Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROCESSES FOR SELECTIVE EXTRACTION OF UNSAPONIFIABLE MATERIALS FROM RENEWABLE RAW MATERIALS BY REACTIVE TRITURATION IN THE PRESENCE OF A COSOLVENT
Document Type and Number:
WIPO Patent Application WO/2014/195637
Kind Code:
A1
Abstract:
The invention relates to processes for extraction of an unsaponifiable fraction from a renewable raw material, comprising the reactive trituration of the raw material which has been dehydrated in the presence of at least one polar organic solvent comprising at least one light alcohol, of at least one nonpolar cosolvent which is immiscible with said light alcohol and of at least one catalyst, resulting in the obtaining of a polar organic phase enriched with lipids functionalized with one or more functions chosen from hydroxyl, epoxide, ketone, thiol, aldehyde, ether and amine functions, and of a nonpolar organic phase enriched with lipids containing no or few hydroxyl, epoxide, ketone, thiol, aldehyde, ether and amine functions, then the concentration of the organic phases.

Inventors:
PICCIRILLI ANTOINE (FR)
Application Number:
PCT/FR2014/051328
Publication Date:
December 11, 2014
Filing Date:
June 04, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAEML VALAGRO CARBONE RENOUVELABLE POITOU CHARENTES (FR)
International Classes:
C11B3/00; C11B1/04; C11B3/06; C11B7/00; C11C1/10
Domestic Patent References:
WO2011092329A22011-08-04
WO2011048339A12011-04-28
WO2011048339A12011-04-28
WO2001021605A22001-03-29
WO2012159980A12012-11-29
WO2010084276A12010-07-29
Foreign References:
US20040018258A12004-01-29
FR2798667A12001-03-23
FR2678632A11993-01-08
US7659097B22010-02-09
EP0493144A11992-07-01
Other References:
FARINES, M. ET AL., J. AM. OIL CHEM. SOC., vol. 72, 1995, pages 473
PURE & APPL. CHEM., vol. 69, no. 10, 1997, pages 2169 - 2173
"Bailey's Industrial Oil and Fat Products", 2005, JOHN WILEY & SONS, INC.
M. B. SMITH; J. MARCH: "March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", 2001, WILEY-INTERSCIENCE
Attorney, Agent or Firm:
ORSINI, Fabienne et al. (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable contenant des lipides fonctionnalisés par une ou plusieurs fonctions choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, comprenant les étapes suivantes : a) déshydratation éventuellement précédée ou suivie d'un conditionnement de la matière première renouvelable,

b) trituration réactive de la matière première déshydratée et éventuellement conditionnée en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger et d'au moins un catalyseur, conduisant à l'obtention d'une phase organique polaire enrichie en lipides fonctionnalisés par une ou plusieurs fonctions choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé,

c) concentration de la phase organique polaire pour obtenir un mélange enrichi en fraction insaponifiable, optionnellement précédée, accompagnée ou suivie d'un traitement thermique à une température supérieure ou égale à 75°C, de préférence supérieure ou égale à 80°C, et comprenant optionnellement les étapes suivantes :

d) saponification du mélange enrichi en fraction insaponifiable,

e) extraction de la fraction insaponifiable du mélange saponifié,

2. Procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable comprenant les étapes suivantes :

a) déshydratation éventuellement précédée ou suivie d'un conditionnement de la matière première renouvelable,

b) trituration réactive de la matière première déshydratée et éventuellement conditionnée en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger et d'au moins un catalyseur, conduisant à l'obtention d'une phase organique apolaire enrichie en lipides ne contenant pas ou peu de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé,

c) concentration de la phase organique apolaire pour obtenir un mélange enrichi en fraction insaponifiable,

et comprenant optionnellement les étapes suivantes :

d) saponification du mélange enrichi en fraction insaponifiable,

e) extraction de la fraction insaponifiable du mélange saponifié,

la matière première renouvelable subissant optionnellement un traitement thermique à une température supérieure ou égale à 75 °C, de préférence supérieure ou égale à 80 °C, avant ou pendant l'étape b).

3. Procédé selon la revendication 2, caractérisé en ce que ledit traitement thermique est réalisé, et de façon concomitante à l'étape a) de déshydratation.

4. Procédé selon la revendication 2 ou 3, caractérisé en ce que la matière première renouvelable est choisie parmi le fruit, le noyau, les feuilles d'avocat et leurs mélanges, et en ce que ledit traitement thermique est réalisé.

5. Procédé selon la revendication 1 , caractérisé en ce que la matière première renouvelable est choisie parmi le fruit, le noyau, les feuilles d'avocat et leurs mélanges, en ce que ledit traitement thermique est réalisé, et en ce que les étapes a) et b) sont effectuées à une température inférieure ou égale à 80°C, de préférence inférieure ou égale à 75°C.

6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la déshydratation est réalisée de façon à atteindre une humidité résiduelle inférieure ou égale à 3 % en masse par rapport à la masse de la matière première obtenue à l'issue de l'étape de déshydratation.

7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'alcool léger est choisi parmi le méthanol, l'éthanol, le propanol, l'isopropanol, le butanol, le pentanol, l'hexanol, l'éthyl-2-hexanol et leurs isomères.

8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le cosolvant apolaire est un alcane ou un mélange d'alcanes.

9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le catalyseur est un catalyseur basique.

10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la concentration de la phase organique est réalisée par distillation moléculaire.

1 1 . Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes d) et e), l'extraction de la fraction insaponifiable du mélange saponifié étant réalisée par extraction liquide-liquide à l'aide d'au moins un solvant organique.

Description:
PROCEDES D'EXTRACTION SELECTIVE DES INSAPONIFIABLES DE MATIERES PREMIERES RENOUVELABLES PAR TRITURATION REACTIVE EN PRESENCE D'UN

COSOLVANT

La présente invention concerne le domaine de l'oléochimie. Plus particulièrement, l'invention se rapporte à un procédé d'extraction des insaponifiables d'une matière première lipidique renouvelable, notamment d'un fruit oléifère, en particulier l'avocat, d'une graine oléagineuse ou d'une matière première animale, algale, fongique ou levurière, ou d'un microorganisme.

Par lipides, on entend des substances d'origine biologique solubles dans des solvants non polaires. Les lipides peuvent être saponifiables (par exemples les triglycérides) ou non saponifiables (par exemple les molécules à squelette de type stéroïde).

On entend par insaponifiables l'ensemble des composés qui après saponification totale d'un corps gras, c'est-à-dire sous l'action prolongée d'une base alcaline, demeurent insolubles dans l'eau et peuvent être extraits par un solvant organique dans lequel ils sont solubles. Les insaponifiables constituent généralement une fraction mineure dans le corps gras.

Cinq grands groupes de substances sont présents dans la plupart des insaponifiables de matières grasses végétales : les hydrocarbures saturés ou insaturés, les alcools aliphatiques ou terpéniques, les stérols, tocophérols et tocotriénols, et les pigments caroténoïdes, notamment les xanthophylles.

Les matières premières lipidiques renouvelables contiennent des proportions très variables en composés insaponifiables. Les teneurs en fraction insaponifiable obtenues par extraction de différentes huiles végétales suivant divers procédés connus s'échelonnent de 1 à 7 % en masse d'insaponifiables dans l'huile d'avocat, contre 0,5 % dans l'huile de coco et 1 % dans l'huile de soja ou dans l'huile d'olive.

Actuellement, les procédés classiques d'extraction des insaponifiables utilisent généralement comme matière première lipidique les huiles végétales et leurs dérivés et coproduits issus de l'industrie de l'extraction des lipides (huiles végétales, corps gras animaux, marins, oléorésines végétales) de leur raffinage et de leur transformation. Le plus souvent, il s'agit d'extraire les insaponifiables d'huiles végétales brutes, semi-raffinées ou raffinées, des concentrâts d'insaponifiables d'huiles raffinées obtenus par distillation moléculaire ou extraction par des fluides supercritiques. Aussi, nombre de fractions insaponifiables telles que les stérols, le squalène, les tocophérols ou les tocotriénols sont obtenues à partir des d'huiles végétales des échappées de désodorisation, lesquelles sont des coproduits abondants du raffinage chimique ou physique des huiles végétales. Cependant, comme autres coproduits du raffinage des lipides, il peut aussi s'agir des huiles acides, des pâtes de neutralisation, des lipides retenus par les terres décolorantes utilisées pour décolorer les huiles, les terres issues des unités de winterisation, En outre, on peut aussi utiliser les coproduits issus de la trituration des oléagineux ou des fruits oléifères tels que les tourteaux oléagineux, les coques ou les noyaux de graines, les molasses, les margines.

Pour extraire des insaponifiables ou leurs fractions, on peut aussi utiliser des coproduits issus de la transformation des lipides tels que les glycérines brutes issues des unités de production du biodiesel, d'hydrolyse ou de saponification des corps gras animaux ou végétaux, des eaux graisseuses issues des industries de transformation des graisses animales, des culots de distillation des esters alkyliques d'acides gras.

De même, on produit des fractions insaponifiables, notamment des stérols, à partir de coproduits industriels tels que les essences de papeterie encore appelées tall oil. De même, on extrait des fractions insaponifiables de coproduits issus des industries des boissons telles que les brasseries, les rhumeries, les malteries industrielles.

A l'identique, on peut utiliser comme matière première source d'insaponifiables, des sérums végétaux (ex. de tomate, d'agrumes), des pépins, des téguments des oléorésines de fruits oléifères ou pas, de légumes, de fleurs ou de feuilles.

Les procédés d'extraction des insaponifiables comprennent le plus souvent une étape de transestérifïcation ou d'estérification de la matière grasse obtenue par pression, et/ou une étape de saponification de la matière grasse suivie d'une extraction liquide-liquide à l'aide d'un solvant organique.

Les méthodes d'extraction sélective des fractions insaponifiables sont peu nombreuses. La demande WO 201 1/048339 décrit un procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable, comprenant a) la déshydratation et le conditionnement de la matière première renouvelable, b) la transestérifïcation par trituration réactive de la matière première lipidique conditionnée en présence d'un alcool léger et d'un catalyseur, c) l'évaporation de l'alcool léger, d) la concentration de la phase liquide de façon à obtenir un concentrât comprenant la fraction insaponifiable diluée dans des esters alkyliques d'acides gras, e) la saponification du concentrât d'insaponifiable, f) l'extraction de la fraction insaponifiable du mélange saponifié.

L'avocat, en raison de sa teneur élevée en fraction insaponifiable, mérite une attention toute particulière. Il donne accès de manière connue à des lipides particuliers de type furanique, dont le principal composant est un furane linoléique noté H7 de formule :

Par lipides furaniques d'avocat, on entend selon l'invention les composants répondant à la formule : dans laquelle R est une chaîne linéaire hydrocarbonée en C1 1 -C19, de préférence C13- C17 saturée ou comprenant une ou plusieurs insaturations éthyléniques ou acétyléniques. Ces lipides furaniques d'avocat ont été décrits notamment dans Farines, M. et al, 1995, J. Am. Oil Chem. Soc. 72, 473. De façon générale, les lipides furaniques de l'avocat sont des composés uniques dans le règne végétal et sont surtout recherchés pour leurs propriétés pharmacologiques, cosmétiques, nutritionnelles, voire biopesticides.

Les lipides furaniques d'avocat sont des métabolites de composés précurseurs initialement présents dans le fruit et les feuilles qui, sous l'effet de la chaleur, se déshydratent et se cyclisent en dérivés furaniques. Par exemple, le furane linoléique H7 est issu de la transformation thermique du précurseur céto-hydroxylé suivant, noté P1 H7 :

Sous pression atmosphérique, le précurseur P1 H7 se transforme généralement en furane linoléique H7 à une température allant de 80 à 120 °C.

Il est aujourd'hui bien établi que la présence de ces précurseurs de composés furaniques dans les feuilles ou le fruit d'avocat (y compris le noyau) dépend non seulement de la variété (les variétés Hass et Fuerte étant les plus riches en ces composés) mais aussi du mode d'obtention de l'huile ou d'un autre extrait végétal de l'avocat (extrait hexanique ou éthanolique des feuilles d'avocat).

Par ailleurs, certains composés initialement présents dans le fruit et les feuilles de l'avocat peuvent se présenter sous la forme d'alcool gras polyhydroxylés le plus souvent non acétylés, tels que le composé suivant :

Par alcool gras polyhydroxylé d'avocat, on entend selon l'invention un polyol sous forme d'une chaîne principale linéaire hydrocarbonée en C17-C21 saturée ou comprenant une ou plusieurs insaturations éthyléniques ou acétyléniques, et comprenant au moins deux groupes hydroxyles, les groupes hydroxyles étant généralement situés sur une partie de la chaîne principale, de préférence vers l'une des deux extrémités de la chaîne principale, l'autre partie de cette chaîne principale constituant ainsi la chaîne grasse (partie hydrophobe) du polyol.

La teneur en alcools gras polyhydroxylés dans le fruit dépend principalement des conditions climatiques, de la qualité des sols, de la saison et de la maturation du fruit à sa cueillette.

Compte tenu de l'intérêt thérapeutique de l'insaponifiable d'avocat riche en lipides furaniques pour son action bénéfique et curative sur le tissu conjonctif, notamment dans les pathologies inflammatoires telles que l'arthrose, les parodontites et la sclérodermie, et de son coût élevé en général, il existe un intérêt fort à préparer avec le meilleur rendement possible, des fractions insaponifiables d'huile d'avocat, riches en lipides furaniques. De même, il y a un intérêt certain à valoriser avec un rendement maximal l'ensemble du fruit afin d'améliorer la rentabilité globale du procédé.

Les techniques connues pour obtenir ces composés furaniques ou polyols spécifiques à partir du fruit ou de l'huile du fruit de l'avocat ne permettent d'obtenir ces composés qu'en mélange avec de nombreux autres composés insaponifiables d'avocat.

La demande FR 2678632 décrit un procédé d'obtention de la fraction insaponifiable d'avocat à partir d'une huile d'avocat enrichie en l'une de ses fractions, dite H, correspondant en fait à ces mêmes lipides furaniques. La préparation d'un tel insaponifiable riche en lipides furaniques, dont la teneur peut varier de 30 à 60 %, est essentiellement conditionnée à un chauffage contrôlé des fruits frais, préalablement tranchés en fines lamelles, à une température comprise entre 80 et 120°C, et pendant une durée péférentiellement choisie entre 24 à 48 heures. Ce traitement thermique permet après extraction, d'obtenir une huile d'avocat riche en lipides furaniques. Enfin, à partir de cette huile, l'obtention de la fraction insaponifiable est effectuée selon un procédé classique de saponification, complété d'une étape d'extraction liquide-liquide par un solvant organique.

La demande WO 01/21605 décrit un procédé d'extraction des composés lipides furaniques et alcools gras polyhydroxylés de l'avocat, comprenant le traitement thermique du fruit à une température d'au moins 80 °C (séchage contrôlé), l'extraction de l'huile par pression à froid, l'enrichissement en insaponifiable par cristallisation par le froid ou extraction liquide- liquide ou distillation moléculaire, la saponification par la potasse éthanolique, l'extraction de l'insaponifiable dans une colonne à contre-courant par un solvant organique, suivie d'étapes de filtration, lavage, désolvantation, désodorisation et distillation moléculaire finale. Ce procédé permet d'obtenir soit un distillât comprenant principalement des lipides furaniques d'avocat, soit un distillât comprenant principalement des lipides furaniques et des alcools gras polyhydroxylés d'avocat. Cependant ce procédé ne permet de valoriser qu'une faible partie du fruit.

En effet, dans ce type de procédé, l'huile constituant le résidu issu de l'étape de concentration de l'insaponifiable par distillation moléculaire, soit environ 90% de l'huile extraite du fruit, est très difficilement valorisée. Cette huile fortement colorée a en effet subi un traitement thermique par distillation à haute température, lequel entraîne une destruction systématique et irréversible des pigments chlorophylliens et des phospholipides très préjudiciables au raffinage ultérieur de l'huile brute distillée. Seul un raffinage très poussé de cette huile permet dans les meilleurs cas, de lui rendre une couleur à peu près convenable. Raffinage qui s'avère fort consommateur d'intrants (ex. terres décolorantes), d'énergie et qui demeure très martyrisant pour les acides gras insaturés (isomérisation). Enfin, un ajout d'antioxydant exogène est indispensable à la conservation de cette huile raffinée sur une durée commercialement acceptable. Par conséquent, l'huile ainsi raffinée ne peut aucunement être valorisée en nutrition humaine ou dans des applications pharmaceutiques pointues.

Un autre inconvénient du procédé réside dans la production d'un tourteau impropre à l'alimentation animale. Ce dernier contient en effet des composés antinutritionnels (précurseurs H toxiques et à activité biopesticide, lipides furaniques) et des protéines fortement dégradées au cours de l'extraction par pression mécanique des fruits séchés sous air (de fait très oxydés), protéines de piètre digestibilité. Par conséquent, le tourteau ou ses protéines, ne peuvent être valorisées en alimentation animale et encore moins humaine alors même que la pulpe du fruit est couramment consommée par l'homme (guacamole, fruit de bouche).

De façon identique, les polysaccharides nobles du fruit tels que le perséitol et le nanoheptulose, sucres uniques du règne végétal, aux propriétés pharmaceutiques, cosmétiques et nutritionnelles démontrées (ex. confort hépatique), sont en partie détruits par les réactions de Maillard et/ou de caramélisation induites par la pression mécanique des fruits déshydratés, ou encore rendus très difficilement extractibles car en trop forte interaction avec la matrice fibreuse et protéique.

En conclusion, ce type de procédé ne permet qu'une valorisation mineure du fruit que l'on peut estimer inférieure à 15%.

Par conséquent, il reste nécessaire d'améliorer le rendement ainsi que la sélectivité des procédés d'extraction des lipides furaniques et/ou des alcools gras polyhydroxylés d'avocat.

Il subsiste donc un besoin pour un procédé permettant d'extraire sélectivement les insaponifiables de corps gras tout en préservant l'intégrité du fruit pour une meilleure valorisation ultérieure, dont la mise en œuvre soit économique et permette de récupérer également des coproduits de glycérides à plus haute valeur ajoutée que les acides gras libres, ou encore des protéines et des polysaccharides de bonne qualité nutritionnelle. Il serait notamment souhaitable de mettre au point un procédé d'extraction des insaponifiables à fort rendement en fonction de la polarité des fractions qui les constituent. Il est en effet désirable de disposer d'un procédé robuste permettant de produire sélectivement les fractions recherchées et non martyrisant des autres fractions d'intérêt ou des autres parties du fruit.

Pour y répondre, l'invention a pour objet un procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable contenant des lipides fonctionnalisés par une ou plusieurs fonctions choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, comprenant les étapes suivantes :

a) déshydratation éventuellement précédée ou suivie d'un conditionnement de la matière première renouvelable,

b) trituration réactive de la matière première lipidique déshydratée et éventuellement conditionnée en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger et d'au moins un catalyseur, conduisant à l'obtention d'une phase organique polaire enrichie en lipides fonctionnalisés par une ou plusieurs fonctions choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé,

c) concentration de la phase organique polaire pour obtenir un mélange enrichi en fraction insaponifiable, optionnellement précédée, accompagnée ou suivie d'un traitement thermique à une température supérieure ou égale à 75°C, de préférence supérieure ou égale à 80°C,

et comprenant optionnellement les étapes suivantes :

d) saponification du mélange enrichi en fraction insaponifiable,

e) extraction de la fraction insaponifiable du mélange saponifié.

L'invention concerne en outre un procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable comprenant les étapes suivantes :

a) déshydratation éventuellement précédée ou suivie d'un conditionnement de la matière première renouvelable,

b) trituration réactive de la matière première lipidique déshydratée et éventuellement conditionnée en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger et d'au moins un catalyseur, conduisant à l'obtention d'une phase organique apolaire enrichie en lipides ne contenant pas ou peu de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, c) concentration de la phase organique apolaire pour obtenir un mélange enrichi en fraction insaponifiable,

et comprenant optionnellement les étapes suivantes :

d) saponification du mélange enrichi en fraction insaponifiable,

e) extraction de la fraction insaponifiable du mélange saponifié,

la matière première renouvelable subissant optionnellement un traitement thermique à une température supérieure ou égale à 75°C, de préférence supérieure ou égale à 80 °C, avant ou pendant l'étape b), de préférence avant l'étape a), pendant l'étape a) ou entre l'étape a) et l'étape b).

Les deux procédés de l'invention diffèrent en ce que le premier procédé vise à récupérer une fraction insaponifiable soluble dans une phase polaire alcoolique (ou dont les précurseurs sont solubles dans une telle phase), alors que le second procédé vise à récupérer la fraction insaponifiable soluble dans une phase organique apolaire (ou dont les métabolites sont solubles dans une telle phase). Dans le cas de l'avocat, ces deux procédés, bien que différant en plusieurs étapes, ont cependant pour utilité commune de permettre la récupération sélective des lipides furaniques de la fraction insaponifiable avec un haut rendement, tout en permettant de générer des coproduits valorisables de très haute qualité : esters alkyliques d'huile d'avocat distillés, glycérine d'avocat parfaitement tracée, tourteau débarrassé des composés antinutritionnels potentiellement utilisables comme sources de protéines, d'oligopeptides, de perséitol et de nanoheptulose, de fibres d'avocat.

Dans le cas particulier de l'avocat, notamment, les matières premières ne sont pas chauffées initialement à une température élevée dans le premier procédé (elles le sont seulement après l'étape de trituration réactive), alors qu'elles sont chauffées avant l'étape de trituration réactive dans le second procédé, de façon à faire apparaître les composés furaniques caractéristiques de l'avocat traité thermiquement de façon plus précoce. Dans le cas du premier procédé, l'étape de trituration réactive est mise en œuvre avec des avocats n'ayant pas subi un tel traitement thermique, ceux-ci contenant à ce stade des précurseurs de lipides furaniques.

L'invention vise donc un procédé d'extraction d'une fraction insaponifiable d'une matière première renouvelable lipidique, généralement végétale ou animale, de préférence végétale. Cette matière première peut notamment être choisie parmi les fruits oléifères, les graines oléagineuses, les graines oléoprotéagineuses, les coques de graines, les amandes oléagineuses, les germes, les noyaux et cuticules de fruits, les matières premières animales, algales, fongiques ou levurières ou de microorganismes riches en lipides.

Selon un premier mode de réalisation, la matière première mise en jeu est un fruit oléifère, qui peut être, sans limitation, l'olive, le karité, l'amarante, la palme, le buritti, le tucuman, la courge, le serenoa repens, le palmier d'Afrique ou l'avocat.

Selon un deuxième mode de réalisation, la matière première est une graine, une amande, un germe, une cuticule ou un noyau d'une matière première végétale choisie parmi le colza, le soja, le tournesol, le coton, le blé, le maïs, le riz, le raisin (pépins), la noix, la noisette, le jojoba, le lupin, la cameline, le lin, le coprah, le carthame, le crambe, le coprah, l'arachide, le jatropha, le ricin, le neem, le chancre, le cuphéa, le lesquerella, l'inca inchi, le perilla, l'echium, l'onagre, la bourrache, le cassis, le pin de Corée, le bois de Chine, le coton, le pavot (graines), le sésame, l'amarante, le café, l'avoine, la tomate, le lentisque, le tagète, le karanja, le son de riz, la noix du Brésil, l'andiroba, le schizandra, l'ucuhuba, le cupuacu, le murumuru, le piqui, les pépins de citron, de mandarine, d'orange, de pastèque, de melon d'eau, de cucurbita pepo, de tomate. La matière première lipidique peut également être une matière première animale, une algue, un champignon, une levure ou une moisissure. Parmi les matières premières animales, on préférera le foie et la peau de poisson, tout particulièrement ceux de requin, de morue et de chimère, ainsi que les déchets solides de l'industrie de la viande (cervelles, tendons, lanoline...). D'autres matières premières végétales contenant des oléorésines riches en insaponifiables sont la tomate, les tagètes, le paprika, le romarin.

Des exemples d'algues contenant des composés insaponifiables d'intérêt sont les microalgues Duniella salina (riche en beta-carotène) et Hematococcus pluvialis (riche en asthaxanthine). Des exemples de microorganismes, notamment de bactéries contenant des composés insaponifiables d'intérêt sont les mycéliums ou toute autre moisissure et champignon (production d'ergostérol), la Phaffia sp. (produisant de l'asthaxanthine), la Blakeslea trispora, (produisant lycopène et phytoène), la Muriellopsis sp. (produisant de la lutéine), ou sont cités notamment dans la demande WO 2012/159980 (souche de microalgues adaptée à la production de squalène), dans le brevet US 7659097 (bactéries produisant notamment farnésol et farnésene), dans la publication Pure & Appl. Chem., Vol. 69, No. 10, pp. 2169-2173,1997 (production de caroténoïdes) ou la publication Journal of Biomedicine and Biotechnology, 2012;2012:607329, doi: 10.1 155/2012/607329 (production de co-enzyme Q10 par voie biotechnologique).

II est souhaitable que les matières premières mises en œuvre dans le procédé selon l'invention aient un taux d'acidité inférieur à 3 mg KOH/g. En effet, des taux plus élevés en acides gras libres dans ces matières premières conduisent à la formation de savons en milieu basique. Au sens de la présente invention, on entend par acides gras des acides mono, di ou tricarboxyliques aliphatiques en C4-C28 saturés, mono-insaturés ou poly-insaturés, linéaires ou ramifiés, cycliques ou acycliques, pouvant comporter des fonctions organiques particulières (hydroxyles, époxydes, ...).

Le premier procédé de l'invention va maintenant être présenté en détail.

Les matières premières mises en jeu dans le premier procédé de l'invention contiennent des constituants lipidiques fonctionnalisés par une ou plusieurs fonctions polaires, choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, comme par exemple l'avocat, le karanja, le jatropha, l'andiroba, le neem, le schizandra, la coque de lupin, la noix de cajou, le sésame, le son de riz, le coton, ou les matières premières conduisant à des huiles riches en phytostérols telles que le maïs, le soja, le tournesol, le colza, qui sont toutes très riches en de tels composés.

Ces matières premières peuvent être des matières premières fraîches ou ayant subi des transformations préalables, par exemple une première étape d'extraction de matières grasses telle qu'une pression, une centrifugation. Dans le cas de l'avocat, on peut citer les laits d'avocat obtenus par pressage des pulpes, les produits de débourbage des pulpes partiellement déshuilées par centrifugation, sous-produits généralement présents en sortie des passoires centrifuges, les culots de centrifugeuses produits au cours de la séparation, les tourteaux d'avocat, coproduits lors de la pression à froid des fruits (frais ou séchés) ou de l'extraction liquide-solide de l'huile d'avocat de fruits frais ou séchés, à l'aide d'un solvant organique, les noyaux et feuilles d'avocat. Ce procédé comprend une première étape a) de déshydratation et éventuellement de conditionnement de la matière première renouvelable. La déshydratation et le conditionnement, lorsqu'ils sont effectués à une température inférieure ou égale à 80 °C, de préférence inférieure ou égale à 75°C, sont dits contrôlés (ceci est obligatoire dans le cas de l'avocat). Ladite température est de préférence supérieure ou égale à - 50 °C. Selon un autre mode de réalisation (non applicable à l'avocat), la température varie de 50 à 120 °C, mieux de 75 à 120 °C. La déshydratation peut être réalisée sous atmosphère inerte, notamment dans le cas de matières premières contenant des composés fragiles susceptibles de s'oxyder lors d'une élévation de température. Elle est de préférence réalisée sous pression atmosphérique.

Dans le cas de l'avocat (ce qui signifie dans la présente demande le fruit, le noyau, les feuilles d'avocat ou leurs mélanges), le fait de ne pas élever la température au-delà de 75 ou 80 °C évite la conversion des précurseurs de lipidesfuraniques en lipides furaniques.

La déshydratation peut être mise en œuvre avant ou après le conditionnement (lorsqu'il a lieu). A titre préférentiel, les fruits oléifères comme l'avocat sont déshydratés avant d'être conditionnés, alors qu'inversement les graines oléagineuses sont d'abord conditionnées avant déshydratation.

On entend par déshydratation l'ensemble des techniques connues de l'homme de métier qui permettent l'élimination totale ou partielle de l'eau de la matière première. Parmi ces techniques, on peut citer, sans limitation, le séchage sur lit fluidisé, le séchage sous courant d'air chaud ou sous atmosphère inerte (ex. azote), sur lit fixe, à pression atmosphérique ou sous vide, en couche épaisse ou couche mince, dans un séchoir continu à bande ou rotatif à air chaud, mais encore le séchage par micro-ondes, le séchage par pulvérisation, la lyophilisation et la déshydratation osmotique en solution (osmose directe) ou en phase solide (ex. séchage en sacs osmotiques), le séchage à l'aide d'absorbants solides tels que les zéolites ou le tamis moléculaire.

Très préférentiellement, la durée de séchage et la température sont choisies de façon à ce que l'humidité résiduelle soit inférieure ou égale à 3 % en masse, de préférence inférieure ou égale à 2 %, par rapport à la masse de la matière première lipidique obtenue à l'issue de l'étape de déshydratation. L'humidité résiduelle de la matière première peut être déterminée par thermogravimétrie. Cette étape de séchage est importante afin que l'étape de transestérification ultérieure se déroule dans les meilleures conditions. Elle rendra plus efficace l'extraction des constituants lipidiques, du fait notamment qu'elle entraîne l'éclatement des cellules de la matière première, ainsi que la cassure de l'émulsion huile dans eau telle qu'elle est présente dans cette matière première. Elle peut en outre faciliter le conditionnement de la matière première, notamment les opérations de broyage ou d'écrasement, ce qui rendra plus efficace l'extraction par solvant du fait d'un gain au niveau de la surface de contact avec les solvants.

Dans le cadre du présent procédé, pour des raisons de facilité de mise en œuvre industrielle et pour des raisons de coût, le séchage en séchoirs ventilés (étuves), thermorégulés, en couche mince et sous courant d'air chaud est préféré. La température est de préférence comprise entre 70 et 75 °C, et la déshydatation dure de préférence de 8 à 36 heures.

L'objectif du conditionnement, optionnel, de la matière première, est de rendre les matières grasses les plus accessibles possible aux solvants d'extraction et aux catalyseurs, notamment selon un simple phénomène de percolation. Le conditionnement peut aussi accroître la surface spécifique et la porosité de la matière première en contact avec ces réactifs. Le conditionnement de la matière première ne conduit à aucune extraction de matière grasse.

Préférentiellement, la matière première renouvelable est conditionnée par aplatissage, floconnage, soufflage ou broyage sous forme de poudre. A titre d'exemple, la matière première peut être toastée ou floconnée, ou encore conditionnée et/ou séchée par lyophilisation, per- évaporation, atomisation, broyage mécanique, cryobroyage, dépelliculage, flash-détente (séchage rapide par mise sous vide et décompression rapide), conditionnée par des champs électromagnétiques puisés, par extrusion réactive ou pas, aplatissage au moyen d'un aplatisseur mécanique à rouleaux lisses ou cannelés, soufflage par introduction d'air chaud ou de vapeur surchauffée. Dans le cas de l'avocat, on utilisera principalement des fruits d'avocats découpés, puis soumis à l'étape de déshydratation contrôlée, et enfin le fruit séché sera conditionné, généralement par broyage de la pulpe fraîche.

Une fois déshydratée et éventuellement conditionnée, la matière première subit une étape b) de trituration réactive en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger (dans les conditions de l'opération de trituration réactive) et d'au moins un catalyseur.

Par trituration réactive on entend toute opération visant à transformer des lipides (ou matières grasses) saponifiables (en particulier des triglycérides) en esters alkyliques d'acides gras (généralement des monoesters alkyliques d'acides gras) et en glycérol, préférentiellement en présence d'un ou plusieurs éléments réactifs. Dans le cas présent la trituration est réalisée en présence d'un alcool léger, d'un cosolvant apolaire et d'un catalyseur. On utilisera dans un mode de réalisation des solvants et cosolvants anhydres, et de préférence des solvants ayant un point d'ébullition assez bas pour pouvoir être distillés.

Dans un autre mode de réalisation, de l'eau pourra être ajoutée au mélange binaire de solvants afin notamment d'extraire avec une meilleure efficacité les composés très polaires, en particulier hydroxylés, la quantité d'eau engagée représentant de préférence de 0,1 à 20% en poids du mélange de solvants, de préférence de 0,5 à 5%.

Cette étape permet d'une part d'extraire les matières grasses, en particulier l'huile de la matière première déshydratée et en même temps de la transestérifier, et d'autre part d'isoler une fraction enrichie en constituants lipidiques polaires, contenant une ou plusieurs fonctions choisies parmi les fonctions hydroxyle (de préférence aliphatique), époxyde, cétone, thiol, aldéhyde, éther et aminé (libre), insaponifiables ou non, et une fraction enrichie en constituants lipidiques peu ou pas polaires, notamment des constituants ne contenant pas de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé.

L'ajout d'un cosolvant apolaire favorise l'obtention d'un milieu hétérogène et de deux phases lipidiques dont les constitutions seront très différentes. D'une part, les constituants lipidiques non fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé se retrouveront préférentiellement dans la phase apolaire, alors que les constituants lipidiques fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther ou aminé se retrouveront préférentiellement dans la phase polaire (alcool léger).

Cette étape permet l'extraction sélective des constituants lipidiques fonctionnalisés par une ou plusieurs fonctions hydroxyle (de préférence aliphatique), époxyde, cétone, thiol, aldéhyde, éther ou aminé (insaponifiables ou non), de préférence plusieurs, qui sont séparés du mélange de constituants lipidiques (notamment des esters d'acides gras) ne comportant pas de telles fonctions, présents dans le milieu à l'issue de la réaction de transestérifîcation. Selon le type de matière première utilisée, ces constituants lipidiques fonctionnalisés pourront être, sans limitation, des alcool gras polyhydroxylés et des composés céto-hydroxylés précurseurs de lipides furaniques (notamment le composé P1 H7 évoqué plus haut, précurseur du furane linoléique H7) qui sont présents dans l'avocat, les stérols non estérifiés, ou des esters des acides gras suivants : l'acide ricinoléique (acide 12-hydroxy cis 9-octadécénoïque) présent notamment dans l'huile de ricin, l'acide lesquérolique (acide 14-hydroxy-1 1 -eicosanoïque), l'acide densipolique (acide 12-hydroxy-9,15-octadécadiènoïque) et l'acide auricolique (acide 14- hydroxy-1 1 ,17-éicosadiènoïque) présents tous trois notamment dans les espèces du genre Lesquerrella, l'acide coriolique (acide 13-hydroxy-9,1 1 -octadécadiènoïque), l'acide kamlolénique (acide 18-hydroxy-9,1 1 ,13-octadécathénoïque) présent notamment dans l'huile extraite des graines de l'arbre Kamala, l'acide coronarique (acide 9,10-époxy-cis-octadéc-12- ènoïque) présent notamment dans l'huile de tournesol, l'acide vernolique (acide cis-12,13- époxyoléique) présent notamment dans l'huile extraite des graines de Euphorbia lagascae ou de plantes du genre Vernonia.

L'étape b) est réalisée dans des conditions de température, d'agitation et de durée suffisantes pour permettre l'extraction des triglycérides et autres constituants lipidiques à partir de la matière première et la transestérifîcation desdits triglycérides, conduisant à l'obtention d'un mélange comprenant notamment des esters d'acides gras, du glycérol, la fraction insaponifiable native (non modifiée par cette étape), et selon le type de matière première utilisée, des polysaccharides solubles, des composés phénoliques, des glucosinolates, des isocyanates, des alcaloïdes polaires, des terpènes polaires, le glycérol et un tourteau.

L'étape b) est cependant effectuée à une température inférieure ou égale à 80 °C, de préférence inférieure ou égale à 75°C dans le cas ce l'avocat notamment, ce contrôle de la température évitant la conversion des précurseurs de lipides furaniques en lipides furaniques. Ceux-ci restent donc présents sous leur forme hydroxylée (non cyclisée en furanes) au cours de la trituration réactive.

Dans d'autres cas, l'étape b) peut être effectuée sans limitation quant à la température, c'est-à-dire que celle-ci peut dépasser 75 ou 80 °C. Ainsi, lorsque la matière première ne dérive pas de l'avocat, l'étape b) peut être réalisée en mettant en œuvre un chauffage à une température allant de 40 à 100°C. L'étape b) est généralement conduite à température ambiante mais peut aussi être réalisée en mettant en œuvre un chauffage, à une température de préférence d'au moins 40 °C et de préférence infériajre ou égale à 80 °C, de préférence inférieure ou égale à 75°C.

Des ouvrages généraux tels que Bailey's Industrial OU and Fat Products, 6 th Edition

(2005), Fereidoon Shahidi Ed., John Wiley & Sons, Inc., et March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 5 th Edition (2001 ), M. B. Smith, J. March, Wiley-lnterscience, décrivent plus en détail les conditions de l'étape de transestérification, ainsi que de l'éventuelle étape de saponification qui sera présentée plus tard.

Par alcool léger, on entend un alcool (comprenant une ou plusieurs fonctions hydroxyle) dont la masse moléculaire est inférieure ou égale à 150 g/mol, linéaire ou ramifié, de préférence en C C-6, mieux, en C 1 -C4. Préférentiellement l'alcool léger est un monoalcool. Il s'agit de préférence d'un alcool aliphatique et idéalement d'un monoalcool aliphatique, de préférence choisi parmi le méthanol, l'éthanol, le n-propanol, l'isopropanol, le n-butanol, le n-pentanol, le n- hexanol, l'éthyl-2-hexanol et leurs isomères. L'utilisation d'un tel monoalcool, le préféré étant le méthanol, conduira à la transformation des glycérides en monoesters d'acides gras.

Le cosolvant apolaire, non miscible avec l'alcool léger (dans les conditions de l'opération de trituration réactive), est de préférence choisi de telle sorte que les constituants lipidiques fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther ou aminé que l'on souhaite extraire ne soient pas solubles dans ce cosolvant. Compte tenu de leur nature chimique, ces constituants lipidiques fonctionnalisés auront nécessairement plus d'affinité avec la phase alcool léger qu'avec la phase solvant apolaire dans laquelle ils sont peu (de préférence pas) solubles.

Le cosolvant apolaire est un solvant organique qui peut notamment être l'hexane, l'heptane, le benzène, le bicyclohexyle, le cyclohexane, les alcanes paraffiniques d'origine végétale obtenus par déshydratation des alcools naturels (ou leurs homologues de Guerbet) ou par hydrotraitement des lipides ou des biomasses (procédé d'hydroliquéfaction) ou encore par décarboxylation des acides gras, la décaline, le décane, le kérosène, le kerdane (coupe hydrocarbure combustible plus lourde que l'hexane), le gazole, le pétrole lampant, le méthylcyclohexane, le tetradécane, le C0 2 supercritique, le propane ou le butane pressurisés, les solvants apolaires naturels tels que les terpènes (limonène, alpha et béta pinène, etc.). Il s'agit préférentiellement d'un alcane ou d'un mélange d'alcanes, de préférence l'hexane. Le couple solvant polaire (alcool léger) / cosolvant apolaire préféré est le couple méthanol/hexane.

Le catalyseur est de façon préférée un catalyseur basique préférentiellement choisi parmi la soude alcoolique, la soude solide, la potasse alcoolique, la potasse solide, les alcoolates alcalins tels que le méthylate, l'éthylate, le n-propylate, l'isopropylate, le n-butylate, l'i-butylate ou le t-butylate de lithium, de sodium ou de potassium, les aminés et les polyamines, ou un catalyseur acide de préférence choisi parmi l'acide sulfurique, l'acide nitrique, l'acide paratoluènesulfonique, l'acide chlorhydrique et les acides de Lewis. Un catalyseur acide sera plus particulièrement mis en œuvre dans les cas extrêmes où l'acidité libre de la matière grasse sera supérieure à 4 mg KOH/g. Cette étape conduira à l'estérification des acides gras libres, la poursuite du procédé consistant à poursuivre la trituration réactive par une réaction de transestérification catalysée par une base.

L'étape b) peut être réalisée notamment dans un réacteur batch à lit agité ou dans un réacteur continu à tapis mobile du type extracteur continu. On introduit dans un mode de réalisation préféré le solvant organique et le cosolvant apolaire à contre-courant l'un de l'autre dans un réacteur. Afin d'optimiser la séparation des différents constituants lipidiques entre les phases polaires et apolaires, et/ou d'obtenir une transformation complète des mono-, di- et triglycérides en (mono)esters (alkyliques) d'acides gras, l'extraction/trituration peut être répétée plusieurs fois en mettant par exemple en œuvre plusieurs réacteurs en cascade et soutirages intermédiaires, tel que décrit dans la demande WO 2010/084276.

L'étape de trituration réactive permet de récupérer (notamment après filtration et lavage du tourteau avec un solvant tel qu'un alcool léger) d'une part deux phases liquides lipidiques non miscibles, du glycérol et d'autre part un tourteau solvanté.

Idéalement, le mélange résultant de l'étape de transestérification comprend de faibles teneurs en mono, di ou triglycérides. L'ensemble de ces glycérides représente généralement en masse moins de 3 % de la masse totale du mélange, de préférence moins de 1 %.

Le tourteau solvanté issu du procédé de l'invention peut être séché, puis être directement utilisé notamment en alimentation animale, étant donné qu'il ne contient pas, ou du moins très peu, de composés antinutritionnels suite à l'étape de trituration réactive, au contraire des procédés antérieurs qui mettent en jeu une étape de pression mécanique. La phase polaire (alcoolique) dans laquelle sont solubles notamment les lipides contenant une ou plusieurs fonctions choisies parmi les fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé tels que les alcools gras polyhydroxylés et les précurseurs de lipides furaniques (dans le cas de l'avocat) est séparée de la phase apolaire. Ladite phase polaire contient en outre notamment des esters d'acides gras. La séparation des différentes fractions peut se faire de différentes façons, notamment par centrifugation, décantation et/ou distillation.

Ainsi la phase solvant apolaire peut être soumise à une étape d'évaporation du solvant réalisée sous un vide et une température adaptés. Le solvant vaporisé est alors condensé pour être recyclé. La phase lourde apolaire (phase A), principalement constituée d'esters alkyliques et de composés insaponifiables (ou pas) apolaires peut ensuite être engagée en distillation moléculaire afin d'obtenir d'une part, des esters purifiés (dans le distillât) et d'autre part, un résidu de distillation enrichi en composés mineurs apolaires. L'extraction de ces composés principalement insaponifiables est réalisée selon les procédés connus de l'homme de métier. Par exemple par réalisation de la séquence suivante : 1 ) saponification des esters alkyliques, 2) extraction liquide-liquide permettant de séparer les composés insaponifiables des savons, 3) désolvantation de la phase solvant enrichie en insaponifiables et 4) purification finale de l'insaponifiable.

Une autre variante consiste à saponifier directement la phase A et à extraire les composés insaponifiables principalement apolaires par 1 ) extraction liquide-liquide permettant de séparer les composés insaponifiables des savons, 2) désolvantation de la phase solvant enrichie en insaponifiables et 3) purification finale de l'insaponifiable.

L'alcool léger (solvant polaire) est évaporé de la phase polaire notamment sous pression réduite. Dans le cas de l'avocat, si la température d'évaporation est élevée (notamment de l'ordre de 80 °C ou plus), il peut se produire dès œtte étape une cyclisation des précurseurs de lipides furaniques en lipides furaniques.

Le produit lipidique obtenu peut subir une étape de neutralisation (avant ou après l'évaporation de l'alcool léger, de préférence avant), préférentiellement par un acide, puis une étape de décantation ou centrifugation qui permet de récupérer du glycérol résiduel d'une part et une phase lipidique d'autre part, et/ou une étape de filtration. La phase lipidique restante peut ensuite être lavée à l'eau et séchée sous vide.

La phase lipidique résultante (phase contenant des typiquement des esters alkyliques et enrichie en composés insaponifiables (ou pas) polaires) subit ensuite une étape c) de concentration pour obtenir un mélange enrichi en fraction insaponifiable et optionnellement de traitement thermique à une température supérieure ou égale à 75 °C, de préférence supérieure ou égale à 80 °C. La concentration peut être mise en œuvre avant ou après le traitement thermique, si celui-ci a lieu, ou bien ces deux étapes peuvent être réalisées de façon concomitante, si la concentration implique un chauffage à une température adéquate. A titre préférentiel, on procède à la concentration avant de réaliser le traitement thermique.

La concentration préalable de l'huile en insaponifiable permet de diminuer la quantité de matière engagée lors de l'éventuelle étape de saponification ultérieure , et donc à extraire.

L'étape de concentration c) peut en particulier être réalisée par extraction liquide-liquide, distillation ou par cristallisation, notamment cristallisation par le froid ou cristallisation par évaporation sous vide. Par distillation, on entend toute technique connue de l'homme du métier notamment, la distillation moléculaire, la distillation à pression atmosphérique ou sous vide, multi-étagée en série (notamment dans un évaporateur à film raclé ou à flot tombant), la distillation azéotropique, l'hydrodistillation, l'entraînement à la vapeur, la désodorisation notamment dans un désodoriseur couche-mince fonctionnant sous vide avec ou sans injection de vapeur ou d'un gaz inerte (azote, gaz carbonique).

La technique préférée est la distillation moléculaire, terme par lequel on entend une distillation fractionnée sous vide poussé à température élevée mais avec un temps de contact très court, qui évite ou limite la dénaturation des molécules sensibles à la chaleur.

Cette étape de distillation moléculaire, ainsi que toutes les autres distillations moléculaires pouvant être mises en œuvre dans les procédés de l'invention, est réalisée en utilisant une unité de distillation à court trajet, de préférence un dispositif choisi parmi les distillateurs moléculaires de type centrifuge et les dispositifs moléculaires de type à film raclé.

Les distillateurs moléculaires de type centrifuge sont connus de l'homme du métier. Par exemple, la demande EP-0 493 144 décrit un distillateur moléculaire de ce type. D'une manière générale, le produit à distiller est étalé en couche mince sur la surface chauffée (surface chaude) d'un rotor conique tournant à grande vitesse. L'enceinte de distillation est placée sous vide. Dans ces conditions, il y a évaporation et non pas ébullition, depuis la surface chaude, des constituants de l'insaponifiable, l'avantage étant que ces produits fragiles ne sont pas dégradés au cours de l'évaporation.

Les distillateurs moléculaires de type à film raclé, également connus de l'homme du métier, comprennent une chambre de distillation dotée d'un racleur tournant, permettant l'étalement en continu sur la surface d'évaporation (surface chaude) du produit à distiller. Les vapeurs de produit sont condensées par le biais d'un doigt réfrigéré, placé au centre de la chambre de distillation. Les systèmes périphériques d'alimentation et de vide sont très proches de ceux d'un distillateur centrifuge (pompes d'alimentation, pompes à vide à palette et à diffusion d'huile, etc.). La récupération des résidus et des distillais dans des ballons en verre, se fait par écoulement gravitationnel.

La distillation moléculaire est réalisée de préférence à une température allant de 100 à

260 °C en maintenant une pression allant de 10 3 à 10 ~2 mm Hg et de préférence de l'ordre de 10 ~3 mm Hg. Ces conditions sont plus douces que celles des procédés antérieurs mettant en jeu une distillation de triglycérides plutôt que de monoesters d'acides gras, ce qui permet d'éviter la décomposition de pigments colorés entraînant une coloration quasi-irréversible du résidu.

La concentration en insaponifiable du distillât peut atteindre 60 % en masse. Dans le cas de l'avocat, même si le temps de contact des composés avec la zone chauffée est très court, certains précurseurs de lipides furaniques peuvent être cyclisés en lipides furaniques à ce stade. Ce phénomène reste toutefois marginal. Il est également possible d'avoir recours à une distillation classique, qui, dans le cas de l'avocat, permettrait une cyclisation complète des précurseurs de lipides furaniques via un chauffage à 75°C ou plus, de préférence à 80°C ou plus.

La distillation permet généralement d'obtenir une fraction légère (premier distillât), comprenant des esters (typiquement alkyliques) d'acides gras de haute pureté, séparée de la fraction insaponifiable, et au moins une fraction plus lourde (second distillât ou résidu), comprenant la fraction insaponifiable diluée dans des esters (typiquement alkyliques) d'acides gras résiduels.

La fraction contenant des esters d'acides gras de haute pureté, c'est-à-dire des esters généralement limpides et incolores présentant de préférence une teneur en esters supérieure à 98 % en masse et une teneur en insaponifiables de préférence inférieure à 1 %, mieux inférieure à 0,1 % en masse, peut être utilisée directement notamment en cosmétique ou en pharmacie. Si la pureté de la fraction ester obtenue à l'issue de l'étape de concentration est insuffisante, cette fraction peut être raffinée pour améliorer sa pureté, notamment par distillation moléculaire.

Dans le cas de l'avocat, le concentrât enrichi en fraction insaponifiable (et appauvri en esters d'acides gras) contient à ce stade des précurseurs de lipides furaniques (peu volatils) et/ou des lipides furaniques (qui sont moins volatils que les monoesters d'acides gras), si l'étape de traitement thermique qui va maintenant être décrite a eu lieu avant ou pendant l'étape de concentration.

Dans le cas de l'avocat, l'étape de traitement thermique à 75-80 °C ou plus de la phase lipidique ayant ou non déjà été concentrée est obligatoire. Elle est destinée à réaliser la cyclisation des précurseurs de lipides furaniques en lipides furaniques. Cette étape peut être réalisée avant ou après l'étape de saponification (si elle a lieu), de préférence avant, car dans le cas contraire, la saponification transformerait les précurseurs de lipides furaniques en dérivés insaponifiables modifiés (c'est-à-dire autres que les composés furaniques), qui présentent moins d'intérêt. La durée de ce traitement est généralement de 0,5 à 5 heures, selon la méthode de chauffage employée. La température employée pour le traitement est généralement inférieure ou égale à 150°C, de préféence inférieure ou égale à 120°C. On comprend bien entendu que la température et le temps de réaction sont deux paramètres liés l'un à l'autre quant au résultat escompté du traitement thermique qui est de promouvoir la cyclisation des précurseurs de lipides furaniques.

Avantageusement, on effectue ce traitement thermique sous atmosphère inerte, notamment sous un courant continu d'azote. Elle est de préférence réalisée sous pression atmosphérique.

L'étape de traitement thermique peut être mise en œuvre en présence ou non d'un catalyseur acide. On entend par catalyseur acide les catalyseurs minéraux et organiques dits homogènes tels que les acides chlorhydrique, sulfurique, acétique ou paratoluènesulfonique mais aussi, et de préférence, les catalyseurs solides hétérogènes tels que la silice, l'alumine, les silices-alumines, les zircones, les zéolithes, les résines acides. On choisira en particulier les alumines acides de grandes surfaces spécifiques, c'est à dire au moins égales à 200 m 2 /g. On préfère pour la mise en œuvre du procédé de l'invention les catalyseurs de type alumine acide. Le concentrât ayant éventuellement subi le traitement thermique peut ensuite être soumis à des étapes d) de saponification du mélange enrichi en fraction insaponifiable et e) d'extraction de la fraction insaponifiable du mélange saponifié, selon le type de matière première utilisée. Dans le cas de l'avocat, notamment, les étapes d) et e) sont réalisées, afin de séparer les glycérides. Dans d'autres cas, il est possible de ne pas effectuer les étapes d) et e) et d'isoler une huile contenant la fraction insaponifiable accompagnée d'autres composés tels que des (mono)esters d'acides gras.

La saponification est une réaction chimique transformant un ester en un ion carboxylate hydrosoluble et en alcool. Dans le cas présent, la saponification convertit notamment les esters d'acides gras en acides gras et en alcool, l'alcool libéré étant principalement l'alcool léger utilisé au cours de l'étape de trituration réactive pour réaliser la transestérification.

L'étape de saponification peut être mise en œuvre en présence de potasse ou de soude en milieu alcoolique, de préférence éthanolique. Des conditions expérimentales typiques sont une réaction en présence de potasse 12N sous reflux d'éthanol pendant 4 heures. A ce stade et de façon optionnelle, un cosolvant peut être avantageusement utilisé pour améliorer en particulier la cinétique de la réaction ou protéger les composés insaponifiables sensibles aux pH basiques. Ce cosolvant peut notamment être choisi parmi les terpènes (limonène, alpha et béta pinène, etc.), les alcanes, notamment les paraffines.

On extrait ensuite une ou plusieurs fois la fraction insaponifiable du mélange saponifié. Préférentiellement, cette étape est réalisée par extraction liquide-liquide à l'aide d'au moins un solvant organique approprié, c'est-à-dire non miscible avec la solution alcoolique ou hydroalcoolique résultant de la saponification. Elle permet de séparer les sels d'acides gras (savons) formés lors de la saponification de la fraction insaponifiable.

Le solvant organique peut notamment être un solvant organique de synthèse choisi parmi les alcanes éventuellement halogénés (notamment l'éther de pétrole ou le dichlorométhane), les solvants aromatiques (notamment le trifluorotoluène, l'hexafluorobenzène), les halogéno- alcanes, les éthers (notamment l'éther diéthylique, l'éther diisopropylique, le méthyltertiobutyl éther, le méthyl-tétrahydrofurane, le 2-éthoxy-2-méthylpropane), les cétones (notamment la méthyl isobutyl cétone, la 2-heptanone), les propionates (notamment l'éthyl propionate, le n- butyl propionate, l'isoamyl propionate), l'hexaméthyldisiloxane, le tétraméthylsilane, le diacétone alcool, le 1 -butoxyméthoxy butane, le 3-méthoxy-3-méthyl-1 -butanol (MMB) ou un solvant organique d'origine naturelle choisi parmi les terpènes tels que le limonène, l'alpha pinène, le bêta pinène, le myrcène, le linalol, le citronellol, le géraniol, le menthol, le citral, le citronellol, ou les dérivés organiques oxygénés d'origine naturelle notamment les éthers, aldéhydes, alcools et esters tels que par exemple le furfural et le furfurol. De préférence on choisira un terpène. L'extraction peut être réalisée sur une colonne d'extraction à co- ou à contre-courant ou encore à l'aide d'une batterie de mélangeurs décanteurs, extracteurs-colonnes ou extracteurs centrifuges. Pour une préparation à l'échelle industrielle, on pourra mettre en œuvre une extraction en continu dans un appareil d'extraction liquide-liquide en continu tel qu'une colonne puisée, un mélangeur décanteur ou équivalents.

Une fois extraite, la fraction insaponifiable est préférentiellement purifiée, en particulier par centrifugation (élimination des savons), désolvantation, lavage, séchage, filtration et/ou désodorisation sous vide. Plus précisément, l'étape de purification peut notamment être réalisée par la mise en œuvre d'une ou plusieurs des sous-étapes suivantes :

- centrifugation de la phase solvant de façon à extraire les savons résiduels, puis filtration,

- lavage à l'eau éventuellement saturée en chlorure de sodium de la phase solvant pour éliminer les traces résiduelles d'alcalinité,

- séchage par évaporation du solvant d'extraction par distillation sous vide, par hydrodistillation ou par distillation azéotropique,

- désodorisation sous vide de la fraction insaponifiable afin d'en extraire dans les conditions de désodorisation, tout contaminant restant notamment le solvant d'extraction, les pesticides, les hydrocarbures aromatiques polycycliques.

Le premier procédé selon l'invention permet d'obtenir une fraction insaponifiable de haute pureté enrichie en composés polaires (à l'exception notable, dans le cas de l'avocat, des lipides furaniques, car ceux-ci, de nature peu polaire, sont présents dans la fraction insaponifiable isolée par le premier procédé de l'invention car ils ont été formés in situ à partir de précurseurs polaires après l'étape d'extraction sélective des composés polaires). De manière non exhaustive, les composés insaponifiables obtenus à l'issue de la mise en œuvre de ce procédé dans la fraction isolée in fine peuvent être, selon la nature de la matière première utilisée, les alcools gras éventuellement polyhydroxylés, les lipides furaniques (dans le cas de l'avocat), les stérols et alcools triterpéniques non estérifiés (libres) ou non glycosylés, les polyphénols libres et glycosylés, le cholestérol libre ou sulfaté, les lignanes, les esters de phorbols, les acides triterpéniques (par ex. l'acide ursolique), les terpènes polaires (mono, di et sesquiterpènes, à fonction alcool), les alcaloïdes, les polycosanols, les limonoïdes, les xanthophylles (lutéine, astaxanthine, zéaxanthine) libres, le gossypol, la karanjine, la shizandrine, l'azadirachtine, la co- enzyme Q10, les aflatoxines, notamment B1 et B2, les isoflavones, la caféine, la théobromine, la yohimbine, la sylimarine, le lupéol, l'allantoïne.

D'une façon générale, la composition moyenne d'un insaponifiable d'avocat obtenu à la suite de ces différentes étapes (dont les étapes d) et e)) est la suivante, en pourcentages en masse par rapport à la masse totale de l'insaponifiable :

- lipides furaniques 50-75 %

- alcools gras polyhydroxylés 5-30 %

- squalène 0,1 -5%

- stérols 0,1 -5 %

- autres 0-15 % Selon l'invention, l'insaponifiable obtenu comme décrit peut ensuite être soumis à une (seconde) étape de distillation afin d'améliorer encore sa pureté, de préférence une distillation moléculaire, réalisée de préférence à une température allant de 100 à 160 °C, mieux de 100 à 140 °C, sous une pression allant de préférence de 10 3 à 5.10 "2 mm Hg. Selon un autre mode de réalisation, la température employée varie de 130 à 160 ° C.

La température et la pression choisies lors de cette distillation influencent la constitution du distillât récupéré. Ainsi, cette (seconde) distillation peut permettre d'obtenir un distillât comprenant principalement, dans le cas de l'avocat, des lipides furaniques d'avocat, dont la pureté peut dépasser 90 % en masse, lorsque la température de distillation varie de 100 à 140 °C. Lorsque la température de distillation variede 130 à 160 ° C, on obtient généralement un distillât comprenant principalement des lipides furaniques d'avocat et dans une moindre mesure des alcools gras polyhydroxylés d'avocat, dont la teneur combinée peut dépasser 90 % en masse.

Ce premier procédé de l'invention permet donc d'obtenir une extraction sélective non seulement des lipides furaniques d'avocat, mais aussi des alcools gras polyhydroxylés d'avocat si ceux-ci sont désirés.

Par ailleurs, les composés insaponifiables obtenus à l'issue de la mise en œuvre de ce procédé dans la fraction isolée à partir de la phase solvant apolaire, in fine peuvent être, selon la nature de la matière première utilisée, les esters de stérols, les alcools triterpéniques estérifiés, les esters de cholestérol, les tocophérols (et tocotriénols correspondants), la sésamoline, la sésamine, les stérènes, le squalène, les hydrocarbures paraff iniques, les terpènes peu polaires à apolaires (mono, di et sesquiterpènes à fonction aldéhyde et/ou cétone), les xanthophylles estérifiés (lutéine, astaxanthine, zéaxanthine), les pigments de type caroténoïdes (béta-carotène, lycopène), les cires, le calciférol, le cholécalciférol, le pongamol.

Le second procédé de l'invention va maintenant être présenté en explicitant essentiellement les différences par rapport au premier procédé de l'invention. Il convient de noter que le lecteur pourra se référer à la description du premier procédé de l'invention en ce qui concerne toutes les autres caractéristiques, qui sont communes aux deux procédés.

Les matières premières renouvelables mises en jeu dans le second procédé de l'invention ne sont pas particulièrement limitées et contiennent optionnellement des constituants lipidiques fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther ou aminé. Elles contiennent nécessairement des constituants lipidiques qui ne sont fonctionnalisés par aucune des fonctions précitées (ou du moins par peu de ces fonctions), ceux-ci étant les plus courants dans la nature.

Ce procédé comprend une première étape a) de déshydratation et éventuellement de conditionnement de la matière première renouvelable. La déshydratation et le conditionnement ne sont pas nécessairement effectués à une température inférieure ou égale à 80°C ou 75°C. Ladite température est de préférence supérieure ou égale à - 50 °C. Lorsqu'un chauffage est mis en jeu, la température varie généralement de 50 à 120 ° C, mieux de 75 à 120° C.

Comme pour le premier procédé, la déshydratation peut être mise en œuvre avant ou après le conditionnement (lorsqu'il a lieu). Elle dure de préférence de 8 à 36 heures.

La matière première renouvelable subit optionnellement (cas de l'avocat en particulier) un traitement thermique comme décrit notamment dans la demande de brevet FR 2678632, à une température supérieure ou égale à 75 °C, de préférence supérieure ou égale à 80 °C, avant ou pendant l'étape b), de préférence avant l'étape a), pendant l'étape a) ou entre l'étape a) et l'étape b) de trituration réactive. Idéalement, le traitement thermique et la déshydratation de la matière première ont lieu simultanément et constituent une seule et même étape.

Dans le cas de l'avocat, cette étape de traitement thermique à 75° C ou plus de la matière première ayant ou non déjà été conditionnée et/ou déshydratée est obligatoire. Comme pour le premier procédé décrit, elle est destinée à promouvoir la cyclisation des précurseurs de lipides furaniques en lipides furaniques. La durée de ce traitement est généralement de 8 à 36 heures, selon la méthode de chauffage employée. La température employée pour le traitement est généralement inférieure ou égale à 150°C, de préféence inférieure ou égale à 120°C. Avantageusement, on effectue ce traitement thermique sous atmosphère inerte, notamment sous un courant continu d'azote. Il est de préférence réalisé sous pression atmosphérique.

Une fois déshydratée et éventuellement conditionnée, la matière première subit une étape b) de trituration réactive en présence d'au moins un solvant organique polaire comprenant au moins un alcool léger, d'au moins un cosolvant apolaire non miscible avec ledit alcool léger et d'au moins un catalyseur. Comme dans le premier procédé, ces solvants et cosolvants peuvent être anhydres ou non, de l'eau pouvant être ajoutée au mélange de solvants d'extraction.

Cette étape permet d'une part d'extraire les matières grasses, en particulier l'huile de la matière première déshydratée et en même temps de la transestérifier, et d'autre part d'isoler une fraction enrichie en constituants lipidiques ne contenant (ou peu) pas de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, et une fraction enrichie en constituants lipidiques polaires, notamment fonctionnalisés par une ou plusieurs fonctions hydroxyle (de préférence aliphatique), époxyde, cétone, thiol, aldéhyde, éther ou aminé.

L'ajout d'un cosolvant apolaire favorise l'obtention d'un milieu hétérogène et de deux phases lipidiques dont les constitutions seront très différentes. D'une part, les constituants lipidiques non fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther ou aminé se retrouveront préférentiellement dans la phase apolaire, alors que les constituants lipidiques les plus polaires, notamment ceux fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, se retrouveront préférentiellement dans la phase polaire (alcool léger).

Cette étape permet l'extraction sélective des constituants lipidiques peu ou pas polaires (insaponifiables ou non), qui ne sont fonctionnalisés par aucune des fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé (ou du moins par peu de ces fonctions), qui sont séparés du mélange de constituants lipidiques comportant une ou plusieurs de ces fonctions, de préférence plusieurs (par exemple les polyols), présents dans le milieu suite à la réaction de transestérifîcation.

Selon le type de matière première utilisée, ces constituants lipidiques pas ou peu polaires pourront être, sans limitation, des esters d'acides gras ne contenant pas de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé, des lipides furaniques (dans le cas de l'avocat, les précurseurs de lipides furaniques ont déjà été convertis en lipides furaniques avant le début de l'étape de trituration réactive, ces lipides furaniques étant non hydroxylés), des alcools faiblement polaires tels que les tocophérols, le squalène, les xanthophylles et stérols estérifiés.

L'étape b) est réalisée dans des conditions de température, d'agitation et de durée suffisantes pour permettre l'extraction des triglycérides et autres constituants lipidiques à partir de la matière première et la transestérifîcation desdits triglycérides, conduisant à l'obtention d'un mélange comprenant notamment des esters d'acides gras, du glycérol, la fraction insaponifiable native (non modifiée par cette étape) et un tourteau. Cette étape b), au contraire de celle du premier procédé, est effectuée sans limitation quant à la température, c'est-à-dire que celle-ci peut dépasser 75 ou 80 °C dans tous lescas. L'étape b) est généralement conduite à température ambiante mais peut aussi être réalisée en mettant en œuvre un chauffage à une température allant de 40 à 100 0 C.

Le cosolvant apolaire, non miscible avec l'alcool léger (dans les conditions de la trituration réactive), est de préférence choisi de telle sorte que les constituants lipidiques fonctionnalisés par une ou plusieurs fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther ou aminé que l'on ne souhaite pas extraire ne soient pas solubles dans ce cosolvant. Compte tenu de leur nature chimique, ces constituants lipidiques fonctionnalisés auront nécessairement plus d'affinité avec la phase alcool léger qu'avec la phase solvant apolaire dans laquelle ils sont peu (de préférence pas) solubles.

L'étape de trituration réactive permet de récupérer (notamment après filtration et lavage du tourteau avec un solvant tel qu'un alcool léger) d'une part deux phases liquides lipidiques non miscibles, du glycérol et d'autre part un tourteau solvanté. La phase polaire (alcoolique, phase notée A) dans laquelle sont solubles notamment les lipides fonctionnalisés par des groupes hydroxyle (de préférence aliphatiques) et/ou époxyde tels que les alcools gras polyhydroxylés est séparée de la phase apolaire. Ladite phase apolaire contient en outre notamment une proportion élevée d'esters d'acides gras. La séparation des différentes fractions peut se faire de différentes façons, notamment par centrifugation, décantation et/ou distillation.

Ainsi la phase solvant polaire peut être soumise à une étape d'évaporation du solvant réalisée sous un vide et une température adaptés. Le solvant vaporisé est alors condensé pour être recyclé. La phase polaire (phase A), une fois séparée du glycérol par décantation (suivie ou non de lavages à l'eau), principalement constituée d'esters alkyliques et de composés insaponifiables (ou pas) polaires peut ensuite être engagée en distillation moléculaire afin de obtenir d'une part, des esters purifiés (dans le distillât) et d'autre part, un résidu de distillation enrichi en composés mineurs polaires. L'extraction de ces composés principalement insaponifiables est réalisée selon les procédés connus de l'homme de métier. Par exemple par réalisation de la séquence suivante : 1 ) saponification des esters alkyliques, 2) extraction liquide-liquide permettant de séparer les composés insaponifiables des savons, 3) désolvantation de la phase solvant enrichie en insaponifiables et 4) purification finale de l'insaponifiable. Une autre variante consiste à saponifier directement la phase A et à extraire les composés insaponifiables principalement polaires par 1 ) extraction liquide-liquide permettant de séparer les composés insaponifiables des savons, 2) désolvantation de la phase solvant enrichie en insaponifiables et 3) purification finale de l'insaponifiable.

Le cosolvant apolaire est évaporé de la phase apolaire enrichie en lipides ne contenant pas de fonctions hydroxyle, époxyde, cétone, thiol, aldéhyde, éther et aminé (ou peu de ces fonctions) (insaponifiables ou non) notamment sous pression réduite. Le produit lipidique obtenu peut subir une étape de neutralisation (avant ou après l'évaporation du cosolvant apolaire, de préférence avant), préférentiellement par un acide, puis une étape de décantation ou centrifugation qui permet de récupérer du glycérol résiduel d'une part et une phase lipidique d'autre part, et/ou une étape de filtration. La phase lipidique restante peut ensuite être lavée à l'eau et séchée sous vide.

La phase lipidique résultante (phase contenant des typiquement des esters alkyliques et enrichie en composés insaponifiables (ou pas) apolaires) subit ensuite une étape c) de concentration pour obtenir un mélange enrichi en fraction insaponifiable. Comme pour le premier procédé, la technique de concentration préférée est la distillation moléculaire.

La distillation permet généralement d'obtenir une fraction légère (premier distillât), comprenant des esters (typiquement alkyliques) d'acides gras de haute pureté, et au moins une fraction plus lourde (second distillât ou résidu), comprenant la fraction insaponifiable diluée dans des esters (typiquement alkyliques) d'acides gras, présents en quantité non négligeable.

Dans le cas de l'avocat, le concentrât enrichi en fraction insaponifiable (et appauvri en esters d'acides gras) contient à ce stade des lipides furaniques (généralement à une teneur de l'ordre de 10-15 % en masse), qui sont moins volatils que les monoesters d'acides gras. Ces composés furaniques sont présents seulement à l'état de traces dans la fraction légère comprenant essentiellement des esters d'acides gras.

Le concentrât est ensuite optionnellement soumis à des étapes d) de saponification du mélange enrichi en fraction insaponifiable et e) d'extraction de la fraction insaponifiable du mélange saponifié. Une fois extraite, la fraction insaponifiable est préférentiellement purifiée, selon les mêmes techniques que celles décrites pour le premier procédé de l'invention. Le second procédé selon l'invention permet d'obtenir une fraction insaponifiable de haute pureté, enrichie en composés peu polaires à apolaires. De manière non exhaustive, les composés insaponifiables obtenus à l'issue de la mise en œuvre de ce procédé dans la fraction isolée in fine peuvent être, selon la nature de la matière première utilisée, les lipides furaniques (dans le cas de l'avocat), les esters de stérols, les alcools triterpéniques estérifiés, les esters de cholestérol, les tocophérols (et tocotriénols correspondants), la sésamoline, la sésamine, les stérènes, le squalène, les hydrocarbures paraffiniques, les terpènes peu polaires à apolaires (mono, di et sesquiterpènes à fonction aldéhyde et/ou cétone), les xanthophylles estérifiés (lutéine, astaxanthine, zéaxanthine), les pigments de type caroténoïdes (béta-carotène, lycopène), les cires, le calciférol, le cholécalciférol, le pongamol.

D'une façon générale, la composition moyenne d'un insaponifiable d'avocat obtenu à la suite de ces différentes étapes (dont les étapes d) et e)) est la suivante, en pourcentages en masse par rapport à la masse totale de l'insaponifiable est la suivante :

- lipides furaniques 60-80 %

- squalène 1 -7 %

- autres 5-20 % (hydrocarbures, tocophérols, cétones grasses, pigments lourds...)

- alcools gras polyhydroxylés 0,1 -10%

Selon l'invention, l'insaponifiable obtenu comme décrit peut ensuite être soumis à une (seconde) étape de distillation afin d'améliorer encore sa pureté, de préférence une distillation moléculaire, réalisée de préférence à une température allant de 100 à 160 °C, mieux de 100 à 140 °C, sous une pression allant de préférence de 10 3 à 5.10 "2 mm Hg. Cette (seconde) distillation peut permettre d'obtenir un distillât comprenant principalement, dans le cas de l'avocat, des lipides furaniques d'avocat, dont la pureté peut dépasser 90 % en masse.

Ce second procédé de l'invention permet donc d'obtenir une extraction sélective des lipides furaniques de l'avocat, à l'exclusion des alcools gras polyhydroxylés d'avocat qui ont été extraits dans la phase polaire lors de l'étape de trituration réactive.

Par ailleurs, les composés insaponifiables obtenus à l'issue de la mise en œuvre de ce procédé dans la fraction isolée à partir de la phase solvant polaire, in fine peuvent être, selon la nature de la matière première utilisée, les lipides furaniques (dans le cas de l'avocat), les alcools gras éventuellement polyhydroxylés, les lipides furaniques (dans le cas de l'avocat), les stérols et alcools triterpéniques non estérifiés (libres) ou non glycosylés, les polyphénols libres et glycosylés, le cholestérol libre ou sulfaté, les lignanes, les esters de phorbols, les acides triterpéniques (par ex. l'acide ursolique), les terpènes polaires (mono, di et sesquiterpènes, à fonction alcool), les alcaloïdes, les polycosanols, les limonoïdes, les xanthophylles (lutéine, astaxanthine, zéaxanthine) libres, le gossypol, la karanjine, la shizandrine, l'azadirachtine, la co- enzyme Q10, les aflatoxines, notamment B1 et B2, les isoflavones, la caféine, la théobromine, la yohimbine, la sylimarine, le lupéol, l'allantoïne. L'invention présente de nombreux avantages par rapport aux procédés classiques existants utilisés pour l'extraction à partir d'huiles ou d'échappées de désodorisation. Tout d'abord, le procédé selon l'invention est économique car il ne nécessite pas les investissements lourds des procédés classiques. En termes d'investissement, le procédé selon l'invention permet de s'affranchir des outils de trituration mécanique comme une presse à vis ou un extracteur à l'hexane, et des outils de raffinage (démucilagination, neutralisation). En outre, contrairement à la trituration mécanique ou évaporative à l'hexane, et au raffinage, la trituration réactive selon l'invention n'entraîne pas de forte consommation d'énergie. Elle nécessite en outre une consommation en eau douce moindre en comparaison des opérations de raffinage des huiles brutes.

De plus, l'invention est très avantageuse en termes de co-valorisation, car la mise en œuvre des procédés selon l'invention conduit à des coproduits à haute valeur ajoutée tels que :

- des esters, généralement des esters alkyliques, de pureté élevée, directement valorisâmes en cosmétique ou en pharmacie (au contraire des procédés antérieurs mettant en jeu une étape de distillation portant sur un mélange contenant des triglycérides, une telle distillation générant une huile fortement colorée et difficilement purifiable car nécessitant une température plus élevée que celle éventuellement mise en jeu dans l'invention, laquelle porte sur un mélange contenant des monoesters d'acides gras issus de transestérification, plus légers que les triglycérides),

- du glycérol, qui trouve des applications en cosmétique, pharmacie, hygiène, fluides antigels, etc.,

- des tourteaux débarrassés des composés toxiques ou antinutritionnels éventuellement présents dans la biomasse de départ et directement valorisâmes en alimentation animale ou humaine, ou encore des tourteaux sources d'oligopeptides et/ou d'oligosaccharides d'intérêt, - des polysaccharides et des polyphénols valorisâmes en cosmétique, pharmacie et nutrition animale et humaine.

Sur un plan économique et environnemental, les procédés de l'invention permettent non seulement une valorisation quasi-totale du fruit contrairement aux procédés actuels et de fait une économie de biomasse, voire de terres cultivées, mais ils permettent aussi d'améliorer l'ensemble de la chaîne de valeur, de l'agriculteur en amont jusqu'à l'utilisateur aval, desdits insaponifiables. Enfin, il est en accord avec les principes clés des modèles de bioraffineries aujourd'hui en développement pour de multiples usages, en particulier énergétique et industriel.

Les fractions insaponifiables obtenues par les procédés de l'invention présentent une composition très proche, voire identique à celle de l'insaponifiable présent dans la matière première avant traitement.

Avantageusement, ces fractions insaponifiables et ces coproduits selon l'invention ne contiennent pas de solvant résiduel toxique et présentent donc une bien meilleure innocuité et acceptabilité réglementaire que les produits obtenus par la mise en œuvre de procédés classiques. Ces caractéristiques particulières permettent une utilisation plus adaptée des fractions insaponifiables obtenues par les procédés de l'invention et/ou des coproduits obtenus dans des compositions cosmétiques, médicamenteuses, alimentaires ou compléments ou additifs alimentaires pour l'être humain et/ou l'animal.

De même, le procédé selon l'invention permettra de séparer et/ou concentrer, selon leur polarité, les contaminants pouvant être présents dans les biomasses végétales ou animales : hydrocarbures aromatiques polycycliques (HAPs), pesticides, polychlorobyphényles (PCBs), dioxines, agents bromés anti-feu, produits pharmaceutiques, ....

La fraction insaponifiable de l'avocat obtenue par les procédés de l'invention peut notamment être utilisée pour la fabrication d'un médicament destiné par exemple au traitement des affections des articulations, plus particulièrement au traitement de l'arthrose et au traitement des arthrites (c'est à dire l'arthrite rhumatoïde, l'arthrite psoriasique, l'arthrite de Lyme et/ou tout autre type d'arthrite). Le médicament ainsi préparé peut être destiné au traitement des affections parodontales, et en particulier au traitement de la périodontite. Ce médicament peut par ailleurs être destiné au traitement de l'ostéoporose. En outre, ce médicament peut être destiné à moduler la différenciation des cellules nerveuses induites par le NGF (Nerve Growth Factor). Enfin, ce médicament peut être destiné à la réparation tissulaire, et en particulier à la réparation tissulaire cutanée, notamment dans le cadre d'une application dermatologique.

La fraction insaponifiable de l'avocat issue des procédés de l'invention peut aussi être employée dans des compositions cosmétiques, notamment dermo-cosmétiques, pour le traitement cosmétique de la peau, des muqueuses voisines et/ou des phanères (vieillissement, cicatrices...), des fibres capillaires ou du bulbe pileux, en présence d'un excipient et/ou véhicule cosmétiquement acceptable.

De même, les coproduits du procédé tels que les protéines et les hydrates de carbone peuvent selon leur nature conduire tels quels ou après transformation à la production de principes actifs ou d'excipients destinés notamment à la pharmacie, à la cosmétique et à la nutrition applicables à l'homme ou à l'animal.

EXEMPLES

Extraction sélective des composés insaponifiables de l'avocat

40 kg d'avocats de la variété Haas sont coupés entiers (noyau compris) en tranches d'épaisseur de 0,5 cm au maximum. 20 kg de tranches sont ensuite séchées dans une étuve ventilée à 70°C pendant 16 heures (lot A). On obtient après séchage 1254 g d'avocat séché.

Les 20 autres kilogrammes sont quant à eux séchés à 90 °C pendant 16 heures, afin d'atteindre une humidité résiduelle de 2% (Lot B). On obtient après séchage 1327 g d'avocat séché. Les quantités de lipides présents dans les broyats A et B sont alors déterminés selon la méthode normalisée (NF EN ISO 659)

Le lot A est alors soumis aux actions suivantes :

1 ) broyage en poudre grossière (granulométrie comprise entre 0,3 et 0,8 cm de diamètre). 2) introduction du broyât dans une colonne de percolation à lit fixe (1 100 g) ;

3) un mélange biphasique de solvants éthanol (1 100g) / hexane (1 100 g) et 3,6 g de soude en écailles comme catalyseur (soude préalablement dissoute dans l'éthanol) est alors envoyé sur le lit de flocons pendant 30 minutes à 40 °C.

4) le miscella biphasique (phase solvant issue de l'extraction liquide-solide) est ensuite soutiré. Le lit de flocons est alors lavé par 5 lavages successifs avec le mélange éthanol/hexane à 40 °C (5 minutes par lavage).

5) le miscella biphasique est alors centrifugé de façon à séparer les phases éthanolique et hexanique. Les solvants des 2 phases organiques récupérées sont alors évaporées sous un vide de 20 mbar, à 90 °C pendant 20 minutes. Le glyoérol est alors séparé de la phase lipidique ex-éthanolique par simple centrifugation.

6) Les lipides obtenus après évaporation de leur solvant respectif (éthanol ou hexane), accompagnés ou pas de gommes insolubles (produits insolubles dans l'huile extraits du flocon au cours du procédé), sont lavés jusqu'à neutralité par ajout d'eau chaude et centrifugation. Enfin, ils sont séchés sous un vide de 20 mbar, à 90 °C, pendant 5 minutes. On obtient respectivement 412 g de lipides issus de la phase hexanique et 176 g provenant de la phase éthanolique.

Les lipides de la phase hexanique sont alors analysés :

- indice de saponification (méthode NF IS03657) : 186,4 mg KOH/g

- indice d'acide (méthode NFT 60-204) : 2,1 mg KOH/g

- teneur en insaponifiable (méthode NF ISO 3596 modifiée dans laquelle le solvant d'extraction est le dichloroéthane) : 0,32 %.

Une analyse en chromatographique couche mince indique que les lipides ne contiennent que quelques traces d'alcools gras polyhydroxylés de l'avocat et de précurseurs des furanes.

Par conséquent, le procédé conduit bien à une phase lipidique apolaire appauvrie en composés insaponifiables polaires de l'avocat.

Les lipides issus de la phase éthanolique sont alors chauffés dans un ballon équipé d'un Dean-stark à 120 °C pendant 12 heures. Après ce tratement thermique, une analyse chromatographique couche mince (CCM), indique que les lipides contiennent en quantité importante les composés furaniques et les alcools gras polyhydroxylés de l'avocat, ces composés présentant des spots caractéristiques en CCM.

Les lipides de la phase éthanolique sont caractérisés au plan analytique :

- indice de saponification (méthode NF IS03657) : 171 ,1 mg KOH/g

- indice d'acide (méthode NFT 60-204) : 3,3 mg KOH/g - teneur en insaponifiable (méthode NF ISO 3596 modifiée dans laquelle le solvant d'extraction est le dichloroéthane) : 6,1 %.

Au vu des caractérisations analytiques, le procédé d'extraction mis en œuvre permet bien d'extraire sélectivement les composés polaires de l'insaponifiable d'avocat séché (spots de CCM caractéristiques des alcools gras polyhydroxylés et présence de lipides furaniques issus de la cyclisation des précurseurs furaniques résultant du traitement thermique) et ce, avec un excellent rendement (teneur en insaponifiable très supérieure à 4%).

La fraction insaponifiable est alors lavée, séchée, concentrée par distillation moléculaire, saponifiée, extraite et purifiée selon le même protocole que celui de l'exemple n °2 de la demande WO 201 1/048339.

Une analyse CCM de l'insaponifiable révèle les spots caractéristiques des lipides furaniques (spots très intenses), des alcools gras hydroxylés (spots moins intenses) et des phytostérols (spots peu intenses). Le lot B est alors soumis aux actions suivantes :

1 ) broyage en poudre grossière (granulométrie comprise entre 0,3 et 0,8 cm de diamètre).

2) introduction du broyât dans la colonne de percolation à lit fixe ;

3) un mélange biphasique de solvants éthanol (1 100g) / hexane (1 100 g) et 3,6 g de soude en écailles comme catalyseur (soude préalablement dissoute dans l'éthanol) est alors envoyé sur le lit de flocons pendant 30 minutes à 40 °C.

4) le miscella biphasique (phase solvant issue de l'extraction liquide-solide) est ensuite soutiré. Le lit de flocons est alors lavé par 5 lavages successifs avec le mélange éthanol/hexane à 40 °C (5 minutes par lavage).

5) le miscella biphasique est alors centrifugé de façon à séparer les phases éthanolique et hexanique. Les 2 phases organiques récupérées sont alors évaporées sous un vide de 20 mbar, à 90 °C pendant 20 minutes. Le glycérol est abrs séparé de la phase lipidique ex- éthanolique par simple centrifugation.

6) Les lipides obtenus après évaporation de leur solvant respectif (éthanol ou hexane), accompagnés ou pas de gommes insolubles (produits insolubles dans l'huile extraits du flocon au cours du procédé), sont lavés jusqu'à neutralité par ajout d'eau chaude et centrifugation. Enfin, ils sont séchés sous un vide de 20 mbar, à 90 °C, pendant 5 minutes. On obtient respectivement 412 g de lipides issus de la phase hexanique et 176 g provenant de la phase éthanolique.

Les lipides de la phase hexanique sont alors analysés :

- indice de saponification (méthode NF IS03657) : 179,5 mg KOH/g

- indice d'acide (méthode NFT 60-204) : 0,9 mg KOH/g

- teneur en insaponifiable (méthode NF ISO 3596 modifiée dans laquelle le solvant d'extraction est le dichloroéthane) : 5,3 %. Une analyse en chromatographique couche mince, indique que les lipides de la phase hexanique sont principalement constitués de lipides furaniques et quelques traces d'alcools gras polyhydroxylés.

Par conséquent, le procédé conduit bien à une phase lipidique apolaire enrichie en lipides furaniques et appauvrie en composés insaponifiables polaires de l'avocat tels que les alcools gras polyhydroxylés.

Les lipides issus de la phase éthanolique sont analysés par chromatographie couche mince (CCM). Cette analyse indique que cette phase contient en quantité importante les alcools gras polyhydroxylés de l'avocat ainsi que des traces de lipides furaniques.

Les lipides de la phase éthanolique sont caractérisés au plan analytique :

- indice de saponification (méthode NF IS03657) : 176,1 mg KOH/g

- indice d'acide (méthode NFT 60-204) : 3,1 mg KOH/g

- teneur en insaponifiable (méthode NF ISO 3596 modifiée dans laquelle le solvant d'extraction est le dichloroéthane) : 1 ,2 %.

Au vu des caractérisations analytiques, le procédé d'extraction mis en œuvre permet bien d'extraire sélectivement les composés polaires de l'insaponifiable d'avocat séché (spots de CCM caractéristiques des alcools gras polyhydroxylés).

La fraction insaponifiable des lipides issus de la phase hexanique est alors lavée, séchée, concentrée par distillation moléculaire, saponifiée, extraite et purifiée selon le même protocole que celui de l'exemple n °2 de la demande WO 201 1 /043339.

Une analyse CCM de l'insaponifiable obtenu révèle les spots caractéristiques des lipides furaniques (spots très intenses), des alcools gras hydroxylés (spots très peu intenses) et des phytostérols (spots très peu intenses).

Les tourteaux solvantés issus de la transformation des lots A et B de fruits séchés sont alors désolvantés à l'étuve à 70 °C pendant 16 heures. Leurs teneurs respectives en lipides déterminées par la méthode normalisée NF EN ISO 659 sont les suivantes :

- tourteau lot A : 0,7 %/matière sèche

- tourteau lot B : 0,6 % /matière sèche

Par conséquent, le procédé conduit à des tourteaux délipidés enrichis de fait, en protéines et polysaccharides sources de principes actifs et/ou d'excipents ou pouvant encore être utilisés tels quels en nutrition humaine et animale.