Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING POLYSACCHARIDE-BASED PLYCARBOXYLATES
Document Type and Number:
WIPO Patent Application WO/1993/016110
Kind Code:
A1
Abstract:
In a process for producing polycarboxylic acids or their salts from polysaccharides by oxidation with nitrogen dioxide/dinitrogen tetroxide with the conversion of at least a part of the primary alcohol groups of the polysaccharides into carboxyl groups and where appropriate the at least partial neutralisation of the carboxylic acid groups produced, the reaction time required is to be shortened and the necessary quantity of nitrogen dioxide reduced. This is essentially attained in that the oxidation reaction is accomplished at above room temperature in the presence of oxygen. The resultant polycarboxylates are, for instance, used as builders or co-builders in washing or cleaning agents.

Inventors:
Engelskirchen, Konrad (Gonellastraße 24, Meerbusch, D-4005, DE)
Fischer, Herbert (Neustädter Weg 29, Düsseldorf 1, D-4000, DE)
Verholt, Hans-wilhelm (An der Eicher 5, Langenfeld, D-4018, DE)
Application Number:
PCT/EP1993/000244
Publication Date:
August 19, 1993
Filing Date:
February 03, 1993
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
Henkel, Kommanditgesellschaft Auf Aktien (TFP/Patentabteilung, Postfach 1011 00, Düsseldorf 1, D-4000, DE)
Engelskirchen, Konrad (Gonellastraße 24, Meerbusch, D-4005, DE)
Fischer, Herbert (Neustädter Weg 29, Düsseldorf 1, D-4000, DE)
Verholt, Hans-wilhelm (An der Eicher 5, Langenfeld, D-4018, DE)
International Classes:
C08B15/04; C08B31/18; C08B37/00; C11D3/22; (IPC1-7): C08B15/04; C08B31/18; C08B37/00; C11D3/22
Foreign References:
DE967144C1957-10-10
DE941282C1956-04-05
EP0455522A11991-11-06
US3478752A1969-11-18
US2472590A1949-06-07
Download PDF:
Claims:
P a t e n t a n s p r ü c h e
1. Verfahren zur Herstellung von Polycarbonsäuren oder deren Salzen aus Polysacchariden durch Oxidation mit Stickstoffdioxid/Distickstoff tetroxid unter Umwandlung zumindest eines Teils der primären Alko¬ holgruppen der Polysaccharide in Carboxylgruppen sowie gegebenenfalls wenigstens anteilsweiser Neutralisation der entstehenden Carbon¬ säuregruppen, dadurch gekennzeichnet, daß die Oxidationsreaktion bei einer Temperatur oberhalb Raumtemperatur in Gegenwart von Sauerstoff durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Oxidati¬ onsreaktion bei Temperaturen von 30 °C bis 70 °C, insbesondere 40 °C bis 60 °C durchgeführt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Oxidationsreaktion in einem geschlossenen Reaktionssystem bei Drucken von 1 bar bis 10 bar, insbesondere von 2 bar bis 6 bar, gemessen bei der Reaktionstemperatur, durchgeführt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Druck im Reaktionssystem durch Aufpressen von gasförmigem Sauerstoff, das einmalig beim Reaktionsbeginn oder mehrfach, gewünschtenfalls konti¬ nuierlich, während der Reaktion erfolgt, eingestellt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß Sauerstoff in Mischung mit mindestens einem unter den Reaktionsbedingungen inerten Gas eingesetzt wird, wobei der Sauerstoffanteil in der Gasmischung 1 Vol.% bis 30 Vol.%, insbesondere von 3 Vol.% bis 10 Vol.% be¬ trägt.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß als inertes Gas Helium, Argon, Kohlendioxid, insbesondere Stickstoff, oder ein Gemisch aus diesen eingesetzt wird.
7. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß der Druck im Reaktionssystem durch Aufpressen von Luft eingestellt wird.
8. Verfahren nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, daß im Reaktionssystem vor Beginn der Oxidationsreaktion ein Druck von weniger als 10 bar, insbesondere von 2 bar bis 6 bar durch Auf¬ pressen eines Inertgases, insbesondere Stickstoff, Helium, Argon, Kohlendioxid oder eines Gemisches aus diesen, eingestellt wird und nach Beginn der Reaktion Sauerstoff oder ein Gemisch aus 1 Vol.% bis 30 Vol.%, insbesondere von 3 Vol.% bis 10 Vol.%, Sauerstoff mit einem genannten Inertgas, mehrfach, gewünschtenfalls kontinuierlich, aufgepresst wird, so daß der SauerstoffPartialdruck im Reaktions¬ system 0,1 bar bis 10 bar, insbesondere 0,5 bar bis 6 bar beträgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Polysaccharid in Form einer Suspension in einer unter den Reaktionsbedingungen weitgehend inerten Flüssigkeit eingesetzt wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, daß als unter den Reaktionsbedingungen weitgehend inerte Flüssigkeit ein halogenierter Kohlenwasserstoffen, insbesondere Tetrachlorkohlenstoff, eingesetzt wird.
11. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Polysaccharid in Abwesenheit eines Suspensions oder Lösungs¬ mittels, gegebenenfalls in Anwesenheit eines die Fließfähigkeit ver¬ bessernden festen Additivs, eingesetzt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Additiv unter Magnesiumoxid, Calciumfluorid, Calciumphosphat, pyrogenem Sili¬ ziumdioxid und deren Mischungen ausgewählt wird.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß das Additiv in Mengen von 0,1 Gew.% bis 5 Gew.%, insbesondere 0,25 Gew.% bis 1 Gew.%, jeweils bezogen auf zu oxidierendes Polysaccharid, eingesetzt wird.
14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, daß die Oxidationsreaktion in einem Fließbett oder in einer Wirbelschicht des zu oxidierenden Polysaccharids unter Einsatz von durchströmendem, das Oxidationsmittel enthaltendem Gas durchgeführt wird.
15. Verfahren nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß das Polysaccharid ein Polyglucosan nativen Ursprungs, insbeson¬ dere Stärke und/oder Cellulose, ist.
16. 15 Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß das Polysac¬ charid eine native Stärke, ausgewählt aus Kartoffelstärke, Weizen¬ stärke, Maisstärke, Tapiokastärke und deren Gemischen, ist.
17. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß Stickstoffdioxid/Distickstofftetroxid in solchen Mengen einge¬ setzt wird, daß bei rechnerisch vollständiger Verschiebung des Gleichgewichtes auf die Seite des Stickstoffdioxids dieses in Mengen von höchstens 2 Molequivalenten, insbesondere 0,1 bis 1 Molequivalen¬ ten, bezogen auf den Gehalt an eine primäre Alkoholgruppe enthalten¬ dem Monomerbaustein des Polysaccharids, enthalten ist.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß als Polysac¬ charid ein Polyglucosan eingesetzt wird und die Oxidationsreaktion über einen solchen Zeitraum durchgeführt wird, daß das Oxidations produkt im statistischen Mittel zu wenigstens 15 Mol% aus oxidierten Anhydroglucoseeinheiten der Formel I besteht.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, daß das Oxidati onsprodukt die oxidierten Anhydroglucoseeinheiten der Formel I zu wenigstens 25 Mol%, vorzugsweise zu wenigstens 35 Mol% bis 40 Mol% im Molekül enthält, wobei weiterhin bevorzugt keine wesentlichen Mengen anderer OxidationsFolgeprodukte vorliegen.
20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, daß als Oxidationsprodukt selektiv oxidierte Polyglucosane auf Cellulose und/oder Stärkebasis vorliegen, die einen Gehalt an oxidierten Anhy¬ droglucoseeinheiten der Formel I bis zu etwa 95 Mol%, insbesondere im Bereich von etwa 40 Mol% bis 80 Mol%, aufweisen.
21. Verfahren nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß anschließend an die Oxidationsreaktion mindestens ein Teil der Carboxylgruppen des Oxidationsprodukts durch Behandeln mit einer wäßrigen Lösung, die Alkalihydroxid, Ammoniumhydroxid und/oder orga¬ nische Base enthält, neutralisiert wird.
22. Verwendung von Polycarbonsäuren oder deren Salzen, hergestellt gemäß dem Verfahren nach einem der Ansprüche 1 bis 21, als Builder oder CoBuilder in Wasch oder Reinigungsmitteln.
23. Verwendung nach Anspruch 22 als CoBuilder in Mengen von 0,5 Gew. bis 10 Gew. , insbesondere 2 Gew.% bis 7 Gew.%, bezogen jeweils auf das Gesamtgewicht des Mittels, in Zeolith als HauptBuilder ent¬ haltenden Wasch oder Reinigungsmitteln.
24. Verwendung nach Anspruch 23, dadurch gekennzeichnet, daß das Mittel ZeolithNaA als Hauptbuilder und Polycarbonsäuren oder deren Salze, hergestellt gemäß dem Verfahren nach einem der Ansprüche 1 bis 21, in Mengenverhältnissen von 3:1 bis 4:1 enthält.
Description:
Verfahren zur Herstellung von Polvcarboxylaten auf Polysaccharid-Basis

Die Erfindung betrifft ein Verfahren zur Herstellung von Polvcarboxylaten durch selektive Oxidation von Polysacchariden mit Stickstoffdioxid sowie die Verwendung solcherart hergestellter Polycarboxylate als Builder be¬ ziehungsweise Co-Builder in Wasch- oder Reinigungsmitteln.

Zur Herstellung von Polycarboxylaten durch oxidative Behandlung von Poly¬ sacchariden, beispielsweise Cellulose, Stärke und Dextrinen, besteht um¬ fangreiches Wissen. Verwiesen wird beispielsweise auf Houben-Weyl "Metho¬ den der organischen Chemie", Thieme-Verlag, Stuttgart (1987) Bd. E 20, Makromolekulare Stoffe, hier das Unterkapitel "Polysaccharid-Derivate" bearbeitet von Dr. K. Engelskirchen, a.a.O. Seite 2042 ff, insbesondere Seite 2124 ff (Oxidationsprodukte der Cellulose) und Seite 2166 ff (Oxi- dierte Stärken). Verwiesen sei weiter auf die Veröffentlichung "Cellulose Chemistry and Its Applications" (1983), John Wiley & Sons, Chichester, GB, dort insbesondere T.P.Nevell, "Oxidation of Cellulose" (Kapitel 10) sowie die umfangreiche dort zitierte Literatur, a.a.O Seite 262 bis 265.

Grob zusammenfassend gilt: Eine Vielzahl von Oxidationsmitteln ist für die Oxidation von Polysacchariden, insbesondere von ausschließlich aus Glucose aufgebauten Polyglucosanen gebräuchlich. Genannt seien beispielsweise (Luft)-Sauerstoff, Wasserstoff-Peroxid, Natriumhypochlorit beziehungsweise -bromit, Periodsäure beziehungsweise Periodate, Blei(IV)-Acetat, Stick¬ stoffdioxid und Cer(IV)-Salze. Diese Oxidationsmittel reagieren sehr un¬ terschiedlich mit den Anhydroglucoseeinheiten, vgl. beispielsweise die Formelbilder in Houben-Weyl a.a.O. Seite 2124. So bewirken beispielsweise Perjodate oder Blei(IV)-Acetat eine C-C Spaltung der Anhydroglucose-Ringe; man erhält aus Cellulose die sogenannte 2,3-Dialdehydcellulose und analog aus Stärke Dialdehydstärke. Bekannt ist außerdem, daß bei der Einwirkung von Stickstoffdioxid auf Cellulose die Oxidation der primären Alko¬ holgruppe zur Carboxylgruppe die weit überwiegende Reaktion ist. Das Oxi¬ dationsmittel, in der Regel im Gleichgewicht mit Distickstofftetroxid vorliegend, kann dabei gasförmig oder gelöst in einem inerten organischen Lösungsmittel eingesetzt werden, vgl. auch hier Houben-Weyl a.a.O. Seite

2125 und die dort in diesem Zusammenhang genannte Primärliteratur. Auch von der Stärke ausgehend lassen sich entsprechend weitgehend selektive Oxidationen der primären Alkoholgruppe der Anhydroglucoseeinheiten zur CarboxyIgruppe bewerkstelligen. So ist aus der US-amerikanischen Patent¬ schrift US 2 472 590 die Oxidation von Stärke mit gasförmigem oder in Wasser beziehungsweise in verschiedenen organischen Lösungsmitteln ge¬ löstem Stickstoffdioxid bei Raumtemperatur und Normaldruck bekannt.

Unter diesen Bedingungen erhält man die annähernd vollständige Umwandlung der primären Alkoholgruppen der Polysaccharide in Carboxylgruppen erst nach sehr langen Reaktionszeiten, die unter Umständen bis zu mehreren Ta¬ gen betragen können. Außerdem werden bei den bekannten Verfahren hohe Stickstoffdioxidmengen, bezogen auf zu oxidierendes Polysaccharid, benö¬ tigt.

Die vorliegende Erfindung will eine Verbesserung der Herstellung derarti¬ ger Oxidationsprodukte von Polysacchariden ermöglichen, um ihre Verfüg¬ barkeit zu sichern, da die entstehenden Polycarboxylate als potentielle Inhaltsstoffe, insbesondere als Builder- beziehungsweise Co-Builder-Ko - ponenten, für Wasch- und Reinigungsmittel in Frage kommen. Dies gilt auch für die Salze derartiger Polycarboxylate, insbesondere ihre wasserlösli¬ chen Salze, da der Einsatz von oxidierten Polysaccharidverbindungen zur Waschkraftverstärkung von Wasch- und/oder Reinigungsmitteln an sich seit Jahrzehnten bekannt und immer wieder untersucht worden ist. Verwiesen wird in diesem Zusammenhang beispielsweise auf die niederländische Patent¬ schriften NL 69 883 und NL 78087. Der Ersatz von Builder-Systemen auf Phosphatbasis durch mit Lewis-Säuren behandelter 6-Carboxycellulose wird in den US-amerikanischen Patentschriften US 3 740 339 und US 3 790 561 beschrieben. Auch die niederländische Patentanmeldung NL 70/02 500 will oxidierte Polysaccharid-Derivate als Builder-System zur Steigerung der Waschkraft in insbesondere Textilwasch itteln einsetzen. Hier ist aller¬ dings nicht auf selektiv am C -Atom oxidierte Derivate, sondern auf durch substantielle Spaltung der Anhydroglucoseeinheiten zwischen C2 und C3 ent¬ stehende Oxidationsprodukte abgestellt. Schließlich beschreibt die euro¬ päische Patentanmeldung EP 425 369 tensidhaltige Stoffge ische zur Textil- wäsche, die ein Builder-System aus konventioneller Phosphatverbindung,

Zeolith und Oxidationsprodukten von Cellulose, Stärke oder Glucosesirup enthalten. Nachvollziehbare Angaben zur Herstellung der dort beschriebenen oxidierten Saccharidverbindungen sind nicht angegeben. Außerdem wird eine Stabilisierung der primär anfallenden Polysaccharidoxidate durch eine ka- talytische Hydrierung als wünschenswert bezeichnet.

Die erfindungsgemäße Lehre geht von der überraschenden Erkenntnis aus, daß Polycarboxylate aus Polysacchariden in einem einfachen Verfahren kosten¬ günstig in hohen Ausbeuten zu gewinnen sind, wenn die Oxidationsreaktion mit Stickstoffdioxid/Distickstofftetroxid in Gegenwart von Sauerstoff bei erhöhten Temperaturen durchgeführt wird. Die Formulierung "Stickstoffdi- oxid/Distickstofftetroxid" steht dabei für das unter den jeweiligen Re¬ aktionsbedingungen vorliegende Gleichgewichtsgemisch aus Stickstoffdioxid und seinem Dimeren Distickstofftetroxid.

Gegenstand der Erfindung ist dementsprechend ein Verfahren zur Herstellung von Polycarbonsäuren oder deren Salzen aus Polysacchariden durch Oxidation mit Stickstoffdioxid/Distickstofftetroxid unter Umwandlung zumindest eines Teils der primären Alkoholgruppen der Polysaccharide in Carboxylgruppen sowie gegebenenfalls wenigstens anteilsweiser Neutralisation der entste¬ henden Carbonsäuregruppen, welches dadurch gekennzeichnet ist, daß die Oxidationsreaktion bei einer Temperatur oberhalb Raumtemperatur in Gegen¬ wart von Sauerstoff durchgeführt wird. Als Obergrenze des Temperaturbe¬ reiches kann dabei eine Temperatur von 150 °C gelten, da bei höheren Temperaturen zunehmend Zersetzung beobachtet wurde.

Die Oxidationsreaktion wird daher vorzugsweise bei Temperaturen von 30 °C bis 70 °C, insbesondere von 40 °C bis 60 °C durchgeführt. Besonders gute Ergebnisse erzielt man bei Durchführung der Oxidation in einem geschlosse¬ nen Reaktionssystem bei Drucken von 1 bar bis 10 bar, insbesondere von 2 bar bis 6 bar, gemessen bei der Reaktionstemperatur. Diese Drucke im Re¬ aktionsgefäß werden erfindungsgemäß durch Aufpressen von gasförmigem Sauerstoff, allein oder im Gemisch mit unter den Reaktionsbedingungen in¬ ertem Gas, eingestellt. Dabei wird die Oxidationsreaktion des erfinduπgs- ge äßen Verfahrens vorzugsweise so geführt, daß der Sauerstoff-Partial- druck im Reaktionssystem 0,1 bar bis 9 bar, insbesondere 0,5 bar bis

6 bar, beträgt, Das Aufpressen kann einmalig beim Reaktionsbeginn oder mehrfach, gewünschtenfalls kontinuierlich, während der Reaktion erfolgen. Bei letztgenannter Reaktionsführung ist als besonderer Vorteil zu er¬ wähnen, daß die Oxidationsreaktion te peratur- oder druckabhängig über die Sauerstoffdosierung gesteuert werden kann. Vorzugsweise regelt man die Sauerstoffzugabe so, daß die Reaktionstemperatur im obengenannten Bereich von 30 °C bis 70 °C bleibt.

Als inerte, das heißt bei den jeweils gewünschten Verfahrensbedingungen nicht reagierende Gase können Edelgase wie Helium oder Argon und Kohlen¬ dioxid, insbesondere aber Stickstoff, aber auch beliebige Mischungen der¬ artiger Gase eingesetzt werden. Der Sauerstoffgehalt in der Gasmischung beträgt dabei vorzugsweise 1 Vol.-% bis 30 Vol.-%, insbesondere von 3 Vol.-% bis 10 Vol.-%. Eine bevorzugte Ausführungsform des erfindungsge¬ mäßen Verfahrens beinhaltet die Zuführung von Sauerstoff durch das Auf¬ pressen von Luft.

Eine weitere bevorzugte Ausführungsform des Verfahrens ist dadurch gekenn¬ zeichnet, daß im Reaktionssystem vor Beginn der Oxidationsreaktion ein Druck von weniger als 10 bar, insbesondere von 2 bar bis 6 bar, bei der gewünschten Reaktionstemperatur durch Aufpressen eines genannten Inertga¬ ses eingestellt wird und anschließend Sauerstoff oder ein Gemisch aus Sauerstoff mit einem genannten Inertgas, mehrfach, gewünschtenfalls konti¬ nuierlich, aufgepresst wird. Die Zugabe von Stickstoffdioxid/Distickstoff- tetroxid kann dabei vor oder nach der Sauerstoffzugabe beziehungsweise dem Beginn der Sauerstoffzugabe erfolgen. Dabei kann es erforderlich sein, das Reaktionsgefäß nach dem anfänglichen Aufpressen des Inertgases auf die ge¬ wünschte Reaktionstemperatur aufzuheizen. Während des Ablaufs der Oxida¬ tionsreaktion, die zweckmäßig unter intensiver Durchmischung der Re¬ aktionspartner erfolgt, kann die Reaktionstemperatur in der Regel ohne äußere Heizung allein durch die Zugabemenge des Sauerstoffs gehalten werden.

Die Oxidation des Polysaccharids kann gemäß einer Ausführungsform der Erfindung im Suspensionsverfahren, bei dem es als Suspension in einer

unter den Reaktionsbedingungen weitgehend inerten Flüssigkeit eingesetzt wird, erfolgen.

Bei der Oxidation im Suspensionsverfahren sind als Suspensionsmittel für das Polysaccharid organische Flüssigkeiten geeignet, die einerseits Stick¬ stoffdioxid/Distickstofftetroxid sowie Sauerstoff gut lösen und anderer¬ seits diesen gegenüber unter den Reaktionsbedingungen weitgehend inert sind. In Frage kommende Suspensionsmittel sind Kohlenwassserstoffe, vor allem halogenierte Kohlenwasserstoffe, insbesondere Tetrachlorkohlenstoff. Dabei ist eine breite Variation der Suspensionsmittelmenge ohne signifi¬ kanten Einfluß auf das Oxidationsergebnis möglich. In der Regel liegt das Gewichtsverhältnis von Suspensionsmittel zu Polysaccharid im Bereich von 3:1 bis 8:1. Nach Beendigung der Oxidationsreaktion wird das Suspensions¬ mittel, gegebenenfalls nach Entspannen des Überdruckes im Reaktionssystem, vom oxidierten Polysaccharid abgetrennt, was durch einfache Filtration oder Zentrifugieren geschehen kann. Es kann direkt oder gewünschtenfalls nach Aufarbeitung in der Oxidationsreaktion wiederverwendet werden. Das Oxidationsprodukt wird gewünschtenfalls mit einem organischen Lösungsmit¬ tel und/oder Wasser beziehungsweise Gemischen aus diesen gewaschen und getrocknet. Der Trocknungsschritt nach dem Waschen mit Wasser kann entfal¬ len, wenn die Weiterverarbeitung des erhaltenen Polycarboxylates zu was¬ serhaltigen flüssigen oder pastenförmigen Produkten erfolgen soll.

Die Derivatisierung der Polysaccharide kann gemäß einer weiteren Aus¬ führungsform der Erfindung aber auch in Abwesenheit eines Suspensions¬ oder Lösungsmittels, das heißt im sogenannten Trockenoxidationsverfahren, durchgeführt werden. Dabei gelangt das Oxidationsmittel - Stickstoffdioxid und Sauerstoff - aus der Gasphase direkt auf die festen, möglichst intensiv durchmischten Substrate zur Einwirkung.

Die Durchmischung kann unter anderem im Fließbett mit durchströmendem, die Oxidationsmittel enthaltendem Gas oder in einer Wirbelschicht unter Ein¬ satz von Intensivmischern, zum Beispiel von Druvatherm( R )-Mischern der Firma Lödige, erreicht werden.

Insbesondere im Falle von Stärke, die im nativen Zustand oft zur Agglomeration und zur in der Fließbetttechnik gefürchteten Kanalbildung neigt, kann dabei das Fließverhalten durch den Zusatz geringer Mengen von insbesondere festen Additiven, zu denen beispielsweise Magnesiumoxid, Cal- ciumfluorid, Calciu phosphat oder pyrogenes Siliziumdioxid, insbesondere das unter dem Namen Aerosil(R) vertriebene Siliziumdioxid, signifikant verbessert werden. In dieser Hinsicht hohe Effekte werden bereits beim Einsatz niedriger Additivmengen von vorzugsweise 0,1 Gew.-% bis 5 Gew.-%, insbesondere 0,25 Gew.-% bis 1 Gew.-%, jeweils bezogen auf zu oxidierendes Polysaccharid, erreicht. So behandelte Stärken zeigen hinsichtlich Durch¬ mischbarkeit ein nahezu Flüssigkeits-analoges Verhalten.

Im Rahmen des Trockenoxidationsverfahrens kann das Reaktionsgemisch nach der eigentlichen Oxidationsrektion direkt in Wasser aufgenommen und über Wasserwasch- und Filtrationsprozesse gereinigt und isoliert werden. Ein erheblicher Teil der bei Reaktionsende im Reaktionssystem vorliegenden Stickoxide kann auch über einfache Entgasungsprozesse entfernt werden; so führt im Regelfall bereits eine einfache Vakuumbehandlung der Reaktions¬ mischung ohne wäßrige Aufarbeitung zu Produkten mit akzeptabel niedrigen Nitrit- und Nitratgehalten.

Für das erfindungsgemäße Verfahren ist die Natur des eingesetzten Poly¬ saccharids weitgehend unkritisch. Voraussetzung ist lediglich, daß es pri¬ märe Alkoholgruppen enthaltende Kohlenhydrateinheiten enthält. In Frage kommen alle nativen Polyglucosane, insbesondere Stärke und/oder Cellulose, aber auch andere Polysaccharide, zum Beispiel Polygalactomannane wie Gua- ran und Carubin. Die Polysaccharide können auch in chemisch oder physi¬ kalisch modifizierter Form verwendet werden, sofern sie noch oxidierbare primäre Alkoholgruppen enthalten. Aus wirtschaftlichen Gründen sind Stär¬ ken unterschiedlicher Provenienz, insbesondere Kartoffelstärke, Weizen¬ stärke, Maisstärke oder Tapiokastärke , bevorzugt. Das eingesetzte Poly¬ saccharid enthält vorzugsweise nicht mehr als 20 Gew.-%, insbesondere 4 Gew.-% bis 10 Gew.-% Wasser.

Stickstoffdioxid/Distickstofftetroxid wird im erfindungsgemäßen Verfahren vorzugsweise in solchen Mengen eingesetzt, daß bei rechnerisch vollständi-

ger Verschiebung des Gleichgewichtes auf die Seite des Stickstoffdioxid dieses in Mengen von höchstens 2 Molequivalenten, insbesondere 0,1 bi 1 Molequivalenten, bezogen auf den Gehalt an eine primäre Alkoholgrupp enthaltendem Monomerbaustein des Polysaccharids, vorliegt.

Die Oxidationsreaktion des erfindungsgemäßen Verfahrens wird unter Einsat der genannten Polyglucosaπe vorzugsweise über einen solchen Zeitraum ge führt, daß das Oxidatioπsprodukt im statistischen Mittel zu wenigsten 15 Mol-% aus oxidierten Anhydroglucoseeinheiten der Formel I

besteht, was einem Carboxylgruppengehalt von mindestens 4 Gew.-% ent spricht.

Durch ein derartiges Verfahren erhält man Polycarboxylate auf Polygluco san-Basis, welche die oxidierten Anhydroglucoseeinheiten der Formel I vor zugsweise zu wenigstens 25 Mol-%, insbesondere zu wenigstens 35 Mol-% bi 40 Mol-% im Molekül enthalten, wobei als weiterer Vorteil keine wesent lichen Mengen anderer Oxidations-Folgeprodukte vorliegen.

Hoch oxidierte Produkte, das heißt solche mit einem Gehalt an Einheite gemäß Formel I von bis zu etwa 95 Mol-%, insbesondere bis 100 Mol-%, be vorzugt im Bereich von etwa 70 Mol-% bis 100 Mol-%, entsprechend eine Carboxylgruppengehalt von bis zu ca. 25 Gew.-%, werden beispielsweise bei Suspensionsverfahren bei Verwendung von Stärke in einer Aufschlämmung i Tetrachlorkohlenstoff unter Einsatz von etwa 0,5 Molequivalenten Stick stoffdioxid bei 2 bar bis 6 bar und 50 °C innerhalb von etwa 4 Stunden bi 6 Stunden.

Im Anschluß an die Oxidationsreaktion und die gewünschtenfalls vorgenom mene Aufarbeitung wie beschrieben ist es möglich, wenigstens einen Tei der Carboxylgruppen des Oxidatioπsprodukts durch Behandeln mit einem ba sischen Reagenz zu neutralisieren, das heißt von der Säure- in die Salz

form zu überführen. Als Neutralisationsmittel wird vorzugsweise eine wä߬ rige Lösung, die Alkalihydroxid, Ammoniumhydroxid und/oder organische Base enthält, verwendet. Auch direkt im Anschluß an die Oxidationsreaktion ist die Neutralisation möglich, beispielsweise durch Begasen des Reaktionsge¬ fäßes mit Ammoniak. Die Salzbildung ist auch unter reduzierenden Be¬ dingungen, beispielsweise unter Verwendung von Natriumborhydrid, möglich. Vorzugsweise wird das Neutralisationsmittel in solchen Mengen eingesetzt, daß sämtliche Carboxylgruppen des Oxidationsprodukts in die Salzform über¬ führt werden. Dabei ist sowohl die Zugabe des Oxidationsproduktes zum Neu¬ tralisationsmittel als auch die Zugabe des Neutralisationsmittels zum Oxi- dationsprodukt möglich. Die Salzbildung kann auch unter den Bedingungen der Anwendung beziehungsweise Weiterverarbeitung der Polycarboxylate in deren Säureform erfolgen, beispielsweise bei der Herstellung oder dem Ein¬ satz von Wasch- oder Reinigungsmitteln durch übliche alkalische Bestand¬ teile derartiger Mittel.

Die nach dem erfindungsgemäßen Verfahren hergestellten Polycarboxylate werden vorzugsweise als Builder oder Co-Builder in Wasch- oder Reinigungs¬ mitteln verwendet. In derartigen Mitteln werden sie vorzugsweise als Co- Builder in Mengen von 0,5 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 7 Gew.-%, bezogen jeweils auf das Gesamtgewicht des Mittels, die Zeolith als Haupt-Builder enthalten, verwendet. Besonders bevorzugt werden sie in letztgenannten Mitteln verwendet, die Zeolith-NaA, wie er beispielsweise im Zusammenhang mit Textilwaschmitteln in der deutschen Patentschrift DE 24 12837 beschrieben ist, als Haupt-Builder und erfindungsgemäß herge¬ stellte Polycarbonsäuren oder deren Salze in Mengenverhältnissen von 2:1 bis 5:1 enthalten. Die Zusammensetzung der Wasch- und/oder Reinigungsmit¬ tel kann ansonsten im Rahmen bekannter Rezepturen praktisch beliebig ge¬ wählt werden.

B e i s i e l e

Bei spiel 1

275,2 g Kartoffelstärke (1,6 mol bezogen auf Anhydroglucoseeinheit) mit einem Feuchtigkeitsgehalt von ca. 6 Gew.-% wurden in 825 g Tetrachlor¬ kohlenstoff suspendiert und in einen 2 1-Rührautoklaven überführt. Nach

Evakuieren des Autoklaven und Spülen mit Stickstoff wurden 36,8 g konden¬ siertes Distickstofftetroxid (0,4 mol) zugegeben. Das Reaktionsgemisch wurde innerhalb von 30 Minuten auf 50 °C aufgeheizt. Der Innendruck im Autoklaven betrug 0,5 bar (eingestellt mit Stickstoff). Durch Aufdrücken von Sauerstoff wurde ein Druck von 6 bar eingestellt. Das Aufdrücken von Sauerstoff wurde wiederholt, sobald der Druck im Autoklaven auf 2 bar ab¬ gefallen war. Nach 6 Stunden wurde der Autoklav auf Raumtemperatur ge¬ kühlt, entspannt und das Reaktionsgemisch mit 1 1 entmineralisiertem Was¬ ser versetzt. Die Suspension des Oxidationsproduktes wurde über eine Glas- filternutsche filtriert. Das Produkt wurde zunächst mit Aceton, an¬ schließend mit Wasser bis zur neutralen Reaktion der Waschflüssigkeit ge¬ waschen, mit Aceton entwässert und getrocknet (70 °C, Vakuumtrocken- schrank). Man erhielt 257 g weißes, pulverförmiges Polycarboxylat mit ei¬ ner Säurezahl von 245, entsprechend einem durchschnittlichen Gehalt von etwa 0,75 Carboxylgruppen pro Anhydroglucoseeinheit.

Die Bestimmung der Säurezahl des hier erhaltenen Produkts wie auch aller anderen Polysaccharid-Oxidate wurde wie folgt vorgenommen:

Ca. 0,5 g bis 0,75 g Oxidat werden in 50 ml entmineralisiertem Wasser suspensiert. Die Suspension wird mit 10 ml 0,5 n alkoholischer Kalium¬ hydroxidlösung versetzt und 30 Minuten bei Raumtemperatur grührt. Produkte mit Säurezahlen größer ca. 60 gehen dabei in Lösung. Überschüssi¬ ges Kaliumhydroxid wird mit 0,5 n wäßriger Salzsäure gegen Phenolphthalein als Indikator zurücktitriert.

Die Angabe der Säurezahl erfolgt in Milligramm K0H pro Gramm Polysaccha- rid-Oxidat.

Beispiel 2

Beispiel 1 wurde unter Einsatz von 73,6 g (0,8 mol) kondensiertem Distick¬ stofftetroxid wiederholt, wobei Sauerstoff so in den Autoklaven gepresst wurde, daß innerhalb der ersten Stunde der Reaktion ein Innendruck von 2 bar einhalten wurde, der innerhalb der nächsten Stunde auf 6 bar ange¬ hoben wurde. Nach einer Reaktionszeit von 4,5 Stunden war kein Sauerstoff-

verbrauch, merklich am Druckabfall, mehr festzustellen. Das wie in Bei¬ spiel 1 aufgearbeitete Reaktionsprodukt (Ausbeute 256 g) besaß eine Säure¬ zahl von 324, entsprechend einem durchschnittlichen Gehalt von etwa 1 Carboxylgruppe pro Anhydroglucoseeinheit.

Beispiel 3

Beispiel 1 wurde unter Einsatz von 137,6 g (0,8 mol bezogen auf Anhydro¬ glucoseeinheit) Kartoffelstärke wiederholt, wobei vor dem Aufheizen auf 50 °C mit Sauerstoff im Autoklaven ein Innendruck von 10 bar eingestellt und das Reaktionsgemisch anschließend 6 Stunden bei 50 °C gerührt wurde. Dabei fiel der Innendruck im Verlauf von 1 Stunde auf 1 bar und nach Auf¬ pressen von Sauerstoff bis zu einem Druck von 5 bar in Verlauf von weite¬ ren 2 Stunden auf einen dann konstanten Wert von 3,5 bar ab. Man erhielt nach Aufarbeitung wie beschrieben 127,5 g Oxidationsprodukt mit einer Säurezahl von 343, entsprechend einem durchschnittlichen Gehalt von etwa 1,1 Carboxylgruppen pro Anhydroglucoseeinheit.

Beispiel 4 - 7

Nach dem in Beispiel 2 angeführten Verfahren wurden jeweils 275,2 g Weizenstärke, Maisstärke, Tapiokastärke und Guarmehl zu Polycarboxylaten oxidiert, isoliert und aufgearbeitet. Man erhielt die in der nachfolgenden Tabelle angegebenen Ausbeuten der durch ihre Säurezahl gekennzeichneten Produkte.

Beispiel Polysaccharid Ausbeute [g] Säurezahl

4 263 5 347 6 326 7 261

Die gemäß den Beispielen 1 bis 7 hergestellten Produkte wurden durch Zu¬ gabe stöchiometrischer Mengen wäßriger Natriumhydroxidlösung oder wäßriger Ammoniumhydroxidlösung in ihre Natrium- beziehungsweise Ammoniumsalze überführt. Diese waren in kaltem Wasser gut löslich.

Beispiel 8

137,6 g Kartoffelstärke (0,8 mol bezogen auf Anhydroglucoseeinheit) mit einem Feuchtigkeitsgehalt von ca. 6 Gew.-% wurden in einen 2 1-Rührauto- klaven gegeben, der nach Verschließen evakuiert wurde. Die Stärke wurde unter intensivem Durchmischen auf 40 °C aufgezeizt. 36,8 g kondensiertes Distickstofftetroxid (0,4 mol) wurden in den Autoklaven verdampft, die Temperatur der Reaktionsmischung wurde auf 50 °C erhöht. Der Innendruck wurde durch Aufpressen von Stickstoff auf 6 bar eingestellt und durch Aufpressen von Sauerstoff auf 7 bar erhöht. Das Reaktionsgemisch wurde 4 Stunden bei 50 °C und einem Druck von 5 bar bis 7 bar, der durch mehr¬ faches Aufpressen von Sauerstoff, jeweils nach einem Druckabfall um 1 bar bis 2 bar einreguliert wurde, gehalten. Nach Aufarbeitung analog Beispiel 1 erhielt man 131 g Polycarboxylat mit einer Säurezahl von 340, entspre¬ chend einem durchschnittlichen Gehalt von etwa 1,05 Carboxylgruppen pro Anhydroglukoseeinheit, als weißes Pulver.

Beispiel 9

Zum Vergleich wurde Beispiel 1 in der Weise wiederholt, daß man nach dem Befüllen mit Distickstofftetroxid einen Innendruck von 1 bar durch Auf¬ pressen von Stickstoff einstellte, innerhalb von 30 Minuten auf 50 °C aufheizte und 6 Stunden bei dieser Temperatur rührte. Dabei stieg der In¬ nendruck kontinuierlich bis auf 4,2 bar an. Nach Isolierung und Aufarbei¬ tung wie beschrieben erhielt man 268 g eines Oxidationsproduktes mit einer Säurezahl von 83, entsprechend einem durchschnittlichen Gehalt von etwa 0,25 Carboxylgruppen pro Anhydroglucoseeinheit.

Beispiel 10

Zum Vergleich wurde Beispiel 8 in der Weise wiederholt, daß der Innendruck im Autoklaven nach Aufheizen des Reaktionsge ischs durch Aufpressen von Stickstoff auf 3 bar eingestellt wurde und dem Reaktionssystem im Verlauf der Reaktion (5 Stunden bei 50 °C) kein Sauerstoff zugeführt wurde. Der Druck stieg während dieser Zeit auf 4 bar an. Nach Aufbereitung erhielt man 128 g Polycarboxylat als weißes Pulver mit einer Säurezahl von 150, entsprechend einem durchschnittlichen Gehalt von etwa 0,45 Carboxylgruppen pro Anhydroglucoseeinheit.

Der Vergleich der Beispiele 9 und 10 mit den Beispielen 1 bis 8 zeigt, daß bei Zusatz von Sauerstoff zur Reaktionsmischung eine signifikante Erhöhung des Carboxylgruppengehalts im oxidierten Polysaccharid innerhalb akzep¬ tabler Reaktionsbedingungen, insbesondere innerhalb einer relativ kurzen Reaktionszeit, bewirkt.

Beispiel 11:

10 kg Kartoffelstärke (Wassergehalt: 4,1 Gew.-%) und 0,1 kg Aerosil( R ) wurden in einem 50-Liter-Druvatherm(R)-Mischer (Fa. Lödige, Typ DVT; Re¬ aktor mit horizontal angeordnetem Schleuderwerk mit pflugscharähnlichen Schleuderschaufeln) gegeben und intensiv durchmischt (Drehzahl der Schleu¬ derwerke: 50 Upm, die bei allen nachfolgenden Verfahrensschritten einge¬ halten wurden). Nach Evakuierung des Reaktors wurden bei laufendem Schleu¬ derwerk und unter Kühlung mit Wasser 2,85 kg Stickstoffdioxid aus einer mit Distickstofftetroxid gefüllten Stahlflasche in den Reaktor verdampft. Bei einer Innentemperatur von 30 °C stellte sich dabei ein Innendruck von 1 bar ein. Der Innendruck wurde durch Aufpressen von Stickstoff auf 4 bar erhöht. Nach Aufheizen des Reaktionsgemisches auf 50 °C wurden bei dieser Temperatur 2,4 kg Sauerstoff im Verlauf von 5 Stunden portionsweise so in den Reaktor gedrückt, daß ein Innendruck von maximal 6 bar nicht über¬ schritten wurde.

Nach weiteren 30 Minuten wurde der Reaktorinhalt auf 20 °C abgekühlt. An¬ schließend wurde der Reaktor über einen mit wäßriger Natronlauge gefüllten Gaswäscher entspannt.

Nach dem Entspannen wurden 30 1 entmineralisiertes Wasser in den Reaktor gefüllt. Die resultierende Carboxylstärke-Suspension wurde abgelassen und filtriert. Der Filterkuchen wurde mehrfach mit Wasser gewaschen, mit Aceton entwässert und bei 70 °C im Vakuum getrocknet.

Erhalten wurden 9,7 kg eines weißen Pulvers mit einer Säurezahl von 326.