1.0 equiv) were combined. Toluene (3.5 mL) was added and 120 mg of Novozyme 435 was added. The reaction mixture was stirred at 5O 0 C for 4 days, at which point a sample was removed and analyzed by HPLC, indicating 50.6% conversion to retinyl N-Boc 3-lndolebutyrate with 44.8% retinyl acetate and 4.6% retinol. •

HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, elution with 80:20 methanol:water(0.1 %TFA) for 15 min, gradient to 100% methanol over 10 min, hold at 100% methanol for 5 min, detection at 350 nm): t R 26.7 min (retinyl N-Boc 3-lndolebutyrate); t R 21.1 min (retinyl acetate); t R 11.8 min (retinol).

Example 35:

Preparation ofRetinyl Pimelate Retinyl acetate (500 mg; 1.52 mmol) and pimelic acid (488 mg; 3.04 mmol; 2.0 equiv) were combined. Toluene (5.0 mL) was added and 120 mg of Novozyme 435 was added. The reaction mixture was stirred at RT for 2 days, at which point a sample was removed and analyzed by HPLC, indicating 36.5% conversion to a mixture of retinyl pimelate and di-retinyl pimelate with 61.8% retinyl acetate and 1.8% retinol.

HPLC (4.6 x 150 mm Zorbax SB-C8 column [Agilent], 3.5 μ thickness, elution with 80:20 methanol:water(0.1%TFA) for 15 min, gradient to 100% methanol over 10 min, hold at 100% methanol for 5 min, detection at 350 nm): t R 20.3,

29.0 min (retinyl pimelate and diretinyl pimelate); t R 21.1 min (retinyl acetate); t R 11.8 min (retinol).

The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.