Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESS FOR PRODUCING SURFACE POSTCROSSLINKED WATER-ABSORBING POLYMER PARTICLES
Document Type and Number:
WIPO Patent Application WO/2013/156281
Kind Code:
A1
Abstract:
A process for producing surface postcrosslinked water-absorbing polymer particles, wherein the water-absorbing polymer particles are coated, before, during or after the surface postcrosslinking, with at least one salt of a trivalent metal cation and a glycinate anion.

Inventors:
HAMILTON PATRICK (US)
HOELLER OLAF (US)
GRILL JOSEPH (US)
CHIANG WILLIAM G-J (US)
MITCHELL MICHAEL (US)
Application Number:
PCT/EP2013/056507
Publication Date:
October 24, 2013
Filing Date:
March 27, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
BASF SCHWEIZ AG (CH)
International Classes:
A61L15/60; A61L15/24; C08J3/24; C08J7/04
Domestic Patent References:
WO2005012406A12005-02-10
WO2012143235A12012-10-26
WO2013072268A12013-05-23
WO2000053644A12000-09-14
WO2000053664A12000-09-14
WO2005108472A12005-11-17
WO2008092843A12008-08-07
WO2007121937A22007-11-01
WO2010108875A12010-09-30
WO2002055469A12002-07-18
WO2003078378A12003-09-25
WO2004035514A12004-04-29
WO1993021237A11993-10-28
WO2003104299A12003-12-18
WO2003104300A12003-12-18
WO2003104301A12003-12-18
WO1990015830A11990-12-27
WO2002032962A22002-04-25
WO2001038402A12001-05-31
WO2008040715A22008-04-10
WO2008052971A12008-05-08
WO2003031482A12003-04-17
Foreign References:
US3795524A1974-03-05
EP0530438A11993-03-10
EP0547847A11993-06-23
EP0559476A11993-09-08
EP0632068A11995-01-04
DE10331450A12005-01-27
DE10331456A12005-02-24
DE10355401A12005-06-30
DE19543368A11997-05-22
DE19646484A11997-05-22
DE3825366A11989-02-09
US6241928B12001-06-05
EP0083022A21983-07-06
EP0543303A11993-05-26
EP0937736A21999-08-25
DE3314019A11984-01-12
DE3523617A11986-01-23
EP0450922A21991-10-09
DE10204938A12003-08-21
US6239230B12001-05-29
DE4020780C11991-08-29
DE19807502A11999-09-16
DE19807992C11999-07-15
DE19854573A12000-05-31
DE19854574A12000-05-31
DE10204937A12003-08-21
DE10334584A12005-02-24
EP1199327A22002-04-24
DE3713601A11988-11-10
EP0640330A11995-03-01
US20070135785A12007-06-14
Other References:
F.L. BUCHHOLZ; A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103
GEORGE F. EVERITT: "Ultrastructure Processing of Advanced Ceramics", 1988, WILEY INTERSCIENCE, article "Stabilized Aluminum Acetate used for an Alumina Source in Ceramic Fibers"
Attorney, Agent or Firm:
BASF SE (67056 Ludwigshafen, DE)
Download PDF:
Claims:
Claims

A process for producing water-absorbing polymer particles by polymerizing a monomer solution or suspension comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

b) at least one crosslinker,

c) at least one initiator,

d) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers specified under a) and

e) optionally one or more water-soluble polymers, comprising drying, grinding, classifying and surface postcrosslinking, which comprises coating the water-absorbing polymer particles, before, during or after the surface postcrosslinking, with at least one salt of a trivalent metal cation and a glycinate anion.

The process according to claim 1 , wherein from 0.00004 to 0.05 mol of the trivalent metal cation is used per 100 g of the water-absorbing polymer particles to be coated.

3. The process according to claim 1 or 2, wherein the trivalent metal cation is an aluminum cation.

4. The process according to any one of claims 1 to 3, wherein the salt is a basic salt.

5. The process according to claim 4, wherein the basic salt is a dibasic salt.

6. The process according to any one of claims 1 to 3, wherein the salt is a salt of a trivalent metal cation and three glycinate anions per metal cation.

7. The process of claim 5, wherein the salt is aluminum monoglycinate.

8. The process of claim 6, wherein the salt is aluminum triglycinate. 9. The process according to any one of claims 1 to 8, wherein the basic salt is used as an aqueous solution or slurry.

10. Water-absorbing polymer particles obtainable by a process according to any one of claims 1 to 9.

1 1 . Water-absorbing polymer particles comprising i) at least one polymerized ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

ii) at least one polymerized crosslinker,

iii) optionally one or more ethylenically unsaturated monomers copolymerized with the monomers specified under i) and

iv) optionally one or more water-soluble polymers, which water-absorbing polymer particles have been coated with at least one salt of a trivalent metal cation and a glycinate anion.

The polymer particles according to claim 1 1 , which water-absorbing polymer particles have been coated by 0.00004 to 0.05 mol of the trivalent metal cation per 100 g of coated water-absorbing polymer particles.

The polymer particles according to claim 1 1 or 12, wherein the trivalent metal cation is an aluminum cation.

14. The polymer particles according to any one of claims 1 1 to 13, which water-absorbing polymer particles have a centrifuge retention capacity of at least 15 g/g.

15. A hygiene article comprising water-absorbing polymer particles according to any one of claims 1 1 to 14.

Description:
Process for producing surface postcrosslinked water-absorbing polymer particles Description The present invention relates to a process for producing surface postcrosslinked water- absorbing polymer particles, wherein the water-absorbing polymer particles are coated, before, during or after the surface postcrosslinking, with at least one salt of a trivalent metal cation and a glycinate anion. Water-absorbing polymer particles are used to produce diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in market gardening. The water- absorbing polymer particles are also referred to as superabsorbents.

The production of water-absorbing polymer particles is described in the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, pages 71 to 103.

The properties of the water-absorbing polymer particles can be adjusted, for example, via the amount of crosslinker used. With the increasing amount of crosslinker, the centrifuge retention capacity (CRC) falls and the absorption under a pressure of 21.0 g/cm 2 (AUL0.3psi) passes through a maximum.

To improve the performance properties, for example saline flow conductivity (SFC), gel bed permeability (GBP) and absorption under a pressure of 49.2 g/cm 2 (AUL0.7psi), water- absorbing polymer particles are generally surface postcrosslinked (also referred to as "surface crosslinked", the process also as "secondary crosslinking"). This increases the degree of cross- linking of the particle surface, which allows the absorption under a pressure of 49.2 g/cm 2 (AUL0.7psi) and the centrifuge retention capacity (CRC) to be decoupled at least partly. This surface postcrosslinking can be carried out in aqueous gel phase. Preferably, however, dried, ground and sieved-off polymer particles (base polymer, i.e. the polymer prior to surface postcrosslinking) are surface coated with a surface postcrosslinker and thermally surface postcrosslinked. Crosslinkers suitable for this purpose are compounds which can form covalent bonds with at least two carboxylate groups of the water-absorbing polymer particles. To improve the saline flow conductivity and/or gel bed permeability, the water-absorbing polymer particles are frequently coated with polyvalent metal cations before the thermal surface postcrosslinking. Such processes are known, for example, from WO 2000/053644 A1 ,

WO 2000/053664 A1 , WO 2005/108472 A1 and WO 2008/092843 A1 . WO 2007/121937 A2 teaches a method for surface-postcrosslinking water-absorbing polymers with a salt comprising a divalent or higher-valent cation of a metal and at least one organic base as an anion. Preferred metals are Mg, Ca, Ba, Al, Fe, Ga, Ti, Zr, Cu and Zn, Al being the most preferred. Preferred organic bases are partly deprotonated mono-, di or tricarboxylic acids, deprotonated monocarboxy acids being the most preferred. Further, hydroxicarboxy acids are also preferred The most preferred organic bases are tartrate and lactate, lactate being the very most preferred base.

WO 2010/108875 A1 describes a method for producing surface-post-crosslinked, water- absorbing polymer particles that are coated with at least one basic salt from a trivalent metal cation and a monovalent carboxylic anion. The basic salt may be stabilized with polyhydric alcohols such as mannitol and glycerol, soluble carbohydrates such as disaccharides and mono- saccharides, polyvalent inorganic acids such as boric acid and phosphoric acid, hydroxycarbox- ylic acids or salts thereof, such as citric acid, lactic acid and tartaric acid or salts thereof, dicar- boxylic acids or salts thereof, such as adipic acid and succinic acid, and urea and thiourea.

In a book titled "Ultrastructure Processing of Advanced Ceramics" (John D. Mackenzie and Donald R. Ulrich, eds., Wiley Interscience 1988), George F. Everitt reports in his chapter "Stabilized Aluminum Acetate used for an Alumina Source in Ceramic Fibers" about the synthesis of dibasic aluminum acetate (another name for aluminum monoacetate) and points out that boric acid plays the major role as stabilizer. Its effect is enhanced when combined with lactic acid and/or dimethyl formamide. US 3 795 524 discloses a process for making aluminum borate and aluminum borosilicate articles starting from a commercially available dibasic aluminum acetate solution stabilized by boric acid. In some embodiments, silica and dimethyl formamide are added to this solution.

It was an object of the present invention to provide another or an improved process for produc- ing water-absorbing polymer particles, especially high-permeability water-absorbing polymer particles.

Accordingly, the inventors have found a process for producing water-absorbing polymer particles by polymerizing a monomer solution or suspension comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

b) at least one crosslinker,

c) at least one initiator,

d) optionally one or more ethylenically unsaturated monomers copolymerizable with the monomers specified under a) and

e) optionally one or more water-soluble polymers, the process comprising drying, grinding, classifying and surface postcrosslinking, which comprises coating the water-absorbing polymer particles, before, during or after the surface postcrosslinking, with at least one salt of a trivalent metal cation and a glycinate anion. The inventors have also found the water-absorbing polymer particles that are obtainable by the process of this invention, hygiene products comprising the water-absorbing polymer particles of this invention and processes for producing such hygiene products of this invention. The salt of a trivalent metal cation need not, but may be and preferably are basic. In the basic salts, not all hydroxide groups eliminable as hydroxyl anions (OH-) in aqueous solutions in the salt-forming bases are replaced by glycinate. In other words, the salt may contain one, two or three glycinate anions per metal cation. If the salt contains less than three glycinate anions per metal cation, it will contain other anions, typically hydroxyl, to compensate electric charges. The molar ratio of metal cation to glycinate anion in the basic salts is typically from 0.4 to 10, preferably from 0.5 to 5, more preferably from 0.6 to 2.5, most preferably from 0.8 to 1 .2.

The total amount of trivalent metal cation used is preferably from 0.00004 to 0.05 mol per 100 g of the water-absorbing polymer particles to be coated, more preferably from 0.0002 to 0.03 mol per 100 g of the water-absorbing polymer particles to be coated, most preferably from 0.0008 to 0.02 mol per 100 g of the water-absorbing polymer particles to be coated. That total amount may be constituted by one trivalent metal cation or by a mixture of two or more trivalent metal cations The trivalent metal cation is preferably a metal cation of the third main group, of the third transition group or of the lanthanide group of the periodic table of the elements, more preferably aluminum, scandium, yttrium, lanthanum or cerium, most preferably aluminum. Very most preferably, the trivalent metal cation is aluminum alone. Suitable salts of trivalent metal cation and glycinate anion are, for example, aluminum mono- glycinate, aluminum diglycinate and aluminum triglycinate. Very particular preference is given to aluminum triglycinate and aluminum monoglycinate.

These salts can easily be prepared by reacting a trihydroxide of the trivalent metal, for example aluminum hydroxide (AI(OH)3), with one, two or three mole equivalents of glycine (2- aminoacetic acid). This is preferably done in aqueous solution or slurry.

The salts of trivalent metal cation and glycinate anion typically are applied to the water- absorbing polymer particles in the form of a solution or slurry (this term is used synonymously with the terms suspension and dispersion) where the solubility of the salt is too low to form a solution. The water content of the aqueous solution or slurry is preferably from 60 to 98% by weight, more preferably from 65 to 90% by weight, most preferably from 70 to 85% by weight. In order to increase the solubility in the aqueous solution, the solution can be prepared and used at elevated temperature. A particular advantage of these glycinate salts is that they are stable in aqueous medium and need not be stabilised. Consequently, it is preferred to add them to the water-absorbing polymer particles in the form of an unstabilised aqueous solution or slurry. In the process of this invention, the solution or slurry of glycinate salt is added to water- absorbing polymer particles.

The method of applying the salts of a trivalent metal cation and glycinate anion to the water- absorbing polymer particles is not subject to any restriction. Generally, an aqueous slurry will by applied in a mixer to achieve homogeneous distribution. Suitable mixers are, for example, horizontal Pflugschar ® (or Plowshare ® ) mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; US), Schugi Flexomix ® (Hosokawa Micron BV; Doetinchem; the Netherlands), Hosokawa Bepex ® Horizontal Paddle Dryers (Hosokawa Micron GmbH; Leingarten; Germany), Hosokawa Bepex ® Disc Dryers (Hosokawa Micron GmbH; Leingarten; Germany) and Nara Paddle Dryers (NARA Machinery Europe; Frechen; Germany).

The inventive coating is advantageous especially when the temperature of the water-absorbing polymer particles after the coating is preferably at least 120°C, more preferably at least 150°C, most preferably at least 180°C. Such temperatures occur typically when the coating is performed before or during the thermal surface postcrosslinking. It is a particular advantage of the present invention that water-absorbing polymers coated with glycinate salts can be exposed to comparatively much higher temperatures than water-absoring polymers coated with other salts of trivalent metals without loss of effect, in particular without loss of gel bed permeability.

In a preferred embodiment of the present invention, the aqueous solution or slurry comprising at least one salt of a trivalent metal cation and glycinate anion, and the surface postcrosslinker, are applied to the water-absorbing polymer particles in the same mixer. The aqueous solution and the surface postcrosslinker can be metered in separately or else as a combined solution.

In a further preferred embodiment of the present invention, the at least one salt of a trivalent metal cation and glycinate anion is applied only after the surface postcrosslinking. The water-absorbing polymer particles are produced by polymerizing a monomer solution or suspension and are typically water-insoluble.

The monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g of water, preferably at least 5 g/100 g of water, more preferably at least 25 g/100 g of water, most preferably at least 35 g/100 g of water. Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids, such as acrylic acid, methacrylic acid and itaconic acid. Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid. Further suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids, such as styrenesulfonic acid and 2-acrylamido-2-methylpropanesulfonic acid (AMPS).

Impurities can have a considerable influence on the polymerization. The raw materials used should therefore have a maximum purity. It is therefore often advantageous to specially purify the monomers a). Suitable purification processes are described, for example, in WO

2002/055469 A1 , WO 2003/078378 A1 and WO 2004/035514 A1 . A suitable monomer a) is, for example, acrylic acid purified according to WO 2004/035514 A1 comprising 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203% by weight of propionic acid, 0.0001 % by weight of furfurals, 0.0001 % by weight of maleic anhy- dride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.

The proportion of acrylic acid and/or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, more preferably at least 90 mol%, most preferably at least 95 mol%.

The monomers a) typically comprise polymerization inhibitors, preferably hydroquinone half ethers, as storage stabilizers.

The monomer solution comprises preferably up to 250 ppm by weight, preferably at most 130 ppm by weight, more preferably at most 70 ppm by weight, preferably at least 10 ppm by weight, more preferably at least 30 ppm by weight, especially around 50 ppm by weight, of hydroquinone half ether, based in each case on the unneutralized monomer a). For example, the monomer solution can be prepared by using an ethylenically unsaturated monomer bearing acid groups with an appropriate content of hydroquinone half ether.

Preferred hydroquinone half ethers are hydroquinone monomethyl ether (MEHQ) and/or alpha- tocopherol (vitamin E).

Suitable crosslinkers b) are compounds having at least two groups suitable for crosslinking. Such groups are, for example, ethylenically unsaturated groups which can be polymerized free- radically into the polymer chain, and functional groups which can form covalent bonds with the acid groups of the monomer a). In addition, polyvalent metal salts which can form coordinate bonds with at least two acid groups of the monomer a) are also suitable as crosslinkers b). Crosslinkers b) are preferably compounds having at least two polymerizable groups which can be polymerized free-radically into the polymer network. Suitable crosslinkers b) are, for example, ethylene glycol dimethacrylate, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxyethane, as described in EP 0 530 438 A1 , di- and triacrylates, as described in EP 0 547 847 A1 , EP 0 559 476 A1 , EP 0 632 068 A1 , WO 93/21237 A1 , WO 2003/104299 A1 , WO 2003/104300 A1 , WO 2003/104301 A1 and DE 103 31 450 A1 , mixed acrylates which, as well as acrylate groups, comprise further ethylenically unsaturated groups, as described in

DE 103 31 456 A1 and DE 103 55 401 A1 , or crosslinker mixtures, as described, for example, in DE 195 43 368 A1 , DE 196 46 484 A1 , WO 90/15830 A1 and WO 2002/032962 A2.

Preferred crosslinkers b) are pentaerythrityl triallyl ether, tetraalloxyethane, methylenebismeth- acrylamide, 15-tuply ethoxylated trimethylolpropane triacrylate, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.

Very particularly preferred crosslinkers b) are the polyethoxylated and/or -propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example, in WO 2003/104301 A1 . Di- and/or triacrylates of 3- to 10-tuply ethoxylated glycerol are particularly advantageous. Very particular preference is given to di- or triacrylates of 1 - to 5-tuply ethoxylated and/or propoxylated glycerol. Most preferred are the triacrylates of 3- to 5-tuply ethoxylated and/or propoxylated glycerol, especially the triacrylate of 3- tuply ethoxylated glycerol.

The amount of crosslinker b) is preferably from 0.05 to 1 .5% by weight, more preferably from 0.1 to 1 % by weight, most preferably from 0.3 to 0.6% by weight, based in each case on monomer a). With rising crosslinker content, the centrifuge retention capacity (CRC) falls and the absorption under a pressure of 21 .0 g/cm 2 (AUL 0.3 psi) passes through a maximum.

The initiators c) may be all compounds which generate free radicals under the polymerization conditions, for example thermal initiators, redox initiators, photoinitiators. Suitable redox initiators are sodium peroxodisulfate/ascorbic acid, hydrogen peroxide/ascorbic acid, sodium perox- odisulfate/sodium bisulfite and hydrogen peroxide/sodium bisulfite. Preference is given to using mixtures of thermal initiators and redox initiators, such as sodium peroxodisulfate/hydrogen peroxide/ ascorbic acid. The reducing component used is, however, preferably a mixture of the sodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite. Such mixtures are obtainable as Bruggolite ® FF6 and Bruggolite ® FF7 (Bruggemann Chemicals; Heilbronn; Germany).

Ethylenically unsaturated monomers d) copolymerizable with the ethylenically unsaturated monomers a) bearing acid groups are, for example, acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropyl acrylate, diethylaminopropyl acrylate, dimethylaminoethyl methacry- late, diethylaminoethyl methacrylate. The water-soluble polymers e) used may be polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose, such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, preferably starch, starch derivatives and modified cellulose. Typically, an aqueous monomer solution is used. The water content of the monomer solution is preferably from 40 to 75% by weight, more preferably from 45 to 70% by weight, most preferably from 50 to 65% by weight. It is also possible to use monomer suspensions, i.e. monomer solutions with excess monomer a), for example sodium acrylate. With rising water content, the energy requirement in the subsequent drying rises, and, with falling water content, the heat of polymerization can only be removed inadequately.

For optimal action, the preferred polymerization inhibitors require dissolved oxygen. Before the polymerization, the monomer solution can therefore be freed of dissolved oxygen, and the polymerization inhibitor present in the monomer solution can be deactivated, by inertization, i.e. flowing an inert gas through, preferably nitrogen or carbon dioxide. The oxygen content of the monomer solution is preferably lowered before the polymerization to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight, most preferably to less than 0.1 ppm by weight.

Suitable reactors are, for example, kneading reactors or belt reactors. In the kneader, the poly- mer gel formed in the polymerization of an aqueous monomer solution or suspension is comminuted continuously by, for example, contrarotatory stirrer shafts, as described in WO

2001/038402 A1 . Polymerization on a belt is described, for example, in DE 38 25 366 A1 and US 6,241 ,928. Polymerization in a belt reactor forms a polymer gel, which has to be comminuted in a further process step, for example in an extruder or kneader.

However, it is also possible to dropletize an aqueous monomer solution and to polymerize the droplets obtained in a heated carrier gas stream. This allows the process steps of polymerization and drying to be combined, as described in WO 2008/040715 A2 and WO 2008/052971 A1. The acid groups of the resulting polymer gels have typically been partially neutralized. Neutralization is preferably carried out at the monomer stage. This is typically done by mixing in the neutralizing agent as an aqueous solution or preferably also as a solid. The degree of neutralization is preferably from 25 to 95 mol%, more preferably from 30 to 80 mol%, most preferably from 40 to 75 mol%, for which the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogencar- bonates and also mixtures thereof. Instead of alkali metal salts, it is also possible to use ammonium salts. Particularly preferred alkali metals are sodium and potassium, but very particular preference is given to sodium hydroxide, sodium carbonate or sodium hydrogencarbonate and also mixtures thereof.

However, it is also possible to carry out neutralization after the polymerization, at the stage of the polymer gel formed in the polymerization. It is also possible to neutralize up to 40 mol%, preferably from 10 to 30 mol% and more preferably from 15 to 25 mol% of the acid groups before the polymerization by adding a portion of the neutralizing agent actually to the monomer solution and setting the desired final degree of neutralization only after the polymerization, at the polymer gel stage. When the polymer gel is neutralized at least partly after the polymeriza- tion, the polymer gel is preferably comminuted mechanically, for example by means of an extruder, in which case the neutralizing agent can be sprayed, sprinkled or poured on and then carefully mixed in. To this end, the gel mass obtained can be repeatedly extruded for homoge- nization. The polymer gel is then preferably dried with a belt dryer until the residual moisture content is preferably from 0.5 to 15% by weight, more preferably from 1 to 10% by weight, most preferably from 2 to 8% by weight, the residual moisture content being determined by the EDANA recommended test method No. WSP 230.2-05 "Moisture Content". In the case of too high a residual moisture content, the dried polymer gel has too low a glass transition temperature T g and can be processed further only with difficulty. In the case of too low a residual moisture content, the dried polymer gel is too brittle and, in the subsequent comminution steps, undesirably large amounts of polymer particles with an excessively low particle size are obtained (fines). The solids content of the gel before the drying is preferably from 25 to 90% by weight, more preferably from 35 to 70% by weight, most preferably from 40 to 60% by weight. Optionally, it is, however, also possible to use a fluidized bed dryer or a paddle dryer for the drying operation.

Thereafter, the dried polymer gel is ground and classified, and the apparatus used for grinding may typically be single- or multistage roll mills, preferably two- or three-stage roll mills, pin mills, hammer mills or vibratory mills.

The mean particle size of the polymer particles removed as the product fraction is preferably at least 200 μηη, more preferably from 250 to 600 μηη, very particularly from 300 to 500 μηη. The mean particle size of the product fraction may be determined by means of the EDANA recommended test method No. WSP 220.2-05 "Particle Size Distribution", where the proportions by mass of the screen fractions are plotted in cumulated form and the mean particle size is determined graphically. The mean particle size here is the value of the mesh size which gives rise to a cumulative 50% by weight.

The proportion of particles with a particle size of at least 150 μηη is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.

Polymer particles with too small a particle size lower the permeability (SFC). The proportion of excessively small polymer particles (fines) should therefore be small. Excessively small polymer particles are therefore typically removed and recycled into the process. This is preferably done before, during or immediately after the polymerization, i.e. before the drying of the polymer gel. The excessively small polymer particles can be moistened with water and/or aqueous surfactant before or during the recycling.

It is also possible to remove excessively small polymer particles in later process steps, for ex- ample after the surface postcrosslinking or another coating step. In this case, the excessively small polymer particles recycled are surface postcrosslinked or coated in another way, for example with fumed silica.

When a kneading reactor is used for the polymerization, the excessively small polymer particles are preferably added during the last third of the polymerization.

When the excessively small polymer particles are added at a very early stage, for example actually to the monomer solution, this lowers the centrifuge retention capacity (CRC) of the resulting water-absorbing polymer particles. However, this can be compensated, for example, by ad- justing the amount of crosslinker b) used.

When the excessively small polymer particles are added at a very late stage, for example not until within an apparatus connected downstream of the polymerization reactor, for example an extruder, the excessively small polymer particles can be incorporated into the resulting polymer gel only with difficulty. Excessively small polymer particles which have been insufficiently incorporated, however, become detached again from the dried polymer gel during the grinding, and are therefore removed again in the classification and increase the amount of excessively small polymer particles to be recycled. The proportion of particles having a particle size of at most 850 μηη is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.

Advantageously, the proportion of polymer particles with a particle size of at most 600 μηη is preferably at least 90% by weight, more preferably at least 95% by weight, most preferably at least 98% by weight.

Polymer particles with too great a particle size lower the swell rate. The proportion of excessively large polymer particles should therefore likewise be small. Excessively large polymer particles are therefore typically removed and recycled into the grinding of the dried polymer gel.

To further improve the properties, the polymer particles are surface postcrosslinked. Suitable surface postcrosslinkers are compounds which comprise groups which can form covalent bonds with at least two carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amido amines, polyfunctional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alco- hols, as described in DE 33 14 019 A1 , DE 35 23 617 A1 and EP 0 450 922 A2, or p- hydroxyalkylamides, as described in DE 102 04 938 A1 and US 6,239,230.

Additionally described as suitable surface postcrosslinkers are cyclic carbonates in

DE 40 20 780 C1 , 2-oxazolidone and its derivatives, such as 2-hydroxyethyl-2-oxazolidone in DE 198 07 502 A1 , bis- and poly-2-oxazolidinones in DE 198 07 992 C1 , 2-oxotetrahydro-1 ,3- oxazine and its derivatives in DE 198 54 573 A1 , N-acyl-2-oxazolidones in DE 198 54 574 A1 , cyclic ureas in DE 102 04 937 A1 , bicyclic amide acetals in DE 103 34 584 A1 , oxetanes and cyclic ureas in EP 1 199 327 A2 and morpholine-2,3-dione and its derivatives in WO

2003/031482 A1 .

Preferred surface postcrosslinkers are glycerol, ethylene carbonate, ethylene glycol diglycidyl ether, reaction products of polyamides with epichlorohydrin, and mixtures of propylene glycol and 1 ,4-butanediol.

Very particularly preferred surface postcrosslinkers are 2-hydroxyethyloxazolidin-2-one, oxazol- idin-2-one and 1 ,3-propanediol.

In addition, it is also possible to use surface postcrosslinkers which comprise additional polymerizable ethylenically unsaturated groups, as described in DE 37 13 601 A1 .

The amount of surface postcrosslinker is preferably from 0.001 to 2% by weight, more preferably from 0.02 to 1 % by weight, most preferably from 0.05 to 0.2% by weight, based in each case on the polymer particles.

In the present invention, before, during or after the surface postcrosslinking, in addition to the surface postcrosslinkers, at least one salt of a trivalent metal cation and a glycinate anion is applied to the particle surface. If not added jointly with the surface postcrosslinkers in one step of contacting the polymer with the surface postcrosslinkers and at least one salt of a trivalent metal cation and a glycinate anion, it will typically be added to the polymer particles in just the same manner as surface postcrosslinkers are.

It will be appreciated that it is also additionally possible to use further polyvalent cations. Suitable polyvalent cations are, for example, divalent cations such as the cations of zinc, magnesi- um, calcium, iron and strontium, trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations such as the cations of titanium and zirconium. Possible counterions are chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogen- carbonate, nitrate, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate and lactate. Aluminum sulfate and aluminum lactate are preferred. It is also possible to use polyamines as further polyvalent cations. The surface postcrosslinking is typically performed in such a way that a solution of the surface postcrosslinker is sprayed onto the dried polymer particles. After the spraying, the polymer particles coated with surface postcrosslinker are dried thermally, and the surface postcrosslinking reaction can take place either before or during the drying.

Where the salt of a trivalent metal cation and a glycinate anion or any other component to be added is not soluble in water or soluble enough to achieve tolerably low amounts of solution to add during surface postcrosslinking, a slurry may be added instead of a solution. For the sake of brevity, only the term "solution" is used herein, but it will be appreciated that the disclosure herein also applies to slurries.

The spraying of a solution of the surface postcrosslinker is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers. Particular preference is given to horizontal mixers such as paddle mixers, very particular preference to vertical mixers. The distinction between horizontal mixers and vertical mixers is made by the position of the mixing shaft, i.e. horizontal mixers have a horizontally mounted mixing shaft and vertical mixers a vertically mounted mixing shaft. Suitable mixers are, for example, horizontal

Pflugschar ® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Pro- cessall Mixmill Mixers (Processall Incorporated; Cincinnati; US) and Schugi Flexomix® (Hosokawa Micron BV; Doetinchem; the Netherlands). However, it is also possible to spray on the surface postcrosslinker solution in a fluidized bed.

The surface postcrosslinkers are typically used in the form of an aqueous solution. The penetra- tion depth of the surface postcrosslinker into the polymer particles can be adjusted via the content of nonaqueous solvent and total amount of solvent.

When exclusively water is used as the solvent, a surfactant is advantageously added. This improves the wetting behavior and reduces the tendency to form lumps. However, preference is given to using solvent mixtures, for example isopropanol/water, 1 ,3-propanediol/water and propylene glycol/water, where the mixing ratio in terms of mass is preferably from 20:80 to 40:60.

The thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, most preferably disk dryers. Suitable dryers are, for example, Hosokawa Bepex® Horizontal Paddle Dryers (Hosokawa Micron GmbH; Leingarten; Germany), Hosokawa Bepex® Disc Dryers (Hosokawa Micron GmbH; Leingarten; Germany) and Nara Paddle Dryers (NARA Machinery Europe; Frechen; Germany). Moreover, it is also possible to use fluidized bed dryers.

The drying can be effected in the mixer itself, by heating the jacket or blowing in warm air. Equally suitable is a downstream dryer, for example a shelf dryer, a rotary tube oven or a heat- able screw. It is particularly advantageous to mix and dry in a fluidized bed dryer. Preferred drying temperatures are in the range from 100 to 250°C, preferably from 120 to 220°C, more preferably from 130 to 210°C, most preferably from 150 to 200°C. The preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and typically at most 60 minutes.

To further improve the properties, the surface postcrosslinked polymer particles can be coated or subsequently moistened. The subsequent moistening is carried out preferably at from 30 to 80°C, more preferably at from 35 to 70°C and most preferably at from 40 to 60°C. At excessively low temperatures, the water- absorbing polymer particles tend to form lumps, and, at higher temperatures, water already evaporates noticeably. The amount of water used for subsequent moistening is preferably from 1 to 10% by weight, more preferably from 2 to 8% by weight and most preferably from 3 to 5% by weight. The subsequent moistening increases the mechanical stability of the polymer particles and reduces their tendency to static charging.

Suitable coatings for improving the swell rate and the saline flow conductivity (SFC) and/or gel bed permeability (GBP) are, for example, inorganic inert substances, such as water-insoluble metal salts, organic polymers, cationic polymers and di- or polyvalent metal cations. Suitable coatings for dust binding are, for example, polyols. Suitable coatings for counteracting the un- desired caking tendency of the polymer particles are, for example, fumed silica, such as Aero- sil ® 200, and surfactants, such as Span ® 20. Subsequently, the surface postcrosslinked polymer particles can be classified again to remove excessively small and/or excessively large polymer particles which are recycled into the process.

The present invention further provides the water-absorbing polymer particles obtainable by the process according to the invention.

The inventive water-absorbing polymer particles have a moisture content of typically 0 to 15% by weight, preferably 0.2 to 10% by weight, more preferably 0.5 to 8% by weight, most preferably 1 to 5% by weight, and/or a centrifuge retention capacity (CRC) of typically at least 20 g/g, preferably at least 26 g/g, more preferably at least 28 g/g, most preferably at least 30 g/g, and/or an absorption under a pressure of 49.2 g/cm 2 (AUL 0.7 psi) of typically at least 12 g/g, preferably at least 16 g/g, more preferably at least 18 g/g, most preferably at least 20 g/g, and/or a saline flow conductivity (SFC) of typically at least 20 χ 10 "7 cm 3 s/g, preferably at least 40 x 10 "7 cm 3 s/g, more preferably at least 50 χ 10 "7 cm 3 s/g, most preferably at least 60 χ

10 "7 cm 3 s/g, and/or a gel bed permeability of typically at least 20 Darcies, preferably at least 40 Darcies, more preferably at least 50 Darcies, most preferably at least 60 Darcies. The centrifuge retention capacity (CRC) of the water-absorbing polymer particles is typically less than 60 g/g. The absorption under a pressure of 49.2 g/cm 2 (AUL 0.7 psi) of the water- absorbing polymer particles is typically less than 35 g/g. The saline flow conductivity (SFC) of the water-absorbing polymer particles is typically less than 200 χ 10 "7 cm 3 s/g. The gel bed per- meability (GBP) of the water-absorbing polymer particles is typically less than 200 darcies.

The present invention further provides water-absorbing polymer particles comprising i) at least one polymerized ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,

ii) at least one polymerized crosslinker,

iii) optionally one or more ethylenically unsaturated monomers copolymerized with the monomers specified under i) and

iv) optionally one or more water-soluble polymers, which water-absorbing polymer particles have been coated with at least one basic salt of a triva- lent metal cation and a monovalent carboxylic acid anion.

The amount of trivalent metal cation is preferably from 0.00004 to 0.05 mol per 100 g of coated water-absorbing polymer particles, more preferably from 0.0002 to 0.03 mol per 100 g of coated water-absorbing polymer particles, most preferably from 0.0008 to 0.02 mol per 100 g of coated water-absorbing polymer particles.

The present invention further provides articles for the absorption of fluid, especially hygiene arti- cles, comprising the inventive water-absorbing polymer particles and processes for their production. The inventive articles for absorption of fluid differ from known articles in that they comprise the inventive superabsorbent rather than known superabsorbent.

The present invention further provides a process for producing articles for absorption of fluid, especially hygiene articles, which comprises adding at least one inventive superabsorbent to the other components of the article in question during its production. Processes for producing such articles using superabsorbents are known.

The superabsorbent is tested by the test methods described below.

The standard test methods referred to as "WSP" described below are described in: "Standard Test Methods for the Nonwovens Industry", 2005 edition, published jointly by the Worldwide Strategic Partners EDANA (European Disposables and Nonwovens Association, Avenue Eugene Plasky, 157, 1030 Brussels, Belgium, www.edana.org) and INDA (Association of the Nonwoven Fabrics Industry, 1 100 Crescent Green, Suite 1 15, Cary, North Carolina 27518, U.S.A., www.inda.org). This publication is obtainable both from EDANA and from INDA. The measurements should, unless stated otherwise, be carried out at an ambient temperature of 23 ± 2°C and a relative air humidity of 50 ± 10%. The water-absorbing polymer particles are mixed thoroughly before the measurement. Saline flow conductivity ("SFC")

The saline flow conductivity (SFC) of a swollen gel layer under a pressure of 0.3 psi (2070 Pa) is, as described in EP 0 640 330 A1 (page 19, line 13 to page 21 , line 35), determined as the gel layer permeability of a swollen gel layer of water-absorbing polymer particles, with modifica- tion of the apparatus described in figure 8 in that the glass frit (40) is not used, the plunger (39) consists of the same plastic material as the cylinder (37), and now has 21 bores of equal size distributed homogeneously over the entire contact area. The procedure and evaluation of the measurement remain unchanged from EP 0 640 330 A1. The flow is detected automatically.

The saline flow conductivity (SFC) is calculated as follows:

SFC [cm 3 s/g] = (Fg(t=0)xL0)/(dxAxWP) where Fg(t=0) is the flow of NaCI solution in g/s, which is obtained using a linear regression analysis of the Fg(t) data of the flow determinations by extrapolation to t=0, L0 is the thickness of the gel layer in cm, d is the density of the NaCI solution in g/cm 3 , A is the area of the gel layer in cm 2 , and WP is the hydrostatic pressure over the gel layer in dyn/cm 2 . Free Swell Gel Bed Permeability ("FS-GBP")

The free swell gel bed permeability (FS-GBP) is determined as described in US 2007/0135785 (paragraphs [0138] to [0150]). Centrifuge retention capacity ("CRC")

The centrifuge retention capacity (CRC) is determined by test method No. WSP 214.2-05 "Centrifuge Retention Capacity". Absorption under a pressure of 49.2 g/cm 2 ("AUL 0.7 psi")

The absorption under a pressure of 49.2 g/cm 2 (commonly referred to as "AUL0.7 psi") is determined by test method No. WSP 242.2-05 "Absorption under Pressure", however, with a pressure setting of 49.2 g/cm 2 (AUL0.7 psi) instead of 21.0 g/cm 2 (that corresponds to the AUL0.3 psi).

Absorption under a pressure of 63.3 g/cm 2 ("AUL 0.9 psi")

The absorption under a pressure of 63.3 g/cm 2 (commonly referred to as "AUL 0.9 psi") is de- termined by test method No. WSP 242.2-05 "Absorption under Pressure", however, with a pressure setting of 63.3 g/cm 2 (AUL 0.9 psi) instead of 21.0 g/cm 2 (that corresponds to the AUL 0.3 psi).

Examples

To achieve consistency and comparability of the Al salt addition levels these are reported as "mol-% Al based on polymer". This number is calculated as weight % of dry aluminum salt based on the weight of dry polymer, divided by the molecular weight of the anhydrous aluminum salt divided by the number of aluminum atoms per molecule (this is 1 in all of the examples be- low excpet for aluminum sulfate where it is 2). The aluminum salts were commercial products obtained from Sigma Aldrich, 3050 Spruce St., St. Louis, Missouri 63103, U.S.A., except the glycinate which was obtained from TCI America, 921 1 N. Harborgate Street, Portland, Oregon 97203, U.S.A. Example 1 : Preparation of superbsorbents coated with alumina salts

800 g of a base polymer (i.e. a non-surface crosslinked superabsorbent) (Hysorb® T 9020, available from BASF Corporation, Freeport, Texas, U.S.A.), having a degree of neutralisation of 75 mole-% and a CRC of 36 g/g were placed in a preheated Lodige Plowshare ® laboratory mixer (available from Gebr. Lodige Maschinenbau GmbH, Elsener-St^e 7 - 9, 33102 Paderborn, Deutschland), heated to 70°C and rotated at 450 rpm. A coating solution was prepared my mixing 0.72 g 2-hydroxyethyloxazolidinon ("HEONON"), 0,72 g 1 ,3-propanediol, 8,8 g isopropanole, 0,004 mol-% Al in the form an aluminum salt as indicated in the following table with water to produce a total amount of 35 g solution. This coating solution was then sprayed onto the base polymer particles within 30 seconds. After that, the rotating speed of the mixer was lowered to 200 rpm and the powder was mixed for another 2 minutes.

The particles where then transferred to a preheated Lodige Plowshare ® laboratory mixer to reach a constant temperature of 200 °C and cured for a time period of 60 minutes while mixing at a speed of 200 rpm. Samples were taken after 30, 45 and 60 minutes. After cooling to room temperature, the particles were sized to achieve a final particle size distribution between 150 and 850 μηη.

The following table shows the superabsorbents and characteristic data obtained in Example 1 :

) based on weight of solution or suspension

' *) Aluminum glycinate is a suspension, not a solution comparative

The table shows that while CRC and AAP of the SAP coated with aluminum glycinate are at least comparable to those of the others, its FS-GBP and SFC are better. In other words, fluid flow through a swollen gel bed of a SAP coated with aluminum glycinate will be better than through a swollen gel bed of the others, which in turn allows higher superabsorbent content in a diaper, which means a thinner diaper.

Example 2: Laboratory procedure for producing aluminum monoglycinate dispersion

50.0 g of reagent grade aluminum hydroxide powder (AI(OH)3) (0.641 mol) were placed inside a 500ml flask equippend with a stir bar and heating mantle. 250 ml water were added. While stirring, the slurry was heated to 70-80 °C. 48.12 g of glycine (2-amino acetic acid) (0.641 mol) were slowly added. A stopper equipped with a thermometer and a bubbler was placed on the flask. The slurry was heated to 75 °C for 8 hours with constant stirring. After 8 hours, heating was discontinued. The slurry can be ased "as is" with no further processing or it can be homgenised to a mean particle size of about 10 μηη.

Example 3: Preparation of superbsorbents coated with aluminum monoglycinate

800 g of a base polymer (i.e. a non-surface crosslinked superabsorbent) (Hysorb® T 8760, available from BASF Corporation, Freeport, Texas, U.S.A.), having a degree of neutralisation of 73.5 mole-% and a CRC of 39 g/g were placed in a preheated Lodige Plowshare ® laboratory mixer (available from Gebr. Lodige Maschinenbau GmbH, Elsener-St^e 7 - 9, 33102 Pader- born, Deutschland), heated to 50°C and rotated at 450 rpm. A coating suspension was prepared my mixing 0.56 g 2-hydroxyethyloxazolidinon ("HEONON"), 0,56 g 1 ,3-propanediol, 7.2 g 1 ,2- propane diol, 8,8 g isopropanole, 0,004 mol-% Al monoglycinate suspension (25 wt.-% Al, based on the suspension) with water to produce a total amount of 41 g suspension. This coating suspension was then sprayed onto the base polymer particles within 30 seconds. After that, the rotating speed of the mixer was lowered to 200 rpm and the powder was mixed for another 2 minutes.

The particles where then transferred to a preheated Lodige Plowshare ® laboratory mixer to reach a constant temperature of 180 °C and cured for a time period of 60 minutes while mixing at a speed of 200 rpm. Samples were taken after 30, 45 and 60 minutes. After cooling to room temperature, the particles were sized to achieve a final particle size distribution between 150 and 850 μηη. The following table shows the superabsorbents and characteristic data obtained in Example 3:

Example 4 (comparative): Preparation of superbsorbents coated with aluminum monolactate and aluminum monoacetate

800 g of a base polymer (i.e. a non-surface crosslinked superabsorbent) (Hysorb® T 8760, available from BASF Corporation, Freeport, Texas, U.S.A.), having a degree of neutralisation of 73.5 mole-% and a CRC of 39 g/g were placed in a preheated Lodige Plowshare ® laboratory mixer (available from Gebr. Lodige Maschinenbau GmbH, Elsener-St^e 7 - 9, 33102 Pader- born, Deutschland), heated to 50°C and rotated at 450 rpm. A coating solution was prepared my mixing 0.56 g 2-hydroxyethyloxazolidinon ("HEONON"), 0,56 g 1 ,3-propanediol, 7.2 g 1 ,2- propane diol, 0,004 mol-% Al in the form an aluminum salt as indicated in the following table with water to produce a total amount of 36 g solution. This coating solution was then sprayed onto the base polymer particles within 30 seconds. After that, the rotating speed of the mixer was lowered to 200 rpm and the powder was mixed for another 2 minutes.

The particles where then transferred to a preheated Lodige Plowshare ® laboratory mixer to reach a constant temperature of 180 °C and cured for a time period of 60 minutes while mixing at a speed of 200 rpm. Samples were taken after 30, 45 and 60 minutes. After cooling to room temperature, the particles were sized to achieve a final particle size distribution between 150 and 850 μηη.

The following table shows the superabsorbents and characteristic data obtained in Example 4:

* ) based on weight of solution or suspension

A comparison between example 3 and comnparative example 4 shows that much higher FS- GBP values can be achieved by using aluminum glycinate.