Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PREPARING SYNTHESIS GAS AND AT LEAST ONE ORGANIC, LIQUID OR LIQUEFIABLE VALUE PRODUCT
Document Type and Number:
WIPO Patent Application WO/2011/138356
Kind Code:
A1
Abstract:
The present invention relates to a process for preparing synthesis gas and at least one organic, liquid or liquefiable value product, by a) providing a biomass starting material, b) subjecting the biomass starting material to digestion, c) optionally, from the digested material obtained in step b), isolating at least one fraction C1) with a heightened aromatics content and at least one fraction C2) with a lowered aromatics content, d) feeding the digestion product from step b) or the high-aromatics fraction C1) from step c) into a dealkylating zone and reacting it in the presence of hydrogen and/or steam, e) taking a discharge from the dealkylating zone and subjecting it to separation, to produce at least one organic, liquid or liquefiable value product and at least one stream with a heightened content of volatile components lighter than the organic value product, and f) using the stream obtained in step e), with a heightened content of volatile components lighter than the organic value product, at least partially for preparing synthesis gas.

Inventors:
PROCHAZKA ROMAN (DE)
BITTERLICH STEFAN (DE)
MACHHAMMER OTTO (DE)
DEUERLEIN STEPHAN (DE)
KLINGLER DIRK (DE)
PANTOUFLAS EMMANOUIL (DE)
KINDLER ALOIS (DE)
ZOELS BERND (DE)
Application Number:
PCT/EP2011/057099
Publication Date:
November 10, 2011
Filing Date:
May 04, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
PROCHAZKA ROMAN (DE)
BITTERLICH STEFAN (DE)
MACHHAMMER OTTO (DE)
DEUERLEIN STEPHAN (DE)
KLINGLER DIRK (DE)
PANTOUFLAS EMMANOUIL (DE)
KINDLER ALOIS (DE)
ZOELS BERND (DE)
International Classes:
C01B3/32; D21C3/00
Domestic Patent References:
WO2008013794A22008-01-31
WO2008027699A22008-03-06
WO2009059936A22009-05-14
WO2009018531A12009-02-05
WO2010117436A12010-10-14
WO2010117437A12010-10-14
WO1999010450A11999-03-04
WO2008027699A22008-03-06
WO2010026244A12010-03-11
WO2009108601A22009-09-03
WO2009108599A22009-09-03
WO2008079072A12008-07-03
WO2006038863A12006-04-13
WO2006031175A12006-03-23
WO1996009350A11996-03-28
WO2008148807A12008-12-11
WO2007051852A22007-05-10
WO2007051851A12007-05-10
WO2007051855A22007-05-10
WO2007051856A12007-05-10
WO2008135581A12008-11-13
WO2008135582A12008-11-13
Foreign References:
NL1022114C22004-06-11
US20090301930A12009-12-10
US2057117A1936-10-13
US20090227823A12009-09-10
EP1797236A12007-06-20
EP1794363A12007-06-13
US4409416A1983-10-11
US4420644A1983-12-13
US3375283A1968-03-26
EP2008055585W2008-05-07
US3775504A1973-11-27
Other References:
D. WANG ET AL.: "Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions", INDUSTRIAL AND ENGINEERING CHEMISTRY RESEARCH 1997 MAY ACS, vol. 36, no. 5, May 1997 (1997-05-01), pages 1507 - 1518, XP002652845
G. W. HUBER ET AL.: "Synthesis of transportation fuels from biomass: chemistry, catalysts and engineering", CHEM. REV., vol. 106, 2006, pages 4044 - 4098, XP002652971
M. STÖCKER, ANGEW. CHEM., vol. 120, 2008, pages 9340 - 9351
G. W. HUBER ET AL., CHEM. REV., vol. 106, 2006, pages 4044 - 4098
A. RUSHTON, A. S. WARD, R. G. HOLDICH: "Solid-Liquid Filtration and Separation Technology", 1996, VCH VERLAGSGESELLSCHAFT
"Mathematical Models and Design Methods in Solid-Liquid Separation", 1985, NATO ASI SERIES E NR. 88, pages: 90FF
J. ALTMANN, S. RIPPERGER, J. MEMBRANE SCI., vol. 124, 1997, pages 119 - 128
G. HULTSCH, H. WILKESMANN: "Solid-Liquid Separation", 1977, UPLAND PRESS, article "Filtering Centrifuges", pages: 493 - 559
H. TRAWINSKI: "Die äquivalente Klärfläche von Zentrifugen", CHEM. ZTG., vol. 83, 1959, pages 606 - 612
H. L. CHURN ET AL., ADV. SOLAR ENERGY, vol. 4, 1988
CLARK, GREEN, TAPPI, vol. 51, no. 1, 1968, pages 44 FF
K. SATTLER: "Thermische Trennverfahren", July 2001, WILEY-VCH
Attorney, Agent or Firm:
REITSTÖTTER, KINZEBACH & PARTNER et al. (DE)
Download PDF:
Claims:
Patentansprüche

1 . Verfahren zur Herstellung von Synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren Wertstoffs, bei dem man a) ein Biomasse-Ausgangsmaterial bereitstellt, das Biomasse-Ausgangsmaterial einem Aufschluss unterzieht, gegebenenfalls das in Schritt b) erhaltene aufgeschlossene Material in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) auftrennt, das Aufschlussprodukt aus Schritt b) oder die an Aromaten angereicherte Fraktion C1 ) aus Schritt c) in eine Dealkylierungszone einspeist und in Gegenwart von Wasserstoff und/oder Wasserdampf umsetzt, der Dealkylierungszone einen Austrag entnimmt und einer Auftrennung un terzieht, wobei wenigstens ein organischer flüssiger oder verflüssigbarer Wertstoff und wenigstens ein an leichter als der organische Wertstoff flüch tigen Komponenten angereicherter Strom erhalten wird, den in Schritt e) erhaltenen, an leichter als der organische Wertstoff flüchtigen Komponenten angereicherten Strom zumindest teilweise zur Herstellung von Synthesegas einsetzt.

Verfahren nach Anspruch 1 , wobei in Schritt a) als Biomasse-Ausgangsmaterial ein ligninhaltiges Material bereitgestellt wird.

Verfahren nach einem der vorhergehenden Ansprüche, wobei in Schritt a) als Biomasse-Ausgangsmaterial ein Lignocellulosematerial oder ein Aufschlussprodukt aus einem Lignocellulosematerial bereitgestellt wird.

Verfahren nach einem der vorhergehenden Ansprüche, wobei in Schritt a) als Biomasse-Ausgangsmaterial ein ligninhaltiger Strom aus dem Aufschluss eines Lignocellulosematerials zur Herstellung von Cellulose (Zellstoff), bevorzugt eine Schwarzlauge, insbesondere eine Schwarzlauge aus dem Kraft-Aufschluss (Sul- fat-Aufschluss), bereitgestellt wird.

5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das bereitgestellte Biomasse-Ausgangsmaterial zum Aufschluss in Schritt b) einer Pyrolyse unterzogen wird.

Verfahren nach Anspruch 5, wobei die Pyrolyse nicht unter Zusatz von Wasserstoffverbindungen durchgeführt wird.

Verfahren nach Anspruch 5, wobei die Pyrolyse unter Zusatz von Wasserstoff durchgeführt wird (Hydrocracken).

Verfahren nach einem der Ansprüche 5 bis 7, wobei zur Pyrolyse ein Schwarzlaugematerial eingesetzt wird, das unter Normalbedingungen (20 °C, 1013 mbar) einen Flüssigkeitsgehalt von höchstens 70 Gew.-%, bevorzugt von höchstens 50 Gew.-%, bezogen auf das Gesamtgewicht des Schwarzlaugenmaterials, aufweist.

9. Verfahren nach einem der Ansprüche 1 bis 4, wobei das bereitgestellte Biomasse-Ausgangsmaterial in Schritt b) einem Aufschluss in flüssiger Phase unterzogen wird.

10. Verfahren nach Anspruch 9, wobei das Biomasse-Ausgangsmaterial, bevorzugt ein ligninhaltiges Ausgangsmaterial, in Schritt b) einem Aufschluss in Gegenwart eines wässrig-alkalischen, wässrig-saueren oder organischen Aufschlussmediums unterzogen wird.

1 1 . Verfahren nach einem der Ansprüche 9 oder 10, wobei zum Aufschluss wenigstens eine an Cellulose abgereicherte Fraktion aus einem Zellstoffprozess, insbesondere eine Schwarzlauge aus dem Kraft-Prozess, eingesetzt wird. 12. Verfahren nach einem der vorhergehenden Ansprüche, wobei in Schritt c) die Auftrennung in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) durch Destillation, Extraktion, Absorption, Membranverfahren oder eine Kombination davon, bevorzugt durch Destillation, Extraktion, Absorption oder eine Kombination davon, erfolgt.

13. Verfahren nach einem der Ansprüche 5 bis 8, wobei das in Schritt a) bereitgestellte Biomasse-Ausgangsmaterial zum Aufschluss in Schritt b) einer Pyrolyse unterzogen wird und in Schritt c) die Auftrennung in wenigstens eine an Aroma- ten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) eine Absorption umfasst.

Verfahren nach einem der Ansprüche 9 bis 1 1 , wobei das in Schritt a) bereitgestellte Biomasse-Ausgangsmaterial in Schritt b) einem Aufschluss in flüssiger Phase unterzogen wird und in Schritt c) die Auftrennung in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) eine Extraktion und/oder eine Destillation umfasst.

Verfahren nach Anspruch 14, wobei die Auftrennung in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) in Schritt c) die folgenden Teilschritte umfasst:

Extraktion des in Schritt b) erhaltenen Aufschlussprodukts unter Erhalt eines an Aromaten angereicherten Extrakts und eines an Aromaten abgerei- cherten Rückstands, gegebenenfalls Auftrennung des Extrakts in eine an Extraktionsmittel angereicherte und an Aromaten abgereicherte Fraktion und eine an Aromaten angereicherte und an Extraktionsmittel abgereicherte Fraktion, c3) Einspeisen des in Schritt c1 ) erhaltenen, an Aromaten angereicherten Extrakts oder der in Schritt c2) erhaltenen, an Aromaten angereicherten Fraktion in den Schritt d).

Verfahren nach einem der vorhergehenden Ansprüche, wobei das in Schritt b) erhaltene Aufschlussprodukt oder die daraus in Schritt c) isolierte Fraktion C1 ) überwiegend Komponenten mit einem Molekulargewicht von höchsten 500 g/mol aufweist.

Verfahren nach einem der vorhergehenden Ansprüche, wobei die in Schritt c) isolierte an Aromaten abgereicherte Fraktion C2) zumindest teilweise zur Herstellung von Synthesegas eingesetzt wird. 18. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Umsetzung in Schritt d) eine Hydrodealkylierung oder eine Dampfdealkylierung oder eine Mischform davon umfasst.

19. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Temperatur in der Dealkylierungszone in einem Bereich von 400 bis 900 °C, bevorzugt von 500 bis 800 °C, liegt. 20. Verfahren nach einem der vorhergehenden Ansprüche, wobei der absolute Druck in der Dealkylierungszone in einem Bereich von 1 bis 100 bar, besonders bevorzugt von 1 bis 20 bar, insbesondere von 1 bis 10 bar, liegt.

21 . Verfahren nach einem der vorhergehenden Ansprüche, wobei der Austrag aus der Dealkylierungszone in Schritt e) einer Auftrennung unter Erhalt der folgenden drei Ströme unterzogen wird:

E1 ) einem an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom,

E2) einem an gering oder nicht dealkylierten Aromaten angereicherten Strom,

E3) einem an flüchtigen Nebenprodukten, die leichter als E1 ) und E2) sind, angereicherten Strom.

22. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Auftrennung des Austrage aus der Dealkylierungszone in Schritt e) eine Absorption umfasst.

23. Verfahren nach Anspruch 22, wobei die Auftrennung des Austrage aus der Deal- kylierungszone in Schritt e) die folgenden Teilschritte umfasst: e1 ) Inkontaktbringen des Austrage aus der Dealkylierungszone mit einem Absorptionsmittel unter Erhalt eines an aromatischen Hauptprodukten der Dealkylierung angereicherten Absorbats und eines an aromatischen Hauptprodukten der Dealkylierung abgereicherten Gasstroms E3), e2) Auftrennung des Absorbats in einen an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom E1 ), einen an gering oder nicht dealkylierten Aromaten angereicherten Strom E2) und gegebenenfalls ei- nen das Absorptionsmittel enthaltenden Strom, e3) falls vorhanden, Zurückführung des das Absorptionsmittel enthaltenden Stroms in den Schritt e1 ), e4) gegebenenfalls Zurückführung wenigstens eines Teils des Stroms E2) in die Dealkylierungszone von Schritt d).

24. Verfahren nach einem der Ansprüche 21 bis 23, wobei man den in Schritt e) erhaltenen Strom E3) zumindest teilweise zur Herstellung von Synthesegas einsetzt.

Verfahren nach einem der vorhergehenden Ansprüche, wobei man einen synthesegashaltigen Strom oder einen aus dem Synthesegas hergestellten an Wasserstoff angereicherten Strom in den Aufschluss in Schritt b) und/oder in die Dealky- lierung in Schritt d) einspeist.

Description:
Verfahren zur Herstellung von Synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren Wertstoffs

Beschreibung

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren Wertstoffs.

Die von der Natur ständig produzierten großen Mengen an Biomasse werden bisher nur zu einem geringen Teil als nachwachsender Rohstoff zur stofflichen Nutzung oder zur Energiegewinnung verwendet. Zur Schonung der Rohstoffressourcen werden Verfahren benötigt, die den Ersatz fossiler Rohstoffe durch Biomasse-Ausgangsmaterialien ermöglichen. Dabei wird zur Erzielung einer hohen Effizienz eine möglichst vollständige Nutzung des einmal bereitgestellten Biomassematerials angestrebt.

Aromatische Verbindungen mit geringem Molekulargewicht und speziell phenolische Verbindungen haben breite Verwendung als Zwischen- und Wertprodukte gefunden. Sie dienen z. B. als Precursor für diverse Harze, oberflächenaktive Verbindungen, SpezialChemikalien, etc. Es ist bekannt, derartige Verbindungen aus Biomassematerialien und speziell aus ligninhaltigen Ausgangsmaterialien herzustellen. Es besteht jedoch weiterhin Bedarf an einem einfachen, kostengünstigen Verfahren, welches die Bereitstellung einer Vielzahl verschiedener Aromatenprodukte für diverse Einsatzbereiche ermöglicht. Dabei ist es vorteilhaft, wenn neben den angestrebten Aromatenpro- dukten weitere Wertstoffe gewonnen und möglichst in dem Verfahren zur Aromaten- herstellung oder einem damit gekoppelten Verfahren, z. B. einem Verfahren zur Zellstoffherstellung, wieder eingesetzt werden können. Ein solcher Wertstoff, der in wichtigen großtechnischen Prozessen Verwendung findet, ist das so genannte "Synthesegas", ein Kohlenmonoxid und Wasserstoff enthaltendes Gasgemisch. Zu den Einsatzbereichen von Synthesegas zählen z. B. die Hydrierung, Hydroformylierung, Carbony- lierung, Methanolsynthese, Synthese von Kohlenwasserstoffen nach Fischer-Tropsch, etc.

Es ist bekannt, Ströme aus verschiedenen Aufschlussverfahren von Lignin oder Ligno- cellulose enthaltenden Stoffen einer Nachbehandlung zur Gewinnung von Wertstoffen zu unterziehen.

Die US 2,057,1 17 beschreibt ein Verfahren zur Herstellung von Vanillin, bei dem man ein Ausgangsmaterial, ausgewählt unter Lignocellulose, einem rohen Lignin-Extrakt und Ligninsulfonsäure, mit einer wässrigen Alkalimetallhydroxidlösung unter erhöhtem Druck erhitzt und das erhaltene Reaktionsgemisch mit Schwefelsäure versetzt, um organische Bestandteile auszufällen und das Vanillin in eine lösliche Form zu überführen. In der WO 99/10450 wird ein Verfahren zur Umwandlung von Lignin in einen Kohlenwasserstoff-Kraftstoff beschrieben. Dabei wird Lignin einer basenkatalysierten Depo- lymerisation und anschließend einem Hydroprocessing unterzogen. Dieses Hydropro- cessing umfasst eine Hydrodeoxygenierung und ein mildes Hydrocracking. Letzteres wird unter Bedingungen durchgeführt, bei denen eine teilweise Hydrierung der aroma- tischen Ringe erfolgt.

WO 2008/027699 A2 beschreibt ein Verfahren, bei dem aus einer Pyrolyse von Biomasse stammendes Lignin nach Abtrennung von wasserlöslichen Bestandteilen de- carboxyliert und hydrodeoxygeniert wird und die organischen Produkte aus diesem Prozessschritt anschließend einem Hydrocracking unterzogen werden.

Die WO 2010/026244 beschreibt ein integriertes Verfahren zur Herstellung von Zellstoff und von wenigstens einem niedermolekularen Wertstoff, bei dem man

a) ein lignocellulosehaltiges Ausgangsmaterial bereitstellt und einem Aufschluss mit einem Behandlungsmedium unterzieht,

b) aus dem aufgeschlossenen Material eine an Cellulose angereicherte Fraktion und wenigstens eine an Cellulose abgereicherte Fraktion isoliert, wobei die an Cellulose abgereicherte Fraktion zumindest einen Teil des Behandlungsmediums aus Schritt a) umfasst,

c) die an Cellulose abgereicherte Fraktion einer Behandlung unter Erhalt wenigstens eines niedermolekularen Wertstoffs unterzieht, und

d) aus dem in Schritt c) erhaltenen Behandlungsprodukt den Wertstoff/die Wertstoffe isoliert. In einer Ausführung des Verfahrens wird aus dem aufgeschlossenen Material eine an Cellulose angereicherte Fraktion und eine an Lignin angereicherte Fraktion isoliert, die an Lignin angereicherte Fraktion einer Depolymerisation unterzogen und aus dem De- polymerisationsprodukt eine Aromatenzusammensetzung isoliert. Die WO 2009/108601 beschreibt ein Verfahren zur Herstellung eines Ausgangsmaterials für Bioraffinerieverfahren zur Herstellung eines Biokraftstoffs aus einem ligninhalti- gen Ausgangsmaterial. Dabei wird Lignin aus einer Schwarzlauge des Pulping- Prozesses oder auch die Schwarzlauge selbst einer Hydroprozessierung in Gegenwart eines wasserstoffhaltigen Gases und eines Katalysators auf einem amorphen oder kristallinen oxidischen Träger unterzogen. Konkret wird ein heterogener Molybdänsulfid-Katalysator eingesetzt. Beim Einsatz von Schwarzlauge kann die Hydroprozessie- rung auch zweistufig erfolgen. Das Verfahren kann entweder an einem Raffinerie- Standort durchgeführt werden, zu dem Lignin oder Schwarzlauge transportiert wird oder direkt am Standort einer Papiermühle. Das sich an die Hydroprozessierung anschließende Bioraffinerieverfahren ist nicht näher beschrieben.

Die WO 2009/108599 hat einen zur WO 2009/108601 vergleichbaren Offenbarungsgehalt mit dem Fokus auf der Papierherstellung.

M. Stöcker beschreibt in der Angew. Chem. 2008, 120, 9340 - 9351 , die katalytische Umwandlung lignocellulosereicher Biomasse zur Gewinnung von BTL (biomass-to- liquid)-Kraftstoffen in Bioraffinerien. Dabei sind schematisch auch der Einsatz eines aus der Biomasse erhaltenen Ligninmaterials in einer Pyrolyse zu Bioöl und eine weite- re Aufarbeitung zu Phenolharzen, Synthesegas, etc. wiedergegeben.

Die US 2009/0227823 beschreibt ein Verfahren zur Herstellung von wenigstens einem flüssigen Kohlenwasserstoffprodukt aus einem festen Kohlenwasserstoffausgangsmaterial (z. B. einem Lignocellulosematerial), bei dem man das Ausgangsmaterial einer katalytischen Pyrolyse unterzieht und die Pyrolyseprodukte einer katalysierten Folgeumsetzung unter Erhalt flüssiger Produkte unterzieht.

G. W. Huber et al. beschreiben in Chem. Rev. 2006, 106, 4044 - 4098, die Synthese von Kraftstoffen aus Biomasse. Danach können Lignocellulosematerialien prinzipiell auf drei Routen in flüssige Kraftstoffe überführt werden, die sich in ihrem Primärschritt unterscheiden: Vergasung zu Synthesegas, Pyrolyse zu Bioöl, Hydrolyse unter Gewinnung von Zuckern und Lignin. Die in der Pyrolyse erhaltenen Bioöle können anschließend einer Hydrodeoxygenierung in Gegenwart von Wasserstoff oder einem steam reforming unterzogen werden.

Überraschenderweise wurde gefunden, dass sich durch die Kombination von Auf- schluss und Dealkylierung aus einer Vielzahl von Biomassematerialien zum einen organische flüssige oder verflüssigbare Wertstoffe (speziell einkernige, gering oder nicht alkylierte Aromaten) und zum anderen Synthesegas als weiteres Wertprodukt herstel- len lassen. Das so erzielte Synthesegas lässt sich vorteilhaft in dem erfindungsgemäßen Verfahren selbst oder einem räumlich benachbarten, damit gekoppelten Verfahren, z. B. einem Verfahren zur Zellstoffherstellung, einsetzen. Ein erster Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren Wertstoffs, bei dem man a) ein Biomasse-Ausgangsmaterial bereitstellt, das Biomasse-Ausgangsmaterial einem Aufschluss unterzieht, gegebenenfalls das in Schritt b) erhaltene aufgeschlossene Material in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aro- maten abgereicherte Fraktion C2) auftrennt, das Aufschlussprodukt aus Schritt b) oder die an Aromaten angereicherte Fraktion C1 ) aus Schritt c) in eine Dealkylierungszone einspeist und in Gegenwart von Wasserstoff und/oder Wasserdampf umsetzt, e) der Dealkylierungszone einen Austrag entnimmt und einer Auftrennung unterzieht, wobei wenigstens ein organischer flüssiger oder verflüssigbarer Wertstoff und wenigstens ein an leichter als der organische Wertstoff flüchtigen Komponenten angereicherter Strom erhalten wird, f) den in Schritt e) erhaltenen, an leichter als der organische Wertstoff flüchtigen Komponenten angereicherten Strom zumindest teilweise zur Herstellung von Synthesegas einsetzt.

Im Rahmen der vorliegenden Anmeldung wird mit "Biomasse" ein Pflanzenmaterial nichtfossilen Ursprungs bezeichnet. Zur Biomasse zählen auch abgestorbene Pflanzen und Pflanzenteile, wie Totholz, Stroh, Blätter, etc. Der Begriff Biomasse umfasst auch Produkte, in denen ein Pflanzenmaterial nichtfossilen Ursprungs einer chemischen und/oder physikalischen Behandlung unterzogen wurde. Dazu gehören speziell die Produkte aus dem Aufschluss und der Fraktionierung von Lignocellulose, wie Lignin. Insbesondere nicht zur Biomasse zählen Kohle, Erdöl, Erdgas, Torf und deren Veredlungsprodukte, wie Koks.

Der Begriff "Synthesegas" bezeichnet im Rahmen der Erfindung ein Kohlenmonoxid und Wasserstoff enthaltendes Gasgemisch. Dieses Gasgemisch kann zusätzlich weitere Gase enthalten, wie CO2, CH 4 , etc. Vorteilhafterweise ermöglicht das erfindungsgemäße Verfahren die Herstellung von Synthesegas mit hohem Gehalt an Kohlenmonoxid und Wasserstoff. Unter einem organischen flüssigen oder verflüssigbaren Wertstoff wird eine organische Verbindung oder eine Zusammensetzung aus wenigstens zwei organischen Verbindungen verstanden, die unter Normalbedingungen (20 °C, 1013 mbar) flüssig vorliegen oder unzersetzt verflüssigbar sind. Verflüssigung bezeichnet dabei den Übergang vom festen in den flüssigen Aggregatzustand im Sinne von Schmelzen und nicht Solubilisie- rung unter Zugabe eines Lösungsmittels.

Der organische Wertstoff ist z. B. ausgewählt unter nicht funktionalisierten und funktio- nalisierten aliphatischen, cycloaliphatischen und aromatischen Kohlenwasserstoffen. Dazu zählen speziell Alkane (wie Pentan, Hexan, etc.), Alkene, Alkadiene, Alkanole (wie Methanol, Ethanol, etc.), aliphatische Aldehyde (wie Acetaldehyd, etc.), Cyloalka- ne, Cycloalkene, Cycloalkadiene, Cycloalkanole, Cycloalkadienole, Cycloalkanpolyole mit mehr als zwei OH-Gruppen und nicht funktionalisierte und funktionalisierte aromati- sehe Kohlenwasserstoffe.

Der organische flüssige oder verflüssigbare Wertstoff ist bevorzugt ausgewählt unter nicht funktionalisierten und funktionalisierten Aromaten. Funktionalisierte Aromaten weisen vorzugsweise wenigstens einen Substituenten auf, der ausgewählt ist unter Ci-C4-Alkyl, OH, Ci-C4-Alkoxy, Formyl, Ci-C4-Acyl, und Kombinationen davon. Der organische Wertstoff ist insbesondere ausgewählt unter Benzol, alkylierten Benzolen (z. B. Toluol und Xylolen), höher kondensierten aromatischen Kohlenwasserstoffen, mono-, di- und polyalkylierten, höher kondensierten Aromaten, Phenol, mono-, di-, und polyalkylierten Phenolen, höher kondensierten Aromaten mit einer, zwei oder mehr als zwei OH-Gruppen, mono-, di- oder höher alkylierten, höher kondensierten Aromaten mit einer, zwei oder mehr als zwei OH-Gruppen, alkoxylierten Derivaten der zuvor genannten aromatischen Alkoholen und Mischungen davon.

In einer speziellen Ausführung handelt es sich bei dem erfindungsgemäß hergestellten organischen flüssigen oder verflüssigbaren Wertstoff um eine Aromatenzusammensetzung mit hohem Gehalt an einkernigen, gering oder nicht alkylierten Aromaten. Unter einer Aromatenzusammensetzung mit hohem Gehalt an einkernigen, gering oder nicht alkylierten Aromaten wird eine Zusammensetzung verstanden, die, bezogen auf ihr Gesamtgewicht, wenigstens 50 Gew.-% an einkernigen Aromaten enthält. Der Gehalt an nicht alkylierten, nicht alkoxylierten, an höchstens einfach hydroxylierten und an monoalkylierten Aromaten beträgt insgesamt, bezogen auf das Gesamtgewicht der Aromatenzusammensetzung, wenigstens 50 Gew.-%. Im Rahmen der Erfindung bezeichnet "Dealkylierung" eine Umsetzung der in einer Aromatenzusammensetzung enthaltenen substituierten und/oder mehrkernigen aromatischen Verbindungen in Gegenwart von Wasserstoff und/oder Wasserdampf, wobei diese zumindest teilweise so umgewandelt werden, dass Substituenten durch Wasser- stoff ersetzt werden und/oder mehre aromatische Kerne enthaltende Verbindungen zu Verbindungen mit geringerer Anzahl von Kernen gespalten werden. Die durch Wasserstoff ersetzten Substituenten sind dabei ausgewählt unter Alkylgruppen, Hydroxygrup- pen, Alkoxygruppen, Aryloxygruppen, etc. Im Rahmen der Erfindung umfasst die Bezeichnung "Dealkylierung" auch davon verschiedene Reaktionen, die mit einem Mole- kulargewichtsabbau verbunden sind, wie Dehydroxylierung, Dealkoxylierung oder

Aromatenspaltung. Aromatenspaltung bezeichnet dabei eine Reaktion, bei der im Wesentlichen die Anzahl der aromatischen Kerne pro Molekül reduziert wird, ohne dass die aromatischen Kerne selbst zerstört werden. Bereitstellung eines Biomasse-Ausgangsmaterials (Schritt a))

Vorzugsweise wird in Schritt a) des erfindungsgemäßen Verfahrens als Biomasse- Ausgangsmaterial ein ligninhaltiges Material bereitgestellt. Geeignete ligninhaltige Ausgangsmaterialien sind reines Lignin und ligninhaltige Zusammensetzungen. Dabei ist der Ligningehalt der Zusammensetzungen in weiten Bereichen unkritisch, lediglich bei zu geringen Ligningehalten lässt sich das Verfahren nicht mehr wirtschaftlich betreiben. Bevorzugt wird in Schritt a) ein ligninhaltiges Ausgangsmaterial bereitgestellt, das mindestens 10 Gew.-%, bevorzugt mindestens 15 Gew.-%, bezogen auf die Trockenmasse des Materials, Lignin enthält. Bevorzugt geeignet sind ligninhaltige Zusammensetzungen, die 10 bis 100 Gew.-%, besonders bevorzugt 15 bis 95 Gew.-%, bezogen auf die Trockenmasse des Materials, Lignin enthalten. Im Rahmen dieser Erfindung wird der Begriff Trockenmasse im Sinne der Norm ISO 1 1465 verstanden.

Geeignet zur Bereitstellung eines ligninhaltigen Ausgangsmaterials für den Einsatz in dem erfindungsgemäßen Verfahren sind auch lignocellulosehaltige Materialien. Ligno- cellulose bildet das Strukturgerüst der pflanzlichen Zellwand und enthält als Hauptbe- standteile Lignin, Hemicellulosen und Cellulose. Weitere Bestandteile der pflanzlichen Zellwand und somit daraus erhaltener lignocellulosehaltiger Materialien sind z. B. Silicate, extrahierbare niedermolekulare organische Verbindungen (so genannte Extraktstoffe, wie Terpene, Harze, Fette), Polymere, wie Proteine, Nukleinsäuren und Pflanzengummi (so genanntes Exsudat), etc. Lignin ist ein Biopolymer, dessen Grundeinheit im Wesentlichen Phenylpropan ist, welches, je nach der natürlichen Quelle, mit einer oder mehreren Methoxygruppen an den Phenylringen und mit einer Hydroxygruppe an den Propyleinheiten substituiert sein kann. Daher sind typische Struktureinheiten des Lignins p-Hydroxyphenylpropan, Guai- acylpropan und Syringylpropan, die durch Etherbindungen und Kohlenstoff-Kohlenstoff-Bindungen miteinander verbunden.

Als Biomasse-Ausgangsmaterial für das erfindungsgemäße Verfahren eignen sich so- wohl lignocellulosehaltige Materialien, die ohne weitere chemische Behandlung in natürlicher Zusammensetzung eingesetzt werden, wie z. B. Holz oder Stroh, als auch ligninhaltige Ströme aus der Verarbeitung von Lignocellulose, z. B. aus Verfahren zur Cellulose-Herstellung (Zellstoff-Verfahren). Die erfindungsgemäß einsetzbaren Lignocellulosematerialien sind z. B. aus Holz- und Pflanzenfasern als Ausgangsstoff erhältlich. Bevorzugte Lignocellulosematerialien sind solche aus Holz und Rückständen der holzverarbeitenden Industrie. Dazu zählen z. B. die verschiedenen Holzarten, d. h. Laubhölzer, wie Ahorn, Birke, Birnbaum, Eiche, Erle, Esche, Eucalyptus, Hainbuche, Kirschbaum, Linde, Nussbaum, Pappel, Weide, etc. und Nadelhölzer, wie Douglasie, Fichte, Eibe, Hemlock, Kiefer, Lärche Tanne, Zeder, etc. Holz lässt sich nicht nur in Laub- und Nadelhölzer unterscheiden, sondern auch in so genannte "Harthölzer" und "Weichhölzer", was nicht mit den Begriffen Laub- bzw. Nadelhölzer synonym ist. Weichholz bezeichnet im Unterschied zu Hartholz leichteres Holz (d. h. Hölzer mit einer Darrdichte unter 0,55 g/cm 3 , beispielsweise Weiden, Pap- peln, Linden und fast alle Nadelhölzer). Für den Einsatz in dem erfindungsgemäßen Verfahren eignen sich prinzipiell alle Hart- und alle Weichhölzer. Das in dem erfindungsgemäßen Verfahren eingesetzte Holz kann auch in konfektionierter Form, z. B. in Form von Pellets, vorliegen. Geeignete Rückstände bei der holzverarbeitenden Industrie sind neben Holzabfällen auch Sägespäne, Parkettschleifstaub, etc. Geeignete Lignocellulosematerialien sind weiterhin Naturfaserstoffe, wie Flachs, Hanf, Sisal, Jute, Stroh, Kokosfasern, Switchgrass (Panicum virgatum) und andere Naturfasern. Geeignete Lignocellulosematerialien fallen auch als Rückstand in der Landwirtschaft an, z. B. bei der Ernte von Getreide (Weizenstroh, Maisstroh, etc.), Mais, Zuckerrohr (Bagasse), etc. Geeignete Lignocellulosematerialien fallen auch als Rückstand in der Forstwirt- schaft an, z. B. in Form von Ästen, Rinden, Holzchips, etc. Eine gute Quelle für Lignocellulosematerialien sind auch Kurzumtriebsplantagen (short rotation crops), die eine hohe Biomasseproduktion auf relativ kleiner Fläche ermöglichen. Bevorzugt wird in Schritt a) als Biomasse-Ausgangsmaterial ein ligninhaltiger Strom aus dem Aufschluss eines Lignocellulosematerials zur Herstellung von Cellulose (Zellstoff), bevorzugt eine Schwarzlauge, insbesondere eine Schwarzlauge aus dem Kraft- Aufschluss (Sulfat-Aufschluss), bereitgestellt.

In einer bevorzugten Ausführung wird zur Bereitstellung des Biomasse-Ausgangsmaterials ein lignocellulosehaltiges Material einem Aufschluss unterzogen und aus dem aufgeschlossenen Material eine an Cellulose angereicherte Fraktion und eine an Lignin angereicherte (und gleichzeitig an Cellulose abgereicherte) Fraktion isoliert. Letztere dient dann, gegebenenfalls nach einer weiteren Aufarbeitung, als Biomasse- Ausgangsmaterial für das erfindungsgemäße Verfahren. In dieser Ausführung wird ein lignocellulosehaltiges Material somit in Schritt a) des erfindungsgemäßen Verfahrens einem ersten Aufschluss unterzogen, daraus ein an Lignin angereichertes Material isoliert und dieses anschließend in Schritt b) einem zweiten Aufschluss unterzogen.

Verfahren zum Aufschluss lignocellulosehaltiger Materialien zur Herstellung von Cellulose sind prinzipiell bekannt. Prinzipiell eignen sich für einen Einsatz als Biomasse- Ausgangsmaterial ligninhaltige Ströme aus allen dem Fachmann bekannten Aufschlussverfahren. Grundsätzlich lassen sich diese Verfahren hinsichtlich des einge- setzten Behandlungsmediums einteilen in wässrig-alkalische Verfahren, wässrig-saure Verfahren und organische Verfahren. Eine Übersicht über diese Verfahren und die Aufschlussbedingungen findet sich z. B. in der WO 2010/026244.

Das zum Aufschluss der lignocellulosehaltigen Materialien eingesetzte Behandlungsmedium ist befähigt, zumindest einen Teil des Lignins zu solubilisieren. Die in dem lignocellulosehaltigen Material enthaltene Cellulose hingegen wird in dem Behandlungsmedium in der Regel nicht oder nur zu einem geringen Anteil solubilisiert. Vorzugsweise erfolgt die Abtrennung einer an Cellulose angereicherten Fraktion dann durch Filtration oder Zentrifugieren.

Bevorzugt wird aus dem aufgeschlossenen Material eine ligninhaltige (an Cellulose abgereicherte) Fraktion isoliert, die zusätzlich zu Lignin wenigstens eine weitere Komponente enthält, die beispielsweise ausgewählt ist unter Hemicellulose, Cellulose, Abbauprodukten der zuvor genannten Komponenten, Aufschlusschemikalien und Mischungen davon.

In vielen Fällen ist es für den Aufschluss in Schritt b) unkritisch, wenn als Biomasse- Ausgangsmaterial ein ligninhaltiges Ausgangsmaterial eingesetzt wird, das zusätzlich zu Lignin wenigstens eine weitere Komponente enthält. Wird zur Bereitstellung des ligninhaltigen Ausgangsmaterials eine ligninhaltige Fraktion eingesetzt, die zusätzlich zu Lignin wenigstens eine weitere Komponente enthält, so kann vor dem Aufschluss in Schritt b) zumindest ein Teil der von Lignin verschiedenen Verbindungen entfernt werden. Die aus der ligninhaltigen Fraktion entfernten Komponenten (organische Komponenten und/oder anorganische Prozesschemikalien) werden vorzugsweise einer weiteren Aufarbeitung und/oder thermischen Verwertung, vorzugsweise im Rahmen des Verfahrens zur Celluloseherstellung, aus dem die ligninhaltige Fraktion erhalten wurde, zugeführt.

Zur Entfernung zumindest eines Teils der von Lignin verschiedenen Verbindungen kann zunächst der pH-Wert der ligninhaltigen Fraktion auf einen geeigneten Wert eingestellt werden. Ligninhaltige Fraktionen aus wässrig-alkalischen Verfahren (wie z. B. dem Kraft-Prozess) können zur Einstellung des pH-Werts mit einer Säure versetzt wer- den. Geeignete Säuren sind z. B. CO2, Mineralsäuren, wie Salzsäure, Schwefelsäure und Phosphorsäure. Besonders bevorzugt als Säure ist CO2 (bzw. die daraus mit Wasser resultierende Kohlensäure). Vorzugsweise wird CO2 aus einem Abgasstrom des erfindungsgemäßen Verfahrens oder eines mit dem erfindungsgemäßen Verfahren gekoppelten Zellstoffverfahrens eingesetzt. Geeignet ist z. B. das Abgas aus einer Schwarzlaugeverbrennung (recovery boiler) oder einem Kalkbrennofen. Dabei kann das Abgas entweder direkt oder nach Abtrennung von den anderen Komponenten (z. B. mittels eines Waschverfahrens, wie einer Benfield-Wäsche) in die ligninhaltige Fraktion eingeleitet werden. Die durch CÜ2-Zugabe entstehenden Carbonate und/oder Hydrogencarbonate lassen sich in der Regel einfach in das gekoppelte Zellstoff-Ver- fahren zurückführen, z. B. in eine zuvor zur Ligningewinnung entnommene Schwarzlauge. Der Einsatz von CO2 zur Einstellung des pH-Werts der ligninhaltigen Fraktion ist somit mit geringeren Kosten verbunden als beim Einsatz anderer Säuren und ermöglicht zudem in der Regel eine gute Integration in ein Zellstoffverfahren. Ligninhaltige Fraktionen aus wässrig-sauren Verfahren können zur Einstellung des pH- Werts mit einer Base versetzt werden. Geeignete Basen sind z. B. Alkalimetallbasen wie Natronlauge oder Kalilauge, Alkalicarbonate, wie Soda oder Kaliumcarbonat, Alka- lihydrogencarbonate, wie Natriumhydrogencarbonat oder Kaliumhydrogencarbonat und Erdalkalimetallbasen, wie Calciumhydroxid, Calciumoxid, Magnesiumhydroxid oder Magnesiumcarbonat, sowie Ammoniak oder Amine.

Vorzugsweise erfolgt in Schritt a) die Entfernung zumindest eines Teils der von Lignin verschiedenen Verbindungen aus der ligninhaltigen Fraktion) durch Filtration, Zentrifu- gieren, Extraktion, Fällung, Destillation, Strippen oder eine Kombination davon. Der Fachmann kann dabei über das Trennungsverfahren die Zusammensetzung der ligninhaltigen Fraktion und somit des ligninhaltigen Ausgangsmaterials für den Aufschluss in Schritt b) steuern. Die zumindest teilweise Abtrennung der von Lignin verschiedenen Komponenten kann einstufig oder mehrstufig erfolgen. Übliche Filtrationsverfahren sind z. B. die Kuchen- und Tiefenfiltration (z. B. beschrieben in A. Rushton, A. S. Ward, R. G. Holdich: Solid-Liquid Filtration and Separation Technology, VCH Verlagsgesellschaft, Weinheim 1996, Seiten 177ff., K. J. Ives, in A. Rushton (Hg.): Mathematical Models and Design Methods in Solid-Liquid Separation, NATO ASI Series E Nr. 88, Martinus Nijhoff, Dordrecht 1985, Seiten 90ff.) und Cross-flow-Filtrationen (z. B. be- schrieben in J. Altmann, S. Ripperger, J. Membrane Sei. 124 (1997), Seiten 1 19 - 128). Übliche Zentrifugations-Verfahren sind z. B. in G. Hultsch, H. Wilkesmann, "Filtering Centrifuges," in D. B. Purchas, Solid-Liquid Separation, Upland Press, Croydon 1977, Seiten 493 - 559; und in H. Trawinski, Die äquivalente Klärfläche von Zentrifugen, Chem. Ztg. 83 (1959), Seiten 606-612, beschrieben. Zur Extraktion kann z. B. ein mit dem Behandlungsmedium aus der Zellstoffherstellung nicht mischbares Lösungsmittel oder zumindest ein eine Mischungslücke aufweisendes Lösungsmittel eingesetzt werden, in dem Lignin und gegebenenfalls weitere gewünschte Komponenten in einer ausreichenden Menge löslich ist. Die Abtrennung unzersetzt verdampfbarer Komponenten aus der ligninhaltigen Fraktion kann nach üblichen, dem Fachmann bekannten Destilla- tionsverfahren erfolgen. Geeignete Vorrichtungen zur destillativen Aufarbeitung umfassen Destillationskolonnen, wie Bodenkolonnen, die mit Glocken, Siebplatten, Siebböden, Packungen, Füllkörpern, Ventilen, Seitenabzügen, etc. ausgerüstet sein können, Verdampfer, wie Dünnschichtverdampfer, Fallfilmverdampfer, Zwangsumlaufverdampfer, Sambay-Verdampfer, etc. und Kombinationen davon.

In einer speziellen Ausführung wird zur Bereitstellung des ligninhaltigen Ausgangsmaterials in Schritt a) ein ligninhaltiger Strom aus dem Aufschluss eines Lignocellulose- materials eingesetzt, der zumindest noch einen Teil des flüssigen Behandlungsmediums aus dem Aufschluss umfasst. Vorzugsweise wird der ligninhaltige Strom dann zur Bereitstellung des ligninhaltigen Ausgangsmaterials für den Aufschluss in Schritt b) einer Fällung einer ligninhaltigen Fraktion, gefolgt von einer teilweisen oder vollständigen Entfernung der flüssigen Komponenten, unterzogen.

Vorzugsweise erfolgt die Bereitstellung des ligninhaltigen Ausgangsmaterials im Rah- men eines Verfahrens zur Herstellung von Cellulose (Zellstoff), in das die erfindungsgemäße Herstellung von Synthesegas und wenigstens eines organischen flüssigen oder verflüssigbaren Wertstoffs integriert ist. In einer speziellen Ausführung erfolgt die Entfernung zumindest eines Teils der flüssigen Verbindungen dann im Rahmen des Verfahrens zur Herstellung von Zellstoff. So kann zur Bereitstellung des ligninhaltigen Ausgangsmaterials z. B. eine Schwarzlauge eingesetzt werden, die vor oder im Verlauf der einzelnen Eindampf schritte des zugrun- deliegenden Zellstoffverfahrens entnommen wird.

Vorzugsweise wird zur Bereitstellung des Biomasse-Ausgangsmaterials in Schritt a) ein ligninhaltiger Strom aus dem Aufschluss eines Lignocellulosematerials mit einem alkalischen Behandlungsmedium eingesetzt. Besonders bevorzugt wird eine Schwarz- lauge eingesetzt, insbesondere eine Schwarzlauge aus dem Sulfat-Aufschluss (Kraft- Aufschluss). Zur Bereitstellung eines ligninhaltigen Materials kann eine Schwarzlauge aus dem Kraft-Aufschluss zunächst zur Fällung wenigstens eines Teils des enthaltenen Lignins angesäuert und anschließend das ausgefallene Lignin isoliert werden. Zum Ansäuern eignen sich die zuvor genannten Säuren. Insbesondere wird CO2 eingesetzt. Vorzugsweise wird der pH-Wert der Schwarzlauge auf einen Wert von höchstens 10,5 abgesenkt. Die Isolierung des ausgefallenen Lignins erfolgt bevorzugt durch ein Filtrationsverfahren. Geeignete Filtrationsverfahren sind die zuvor Genannten. Gewünsch- tenfalls kann das isolierte Lignin wenigstens einem weiteren Aufarbeitungsschritt unterzogen werden. Dazu zählt z. B. eine weitere Reinigung, vorzugsweise eine Wäsche mit einem geeigneten Waschmedium. Geeignete Waschmedien sind z. B. Mineralsäuren, wie Schwefelsäure, vorzugweise in wässriger Lösung. In einer speziellen Ausführung wird dann zur Bereitstellung eines ligninhaltigen Materials eine Schwarzlauge aus dem Kraft-Aufschluss zunächst zur Fällung wenigstens eines Teils des enthaltenen Lignins mit CO2 angesäuert, anschließend das ausgefallene Lignin durch Filtration iso- liert und das Filtrat einer Wäsche mit Schwefelsäure unterzogen.

Ein Verfahren zur Isolierung von Lignin aus einer Schwarzlauge durch Fällung mit CO2 ist in der WO 2008/079072 beschrieben, worauf hier Bezug genommen wird. Besonders geeignet ist auch das so genannte Lignoboost-Verfahren, das in der

WO 2006/038863 (EP 1797236 A1 ) und WO 2006/031 175 (EP 1794363 A1 ) beschrieben ist, worauf ebenfalls Bezug genommen wird.

Aufschluss (Schritt b)) In Schritt b) des erfindungsgemäßen Verfahrens wird das Biomasse-Ausgangsmaterial einem Aufschluss unterzogen, wobei ein Aufschlussprodukt erhalten wird, das Komponenten enthält, deren mittleres Molekulargewicht deutlich unter dem mittleren Molekulargewicht der in dem Biomasse-Ausgangsmaterial enthaltenen Komponenten liegt. In einer speziellen Ausführung wird zum Aufschluss in Schritt b) ein ligninhaltiges Ausgangsmaterial eingesetzt. Nach dieser Ausführung weist das in Schritt b) erhaltene Aufschlussprodukt überwiegend Komponenten mit einem Molekulargewicht von höchstens 500 g/mol, besonders bevorzugt von höchstens 400 g/mol, insbesondere von höchstens 300 g/mol, auf.

Der Aufschluss in Schritt b) kann prinzipiell nach zwei Varianten erfolgen, die im Folgenden eingehend beschrieben sind. Die erste Variante umfasst eine Pyrolyse und führt entsprechend zu einem Pyrolyseprodukt. Die zweite Variante umfasst eine Um- setzung in Gegenwart eines flüssigen Aufschlussmediums und führt entsprechend zu einem Produkt des flüssigen Aufschlusses.

1 . Variante: Pyrolyse In einer ersten Variante des erfindungsgemäßen Verfahrens wird das Biomasse- Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, in Schritt b) einer Pyrolyse unterzogen. Unter Pyrolyse wird im Rahmen der Erfindung eine thermische Behandlung des Biomasse-Ausgangsmaterials verstanden, wobei molekularer Sauerstoff nicht oder nur in geringer Menge zugeführt wird. Unter geringer Menge ist dabei eine Menge zu verstehen, die deutlich geringer ist als die Menge, die für eine vollständige Oxidation des in dem Biomasse-Ausgangsmaterial enthaltenen Kohlenstoffs zu CO2 notwendig ist. Bevorzugt liegt die in der Pyrolyse zugeführte Menge an molekularem Sauerstoff um mindestens 50 Mol-%, besonders bevorzugt um mindestens75 Mol-%, insbesondere um mindestens 90 Mol-% unterhalb der Menge, die für eine vollständige Oxidation des in dem Biomasse-Ausgangsmaterial enthaltenen Kohlenstoffs zu CO2 notwendig ist. Die Pyrolyse erfolgt im Allgemeinen endotherm. Bei dieser Variante des erfindungsgemäßen Verfahrens fällt das Aufschlussprodukt zumindest teilweise gasförmig an. Die Pyrolyse kann diskontinuierlich oder kontinuierlich erfolgen. Die kontinuierliche Pyrolyse ist bevorzugt.

Die Pyrolyse erfolgt in wenigstens einer Pyrolysezone. Das Biomasse-Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, kann mittels geeigneter Transportein- richtungen, wie z. B. Schneckenförderer oder einer pneumatischen Förderung, in eine Pyrolysezone eingetragen werden.

Zur Pyrolyse wird das Biomasse-Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, bevorzugt in überwiegend fester Form eingesetzt. Überwiegend feste Form bedeutet im Rahmen der Erfindung, dass das zur Pyrolyse eingesetzte Ausgangsmaterial unter Normalbedingungen (20 °C, 1013 mbar) einen Flüssigkeitsgehalt von höchstens 70 Gew.-%, besonders bevorzugt von höchstens 50 Gew.-%, bezogen auf das Gesamtgewicht des Ausgangsmaterials aufweist. Zur Pyrolyse wird das Bio- masse-Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, dann z. B. als feuchter oder vorgetrockneter Feststoff eingesetzt.

Die Pyrolysezone kann in verschiedenen Ausführungsformen gestaltet sein, z. B. als Drehrohrofen oder Wirbelschicht. Geeignet sind sowohl stationäre als auch zirkulieren- de Wirbelschichten. Bei der Ausführung der Pyrolysezone als Wirbelschicht wird ein Wirbelgas (vorzugsweise Wasserdampf oder ein Gasgemisch aus einem der nachfolgenden Verfahrensschritte) und als Wirbelgut ein unter den gegebenen Bedingungen inerter körniger Zuschlagsstoff zugeführt. Besonders geeignet als Zuschlagsstoff ist Quarzsand. Ein solches Wirbelschichtverfahren ist z. B. in der US 4,409,416 A be- schrieben. In einer alternativen Ausführung umfasst die Pyrolysezone wenigstens ein Festbett. Die Festbetten können wenigstens eine inerte Festbettschüttung und/oder wenigstens eine katalytisch aktive Festbettschüttung umfassen. Wird das erfindungsgemäße Verfahren mit wenigstens einem Festbett als Pyrolysezone betrieben, so kann ein Intervallbetrieb vorteilhaft sein, bei dem sich an eine Pyrolysephase eine Abbrand- phase anschließt, um schwerflüchtige Komponenten aus dem Festbett zu entfernen.

Zur Pyrolyse kann ein Wirbelgas in die Pyrolysezone eingespeist werden. Bevorzugte Wirbelgase sind Wasserdampf, Kohlendioxid, Stickstoff, etc. oder Mischungen dieser Gase.

In einer ersten bevorzugten Ausführungsform wird die Pyrolyse nicht unter Zusatz von Wasserstoff durchgeführt. In dieser Ausführungsform erfolgt die hydrierende Umsetzung im Wesentlichen im Dealkylierungsschritt d). In einer zweiten bevorzugten Ausführungsform wird die Pyrolyse unter Zusatz von

Wasserstoff durchgeführt. Diese Ausgestaltung der Pyrolyse kann auch als Hydrocra- cken bezeichnet werden. Beim Hydrocracken wird das Biomasse-Ausgangsmaterial, speziell Lignin, durch Einwirken von Wasserstoff in niedermolekulare Bruchstücke gespalten. Die Pyrolyse unter Zusatz von Wasserstoff erfolgt vorzugsweise in Suspensi- on. Sie erfolgt weiterhin vorzugsweise unter Verwendung eines Katalysators und/oder unter hohem Druck. Ein derartiges Verfahren ist z. B. in US 4,420,644 und in H. L. Churn et al., Adv. Solar Energy, Vol.4 (1988), 91 ff., beschrieben. In einer weiteren bevorzugten Ausführungsform wird zur Pyrolyse eine eingedampfte Schwarzlauge aus dem Kraft-Prozess eingesetzt. Ein solches Verfahren ist z. B. in der US 3,375,283 beschrieben. Die Schwarzlauge liegt dabei überwiegend in fester Form vor. Auch in dieser Verfahrensvariante fällt als Produkt ein Pyrolysegasstrom an. Der ebenfalls anfallende feste Rückstand kann z. B. in den Pulping-Prozess zurückgeführt werden.

In einer speziellen Ausführung wird zur Pyrolyse ein Schwarzlaugematerial eingesetzt, das unter Normalbedingungen (20 °C, 1013 mbar) einen Flüssigkeitsgehalt von höchs- tens 70 Gew.-%, besonders bevorzugt von höchstens 50 Gew.-%, bezogen auf das Gesamtgewicht des Schwarzlaugenmaterials aufweist.

Die Pyrolyse in Schritt b) kann gewünschtenfalls in Gegenwart wenigstens eines Pyrolysekatalysators erfolgen. Als Pyrolysekatalysatoren eignen sich z. B. Kieselsäure, Tonerde, Aluminosilicate, Aluminosilicate mit Schichtstrukturen und Zeolithe, wie Mor- denit, Faujasit, Zeolith X, Zeolith-Y und ZSM-5, Zirkoniumoxid oder Titandioxid.

Die Temperatur bei der Pyrolyse liegt vorzugsweise in einem Bereich von 200 bis 1500 °C, besonders bevorzugt 250 bis 1000 °C, insbesondere 300 bis 800 °C.

Der Druck bei der Pyrolyse liegt vorzugsweise in einem Bereich von 0,5 bis 250 bar (absolut), bevorzugt 1 ,0 bis 40 bar (absolut).

Die Verweilzeit bei der Pyrolysetemperatur kann wenige Sekunden bis mehrere Tage betragen. In einer speziellen Ausführungsform beträgt die Verweilzeit bei der Pyrolysetemperatur 0,5 Sekunden bis 5 Minuten, spezieller 2 Sekunden bis 3 Minuten. Die Verweilzeit speziell bei einem Wirbelschichtreaktor ergibt sich aus dem Quotienten von Gesamtvolumen des Reaktors zum Volumenstrom des Wirbelgases unter den Pyrolysebedingungen.

Geeignete Verfahren zur katalysierten oder unkatalysierten Pyrolyse von Lignin sind z. B. auch in WO 96/09350 (Midwest Research Institute, 1996) oder US 4,409,416 (Hydrocarbon Research Institute, 1983) beschrieben, worauf hier Bezug genommen wird.

In der Pyrolysezone wird das Biomasse-Ausgangsmaterial, speziell das Lignin, zu einem Pyrolyseprodukt umgesetzt, das unter den Bedingungen der Pyrolyse zumindest zum Teil gasförmig ("Pyrolysegas") vorliegt. Weiterhin kann bei der Pyrolyse ein Pyro- lyseprodukt resultieren, das unter den Bedingungen der Pyrolyse zum Teil flüssig und/oder fest vorliegt.

Die Zusammensetzung des in Schritt b) erhaltenen Aufschlussprodukts (= Pyrolyse- produkt) kann in Abhängigkeit von der eingesetzten Biomasse variieren.

In jedem Fall enthält das bei der Pyrolyse in Schritt b) erhaltene Aufschlussprodukt substituierte Aromaten und/oder mehrkernige Aromaten. Das Aufschlussprodukt kann zusätzlich zu Aromaten weitere Komponenten enthalten, die ausgewählt sind unter Wasserdampf, Inertgas (z. B. Stickstoff), nichtaromatischen Kohlenwasserstoffen, H , CO, CO2, schwefelhaltigen Verbindungen, wie z. B. H2S, etc. und Mischungen davon. Bei den nichtaromatischen Kohlenwasserstoffen handelt es sich bevorzugt um Abbauprodukte, wie Methan. Die Auftrennung und weitere Behandlung des bei der Pyrolyse in Schritt b) erhaltenen Aufschlussprodukts wird bei Schritt c) eingehender beschrieben.

2. Variante: Aufschluss in flüssiger Phase In einer zweiten Variante des erfindungsgemäßen Verfahrens wird das Biomasse- Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, in Schritt b) einem Aufschluss in Gegenwart eines flüssigen Aufschlussmediums unterzogen. Bei dieser Variante fällt das Aufschlussprodukt zumindest teilweise in flüssiger Phase an. Der Aufschluss in flüssiger Phase ist nach einer Vielzahl von Verfahren möglich, die sich vor allem hinsichtlich des Aufschlussmediums unterscheiden. Bevorzugt wird das Biomasse-Ausgangsmaterial, speziell das ligninhaltige Ausgangsmaterial, in Schritt b) einem Aufschluss in Gegenwart eines wässrig-alkalischen, wässrig-saueren oder organischen Aufschlussmedium unterzogen.

Bevorzugt wird zum Aufschluss in Gegenwart eines flüssigen Aufschlussmediums in Schritt b) wenigstens eine an Cellulose abgereicherte Fraktion aus einem Zellstoffpro- zess eingesetzt. In einer speziellen Ausführung handelt es sich um eine an Cellulose abgereicherte Fraktion aus einem Zellstoffprozess, die noch zumindest einen Teil des flüssigen Behandlungsmediums aus dem Aufschluss des Lignocellulosematerials zur Zellstoffgewinnung enthält.

Das zum Aufschluss in Schritt b) eingesetzte Behandlungsmedium umfasst wenigstens eine bei Normalbedingungen (20 °C und 1013 mbar) flüssige Verbindung. Diese ist vorzugsweise ausgewählt unter Wasser, Säuren, Basen, organischen Lösungsmitteln und Mischungen davon. Bei Normalbedingungen flüssige Säuren und Basen bzw. flüssige Gemische, die Säuren oder Basen enthalten, kann der Fachmann unter den weiter unten aufgeführten auswählen. Die organischen Lösungsmittel sind vorzugsweise ausgewählt unter Alkoholen, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, tert.-Butanol oder Phenol, Di- und Polyolen, wie Ethandiol und Propandiol, Aminoalkoholen, wie Ethanolamin, Diethanolamin oder Triethanolamin, aromatischen Kohlenwasserstoffen, wie Benzol, Toluol, Ethylbenzol oder Xylolen, halogenierten Lösungsmitteln, wie Dichlormethan, Chloroform, Tetrachlorkohlenstoff, Dichlorethan oder Chlorbenzol, aliphatischen Lösungsmittel, wie Pentan, Hexan, Heptan, Octan, Ligroin, Petrolether, Cyclohexan oder Dekalin, Ethern, wie Tetrahydrofuran, Diethylether, Me- thyl-tert.-Butylether oder Diethylenglycolmonomethylether, Ketonen, wie Aceton oder Methylethylketon, Estern, wie Essigsäureethylester, Formamid, Dimethylformamid (DMF), Dimethylacetamid, Dimethylsulfoxid (DMSO), Acetonitril und Mischungen da- von.

Bevorzugt ist die flüssige Verbindung ausgewählt unter Wasser, wassermischbaren organischen Lösungsmitteln und Mischungen davon. Besonders bevorzugt ist die flüssige Verbindung ausgewählt unter Wasser, Alkoholen und Mischungen davon. So kann als flüssige Verbindung Wasser, Methanol, Ethanol, ein Gemisch aus Wasser mit Methanol und/oder Ethanol oder ein Gemisch aus Methanol und Ethanol eingesetzt werden.

Das in Schritt b) eingesetzte flüssige Aufschlussmedium kann wenigstens eine Base umfassen. Geeignete Basen, sind Alkali- und Erdalkalimetallhydroxide, z. B. Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid oder Magnesiumhydroxid, Alkali- und Erd- alkalimetallhydrogencarbonate, z. B. Natriumhydrogencarbonat, Kaliumhydrogencar- bonat, Calciumhydrogencarbonat oder Magnesiumhydrogencarbonat, Alkali- und Erd- alkalimetallcarbonate, z. B. Natriumcarbonat, Kaliumcarbonat, Calciumcarbonat oder Magnesiumcarbonat, Erdalkalimetalloxide, wie Calciumoxid oder Magnesiumoxid, und Gemische davon.

Das in Schritt b) eingesetzte flüssige Aufschlussmedium kann wenigstens eine Säure umfassen. Prinzipiell sind Brönsted-Säuren oder Lewis-Säuren geeignet. Geeignete Brönsted-Säuren sind anorganische Säuren, deren saure Salze und Anhydride. Dazu zählen beispielsweise Mineralsäuren, wie Salzsäure, Salpetersäure, Schwefelsäure, Phosphorsäure oder Amidosulfonsäure, aber auch Ammoniumsalze, wie Ammonium- fluorid, Ammoniumchlorid, Ammoniumbromid oder Ammoniumsulfat. Geeignet sind weiterhin Hydrogensulfate, wie Natriumhydrogensulfat, Kaliumhydrogensulfat, Calci- umhydrogensulfat oder Magnesiumhydrogensulfat. Geeignet sind weiterhin Hydrogensulfite, wie Natriumhydrogensulfit, Kaliumhydrogensulfit, Calciumhydrogensulfit oder Magnesiumhydrogensulfit. Geeignet sind weiterhin Hydrogenphosphate und Dihydro- genphosphate, wie Natriumhydrogenphosphat, Natriumdihydrogenphosphat, Kalium- hydrogenphosphat oder Kaliumdihydrogenphosphat. Geeignet sind weiterhin SO2, SO3 und C0 2 .

Geeignete Brönsted-Säuren sind auch organische Säuren und deren Anhydride, wie Ameisensäure, Essigsäure, Methansulfonsäure, Trifluoressigsäure oder p-Toluol- sulfonsäure.

Geeignete Lewis-Säuren sind alle Metall- oder Halbmetall-Halogenide, in denen das Metall oder Halbmetall einer Elektronenpaarlücke besitzt. Beispiele hierfür sind BF3, BCI3, BBr3, AIF3, AICI3, AIBr3, Ethylaluminiumdichlorid, Diethylaluminiumchlorid, TiF 4 , TiCI 4 , TiBr 4 , VCIs, FeF 3 , FeCI 3 , FeBr 3 , ZnF 2 , ZnCI 2 , ZnBr 2 , Cu(l)F, Cu(l)CI, Cu(l)Br,

Cu(l l)F 2 , Cu(l l)CI 2 , Cu(l l)Br 2 , Sb(l ll)F 3 , Sb(V)F 5 , Sb(l l l)CI 3 , Sb(V)CI 5 , Nb(V)CI 5 , Sn(l l)F 2 , Sn(l l)CI 2 , Sn(l l)Br 2 , Sn(IV)F 4 , Sn(IV)CI 4 und Sn(IV)Br 4 .

Das in Schritt b) eingesetzte flüssige Aufschlussmedium kann wenigstens ein von den zuvor genannten Verbindungen verschiedenes Salz umfassen. Die Salze sind vorzugsweise ausgewählt unter Salzen der zuvor genannten Säuren und Basen sowie deren Oxidations- oder Reduktionsprodukten. Geeignete Salze sind z. B. Ammonium-, Alkalimetall- oder Erdalkalimetallsulfate, wie Natriumsulfat, Kaliumsulfat, Calciumsulfat oder Magnesiumsulfat. Geeignet sind weiterhin Ammonium-, Alkalimetall- oder Erdal- kalimetallsulfite, wie Natriumsulfit, Kaliumsulfit, Calciumsulfit oder Magnesiumsulfit.

Geeignet sind weiterhin Ammonium-, Alkalimetall- oder Erdalkalimetallsulfide, wie Natriumsulfid, Kaliumsulfid, Calciumsulfid oder Magnesiumsulfid. Geeignet sind weiterhin Alkalimetallhydrogensulfide, wie Natriumhydrogensulfid oder Kaliumhydrogensulfid. Das in Schritt b) eingesetzte flüssige Aufschlussmedium kann weitere von den zuvor genannten Verbindungen verschiedene Verbindungen enthalten. Es handelt sich dabei speziell um die üblichen, dem Fachmann bekannten Prozesschemikalien der verschiedenen Aufschlussverfahren zur Herstellung von Zellstoff aus einem lignocellulosehalti- gen Ausgangsmaterial. Derartige Verfahren und die darin eingesetzten Prozesschemi- kalien sind dem Fachmann bekannt.

In einer ersten besonders bevorzugten Ausführungsform wird in Schritt b) ein alkalisches Aufschlussmedium eingesetzt. Speziell wird zum Aufschluss in Schritt b) wenigstens eine an Cellulose abgereicherte Fraktion aus einem Zellstoffprozess eingesetzt, die zumindest teilweise das alkalische Aufschlussmedium aus dem vorausgegangenen Zellstoffprozess aufweist.

Zum Aufschluss in Schritt b) wird dann bevorzugt eine an Cellulose abgereicherte Fraktion aus dem Kraftprozess (Sulfatprozess) eingesetzt. Das in Schritt b) eingesetzte Aufschlussmedium enthält dann NaOH und Na2S in einem wässrigen Medium. In einer speziellen Ausführungsform enthält das in Schritt a) eingesetzte Behandlungsmedium NaOH, Na2S, Na2CÜ3 und Na2S0 4 in einem wässrigen Medium. Zum Aufschluss in Schritt b) wird insbesondere eine bei der Zellstoffherstellung nach dem Kraft-Prozess anfallende Schwarzlauge eingesetzt. Hierbei kann entweder die direkt nach der Abtrennung der Zellstoff-Fasern anfallende Schwachlauge ("weak black liquor") oder eine sich durch Eindampfung ergebende konzentriertere Qualität eingesetzt werden. Besonders vorteilhaft ist der Aufschluss in alkalischer wässriger Phase, wie er von Clark und Green in Tappi, 51 (1 ), 1968, 44 ff, beschrieben wird.

Zum Aufschluss in Schritt b) kann auch eine an Cellulose abgereicherte Fraktion aus dem Natronverfahren (Sodaverfahren) eingesetzt werden. Das in Schritt b) eingesetzte Behandlungsmedium enthält dann als Hauptkomponente NaOH in einem wässrigen Medium, das im Wesentlichen frei von schwefelhaltigen Verbindungen ist.

Zum Aufschluss in Schritt b) kann auch eine an Cellulose abgereicherte Fraktion aus dem Alkali-Sauerstoff-Aufschluss eingesetzt werden. Zum Aufschluss in Schritt b) kann auch eine an Cellulose abgereicherte Fraktion aus dem Alkali-Peroxid-Aufschluss eingesetzt werden.

Zum Aufschluss in Schritt b) kann auch eine an Cellulose abgereicherte Fraktion aus dem Aufschluss in Gegenwart von Anthrachinon eingesetzt werden.

Zum Aufschluss in Schritt b) kann auch eine an Cellulose abgereicherte Fraktion aus dem Aufschluss des Lignocellulosematerials mit organischen Lösungsmitteln (auch als Organosolv-Verfahren bezeichnet) eingesetzt werden. Geeignete organische Lösungsmittel sind die zuvor Genannten. Speziell wird ein organisches Lösungsmittel einge- setzt, das ausgewählt ist unter Ci-C 4 -Alkanolen, Gemischen von Ci-C 4 -Alkanolen und Gemischen aus wenigstens einem Ci-C 4 -Alkanol mit Wasser. Die Ci-C 4 -Alkanole sind vorzugsweise ausgewählt unter Methanol, Ethanol, n-Propanol, Isopropanol und n-Butanol. Bevorzugt sind Methanol, Ethanol und Gemische davon. Gemische aus wenigstens einem Ci-C 4 -Alkanol mit Wasser enthalten vorzugsweise 10 bis 99 Gew.- %, besonders bevorzugt 20 bis 95 Gew.-%, wenigstens eines Ci-C4-Alkanols, bezogen auf das Gesamtgewicht des Gemischs. Das in Schritt b) eingesetzte Aufschlussmedium kann dann zusätzlich ein Additiv aus dem zugrundeliegenden Zellstoffprozess enthalten. Dazu zählen z. B. Alkalimetallhydroxide, wie Natriumhydroxid; Ammonium- hydrogensulfit sowie Alkali- und Erdalkalimetallhydrogensulfite, wie Natriumhydrogensulfit und Magnesiumhydrogensulfit. Dazu zählen weiterhin Mineralsäuren, wie Salzsäure, Salpetersäure, Schwefelsäure, Phosphorsäure oder Amidosulfonsäure und deren Ammonium-, Alkalimetall- und Erdalkalimetallsalze. Geeignet als Additive sind weiterhin organische Säuren, wie Oxalsäure, Ameisensäure oder Essigsäure. Geeignet sind auch Persäuren, wie Perschwefelsäure oder Peressigsäure.

Für den Einsatz in Schritt b) des erfindungsgemäßen Verfahrens eignen sich auch die an Cellulose abgereicherten Fraktionen, die zumindest einen Teil des flüssigen Behandlungsmediums aus einem der folgenden kommerziell eingesetzten Organosolv- Verfahren enthalten:

Alcell-Verfahren: Ethanol/Wasser-Gemisch als Behandlungsmedium.

ASAM-Verfahren: Alkalisches Sulfit-Anthrachinon-Methanol-Behandlungsmedium. Organocell-Verfahren: Zweistufiges Verfahren mit einem organischen Medium in der ersten Stufe und einem alkalischen Medium in der zweiten Stufe, z. B. Aufschluss mit Methanol und/oder Ethanol in der ersten Stufe und mit Methanol und/oder Ethanol, NaOH, und gegebenenfalls Anthrachinon in der zweiten Stufe.

Acetosolv-Verfahren: Essigsäure/Salzsäure-Gemisch als Behandlungsmedium. Der Aufschluss in Gegenwart eines flüssigen Aufschlussmediums in Schritt b) kann einstufig oder mehrstufig erfolgen. Im einfachsten Fall erfolgt der Aufschluss in Schritt b) einstufig.

Vorzugsweise erfolgt der Aufschluss in Schritt b) oberhalb der Umgebungstemperatur. Die Temperatur liegt vorzugsweise in einem Bereich von etwa 40 bis 300 °C, besonders bevorzugt von 50 bis 250 °C. In einer speziellen Ausführung wird die Temperatur im Verlauf der Behandlung zunächst sukzessive oder kontinuierlich erhöht, bis die gewünschte Endtemperatur erreicht ist. Der Aufschluss in Schritt b) kann bei vermindertem Druck, bei Umgebungsdruck oder oberhalb des Umgebungsdrucks erfolgen. Der Druck in Schritt a) liegt im Allgemeinen in einem Bereich von 0,01 bar bis 300 bar, vorzugsweise 0,1 bar bis 100 bar. Die Dauer des Aufschlusses in Schritt b) beträgt im Allgemeinen 0,5 Minuten bis 7 Tage, vorzugsweise 5 Minuten bis 96 Stunden.

Wird zum Aufschluss in Schritt b) eine an Cellulose abgereicherte Fraktion aus dem Zellstoff-Prozess eingesetzt, so wird der Aufschluss vorteilhaft in örtlicher Nähe zum Standort der Zellstoffherstellung durchgeführt, um den Transportaufwand für die an Cellulose abgereicherte Fraktion, speziell eine Schwarzlauge, gering zu halten. Der Transport erfolgt vorzugsweise über Rohrleitung. In jedem Fall enthält das beim Aufschluss in Gegenwart eines flüssigen Aufschlussmediums in Schritt b) erhaltene Aufschlussprodukt substituierte Aromaten und/oder mehrkernige Aromaten.

Die Auftrennung und weitere Behandlung des in Gegenwart eines flüssigen Auf- schlussmediums in Schritt b) erhaltenen Aufschlussprodukts wird bei Schritt c) eingehender beschrieben.

Es ist prinzipiell möglich, das in Schritt b) erhaltene Aufschlussprodukt ohne weitere Auftrennung und/oder Behandlung zur Dealkylierung in Schritt d) einzusetzen. Sofern das in Schritt b) erhaltene Aufschlussprodukt in flüssiger Phase anfällt, wird dieses vor der Einspeisung in Schritt d) vorzugsweise einer Verdampfung unterzogen. Eine bevorzugte Ausführung der Verdampfung ist in Figur 2 abgebildet und unten beschrieben.

In einer anderen Ausführung des erfindungsgemäßen Verfahrens wird das in Schritt b) erhaltene Aufschlussprodukt vor seinem Einsatz in der Dealkylierung (Schritt d) einer Auftrennung und/oder Behandlung (Schritt c) unterzogen.

Auftrennung/Behandlung des Aufschlussprodukts (Schritt c)) Vorzugsweise wird in Schritt c) das in Schritt b) erhaltene aufgeschlossene Material in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) aufgetrennt.

Die Auftrennung erfolgt vorzugweise durch Destillation, Extraktion, Absorption, Memb- ranverfahren oder eine Kombination davon. Die Auftrennung erfolgt besonders bevorzugt durch Destillation, Extraktion oder eine Kombination davon.

Im Falle, dass der Aufschluss in Schritt b) in flüssiger Phase erfolgt, erfolgt die Auftrennung in Schritt c) bevorzugt mittels Destillation und/oder Extraktion. In einer ersten speziellen Ausführung des erfindungsgemäßen Verfahrens wird das in Schritt a) bereitgestellte Biomasse-Ausgangsmaterial in Schritt b) einem Aufschluss in flüssiger Phase unterzogen und umfasst in Schritt c) die Auftrennung in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abge- reicherte Fraktion C2), eine Extraktion und/oder eine Destillation.

Bevorzugt wird vor der Auftrennung in Schritt c) der pH-Wert des Austrage aus einem Aufschluss in flüssiger Phase in Schritt b) auf einen gewünschten Wert eingestellt. In einer speziellen Ausführungsform wird in Schritt c) ein Aufschlussprodukt eingesetzt, das durch Aufschluss in Gegenwart eines alkalischen Aufschlussmediums erhalten wurde. Insbesondere wurde zum Aufschluss wenigstens eine an Cellulose abgerei- cherte Fraktion aus einem Zellstoffprozess, insbesondere eine Schwarzlauge aus dem Kraft-Prozess, eingesetzt. Bevorzugt wird dann vor der Auftrennung des Aufschluss- produkts der pH-Wert durch Zugabe von Säure auf einen Wert von höchstens 9, besonders bevorzugt von höchstens 8, eingestellt. Geeignete Säuren sind z. B. Mineralsäuren, wie Salzsäure, Schwefelsäure und Phosphorsäure sowie säurebildende Verbindungen, wie CO2 und H2S. Vorzugsweise wird CO2 aus einem Abgasstrom des erfindungsgemäßen Verfahrens oder eines mit dem erfindungsgemäßen Verfahren ge- koppelten Zellstoffverfahrens eingesetzt. Geeignet ist z. B. das Abgas aus einer

Schwarzlaugeverbrennung (recovery boiler) oder einem Kalkbrennofen. Dabei kann das Abgas entweder direkt oder nach Abtrennung von den anderen Komponenten (z. B. mittels eines Waschverfahrens, wie einer Benfield-Wäsche) in das Aufschlussprodukt eingeleitet werden. Die durch CÜ2-Zugabe entstehenden Carbonate und/oder Hydrogencarbonate lassen sich in der Regel einfach z. B. in ein an das Aufschlussverfahren gekoppeltes Zellstoffverfahren zurückführen, z. B. in eine zuvor zur Ligninge- winnung entnommene Schwarzlauge. Der Einsatz von CO2 zur Einstellung des pH- Werts ist somit mit geringeren Kosten verbunden als beim Einsatz anderer Säuren und ermöglicht zudem in der Regel eine gute Integration in ein Zellstoffverfahren. Die beim Aufschluss in Schritt b) erhaltenen Hydroxyaromaten liegen bei pH-Werten über ca. 9 praktisch vollständig als Salze (Phenolate) vor. Durch vorheriges Absenken des pH auf einen Wert < 9, bevorzugt < 8, wird eine effektive Abtrennung durch Destillation und/oder Extraktion erleichtert. Die destillative Auftrennung des in Schritt b) erhaltenen Produkts aus dem Aufschluss in flüssiger Phase kann nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Bevorzugt ist eine Wasserdampfdestillation, wobei ein an Aromaten angereichertes Destillat erhalten wird. Bei dieser Vorgehensweise nutzt man die Wasserdampf- Flüchtigkeit der beim Aufschluss in Schritt b) erhaltenen aromatischen Bruchstücke, um diese aus dem Aufschlussprodukt abzutrennen. Bevorzugt ist ein mehrstufiges Verfahren, bei dem die Kondensationswärme der Brüden mindestens einer Stufe zur Verdampfung in einer anderen Stufe genutzt wird. Das erhaltene Destillationsprodukt ist gegenüber dem eingesetzten Aufschlussprodukt an Aromaten angereichert und eignet sich, gegebenenfalls nach Abtrennung der wässrigen Phase, als Einsatzmaterial für die Dealkylierung in Schritt d).

Die Auftrennung des in Schritt b) erhaltenen Produkts aus dem Aufschluss in flüssiger Phase erfolgt auch vorzugsweise durch Extraktion. Dabei wird zumindest ein Teil der beim Aufschluss in Schritt b) erhaltenen Aromaten abgetrennt, während der verbleibende Rückstand (aromatenarme organische Komponenten, anorganische Prozesschemikalien, etc.) einer weiteren Aufarbeitung und/oder thermischen Verwertung, vorzugsweise im Rahmen des erfindungsgemäßen Verfahrens oder eines damit gekoppelten integrierten Verfahrens zur Zellstoffprozesses, zugeführt werden kann.

Zur Extraktion kann ein Lösungsmittel (Extraktionsmittel) eingesetzt werden, in dem die beim Aufschluss erhaltenen Aromaten in einer ausreichenden Menge löslich sind und das ansonsten mit dem Aufschlussprodukt eine Mischungslücke bildet. Das Extraktionsmittel wird dann mit dem in Schritt b) erhaltenen Aufschlussprodukt in innigen Kontakt gebracht und anschließend eine Phasentrennung durchgeführt. Die Extraktion kann ein- oder mehrstufig ausgestaltet sein.

Geeignete Extraktionsmittel sind organische Verbindungen, wie aromatische oder nicht aromatische Kohlenwasserstoffe, Alkohole, Aldehyde, Ketone, Amide, Amine und Mi- schungen davon. Dazu zählen z. B. Benzol, Toluol, Ethylbenzol, Xylole; Pentan, Hexan, Heptan, Octan, Ligroin, Petrolether, Cyclohexan, Dekalin, n-Butanol, sec.-Butanol, tert.-Butanol, 1 -Pentanol, 1 -Hexanol, 1 -Heptanol, 1 -Octanol, Methylethylketon und Mischungen davon. Die Extraktion kann diskontinuierlich oder kontinuierlich erfolgen, siehe Beschreibung in: K. Sattler, Thermische Trennverfahren, Wiley-VCH, dritte wesentlich überarbeitete und erweiterte Auflage, Juli 2001 . Mehrere diskontinuierliche Trennoperationen können kaskadenartig hintereinander durchgeführt werden, wobei der von der Extraktionsmittelphase abgetrennte Rückstand jeweils mit einer frischen Portion Extraktionsmittel in Kontakt gebracht wird und/oder das Extraktionsmittel im Gegenstrom geführt wird. Zur diskontinuierlichen Durchführung bringt man unter mechanischer Bewegung, z. B. durch Rühren, das Aufschlussprodukt und das Extraktionsmittel in einem geeigneten Gefäß in Kontakt, lässt das Gemisch zur Phasentrennung ruhen und entfernt eine der Phasen, indem man zweckmäßigerweise die schwerere Phase am Boden des Gefäßes abzieht. Zur kontinuierlichen Durchführung der Extraktion führt man das Extraktionsmittel und das Aufschlussprodukt in einer geeigneten Vorrichtung in analoger Weise zur diskontinuierlichen Variante kontinuierlich zu. Die Extraktion erfolgt z. B. in wenigstens einer Mischer-Abscheider-Kombination oder wenigstens einer Extraktionskolonne. Geeignete Mischer sind sowohl dynamische als auch statische Mischer.

In einer bevorzugten Ausführung umfasst die Auftrennung in wenigstens eine an Aro- maten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) in Schritt c) die folgenden Teilschritte: c1 ) Extraktion des in Schritt b) erhaltenen Aufschlussprodukts unter Erhalt eines an Aromaten angereicherten Extrakts und eines an Aromaten abgereicherten Rück- Stands, c2) gegebenenfalls Auftrennung des Extrakts in eine an Extraktionsmittel angereicherte (und an Aromaten abgereicherte) Fraktion und eine an Aromaten angereicherte (und an Extraktionsmittel abgereicherte) Fraktion, c3) Einspeisen des in Schritt c1 ) erhaltenen, an Aromaten angereicherten Extrakts oder der in Schritt c2) erhaltenen, an Aromaten angereicherten Fraktion in den Schritt d). Vor der Extraktion kann der pH-Wert des in Schritt b) erhaltenen Aufschlussprodukts durch Zugabe wenigstens einer Säure oder wenigstens einer Base eingestellt werden. Des Weiteren kann bei einer mehrstufigen Extraktion der pH-Wert des in der ersten Stufe eingesetzten Aufschlussprodukts sowie der pH-Wert des auf der jeweiligen Stufe von der Extraktionsmittelphase abgetrennten Rückstands durch Zugabe wenigstens einer Säure oder säurebildenden Verbindung oder wenigstens einer Base eingestellt werden. Geeignete Säuren sind z. B. Mineralsäuren, wie Salzsäure, Schwefelsäure und Phosphorsäure, oder säurebildende Verbindungen, wie CO2 und H2S. Geeignete Basen sind z. B. Alkalimetallbasen, wie Natronlauge oder Kalilauge, Alkalicarbonate, wie Soda oder Kaliumcarbonat, Alkalihydrogencarbonate, wie Natriumhydrogencarbo- nat oder Kaliumhydrogencarbonat und Erdalkalimetallbasen, wie Calciumhydroxid, Calciumoxid, Magnesiumhydroxid oder Magnesiumcarbonat sowie Ammoniak oder Amine. Die Auftrennung des Extrakts in Schritt c2) in eine an Extraktionsmittel angereicherte Fraktion und eine an Aromaten angereicherte Fraktion C1 ) erfolgt vorzugsweise destil- lativ. Die destillative Auftrennung des Extrakts in Schritt c2) kann nach üblichen, dem Fachmann bekannten Verfahren erfolgen. Geeignete Verfahren sind beschrieben in: K. Sattler, Thermische Trennverfahren, Wiley-VCH, dritte wesentlich überarbeitete und erweiterte Auflage, Juli 2001. Geeignete Vorrichtungen für die destillative Auftrennung umfassen Destillationskolonnen, wie Bodenkolonnen, die mit Glocken, Siebplatten, Sieb- böden, Packungen, Einbauten, Ventilen, Seitenabzügen etc. versehen sein können. Geeignet sind speziell Trennwandkolonnen, die mit Seitenabzügen, Rückführungen etc. versehen sein können. Zur Destillation kann eine Kombination aus zwei oder mehr als zwei Destillationskolonnen eingesetzt werden. Geeignet sind weiterhin Verdampfer, wie Dünnschichtverdampfer, Fallfilmverdampfer, Sambay-Verdampfer etc. und Kombi- nationen davon.

Im Falle, dass der Aufschluss in Schritt b) eine Pyrolyse umfasst, erfolgt die Auftrennung in Schritt c) bevorzugt mittels Absorption. In einer zweiten Ausführung des erfindungsgemäßen Verfahrens wird das in Schritt a) bereitgestellte Biomasse-Ausgangsmaterial zum Aufschluss in Schritt b) einer Pyrolyse unterzogen und umfasst die Auftrennung in Schritt c) in wenigstens eine an Aromaten angereicherte Fraktion C1 ) und wenigstens eine an Aromaten abgereicherte Fraktion C2) eine Absorption.

Der aus der Pyrolysezone entnommene Austrag kann neben den Pyrolysegasen noch Anteile an festen und/oder flüssigen Komponenten enthalten. Dabei handelt es sich z. B. um bei der Pyrolyse gebildete schwerflüchtige Komponenten (z. B. Koks). Sofern zur Pyrolyse in Schritt b) wenigstens ein fester Zuschlagsstoff eingesetzt wird, kann der Austrag aus der Pyrolysezone auch Anteile des Zuschlagsstoffs enthalten. Diese festen und/oder flüssigen Komponenten können gewünschtenfalls in Schritt c) mittels einer geeigneten Vorrichtung, z. B. einem Zyklon, vom Pyrolysegas abgetrennt werden. Abgetrennte feste Zuschlagsstoffe werden vorzugsweise in die Pyrolysezone zurückgeführt. Von Zuschlagsstoffen verschiedene abgetrennte Komponenten werden einer anderweitigen Verwertung zugeführt, z. B. einer Verbrennung zur Wärmegewinnung, die vorzugsweise wieder in dem erfindungsgemäßen Verfahren oder einem integrierten Verfahren eingesetzt wird. Das dabei erhaltene Abgas, das vorwiegend CO2 sowie Wasser und gegebenenfalls O2 enthält, kann ebenfalls einer Verwertung zugeführt werden. Es ist auch möglich, einen Austrag aus der Pyrolysezone, der wenigstens ei- nen Zuschlagstoff und unter den Pyrolysebedingungen schwerflüchtige Komponenten enthält, in einer von der Pyrolysezone räumlich getrennten Abbrandzone mit einem Sauerstoff enthaltenden Gas, vorzugsweise Luft, in Kontakt zu bringen, was zum Abbrennen von bei der Pyrolyse entstandenen schwerflüchtigen Komponenten ("Koks") führt. Durch eine geeignete Trenneinrichtung wird der Zuschlagsstoff dann vom entstandenen Abgas abgetrennt und durch eine geeignete Fördereinrichtung in die Pyrolysezone zurück geführt.

In einer geeigneten Ausführung kann der Austrag aus der Pyrolyse direkt, d. h. ohne Abtrennung von kondensierbaren Komponenten, in die nachfolgende Dealkylierungs- zone geführt werden. Bei dieser Ausführung können jedoch Komponenten des Austrage aus der Pyrolysezone, die unter den Bedingungen der Pyrolyse in Schritt b) schwerflüchtig sind und im Austrag aus der Pyrolysezone nicht gasförmig, sondern fest oder flüssig vorliegen, vor dem Eintrag in die Dealkylierungszone abgetrennt werden. In einer besonderen Ausführungsform werden dagegen aus dem Austrag aus der Pyrolyse (nach Abtrennung von Feststoff/Flüssigkeit) kondensierbare Pyrolyseprodukte (d. h. Produkte, die unter Normalbedingungen als Flüssigkeiten oder Feststoffe vorliegen) abgetrennt. Dies kann mittels geeigneter, dem Fachmann bekannter Trennverfahren, wie Kondensation, Absorption, Adsorption, Membrantrennverfahren, etc., bewerk- stelligt werden.

Eine besonders bevorzugte Variante ist eine Absorption d1 . Dabei wird der Austrag aus der Pyrolysezone mit einem Strom D1 ), der ein geeignetes Lösungsmittel enthält, in Kontakt gebracht wird. Das Inkontaktbringen erfolgt vorzugsweise nach einem Kühl- schritt, in dem auch eine Kondensation hochsiedender Komponenten stattfinden kann. Das Inkontaktbringen erfolgt in einer geeigneten Vorrichtung (z. B. einer Kolonne). Der Kontaktvorrichtung entströmt ein flüssiger Strom D2), der das Absorptionsmittel und aromatische Pyrolyseprodukte enthält und ein gasförmiger Strom D3), der gegenüber dem Austrag aus der Pyrolyse an aromatischen Pyrolyseprodukten abgereichert ist. Strom D2) wird, vorzugsweise destillativ, in eine gegenüber D2) an aromatischen Pyrolyseprodukten angereicherte Fraktion D4) und eine gegenüber D2) an aromatischen Pyrolyseprodukten abgereicherte Fraktion D5) aufgetrennt. D4) wird, nötigenfalls nach weiterer Aufarbeitung, als Strom C1 ) in den nachfolgenden Dealkylierungsschritt geführt und D5) wird, nach weiterer Kühlung, in die Absorption zurück geführt, d. h. D5 ist der Hauptbestandteil von D1 ). Weiterer Bestandteil ist eine Lösungsmittelportion, die zwecks Ausgleichs von Lösungsmittelverlusten hinzugefügt wird.

Als Absorptionsmittel geeignete Lösungsmittel sind organische Verbindungen, wie aromatische oder nicht aromatische Kohlenwasserstoffe, Alkohole, Aldehyde, Ketone, Amide, Amine und Mischungen davon. Dazu zählen z. B. Benzol, Toluol, Ethylbenzol, Xylole; Pentan, Hexan, Heptan, Octan, Ligroin, Petrolether, Cyclohexan, Dekalin, Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol, tert.-Butanol, 1 -Pentanol, 1 -Hexanol, 1 -Heptanol, 1 -Octanol, Acetaldehyd, Aceton, Methylethylketon, N-Methylpyrrolidon, Dimethylformamid, Dimethylacetamid und Mischungen davon.

Bevorzugt weist das Lösungsmittel einen Siedepunkt auf, der bei identischen Bedingungen unterhalb dem des Phenols liegt. Besonders bevorzugt weist das Lösungsmittel einen Siedepunkt auf, der bei identischen Bedingungen mindestens 10 K unterhalb des Siedepunkts des Phenols liegt. Bevorzugt weist das Lösungsmittel zusätzlich eine hohe Löslichkeit in Wasser auf. Dazu zählen z. B. Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol und tert.-Butanol.

Viele der als Absorptionsmittel eingesetzten Lösungsmittel weisen unter den Bedingungen der Absorption einen Dampfdruck auf, der zu einer Beladung des die Absorption verlassenden Gasstroms D3) mit dem Absorptionsmittel führt. Das gilt speziell für die bevorzugt eingesetzten Lösungsmittel mit einem Siedepunkt unterhalb des Siedepunkts von Phenol. Bevorzugt wird der aus der Absorption austretende Gasstrom D3) dann einer zumindest teilweisen Abtrennung des enthaltenen Lösungsmittels unterzogen. Bevorzugt erfolgt die Abtrennung des Lösungsmittels vom Gasstrom D3) in Form einer Wasserwäsche. Hier ist eine gute Wasserlöslichkeit des zur Absorption eingesetzten Lösungsmittels besonders vorteilhaft. Der mit Lösungsmittel und gegebenenfalls Aromaten beladene Waschwasserstrom kann z. B. destillativ aufgearbeitet werden. Das dabei abgetrennte Absorptionsmittel wird (gegebenenfalls zusammen mit den Aromaten) in den Absorptionsschritt d1 ) zurückgefahren.

Das in Schritt b) erhaltene Aufschlussprodukt kann in Schritt c) neben der zuvor beschriebenen Auftrennung wenigstens einem weiteren Behandlungsschritt unterzogen werden. Zusätzliche Behandlungsschritte können vor, während oder nach der Auftren- nung erfolgen.

Vorzugsweise weist das in Schritt b) erhaltene Aufschlussprodukt oder die daraus in Schritt c) isolierte Fraktion C1 ) überwiegend Komponenten mit einem Molekulargewicht von höchstens 500 g/mol, besonders bevorzugt von höchstens 400 g/mol, insbesonde- re von höchstens 300 g/mol, auf.

In einer speziellen Ausführungsform des erfindungsgemäßen Verfahrens wird die in Schritt c) isolierte, an Aromaten abgereicherte Fraktion C2) zumindest teilweise zur Herstellung von Synthesegas eingesetzt. Dealkylierung (Schritt d))

In der Dealkylierung werden die bei der Pyrolyse in Schritt b) entstandenen und gege- benenfalls in Schritt c) als Fraktion C1 ) isolierten aromatischen Abbauprodukte durch Einwirkung von Wasserstoff und/oder Wasserdampf zumindest teilweise so umgewandelt, dass Substituenten durch Wasserstoff ersetzt werden und/oder mehrere aromatische Kerne enthaltende Verbindungen zu Verbindungen mit geringerer Anzahl von Kernen gespalten werden. Wie zuvor bereits ausgeführt, bezeichnet "Dealkylierung" somit auch Reaktionen, bei denen kein Alkylsubstituent gegen Wasserstoff ausgetauscht wird, wie Dehydroxylierung, Dealkoxylierung, Aromatenspaltung, etc. Die durch Wasserstoff ersetzten Substituenten sind vorzugsweise ausgewählt unter Alkylgrup- pen, Hydroxygruppen und Alkoxygruppen. Für den Einsatz in Schritt d) geeignete Dealkylierungsverfahren umfassen die Hydrodealkylierung, die Dampfdealkylierung oder Mischformen davon. Im Falle einer reinen Hydrodealkylierung im Sinne der Erfindung wird in die Dealkylierungszone zusätzlich zum Pyrolysegasstrom molekularer Wasserstoff (in reiner Form oder in Mischung mit anderen Komponenten, wie z. B. CO) eingespeist, aber kein Wasser. Im Falle einer reinen Dampfdealkylierung im Sinne der Erfindung wird in die Dealkylierungszone zusätzlich zum Pyrolysegasstrom Wasser (in reiner Form oder in Mischung mit anderen Komponenten) eingespeist, aber kein molekularer Wasserstoff. Das Dealkylierungsverfahren in Schritt d) kann auch als Mischform von Hydrodealkylierung und Dampfdealkylierung ausgestaltet sein. Dann wird in die Dealkylierungszone zusätzlich zum Pyroly- segasstrom sowohl Wasser als auch molekularer Wasserstoff eingespeist. Im Folgenden werden geeignete und bevorzugte Verfahrensparameter zum Teil für die Hydrodealkylierung und die Dampfdealkylierung angegeben. Der Fachmann ist mit diesen Angaben in der Lage, geeignete und bevorzugte Verfahrensparameter für eine Mischform aus Hydrodealkylierung und Dampfdealkylierung zu ermitteln. Bevorzugt weist das zur Dealkylierung eingesetzte Reaktionsgas aus H2 und H2O dann ein Mischungsverhältnis von H2 zu H2O im Bereich von etwa 0,1 : 99,9 bis 99,9 : 0,1 auf. Ein speziell geeignetes Mischungsverhältnis von H2 zu H2O liegt im Bereich von etwa 40 : 60 bis 60 : 40. Der zur Umsetzung erforderliche Wasserstoff wird im Falle der Dampfdealkylierung in situ durch Reaktion von Wasser mit (hauptsächlich organischen) Komponenten gebildet, die entweder im Eduktgemisch der Dampfdealkylierung enthalten sind oder im Laufe der Dampfdealkylierung entstehen. Exemplarisch kann hier die Entstehung von Wasserstoff aus Methan und Wasser gemäß der Gleichung CH 4 + H2O - CO + 3 H2 genannt werden.

Bevorzugt liegt die Temperatur in der Dealkylierungszone in einem Bereich von 400 bis 900 °C, besonders bevorzugt von 500 bis 800 °C.

Bevorzugt liegt der absolute Druck in der Dealkylierungszone in einem Bereich von 1 bis 100 bar, besonders bevorzugt von 1 bis 20 bar. In einer ersten bevorzugten Ausführungsform wird der Pyrolysegasstrom in Schritt c) einer Hydrodealkyherung unterzogen. Dazu erfolgt die Umsetzung in Schritt c) in Gegenwart von Wasserstoff.

Bevorzugt liegt die Temperatur in der Dealkylierungszone für die Hydrodealkyherung in einem Bereich von 500 bis 900 °C, besonders bevorzugt von 600 bis 800 °C.

Bevorzugt liegt der absolute Druck in der Dealkylierungszone für die Hydrodealkyherung in einem Bereich von 1 bis 100 bar, besonders bevorzugt von 1 bis 20 bar, insbesondere von 1 bis 10 bar.

Bevorzugt liegt für die Hydrodealkyherung das Einsatzmengenverhältnis von H2 zu H2 (stöchiometrisch) in einem Bereich von 0,02 bis 50, besonders bevorzugt von 0,2 bis 10. H2 (stöchiometrisch) steht dabei für die Menge H2, die theoretisch gerade für die vollständige Umsetzung der in die Dealkylierungszone zugeführten Aromaten zu Ben- zol benötigt wird, unter der Annahme, dass je Kernsubstituent 1 Mol H2 abreagiert.

Bevorzugt liegt für die Hydrodealkyherung die Verweilzeit in der Dealkylierungszone in einem Bereich von 0,1 bis 500 s, besonders bevorzugt von 0,5 bis 200 s. In einer zweiten bevorzugten Ausführungsform wird der Pyrolysegasstrom in Schritt c) einer Dampfdealkylierung unterzogen. Dazu erfolgt die Umsetzung in Schritt c) in Gegenwart von Wasserdampf.

Bevorzugt liegt die Temperatur in der Dealkylierungszone für die Dampfdealkylierung in einem Bereich von 400 bis 800 °C, besonders bevorzugt von 475 bis 600 °C, insbesondere von 525 bis 600 °C. Bevorzugt liegt der absolute Druck in der Dealkylierungszone für die Dampfdealkylierung in einem Bereich von 1 bis 100 bar, besonders bevorzugt von 1 bis 20 bar, insbesondere von 1 bis 10 bar. Bevorzugt liegt für die Dampfdealkylierung das Einsatzmengenverhältnis von H2O zu C * in einem Bereich von 0,1 bis 20 mol/mol, besonders bevorzugt von 0,5 bis

2 mol/mol. C * steht dabei für die Stoffmenge Kohlenstoff, bestimmt durch Kohlenstoffbezogene Bilanzierung der Pyrolyse oder durch Bestimmung der Mengen der Produkt- austräge aus der Dampfdealkylierung mittels dem Fachmann bekannter Methoden.

Bevorzugt liegt für die Dampfdealkylierung das Molverhältnis von H2 zu CH4 in der Dealkylierungszone in einem Bereich von < 50 : 1 , besonders bevorzugt von < 25 : 1 .

Bevorzugt liegt für eine Dampfdealkylierung in Abwesenheit eines Dealkylierungskata- lysators das Molverhältnis von OR (mit R = H, Alkyl) zu C ge samt in der Dealkylierungszone in einem Bereich von > 0,05 : 1 , besonders bevorzugt von 0,1 : 1 bis 0,2 : 1.

Bevorzugt liegt für eine Dampfdealkylierung in Abwesenheit eines Dealkylierungskata- lysators das Verhältnis von OR (mit R = H, Alkyl) zu Cabs aitbar in der Dealkylierungszone in einem Bereich von > 0,5 : 1 , besonders bevorzugt von 1 : 1 bis 10 : 1 , insbesondere von 1 : 1 bis 2 : 1 .

Bevorzugt liegt für die Dampfdealkylierung WHSV in einem Bereich von 0,05 bis 10 kg/(L * h), besonders bevorzugt von 0,1 bis 2 kg/(L * h).

Die Dampfdealkylierung kann in Anwesenheit oder in Abwesenheit eines Katalysators erfolgen. In einer speziellen Ausführung erfolgt die Dampfdealkylierung in Abwesenheit eines Katalysators. Ein katalysiertes Verfahren zur Dampfdealkylierung ist in

WO 2008/148807 A1 beschrieben. Auf dieses Dokument und die darin zitierte Literatur zu geeigneten Katalysatoren wird hier in vollem Umfang Bezug genommen. Weitere Informationen zu Katalysatortypen und Verfahrensschritten der Dampfdealkylierung können der WO 2007/051852 A1 , WO 2007/051851 A1 , WO 2007/051855 A2, WO 2007/051856 A1 , WO 2008/135581 A1 und WO 2008/135582 A1

(EP 2008055585) entnommen werden, ohne sich dadurch einzuschränken. Die US 3,775,504 beschreibt, dass eine Dampfdealkylierung eigentlich aus einer Kombination von Dampfdealkylierung und Hydrodealkylierung besteht, da systemimmanent zumindest ein Teil des erzeugten Wasserstoffs gleich wieder umgesetzt wird. Im Dealkylierungsschritt d) wird wenigstens ein niedermolekularer aromatischer Wertstoff als Zielprodukt des erfindungsgemäßen Verfahrens gebildet. Die niedermolekularen aromatischen Wertstoffe sind bevorzugt ausgewählt unter Benzol und phenolischen Verbindungen, wie Phenol und/oder Dihydroxybenzolen.

Sie weisen insbesondere geringere Anteile an den folgenden Komponenten auf als der Pyrolyseaustrag vor der Einspeisung in den Dealkylierungsschritt c): mono-, di-, und polyalkylierten Phenolen; Alkoxyphenolen, wie Methoxyphenolen; polyalkylierten Benzolen; Verbindungen, die zwei oder mehr aromatische Ringe enthalten. Diese Kompo- nenten werden im Folgenden als "gering oder nicht dealkylierte Aromaten" bezeichnet.

Auftrennung des Austrags aus der Dealkylierungszone (Schritt e))

Der Dealkylierungszone wird ein Austrag entnommen und einer Auftrennung unterzo- gen. Dabei wird als erstes Wertprodukt wenigstens ein organischer flüssiger oder verflüssigbarer Wertstoff und als zweites Wertprodukt wenigstens ein Strom erhalten, der an Komponenten angereichert ist, die leichter flüchtig sind als der organische Wertstoff. Bevorzugt wird als erstes Wertprodukt eine Aromatenzusammensetzung mit hohem Gehalt an einkernigen, gering oder nicht alkylierten Aromaten erhalten.

Bevorzugt wird der Austrag aus der Dealkylierungszone einer Auftrennung unter Erhalt der folgenden drei Ströme unterzogen:

E1 ) einem an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom,

E2) einem an gering oder nicht dealkylierten Aromaten angereicherten Strom,

E3) einem an leichter als E1 ) und E2) flüchtigen Nebenprodukten angereicherten Strom.

Gegebenenfalls kann der Austrag aus der Dealkylierungszone einer Auftrennung unter Erhalt weiterer Ströme unterzogen werden, wie z. B. einem wasserhaltigen Strom. Strom E1 ) ist das in dem erfindungsgemäßen Verfahren hergestellte erste Wertprodukt. Bevorzugt handelt es sich bei E1 ) um eine Aromatenzusammensetzung mit hohem Gehalt an einkernigen, gering oder nicht alkylierten Aromaten. Ergänzend dazu kann Strom E1 ) einer weiteren Aufarbeitung unter Erhalt der erfindungsgemäß hergestellten Aromatenzusammensetzung unterzogen werden. Der Strom E1 ) enthält vorzugsweise wenigstens 70 Gew.-%, besonders bevorzugt wenigstens 80 Gew.-%, insbesondere wenigstens 90 Gew.-%, bezogen auf die Gesamtmenge von E1 ) an einkernigen Aromaten.

Der Strom E1 ) enthält vorzugsweise höchstens 30 Gew.-%, besonders bevorzugt höchstens 20 Gew.-%, insbesondere höchstens 10 Gew.-%, bezogen auf die Gesamtmenge von E1 ) an gering oder nicht dealkylierten Aromaten. Der Strom E2) enthält vorzugsweise wenigstens 70 Gew.-%, besonders bevorzugt wenigstens 80 Gew.-%, insbesondere wenigstens 90 Gew.-%, bezogen auf die Gesamtmenge von E2) an gering oder nicht dealkylierten Aromaten.

Der Strom E3) enthält Komponenten, die z. B. ausgewählt sind unter nicht aromati- sehen Kohlenwasserstoffen, speziell Methan, Wasserstoff, Kohlenmonoxid, Kohlendioxid und Mischungen davon. Abhängig von dem in Schritt a) bereitgestellten ligninhal- tigen Ausgangsmaterial kann der Strom E3) weitere Komponenten enthalten. Bei Einsatz eines ligninhaltigen Ausgangsmaterials aus dem Kraft-Prozess zählen dazu schwefelhaltige Nebenprodukte, speziell h S.

Vorzugsweise wird aus der Dealkylierungszone ein gasförmiger Austrag entnommen und in Schritt e) einer Auftrennung unterzogen.

Als Verfahren zur Auftrennung können die allgemein bekannten thermischen Trennver- fahren eingesetzt werden.

Bevorzugt umfasst die Auftrennung des Austrage aus der Dealkylierungszone in Schritt e) eine Absorption. Bei der Absorption wird der gasförmige Austrag aus der Dealkylierungszone mit einem Lösungsmittel (Absorptionsmittel) in Kontakt gebracht, wobei ein Teil der in dem Gasstrom enthaltenen Komponenten absorbiert und somit abgetrennt wird.

Die Absorption wird in einer geeigneten Vorrichtung durchgeführt, z. B. einer Gegen- stromkolonne, Blasensäule, etc. Bevorzugt wird die Absorption in einer Gegenstromko- lonne durchgeführt.

Die Absorption kann ein- oder mehrstufig ausgestaltet sein. Bevorzugt wird zur Absorption ein Lösungsmittel (unbeladen: Absorbens, beladen: Ab- sorbat) eingesetzt, in dem die bei der Dealkylierung erhaltenen Aromaten in einer ausreichenden Menge löslich sind und die davon verschiedenen leicht flüchtigen Nebenprodukte im Wesentlichen nicht löslich sind. Dabei werden zusammen mit den einker- nigen, gering oder nicht alkylierten Aromaten (= Zielprodukt) auch die gering oder nicht dealkylierten zumindest teilweise absorbiert.

Bei der Absorption wird somit zum einen ein mit Aromaten beladenes Absorbat enthalten. Die in dem Absorbat enthaltenen aromatischen Komponenten entsprechen von ihrer Zusammensetzung der Summe der Aromaten in den Strömen E1 ) und E2) zuzüglich gegebenenfalls im Absorptionsmittel enthaltener Aromaten. Die in dem verbleibenden Gasstrom enthaltenen Komponenten entsprechen von ihrer Zusammensetzung dem Strom E3). Gewünschtenfalls kann der Gasstrom einem zusätzlichen Reinigungsschritt zur Entfernung von Aromaten unterzogen werden. Diese können dann wieder mit den in dem abgetrennten Lösungsmittel enthaltenen Aromaten zur gemeinsamen Aufarbeitung vereinigt werden. In der Regel ist eine solche Isolierung von Aromaten aus dem abgetrennten Gasstrom jedoch nicht erforderlich.

In einer bevorzugten Ausführung umfasst die Auftrennung des Austrage aus der Deal- kylierungszone in Schritt e) die folgenden Teilschritte:

Inkontaktbringen des Austrage aus der Dealkylierungszone mit einem Absorptionsmittel unter Erhalt eines an aromatischen Hauptprodukten der Dealkylierung angereicherten Absorbats und eines an aromatischen Hauptprodukten der Dealkylierung abgereicherten Gasstroms E3),

Auftrennung des Absorbats in einen an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom E1 ), einen an gering oder nicht dealkylierten Aromaten angereicherten Strom E2) und gegebenenfalls einen das Absorptionsmittel enthaltenden Strom, e3) falls vorhanden, Zurückführung des das Absorptionsmittel enthaltenden Stroms in den Schritt e1 ), e4) gegebenenfalls Zurückführung wenigstens eines Teils des Stroms E2) in die Dealkylierungszone von Schritt d).

Bevorzugt weist das Absorptionsmittel einen Siedepunkt auf, der oberhalb des Siedepunkts der höchstsiedenden Komponenten des Strom E1 liegt. In einer ersten geeigneten Ausführungsform wird ein Absorptionsmittel eingesetzt, das von den Komponenten der Ströme E1 ) und E2) verschieden ist. Geeignete Absorptionsmittel für diese Ausführungsform sind nicht aromatische Kohlenwasserstoffe, nicht aromatische Alkohole, nicht aromatische Aldehyde, Ketone, Amide, Amine und Mischungen davon. Bevorzugt ist das Absorptionsmittel für diese Ausführungsform ausgewählt unter Pentan, Hexan, Heptan, Octan, Ligroin, Petrolether, Cyclohexan, Dekalin, Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol, tert.-Butanol, 1 -Pentanol, 1 -Hexanol, 1 -Heptanol, 1 -Octanol, Acetaldehyd, Aceton, Methylethylketon, N-Methylpyrrolidon, Dimethylformamid, Dimethylacetamid und Mischungen davon.

Geeignete Absorptionsmittel sind weiterhin von den Komponenten der Ströme E1 ) und E2) verschiedene aromatische Kohlenwasserstoffe. Diese aromatischen Kohlenwasserstoffe sind bevorzugt ausgewählt unter gegebenenfalls substituierten Acetopheno- nen, gegebenenfalls substituierten Benzophenonen, gegebenenfalls substituierten Biphenylen, gegebenenfalls substituierten Terphenylen, gegebenenfalls substituierten Diphenylethern und Mischungen davon. Falls als Absorptionsmittel eine Komponente verwendet wird, die auch in den Strömen E1 ) oder E2) als Nebenprodukt enthalten ist, so kann durch dem Fachmann bekannte mess- und regeltechnische Maßnahmen si- chergestellt werden, dass diese Komponente kontinuierlich in der Menge, in der sie anfällt, aus dem Prozess herausgeführt wird.

Wenn ein Absorptionsmittel eingesetzt wird, das von den Komponenten der Ströme E1 ) und E2) verschieden ist, umfasst die Auftrennung des Austrage aus der Dealkylie- rungszone in Schritt e) vorzugsweise die folgenden Teilschritte:

Inkontaktbringen des Austrage aus der Dealkylierungszone mit einem Absorptionsmittel unter Erhalt eines an aromatischen Hauptprodukten der Dealkylierung angereicherten Absorbats und eines an aromatischen Hauptprodukten der Dealkylierung abgereicherten (bzw. eines an leichter als E1 und E2 flüchtigen Nebenprodukten angereicherten) Gasstroms E3),

Auftrennung des Absorbats in einen an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom E1 ), einen an gering oder nicht dealkylierten Aromaten angereicherten Strom E2) und einen das Absorptionsmittel enthaltenden Strom, e3) Zurückführung des das Absorptionsmittel enthaltenden Stroms in den Schritt e1 ), e4) gegebenenfalls Zurückführung wenigstens eines Teils des Stroms E2) in die Dealkylierungszone von Schritt d).

In einer besonders bevorzugten Variante wird als Absorptionsmittel eine Aromatenzu- sammensetzung eingesetzt, die nach dem erfindungsgemäßen Verfahren erhältlich ist. Dabei handelt es sich speziell um ein Gemisch von in der Dealkylierung nicht oder unvollständig umgesetzten Aromaten. In einer besonders bevorzugten Variante wird als Absorptionsmittel eine Aromatenzusammensetzung eingesetzt, deren Zusammensetzung teilweise oder vollständig dem Strom E2 oder einem Gemisch aus E1 und E2 entspricht. Gegebenenfalls kann der Strom E2 oder das Gemisch aus E1 und E2 vor dem Einsatz als Absorptionsmittel wenigstens einem Aufarbeitungsschritt unterzogen werden.

Wenn ein Absorptionsmittel eingesetzt wird, dessen Zusammensetzung weitgehend oder vollständig dem Strom E2 oder einem Gemisch aus E1 und E2 entspricht, um- fasst die Auftrennung des Austrage aus der Dealkylierungszone in Schritt e) vorzugsweise die folgenden Teilschritte:

Inkontaktbringen des Austrage aus der Dealkylierungszone mit einem Absorptionsmittel unter Erhalt eines an aromatischen Hauptprodukten der Dealkylierung angereicherten Absorbats und eines an aromatischen Hauptprodukten der Dealkylierung abgereicherten Gasstroms E3),

Auftrennung des Absorbats in einen an einkernigen, gering oder nicht alkylierten Aromaten angereicherten Strom E1 ) und einen an gering oder nicht dealkylierten Aromaten angereicherten Strom E2), e4) gegebenenfalls Zurückführung wenigstens eines Teils des Stroms E2) in die Dealkylierungszone von Schritt d).

Bei dieser Variante kann das Lösungsmittel gewonnen werden durch Teilkondensation des Stromes aus der Dealkylierung oder eines Gasstromes aus einer der Dealkylierung nachgeschalteten Schwersieder-Vorabtrennung. Hier kann es vorteilhaft sein, zwischen die genannte Teilkondensation und die Absorption noch eine weitere Teilkon- densation zu schalten, in der insbesondere Wasser auskondensiert wird. Auch bei dieser Variante findet zusammen mit der Absorption von Wertprodukt eine zumindest teilweise Absorption der nicht oder unvollständig umgesetzten Aromaten statt. D. h. auch in dieser Variante entsprechen die in dem Absorbat enthaltenen aromatischen Kompo- nenten von ihrer Zusammensetzung der Summe der Aromaten der Ströme E1 ) und E2).

In Schritt e2) wird das an Aromaten angereicherte Absorbat vorzugsweise destillativ aufgetrennt. Das dabei zurückgewonnene Lösungsmittel wird, gegebenenfalls nach Abtrennung von absorbiertem Wasser, in die Absorption (Schritt e1 )) zurückgeführt. Die Aromaten werden weiter verarbeitet wie zuvor und im Folgenden beschrieben.

Bevorzugt wird in Schritt e2) das an Aromaten angereicherte Absorbat in wenigstens einer Kolonne ("Regenerationskolonne") destillativ aufgetrennt. Bevorzugt werden die Destillationsbedingungen so gewählt werden, dass als Kopfprodukt im Wesentlichen gering oder nicht alkylierte Aromaten und, falls vorhanden, Wasser und als Sumpfprodukt im Wesentlichen die gering oder nicht dealkylierten Aromaten anfallen. Es versteht sich, dass bei der destillativen Auftrennung in Schritt e2) die Sumpftemperatur so gering gewählt wird, dass unerwünschte Nebenreaktionen des Sumpfprodukts im Wesentlichen vermieden werden. Dies kann insbesondere durch Einstellen eines geeigneten Kolonnendrucks und/oder den Leichtsiedergehalt im Sumpf erreicht werden (der Leichtsiedergehalt kann durch eine nachgeschaltete Strippung weiter verringert werden).

Das bei der Destillation in Schritt e2) anfallende Kopfprodukt enthält das Zielprodukt des erfindungsgemäßen Verfahrens. Es kann entweder unmittelbar als Strom E1 ) abgezogen oder einer weiteren Aufarbeitung unterzogen werden. Im Kopfprodukt enthal- tenes Wasser kann nach bekannten Verfahren abgetrennt werden. Dazu kann das Kopfprodukt nach Kondensation der Brüden aus der Destillation einem Phasenschei- der zur Wasserabtrennung zugeführt werden. Das resultierende Wasser wird als weiterer Strom aus dem Verfahren ausgeschleust. Die organische Phase aus dem Phasen- scheider kann entweder zumindest teilweise als Strom E1 ) abgezogen oder einer wei- teren Aufarbeitung unterzogen werden. Die organische Phase aus dem Phasenschei- der kann teilweise als Rücklauf auf die Kolonne zurückgeführt und/oder einer weiteren destillativen Aufarbeitung unterzogen werden. Diese dient vorzugsweise der Entfernung von noch enthaltenem Wasser und/oder von unerwünschten organischen Komponenten.

Das bei der Destillation in Schritt e2) anfallende Sumpfprodukt enthält die bei der Deal- kylierung nicht oder nicht ausreichend umgesetzten Aromaten, d. h. es ist an gering oder nicht dealkylierten Aromaten angereichert. Es kann entweder unmittelbar als Strom E2) abgezogen oder einer weiteren Aufarbeitung unterzogen werden. Bevorzugt wird das bei der Destillation in Schritt e2) anfallende Sumpfprodukt in mindestens zwei Teilströme aufgeteilt. Vorzugsweise wird ein erster Teilstrom in Schritt e) der absorpti- ven Auftrennung des Austrags aus der Dealkylierungszone als Absorptionsmittel zurückgeführt. Dazu wird dieser Teilstrom, soweit erforderlich, auf eine geeignete Tempe- ratur gekühlt. Ein zweiter Teilstrom wird als Strom E2) abgezogen. Der Strom E2 kann vor der Rückführung in die Dealkylierungszone von Schritt c) einer Abtrennung von Bestandteilen, die nicht zum Strom D2 gehören, unterzogen werden. Dies ist z. B. dann vorteilhaft, falls ein Absorptionslösungsmittel verwendet wird, das nicht als Zwischenprodukt des erfindungsgemäßen Verfahrens anfällt. Es ist zudem vorteilhaft, an dieser Stelle von Strom E2) noch einen Purgestrom abzuziehen und z. B. in eine

Verbrennungsvorrichtung zu führen, um die Anreicherung von unter den Bedingungen der Dealkylierung nicht oder langsam reagierenden Komponenten zu verringern.

Der Strom E2) wird vor seiner Einspeisung in die Dealkylierung vorzugsweise einer Verdampfung unterzogen. Eine bevorzugte Variante ist in Figur 2 wiedergegeben und in der zugehörigen Figurenbeschreibung erläutert.

Erfindungsgemäß wird der in Schritt e) erhaltene Strom E3), der an Aromaten abgerei- chert und an leicht flüchtigen Nebenprodukten angereichert ist, zumindest teilweise zur Herstellung von Synthesegas einsetzt. Wenn nach der zuvor beschriebenen bevorzugten Ausführung des erfindungsgemäßen Verfahrens die Auftrennung des Austrags aus der Dealkylierungszone in Schritt e) eine Absorption umfasst, wird der die Absorptionsvorrichtung verlassende Gasstrom (Strom E3), gegebenenfalls nach einem Reinigungsschritt zur Entfernung von Absorptionsmittel und/oder Aromaten, zumindest teil- weise zur Herstellung von Synthesegas einsetzt.

Der in Schritt e) erhaltene Strom E3) kann zusätzlich zur Synthesegasherstellung teilweise verschiedenen anderen Verwendungen zugeführt werden. Dazu zählt zum einen die Verbrennung. Bei räumlicher Nähe des erfindungsgemäßen Verfahrens zu einem Zellstoffprozess kann es vorteilhaft sein, Strom E3) in eine Vorrichtung des Zellstoffprozesses einzuspeisen. Besonders bevorzugt wird der Strom E3) in die Ablaugeverbrennung (recovery boiler) eingespeist. Diese Ausführung hat den Vorteil, dass keine zusätzlichen Vorrichtungen für die Dampf- oder Stromerzeugung oder die Rauchgasentschwefelung bei der Verbrennung des Stroms E3) benötigt werden. In einer an- deren Variante wird der Verbrennung des Stroms E3) eine Entschwefelung, z. B. in

Form einer Schwefelwasserstoff entfernenden Gaswäsche, gefolgt von einer Umwandlung des gebildeten H2S in elementaren Schwefel, vorgeschaltet. Die Bildung von Schwefel kann nach bekannten Verfahren, z. B. dem Claus-Prozess, erfolgen. Der Verbrennung kann stattdessen auch eine Entschwefelungseinheit nachgeschaltet werden.

Gegebenenfalls kann zur Synthesegasherstellung zusätzlich zu Strom E3) wenigstens ein weiterer Strom eingesetzt werden, der z. B. Wasserdampf und/oder Sauerstoff enthält.

In einer speziellen Ausführung des erfindungsgemäßen Verfahrens wird die in Schritt c) isolierte, an Aromaten abgereicherte Fraktion C2) zumindest teilweise zur Herstel- lung von Synthesegas eingesetzt. Es ist auch möglich, einen Abgasstrom aus dem Aufschluss in Schritt b) und/oder der Dealkylierung in Schritt d) bei der Synthesegasherstellung einzusetzen. Dabei kann es sich z. B. um ein Abbrandgas aus der Verbrennung schwer flüchtiger Komponenten handeln. Durch die Einspeisung eines solchen Abgasstroms kann das h /CO-Verhältnis des Synthesegases verringert werden.

Die Synthesegasherstellung umfasst vorzugsweise die folgenden Stufen:

eine Reformierungsstufe,

eine Konvertierungsstufe (in die nötigenfalls noch zusätzliches Wasser geführt wird), in der die Wassergas-Shift-Reaktion (CO + H 2 0 H 2 + C0 2 ) abläuft, - gegebenenfalls eine Stufe zur teilweisen Abtrennung von Sauergasen, wie z. B.

C0 2 .

Die Ausführung der Synthesegas-Erzeugung entspricht dabei dem Stand der Technik, wie er z. B. in Ullmann's Encyclopedia of Industrial Chemistry, Artikel "Gas Production", DOI: 10.1002/14356007.a12_169. pub2, beschrieben ist.

In einer bevorzugten Variante wird das in dem erfindungsgemäßen Verfahren erzeugte Synthesegas (nötigenfalls nach weiteren an sich bekannten Reinigungsschritten zur Entfernung von Wasser, schwefelhaltigen Komponenten, CO2, etc.) vollständig oder teilweise einer Verwendung in mindestens einem Verfahren, das Wasserstoff, CO oder Mischungen aus beiden verbraucht, eingesetzt. Dazu zählen z. B. eine Hydrierung, Hydroformylierung, Carbonylierung, Methanol-Synthese, Synthese von Kohlenwasserstoffen nach Fischer-Tropsch, etc. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein in dem Verfahren erzeugter synthesegashaltiger Strom oder ein aus dem Synthesegas hergestellter, an Wasserstoff angereicherter Strom in den Aufschluss in Schritt b) und/oder in die Dealkylierung in Schritt d) eingespeist. Eine Anreicherung des Synthe- segases an Wasserstoff kann, wie zuvor beschrieben, durch Wassergas-Shift-Reaktion erfolgen.

Bevorzugt wird ein in dem Verfahren erzeugter synthesegashaltiger Strom oder ein aus dem Synthesegas hergestellter, an Wasserstoff angereicherter Strom in die Dealkylie- rung in Schritt d) eingespeist. Der besondere Vorteil dieser Variante ist, dass der Anteil von Phenol(en) an den Produkten der Dealkylierung höher ist als bei der reinen Dampfdealkylierung, d. h. ohne Wasserstoffzufuhr. Die höhere Phenolbildung stellt einen wirtschaftlichen Vorteil dar, da Phenol ein hochwertigerer Wertstoff ist als sauer- stofffreie Aromaten wie Benzol und auch bezüglich des Edukts Lignin mehr Masse erhalten bleibt. Zudem ist Wasserstoff, der nicht im erfindungsgemäßen Verfahren hergestellt wird, kostspieliger und in vielen Fällen nicht oder nur mit hohem Aufwand verfügbar, vor allem dann, wenn die Dealkylierung abseits eines chemischen Verbundstandorts durchgeführt werden soll.

Figurenbeschreibung

Eine bevorzugte Ausführungsform des erfindungsgemäßen Verfahrens ist in Figur 1 dargestellt.

Ein Biomasse-Ausgangsmaterial (1 ), insbesondere ein ligninhaltiges Ausgangsmaterial (1 ), wird einem Aufschluss unterzogen.

Das Aufschlussprodukt (2) wird optional einer Auftrennung und/oder Behandlung un- terzogen, wobei ein an Aromaten angereicherter Strom (4) und ein an Aromaten abge- reicherter Strom (3) erhalten werden. Optional wird der an Aromaten abgereicherte Strom (3) einer Reformierung/Konvertierung zur Synthesegasherstellung zugeführt.

Das Aufschlussprodukt (2) oder der daraus erhaltene, an Aromaten angereicherte Strom (4) wird zusammen mit einem Hydriergasstrom (5) in eine Dealkylierungseinheit geführt. Der Austrag aus der Dealkylierungszone (6) wird einer Auftrennung in die folgenden drei Ströme unterzogen:

Wertprodukt (Strom (7)), ein Stoff bzw. Stoffgemisch, das durch die oben be- schriebene Dealklierung entstanden ist;

nicht oder unvollständig dealkyliertes Produkt (Strom (8)). Dieses enthält Stoffe, die nicht oder in geringerem Umfang als das Wertprodukt dealkyliert worden sind; Strom (9), der leicht flüchtige Nebenprodukte enthält. Diese sind ausgewählt unter Methan und anderen Kohlenwasserstoffen, H2O, CO, CO2 und schwefelhaltigen Nebenprodukten (bei Lignin aus dem Kraft-Prozess vor allem H2S). Optional wird vom Austrag aus der Dealkylierungszone (6) ein Wasserstrom abgetrennt und ausgeschleust.

Strom (7) wird, gegebenenfalls nach einer weiteren Aufarbeitung, als Produktstrom abgezogen.

Der an nur gering oder nicht dealkylierten Aromaten angereicherte Strom (8) wird über eine Verdampfung wieder der Dealkylierung zugeführt. Eine bevorzugte Ausführung der Verdampfung ist in Figur 2 abgebildet und weiter unten beschrieben. Der die leichtflüchtigen Nebenprodukte enthaltende Strom (9) aus der Auftrennung wird zumindest teilweise einer Reform ierung/Konvertierung zur Herstellung von Synthesegas zugeführt. Dabei werden, gegebenenfalls unter Einspeisung eines Wasser oder Sauerstoff enthaltenden optionalen Stroms (10), die in Strom (9) enthaltenen organischen Komponenten zu einem CO und H2 enthaltenden Synthesegas (1 1 ) umgewan- delt.

Ein Teilstrom von Strom (9) kann auch verschiedenen anderen Verwendungen, wie z. B. einer geeigneten Verbrennung, zugeführt werden, wobei es bei räumlicher Nähe zu einem Zellstoffprozess vorteilhaft ist, Strom (9) in einen Apparat desselben zu füh- ren, besonders bevorzugt in die Ablaugeverbrennung (recovery boiler). Diese Ausführung hat den Vorteil, dass keine zusätzlichen Apparate für die Dampf- oder Stromerzeugung oder die Rauchgasentschwefelung benötigt werden. In einer anderen Variante wird der Verbrennung eine Entschwefelung, z. B. in Form einer Schwefelwasserstoff entfernenden Gaswäsche, gefolgt von einer Umwandlung des H2S in elementaren Schwefel (z. B. Claus-Prozess), vorgeschaltet.

Sofern es sich bei der Dealkylierung um eine Hydrodealkylierung handelt, kann ein aus der Synthesegas-Erzeugung erhaltener wasserstoffhaltiger Strom (12) in die Dealkylierung geführt werden.

Sofern zum Aufschluss Wasserstoff eingesetzt wird, kann ein aus der Synthesegas- Erzeugung erhaltener wasserstoffhaltiger Strom (13) in den Aufschluss geführt werden. Figur 2 zeigt die Verdampfung eines aromatenhaltigen Stroms, wie er z. B. bei der ab- sorptiven und destillativen Auftrennung des Austrage aus der Dealkylierungszone als Strom E2) (in Figur 1 mit (8) bezeichnet) anfällt. Strom (8) wird vor der Rückführung in die Dealkylierung vorzugsweise einer Verdampfung unterzogen, wie sie in Figur 2 dar- gestellt ist.

Der Aromatenstrom (8) wird in Apparat A auf eine Temperatur vorgewärmt, bei der in flüssiger Phase noch keine nennenswerte Zersetzung stattfindet und dieser vorgewärmte Strom (Strom 100) wird in einem Apparat B mit einem gasförmigen Strom (Strom 200) zusammengeführt werden, dessen Menge, Temperatur und Zusammensetzung so gewählt sind, dass der Strom 100 teilweise oder vollständig verdampft. Der Strom 200 enthält Reaktanden der Dealkylierung, d. h. im Falle der Dampfdealkylie- rung Wasserdampf und im Falle der Hydrodealkylierung ein Wasserstoff enthaltendes Gas (Strom 5 in Figur 1 ). Die Mengen der Ströme 100 und 200 werden so eingestellt, dass sich in dem Apparat B verlassenden Strom 300 eine für die gewählte Art der Dealkylierung günstige Zusammensetzung ergibt.

Apparat B ist als Flüssig-Gas-Kontaktapparat gemäß Stand der Technik ausgeführt, z. B. als Behälter mit Strahldüse oder Kolonne, wobei Strom 100 oben zugeführt wird. Flüssigkeit und Gas werden im Gleich- oder Gegenstrom geführt, im unteren Teil kann nötigenfalls ein schwerflüchtiger Rückstand (Strom 250) abgezogen werden. Alternativ kann Apparat B auch als Wirbelschicht ausgeführt werden. Über das extern beheizte Wirbelgut lässt sich effizient zusätzliche Energie in den Strom 100 eintragen. In einer bevorzugten Variante wird Strom 300 aufgeteilt in die Ströme 400 und 500, wobei Strom 400 zur Dealkylierung und Strom 500 über einen Wärmeübertrager C in Apparat B zurück geführt wird. Diese Variante erlaubt die Begrenzung der Temperaturen der Ströme 100, 200 und 500 (nach Wärmeübertrager) auf Grenzwerte, die sich aus der Verfügbarkeit der Wärmequellen, der thermischen Stabilität der Stoffe und der Stabilität der Werkstoffe ergeben. Der entlang der Ströme 300, 400 und 500 naturgemäß entstehende Druckverlust wird durch eine geeignete Einrichtung zur Verdichtung ausgeglichen. Hierfür können allgemein bekannte Verdichter oder Ventilatoren eingesetzt werden, es ist aber auch möglich, den Apparat B vollständig oder teilweise als Flüssigkeitsstrahl-Ventilator auszuführen, wobei Strom 100 als Treibmedium verwendet wird. In diesem Fall kann, sofern die Menge von Strom 100 nicht für die benötigte Verdichtungsleistung ausreicht, Flüssigkeit über Apparat B im Kreislauf gefahren werden.