Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PRODRUGS OF TREPROSTINIL
Document Type and Number:
WIPO Patent Application WO/2014/110491
Kind Code:
A1
Abstract:
Prodrugs of treprostinil are provided which can be used in the treatment of pulmonary hypertension (PH) or pulmonary arterial hypertension (PAH). The structures of the compounds can be adapted to the particular application for a suitable treatment dosage. Transdermal applications can be used.

Inventors:
BECKER CYRUS (US)
RESCOURIO GWENAELLA (US)
PFISTER JÜRG (US)
VENKATRAMAN MEENAKSHI (US)
ZHANG XIAOMING (US)
Application Number:
PCT/US2014/011260
Publication Date:
July 17, 2014
Filing Date:
January 13, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
THERATROPHIX LLC (US)
BECKER CYRUS (US)
RESCOURIO GWENAELLA (US)
International Classes:
C07C69/712; C07D317/40; C07C69/736; C07C235/06; C07C235/08; C07C235/10; C07D211/60; C07D257/06; C07D263/24; C07D265/30; C07D295/088; C07D295/145; C07D307/20; C07D321/00; C07D453/02
Domestic Patent References:
WO2005007081A22005-01-27
WO2001093862A12001-12-13
WO2005007081A22005-01-27
Foreign References:
US20130274261A12013-10-17
US3598122A1971-08-10
US4144317A1979-03-13
US4201211A1980-05-06
US4262003A1981-04-14
US4379454A1983-04-12
US5797898A1998-08-25
US6264990B12001-07-24
Other References:
WADA E ET AL., SEIKAGAKU, vol. 66, 1994, pages 15
GANES L Z ET AL., COMP BIOCHEM PHYSIOL MOL INTEGR PHYSIOL, vol. 119, 1998, pages 725
"March's Advanced Organic Chemistry, 6th Ed.,", 2007, WILEY
"Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups", JOHN WILEY AND SONS
CHEMICAL REVIEWS, vol. 107, 2007, pages 239
BEILSTEIN, JOURNAL OF ORGANIC CHEMISTRY, vol. 8, 2012, pages 1344
Attorney, Agent or Firm:
RUTT, J. Steven et al. (PLLC11800 Sunrise Valley Drive, 15th Floo, Reston Virginia, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A com ound represented by Formula (I)

wherein, R20, R21, R22, R23, R24, R25, R26, R27, R28, R30, R31, R32, R33, R34, R35, and R36 are independently H or deuterium;

Z is -OH, -OR11, -N(Rn)Ri2, -SRn, or Pi ;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

R12 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

R18 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; Ri5 and Ris taken together with the atoms to which they attach optionally fonn a 5- to 7- membered ring;

Ri5 and R1 taken together with the atoms to which they attach optionally form 7- membered ring; and, Rj and R2 are independently H or P2, wherein at least one of R and R2 is I wherein

P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4; Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I.

2. The compound of claim 1 , wherein Ri is P2 and R2 is H.

3. The compound of claim 1, wherein Ri is H and R2 is P2.

4. The compound of claim 1 , wherein Ri is P2 and R2 is P2.

5. The compound of claim 1, wherein P2 is selected from the group consisting of:

9 RieRi7 9 RIRRI79

6. The compound of claim 1, wherein P2 is selected from the group consisting of:

7. The compound of claim 1, wherein P2 is selected from the group consisting of:

The compound of claim 1, wherein P2 is selected from the group consisting of:

The compound of claim 1, wherein P2 is selected from the group consisting of:

10. The compound of claim 1, wherein P2 is selected from the group consisting of:

11. The compound of claim 1 , wherein P2 is selected from the group consisting of:

12. The compound of claim 1, wherein P2 is selected from the group consisting of:

13. The compound of claim 1, wherein P2 is selected from the group consisting of:

14. The compound of claim 1, wherein P2 is selected from the group consisting of:

15. The compound of claim 1, wherein P2 is selected from the group consisting of:

16. The compound of claim 1, wherein R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are H.

17. A compound according to claim 1, wherein at least one of R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are deuterium.

18. The compound of claim 1, wherein Z is -ORn, -N(Rn)Ri2, or Pi.

19. The compound of claim 1, wherein Z is Pi.

20. The compound of claim 1, wherein Z is -OH, -ORn, -N(Rn)Ri2, or Pi.

21. The compound of claim 1, wherein Z is -OH.

22. The compound of claim 1, wherein Z is not -OH and Rn is not unsubstituted or substituted benzyl.

wherein,

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl,

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R2 are independently H or P2, wherein at least one of Ri and R2 is P2, wherein

P2 is selected from the group consisting of:

wherein,

Ri4 is selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl; wherein Formula IA includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula IA.

24. A compound according to Formula (I)

wherein, R20, R21, R22, R23, R24, R25, R26, R27, R28, R30, R31, R32, R33, R34, R35, and R36 are independently H or deuterium; wherein Z is -ORn, -N(Rn)R12, -SRn, or Pj ;

Rn is branched alkyl, haloalkyl, halocycloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, bicycloalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, alkylaryl, substituted alkylaryl, alkylheteroaryl, substituted alkylheteroaryl;

heteroaryl, substituted heteroaryl;

R12 is H, branched alkyl, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl, alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

R18 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; Ri5 and taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R2 are independently H or P2, wherein P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I.

25. The compound of claim 24, wherein Z is -ORn.

26. The compound of claim 24, wherein Z is -N(Rn)Ri2.

27. The compound of claim 24, wherein Z is -SRn.

28. The compound of claim 24, wherein Z is Pi.

29. The compound of claim 24, wherein Z is ORn and Rn is bicycloalkyl, alkylcycloalkyl, or alkylcycloheteroalkyl.

30. The compound of claim 24, wherein Rn is haloalkyl.

31. The compound of claim 24, wherein Rn is fluoroalkyl.

32. The compound of claim 24, wherein Ri is hydrogen and R2 is P2.

33. The compound of claim 24, wherein Ri is P2 and R2 is hydrogen.

34. The compound of claim 24, wherein Ri is P2 and R2 is P2.

35. The compound of claim 24, wherein Ri and R2 are each hydrogen.

36. A compound according to claim 24, wherein R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35,and R36 are H.

37. A compound according to claim 24, wherein at least one of R2o, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are deuterium.

38. A com ound according to Formula (IAA).

wherein,

R100 and R200 are independently selected from the group consisting of H,

CONR900Riooo, CR9ooRioooOCOP3R9ooRiooo wherein, R900 and R100o are independently selected from H, alkyl, and cycloalkyl.

R300, R400, R500, R600, R700 and Rgoo is independently selected from the group consisting of H and deuterium.

X is O, NHR12oo, or S

P3 is N or O

Rnoo is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl;

R1200 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl.

39. A compound of Claim 38 wherein R100, R200 are H.

40. A compound of Claim 39 wherein R30o, R400, R500, R600, R700 and R8oo are H.

41. A compound of Claim 40 wherein X is O.

42. A compound of Claim 41 wherein Rnoo is selected from Et

43. A compound of Claim 39 wherein X is NHR^oo-

44. A compound of Claim 43 wherein Rnoo is chosen from

45. A compound of claim 38 wherein X is O.

46. A compound of claim 45 wherein R300, R400, R500, R600, R700 and Rgoo are H. 47 A compound of claim 46 wherein Rnoo is alkyl.

48. A com ound represented by Formula II:

R2 is selected from the group consisting of H and P2;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium;

Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl; Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula II includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula II.

49. The compound of claim 48, wherein R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R3I) R32, R33, R34, R35, and R36 are H.

50. A compound according to claim 48, wherein at least one of R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31 , R32, R33, R34, R35, and R36 are deuterium.

51. The compound of claim 48, wherein Li is -O-alkylene-C(O)-.

52. The compound of claim 48, wherein Li is -O-alkylene-OC(O)-.

53. The compound of claim 48, wherein Li is a bond.

54. The compound of claim 48, wherein the alkylene group is a C1-C5 alkylene group.

55. The compound of claim 48, wherein the alkylene group is a Ci alkylene group.

56. A compound according to claim 48, wherein the compound is represented by Formula IIA:

wherein Li and R2 are defined as in claim 48. 57. A compound of Formula II(AA)

wherein,

R2000 is independently selected from the group consisting of H, CONR9000R10000, CR9000R10000OCOPR9000R10000. wherein, R9000 and R10000 are independently selected from H, alkyl, cycloalkyl.

R3000, R4000, R5000, Reooo, R7000 and R800o is independently selected from the group consisting of H, deuterium. P is N, O R12000 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl. n is an integer between 1-7; and enantiomers of the compound of Formula II(AA); and Formula II(AA) includes enantiomers of Formula II(AA), pharmaceutically acceptable salts of the compounds of Formula 11(a) and polymorphs of Formula II(AA).

wherein L2 is selected from the group consisting of:

0 0 O R R O o 14

wherein, m is 1, 2, 3, or 4;

R14 is selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, substituted heteroarylalkyl; Ri6 and Rn are independently in each occurrence H or alkyl;

Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to 6- membered ring; and

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium; wherein Z is -OH, -ORn, -N(Rn)R12, -SRn, or Pj;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

R12 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula III includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula III.

59. The compound of claim 58, wherein L2 is selected from the group consisting of:

60. A compound according to claim 58, wherein R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35,and R36 are H.

61. A compound according to claim 58, wherein at least one of R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are deuterium.

62. A compound according to claim 58, wherein the compound is represented by Formula III A:

wherein Z and L2 are defined as in claim 58.

63. A com ound having Formula III(AA):

wherein,

Rn is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl, alkylcycloheteroalkyl, aryl, heteroaryl. wherein

Ro3, Ro4, Ro5, Ro6, Ro7 and Ro8 is independently selected from the group consisting of H, deuterium. wherein,

R012 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl.

Y is C=0, and enantiomers of the compound of formula III(AA);

and pharmaceutically acceptable salts of the compounds of Formula III(AA) and polymorphs of Formula III(AA).

64. A compound represented by Formula IV:

Ri is selected from the group consisting of H and P2;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium;

Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl; Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH2, aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula IV includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula IV.

65. A compound according to claim 64, wherein the compound is represented by

wherein Li and Ri are defined as in claim 64.

66. A composition comprising at least one compound according to claims 1-65 and at least one other component.

67. A composition according to claim 66 formulated for transdermal delivery.

68. A composition according to claim 66 formulated for transdermal delivery with a patch.

69. A composition according to claim 66, further comprising at least one solvent.

70. A composition of claim 63, wherein the amount of the compound according to claims 1-65 is adapted to provide a useful delivery profile for treatment of a human.

Description:
PRODRUGS OF TREPROSTINIL

DESCRIPTION OF RELATED APPLICATIONS

This application claims priority to US provisional application 61/751,608 filed January 11, 2013 which is incorporated herein by reference in its entirety for all purposes.

BACKGROUND

Pulmonary hypertension (PH) or pulmonary arterial hypertension (PAH) is a disease which can result in death and is characterized by increased pulmonary artery pressure and pulmonary vascular resistance. A need exists for better compounds and methods for treating PH and PAH. See, for example, US Patent Publication No. 2013/0274261. Many valuable pharmacologically active compounds, including some of interest with respect to PH and PAH, cannot be effectively administered orally for various reasons and are generally administered via intravenous or intramuscular routes. These routes of administration generally require intervention by a physician or other health care professional, and can entail considerable discomfort as well as potential local trauma to the patient. One example of such a compound is treprostinil and derivatives thereof, which has been used in the treatment of PH and PAH. See, for example, WO 2005/007081. The core chemical formula is (herein also labeled, Compound A):

including pharmaceutically acceptable salts such as the sodium salt.

Accordingly, there is a clinical need in providing treprostinil by improved formulations and methods, e.g., either orally or transdermally. More particularly, there is a need for a safe and effective method for increasing the systemic availability of treprostinil via administration of treprostinil or treprostinil analogs. The application of transdermal drug delivery technology to the administration of a wide variety of drugs has been proposed and various systems for accomplishing this are disclosed in numerous technical journals and patents. U.S. Pat. Nos.

3,598,122, 4,144,317, 4,201,211, 4,262,003, and 4,379,454, all of which are incorporated herein by reference, are representative of various transdermal drug delivery systems of the prior art, which systems have the ability of delivering controlled amounts of drugs to patients for extended periods of time ranging in duration from several hours to several days. None of the above patents nor any other prior art of which the inventors are aware describes a transdermal delivery system which is intended to deliver treprostinil or its derivatives nor are they aware of data on skin permeability or therapeutic transdermal delivery rates adequate to design such a system.

SUMMARY

Embodiments described herein including compounds, compositions, and devices, as well as methods of making and methods of using the same.

One embodiment provides a compound represented by Formula (I)

wherein, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently H or deuterium;

Z is -OH, -OR11, -N(R n )Ri2, -SR n , or P i ;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

Ri2 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri 8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R 2 are independently H or P 2 , wherein at least one of Ri and R 2 is P 2 , wherein

P 2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are as defined above;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to 6- membered ring; Ri8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I.

In another embodiment, the parameters of Formula I are defined as follows:

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently H or deuterium;

Z is -OR11, -N(Rii)Ri2, -SRn, or P i ;

Rn is branched alkyl, haloalkyl, halocycloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, bicycloalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, substituted alkylheteroaryl;

R 12 is H, branched alkyl, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl, alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

R 18 and R 19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; R15 and R 18 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and Rig taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R 2 are independently H or P 2 , wherein P 2 is selected from the group consisting of:

wherein,

m is 1 , 2, 3, or 4;

Ri4 and Ri ? are as defined above; Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I.

In another embodiment provided is a compound represented by Formula II:

wherein,

R2 is selected from the group consisting of H and P2;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium; Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P 2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are as defined above;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy; Ri6 and Rn are independently in each occurrence H or alkyl;

Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula II includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula II. a III:

L 2 is selected from the group consisting of:

wherein, m is 1, 2, 3, or 4;

X is NRi4, or O;

Ri4 is selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, substituted

heteroarylalkyl;

Ri6 and Rn are independently in each occurrence H or alkyl;

Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to 6- membered ring; and

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium; wherein Z is -OH, -OR n , -N(R n )R 12 , -SR n , or Pj;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

R12 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

R 18 and R 19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; Ri5 and taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula III includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula III.

Another embodiment provides a compound represented by Formula IV:

Ri is selected from the group consisting of H and P 2 ;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium;

Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl; Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula IV includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula IV.

Compositions are also provided including a composition comprising at least one compound according to Formula I, II, III, and IV and at least one other component. In one embodiment, the composition is formulated for transdermal delivery. In another embodiment, the composition is formulated for transdermal delivery with a patch. In one embodiment, the composition can further comprise at least one solvent. In one embodiment, the amount of the compound according to Formula I, II, III, or IV is adapted to provide a useful delivery profile for treatment of a human. In one embodiment, the treatment is carried out on a subject, such as a mammal, but the subject is not a human.

At least one advantage for at least one embodiment includes ability to tailor the chemical structure of a pharmaceutically useful motif for a particular uses including treatment and prophylactic use against, for example, PH and PAH. For example, the drug delivery profile can be adapted for a particular application.

At least one additional advantage for at least one embodiment includes ability to use the compounds to provide better bioavailability including use in transdermal drug delivery applications. DETAILED DESCRIPTION

INTRODUCTION

Priority US provisional application 61/751,608 filed January 11, 2013 is incorporated herein by reference in its entirety for all purposes including the chemical formulae and claims, including Formula I, Formula II, and Formula III, as well as Schemes 1-4, examples, and the tables of structures on pages 14-16.

Various prostacyclin analogs, including treprostinil, and methods for their use are known. For example, they can be used in promoting vasodilation, inhibiting platelet aggregation and thrombus formation, stimulating thrombolysis, inhibiting cell proliferation (including vascular remodeling), providing cytoprotection, and preventing atherogenesis and inducing angiogenesis. Through these prostacyclin- mimetic mechanisms, these compounds may be used in the treatment of/for:

pulmonary hypertension, ischemic diseases (e.g., peripheral vascular disease, Raynaud's phenomenon, Scleroderma, myocardial ischemia, ischemic stroke, renal insufficiency), heart failure (including congestive heart failure), conditions requiring anticoagulation (e.g., post MI, post cardiac surgery), thrombotic microangiopathy, extracorporeal circulation, central retinal vein occlusion, atherosclerosis,

inflammatory diseases (e.g., COPD, psoriasis), hypertension (e.g., preeclampsia), reproduction and parturition, cancer or other conditions of unregulated cell growth, cell/tissue preservation, and other emerging therapeutic areas where prostacyclin treatment appears to have a beneficial role. These compounds may also demonstrate additive or synergistic benefit in combination with other cardiovascular agents (e.g., calcium channel blockers, phosphodiesterase inhibitors, endothelial antagonists, and antiplatelet agents).

Treprostinil is a chemically stable analog of prostacyclin. Although treprostinil sodium (Remodulin.®.) is approved by the Food and Drug Administration (FDA) for subcutaneous administration, treprostinil as the free acid has an absolute oral bioavailability of less than 10% and a very short systemic half life due to significant metabolism.

DEFINITIONS Herein, listings of chemical groups represented by multiple chemical formulae are provided (e.g., P ¾ , P 2 , Li , and L ? .). As used herein, these group listings also describe any combination of subgroups of the chemical formulae- in the group listing as well as any single formula in the group listing,

The term "alkyl," as used herein, refers to a monovalent saturated hydrocarbon group, Cj -C s alkyl is an alkyl having from I to 8 carbon atoms and includes, for example, Ci-C 3 alkyl, C ; ~C 5 alkyl, and Ci-C 7 alkyl. An alkyl may be linear or branched. Examples of alkyl groups include methyl, ethyl, n-propyl, isopropyl, n- butyl, isobutyl, sec-butyl, t- butyl, n-pentyl, isopentyl, neopentyl and n-hexyl.

The term "haloalkyl," as used herein, refers monovalent saturated hydrocarbon group attached to a one or more halogen selected from CI and F, Specific examples include 2-fluoroethyl, 2,2-difluoroethyl, 2-fluoropropyl, and 2,2-difluoropropyl.

The term "heteroalkyl," as used herein, refers to a monovalent saturated hydrocarbon group attached to one or more he-tero atoms selected from O, N, and S. Cj -C s heteroalkyl is an alkyl having from 1 to 8 carbon atoms followed by a heteroatom selected from O, N, S and includes, for example, Ci-C 3 -OH, Ci-C 5-SH, and Ci-C 7 -NH 2 . it also includes C1-C2-0-C3-C4-OH, and C1-C2-NH-C3-C4-OH

The term "cycloalkyl," as used herein, refers to a monocyclic, bicyclic, or tricyclic monovalent saturated hydrocarbon ring system, The te m "C3-C14

cycloalkyl" refers to a cycloalkyl wherein the number of ring carbon atoms is from 3 to 14. Examples of C3-C 14 cycloalkyl include C3-C10 cycloalkyl and C3-C-6 cycloalkyl, Bicyclic and tricyclic ring systems include fused, bridged and spirocyclic ring systems, More particular examples of cycloalkyl. groups include cyclopropyl, cyelobutyl, cyclopentyl, eyclohexyl, cycloheptyl, cis- and trans-decalynil, norbornyl, adamantyl, and spiro[4,5]decanyl.

The term "c cloheteroalk l , " as used herein, refers to a monocyclic, bicyclic, or tricyclic monovalent saturated ring system wherein from 1 to 4 ring atoms are heteroatoms independently selected from the group consisting of (), N and S. The term "3 to 14- membered cycloheteroalkyl" reiers to a cycloheteroalkyl wherein the number of ring atoms is from 3 to 14. Examples of 3 to 14-membered

cycloheteroalkyl include 3 to 10- membered cycloheteroalkyl and 3 to 6-membered cycloheteroalkyl. Bicyclic and tricyclic ring systems include fused, bridged and spirocyclic ring systems. More particular examples of cycloheteroalkyl groups include azepanyl, azetidinyl, aziridinyl, imidazolidinyl, niorpholinyl, oxazolidinyL oxazolidinyl, piperazinyl, piperidinyl, pyrazolidinyl, pyrroiidinyl, quinuelidmyl, tetrahydrofurany], thiomorpholinyl, and a- methyl- I, 3-dioxol-2-onyl.

The term "alkylcycloalkyl," as used herein, refers to a monocyclic, bicyclic, or tricyclic monovalent saturated hydrocarbon ring system. The term "C3-C14 cycloalkyl " refers to a cycloalkyl wherein the number of ring carbon atoms is from 3 to 14.

Examples of C3- 4 cycloalkyl include C3-C10 cycloalkyl and C3-C6 cycloalkyl, Bicyclic and tricyclic ring systems include fused, bridged, and spirocyclic ring systems linked to an alky] group which refers to a monovalent, saturated hydrocarbon group. Ci-C 8 alkyl is an alkyl having from 1 to 8 carbon atoms and includes, for example, Ci-C 3 alkyl. { ; ·( ' 5 alkyl, and C; -C 7 alkyl. Particular examples include cyclopropyl methyl, cyclopropyl ethyl, and cyclohexyl ethyl.

The term "alkylheterocycloalkyl," as used herein, refers to an alkyl that refers to a monovalent, saturated hydrocarbon group. Cj-C alkyl is an alkyl having from 1 to 8 carbon atoms and includes, for example, Ci-C 3 alkyl, C C 5 alkyl, and -C 7 alkyl attached to cycloalkyl which refers to a monocyclic, bicyclic, or tricyclic monovalent saturated ring system wherein from 1 to 4 ring atoms are heteroatoms independently selected from the group consisting of O, N, and S, The term "3 to 14- membered heterocvcioalkyl " reiers to a heterocvcioalkyl wherein the number of ring atoms is from 3 to 14, Examples of 3 to 14-membered heterocycloalkyl include 3 to 10- membered heterocycloalkyl and 3 to 6-membered heterocycloalkyl. Bicyclic and tricyclic ring systems include fused, bridged and spirocyclic ring systems, Specific examples include N-ethylmorphoiine, N-ethylpiperidine, 4-ethylpiperidine, 1 -methyl- 4-ethyipiperidine, and N-ethylpiperazine.

The term "aryl," as used herein, refers to a monovalent aromatic carbocyclic ring system, which may be a monocyclic, fused bicyclic, or fused tricyclic ring system. The term "Ce-Cu aryl" reiers to an aryl having from 6 to 14 ring carbon atoms. An example of C 6 -Ci 4 aryl is Ce-Cio aryl. More particular examples of aryl groups include phenyl, naphthyl, anthracy], and phenanthryl.

The term "heteroaryl," as used herein, refers to unsaturated aromatic heterocyclyl radicals. Examples of heteroaryl radicals include unsaturated 3 to 6 membered heteromonocyclic group containing 1 to 4 nitrogen atoms, for example, pyrrolyl, pyrrolinyl, imidazolyl, tetrazolyl, etc; unsaturated condensed heterocyclyl group containing 1 to 5 nitrogen atoms, for example, indolyl, isoindolyi,

benzimidazolyl, quinolyl, benzotrazolyl, tetrazolopyridazinyl, etc.; unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms, for example, oxazolyl, oxadiazoiyl, etc.; unsaturated condensed heterocyclyl group containing 1 to 2 oxygen atoms and 1 to 3 nitrogen atoms;

unsaturated 3- to 6-membered heteromonocyclic group containing 1 to 2 sulfur atoms and 1 to 3 nitrogen atoms, for example, thiazolyl, thiadiazolyl, etc.; and unsaturated condensed heterocyclyl group containing 1. to 2 sulfur atoms and 1 t 3 nitrogen atoms.

The term "alkylaryl," as used herein, refers to aryl- substituted alkyl radicals such as benzyl, diphenyl methyl, and phenylethyl.

The term "alkylheteroaryl," as used herein, refers to heteroaryl-- substituted alkyl radicals such as imidazoylmethyl, thiazoylmethyl, and pyridylethyl.

As used herein, the terms described herein such as alkyl, haloalkyl, heieroaikyl, cycloalkyl, cycloheteroalky 3 , alkvlcycloalkyl, alkylheterocycloalkyl , aryl, heteroaryl, alkylaryl, and alkylheteroary, are understood to cover in some optional embodiments wherein they form rings. For example, as described further herein, in some cases, optionally, groups such as R 14 , R 15 , R i6 , R 17 , R 18 , and R 19 can form rings with other groups R 14 , 15, ie, R17, Rig, and R 19 .

\ lie term substituted refers to the replacement of one or more hydrogen radicals in a given structure with the radical of a specified substituent including, but not limited to: halo, alkyl, alkenyl, alkynyl, aryl, heterocyclyl, thiol, alkylthio, arylthio, alkylthioalkyl, alkylsulfonyl, alkylsulfonylalkyl, alkoxy, alkoxy, aryloxy, aminocarbonyl, alkyl am inocarbonyl, aryi aminocarbonyl, alkoxycarbony], aryloxycarbonyl, alkylhalo, amino, trifluoromethyl, cyano, nitro, alkylamino, arylamino, alkylarainoalkyl, arylammoalkyl, hydroxy!, alkyloxyalkyl, carboxyalkyl, alkoxycarbony] alkyl, aminocarbonyl alkyl, acyi, carbonyl, carboxylic acid sulfonic acid, phosphonic acid, aryl, heteroaryl, heterocyclic, and aliphatic, it is understood that the substituent may be further substituted within the normal limits of the skilled artisan. A moiety or group may be optionally substituted which means the group may or may not have one or more substituents.

The term "compound" as used herein, is also intended to include salts, solvates, and hydrates thereof. The specific recitation of "salt," "solvate," or

"hydrate," in certain aspects of the invention described in this application shall not be interpreted as an intended omission of these forms in other aspects of the invention where the term "compound" is used without recitation of these other forms.

A salt of a compound of this invention is formed between an acid and a basic group of the compound, such as an amino functional group, or a base and an acidic group of the compound, such as a carboxyl functional group. According to another preferred embodiment, the compound is a pharmaceutically acceptable acid addition salt.

The term "pharmaceutically acceptable," as used herein, refers to a component that is, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and other mammals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio. A "pharmaceutically acceptable salt" means any non-toxic salt that, upon administration to a recipient, is capable of providing, either directly or indirectly, a compound or a prodrug of a compound of this invention. A "pharmaceutically acceptable counterion" is an ionic portion of a salt that is not toxic when released from the salt upon administration to a recipient.

Acids commonly employed to form pharmaceutically acceptable salts include inorganic acids such as hydrogen bisulfide, hydrochloric, hydrobromic, hydroiodic, sulfuric and phosphoric acid, as well as organic acids such as para-toluenesulfonic, salicylic, tartaric, bitartaric, ascorbic, maleic, besylic, fumaric, gluconic, glucuronic, formic, glutamic, methanesulfonic, ethanesulfonic, benzenesulfonic, lactic, oxalic, para-bromophenylsulfonic, carbonic, succinic, citric, benzoic and acetic acid, and related inorganic and organic acids. Such pharmaceutically acceptable salts thus include sulfate, pyrosulfate, bisulfate, sulfite, bisulfite, phosphate,

monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, chloride, bromide, iodide, acetate, propionate, decanoate, caprylate, acrylate, formate, isobutyrate, caprate, heptanoate, propiolate, oxalate, malonate, succinate, suberate, sebacate, fumarate, maleate, butyne-l,4-dioate, hexyne-l,6-dioate, benzoate, chlorobenzoate, methylbenzoate, dinitrobenzoate, hydroxybenzoate,

methoxybenzoate, phthalate, terephthalate, sulfonate, xylenesulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, .beta.-hydroxybutyrate, glycolate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene- 1 -sulfonate, naphthalene-2-sulfonate, mandelate and the like salts. Preferred pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.

As used herein, the term "hydrate" means a compound which further includes a stoichiometric or non-stoichiometric amount of water bound by non-covalent intermolecular forces.

As used herein, the term "solvate" means a compound which further includes a stoichiometric or non-stoichiometric amount of solvent such as water, acetone, ethanol, methanol, dichloromethane, 2-propanol, or the like, bound by non-covalent intermolecular forces.

ISOTOPES AND iSOTOPiC ABUNDANCE

It will be recognized that some variation of natural isotopic abundance occurs in a synthesized compound depending upon the origin of chemical materials used in the synthesis. Thus, a preparation of treprostinil will inherently contain small amounts of deuterated isotopologues. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial with respect to the degree of stable isotopic substitution of compounds of this invention. See, for instance, Wada E et al, Seikagaku 1994, 66: 15; Ganes L Z et al, Comp Biochem Physiol Mol Integr Physiol 1998, 119:725. In a compound of this invention, when a particular position is designated as having deuterium, it is understood that the abundance of deuterium at that position is substantially greater than the natural abundance of deuterium, which is 0.015%. A position designated as having deuterium typically has a minimum isotopic enrichment factor of at least 3000 (45% deuterium incorporation) at each atom designated as deuterium in said compound.

The term "isotopic enrichment factor" as used herein means the ratio between the isotopic abundance and the natural abundance of a specified isotope.

In some embodiments, a compound of this invention has an isotopic enrichment factor for each designated deuterium atom of at least 3500 (52.5% deuterium incorporation at each designated deuterium atom), at least 4000 (60% deuterium incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium incorporation), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).

In the compounds of this invention any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as "H" or "hydrogen", the position is understood to have hydrogen at its natural abundance isotopic

composition.

In other embodiment, a compound of the invention contains less than 10%, preferably less than 6%, and more preferably less than 3% of all other isotopologues combined, including a form that lacks any deuterium. In certain aspects, the compound contains less than "X"% of all other isotopologues combined, including a form that lacks any deuterium; where X is any number between 0 and 10 (e.g., 1, 0.5, 0.001), inclusive. Compositions of matter that contain greater than 10% of all other isotopologues combined are referred to herein as "mixtures" and must meet the parameters set forth below. These limits of isotopic composition and all references to isotopic composition herein, refer solely to the relative amounts of

deuterium/hydrogen present in the active, free base form of the compound of Formula I or II, and do not include the isotopic composition of hydrolyzable portions of prodrugs, or of counterions.

The term "isotopologue" refers to species that differ from a specific compound of this invention only in the isotopic composition of their molecules or ions.

CORE STRUCTURE FORMULA I In one embodiment, the present invention provides a compound represented b Formula I:

At least two sub-embodiments are provided to define further Formula I.

In a first sub-embodiment of Formula I, R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R 36 are independently H or deuterium;

Z is -OH, -OR11, -N(R n )Ri2, -SR n , or P i ;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

R12 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

R 18 and R 19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; Ri5 and R 18 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R 19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R 2 are independently H or P 2 , wherein at least one of Ri and R 2 is P 2 , wherein

P 2 is selected from the group consisting of:

m is 1, 2, 3, or 4;

Ri4 and R15 are as defined above;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I. In this Formula I, the Z, Ri, and R2 groups are not linked to each other, in contrast to Formulae II, III, and IV described herein.

In one embodiment, Ri is P2 and R2 is H. In another embodiment, Ri is H and R2 is P2. In another embodiment, Ri is P2 and R2 is P2.

The group P2 can be more particularly described. In one embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting of:

In another embodiment, P2 is selected from the group consisting

In another embodiment, P2 is selected from the group consisting of: X M ¾¾ 6 - RR i l 7 7

In another embodiment, P2 is selected from the group consisting of:

In one embodiment, R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31 , R 32 , R33, R34, R35, and R 36 are H.

In one embodiment, Z is -ORn, -N(Rn)Ri 2 , or Pi. In another embodiment, Z is Pi. In another embodiment, Z is -OH, -ORn, -N(Rn)Ri 2 , or Pi. In another embodiment, Z is -OH.

In one embodiment, Z is not -OH and Rn is not unsubstituted or substituted benzyl. In a second sub-embodiment of Formula I,

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently H or deuterium;

Z is -OR11, -N(Rii)Ri2, -SRn, or P i ;

Rn is branched alkyl, haloalkyl, halocycloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, bicycloalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, substituted alkylheteroaryl;

R12 is H, branched alkyl, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl, alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl; Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri 8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

R 14 and R 18 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; and, Ri and R2 are independently H or P2, wherein P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are as defined above;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1 , 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

Ri6 and Ri7 taken together with the atoms to which they attach optionally form a 3- to 6- membered ring; Ri8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

wherein Formula I includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula I.

In one embodiment, Z is -ORn . In one embodiment, Z is -N(Rn)Ri 2. In one embodiment, Z is -SRn . In one embodiment, Z is Pi. In one embodiment, Z is ORn and R 11 is bicycloalkyl, alkylcycloalkyl, or alkylcycloheteroalkyl. In one

embodiment, Z is Pi.

In one embodiment, Rn is haloalkyl, or more particularly, fluoroalkyl.

In one embodiment, Ri is hydrogen or R 2 is hydrogen. In one embodiment, Ri is hydrogen and R 2 is P 2 . In one embodiment, Ri is P 2 and R 2 is hydrogen. In one embodiment, Ri and R 2 are hydrogen. In one embodiment, Ri and R 2 are P 2 .

In one embodiment, at least one of R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R 29 , R30, R31, R32, R33, R34, R35, and R 36 are deuterium.

In one embodiment, R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R 32 , R33, R34, R35, and R 36 are hydrogen.

FORMULA IA

One particular sub-embodiment also for formula I is a compound represented by Formula (IA):

wherein, Z is -OH, -OR n , or p l 5

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl,

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 is selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl; and, Ri and R2 are independently H or P 2 , wherein at least one of Ri and R2 is P 2 , wherein

P2 is selected from the group consisting of:

wherein,

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula IA includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula IA.

SPECIFIC COMPOUNDS FOR FORMULA I

The following are specific compounds for formula I (noting Compound A which as discussed hereinabove is the control, not a pro-drug):

Compound 1

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid cyclopropylmethyl ester

Compound 2

N-Cyclopropylmethyl-2-[2-hydroxy-l-(3-hydroxy-octyl)-2,3, 3a,4,9,9a-hexahydro- 1 H-cyclopenta[b] naphthalen- 5 -yloxy ] - acetamide

Compound 3

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2-morpholin-4-yl-ethyl ester

Compound 4

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 3-fluoro-propyl ester

Compound 5

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid tetrahydro-furan-3-yl

Compound 6

2-{2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahyd ro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetoxy}-propionic acid methyl ester

Compound A

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid

Compound 7

N-(2-Hydroxy-ethyl)-2-[2-hydroxy-l-(3-hydroxy-octyl)-2,3, 3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetamide

Compound 8

N-(2-Amino-ethyl)-2-[2-hydroxy-l-(3-hydroxy-octyl)-2,3,3a ,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetamide

Compound 9

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2-hydroxy-ethyl ester

Compound 10

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2-methoxy-ethyl ester

Compound 11

2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro- lH- cyclopenta[b]naphthalen-5-yloxy]-N-(3-hydroxy-propyl)-acetam ide

Compound 12

{2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro -lH- cyclopenta[b]naphthalen-5-yloxy]-acetylamino}-acetic acid methyl ester

Compound 13

({2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydr o-lH- cyclopenta[b]naphthalen-5-yloxy]-acetyl}-methyl-amino)-aceti c acid methyl ester

Compound 14

2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro- lH- cyclopenta[b]naphthalen-5-yloxy]-N-(2,2,2-trifluoro-ethyl)-a cetamide

Compound 15

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 16

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2,2-dimethyl-propyl ester

Compound 17

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2-dimethyl-propyl ester

Compound 18

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2,2-trimethyl-propyl ester

Compound 19

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid bicyclo[2.2.1]hept-2-yl ester

Compound 20

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid isopropyl ester

Compound 21

2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-N-(2,2,3,3,3-pentafluoro-pr opyl)-acetamide

Compound 22

Pentanoic acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy-2,3,3a,4,9,9a- hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester

Compound 23

3-Methyl-butyric acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy-2,3,3a,4,9,9a- hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester

Compound 24

Cyclopropanecarboxylic acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester

Compound 25

[2-Ethoxycarbonyloxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-he xahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

[2-Acetoxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 28

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid tert-butyl ester

Compound 29

3-{2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahyd ro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetyl}-oxazolidin-2-one

Compound 30

2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro- lH- cyclopenta[b]naphthalen-5-yloxy]-N-(lH-tetrazol-5-yl)-acetam ide

Compound 31

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2,2,2-trifluoro- 1,1 -dimethyl-ethyl ester

Compound 32

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2,2-trimethyl-propyl ester

Compound 33

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2,2-trimethyl-propyl ester

Compound 34

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid bicyclo[2.2.1]hept-2-yl ester

Compound 35

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid bicyclo[2.2.1]hept-2-yl ester

Compound 36

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid bicyclo[2.2.1]hept-2-yl ester

Compound 37

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid bicyclo[2.2.1]hept-2-yl ester

Compound 38

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid 2-isopropyl-5-methyl-cyclohexyl ester

Compound 39

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid l,7,7-trimethyl-bicyclo[2.2. l]hept-2-yl ester

Compound 40

[2-(2-Ethoxy-ethoxycarbonyloxy)-l-(3-hydroxy-octyl)-2,3,3 a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 41

[2-(2-Dimethylamino-ethoxycarbonyloxy)-l-(3-hydroxy-octyl)-2 ,3,3a,4,9,9a- hexahydro-lH-cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 42

[l-(3-Hydroxy-octyl)-2-(2,2,2-trifluoro-ethoxycarbonyloxy )-2,3,3a,4,9,9a-hexahydro- lH-cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 43

3-Morpholin-4-yl-propionic acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester

Compound 44

[l-(3-Hydroxy-octyl)-2-(2-pyrrolidin-l-yl-acetoxy)-2,3,3a,4, 9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester

Compound 45

Cyclopentanecarboxylic acid l-[2-(2-hydroxy-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-l-yl)-eth yl]-hexyl ester

Compound 46 l-Methyl-piperidine-2-carboxylic acid l-[2-(2-hydroxy-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-l-yl)-eth yl]-hexyl ester

Compound 47

4-Methyl-morpholine-2-carboxylic acid l-[2-(2-hydroxy-5- methoxycarbonylmethoxy-2,3,3a,4,9,9a-hexahydro-lH-cyclopenta [b]naphthalen-l- yl) -ethyl] -hexyl ester

Compound 48

Cyclopropanecarboxylic acid l-[2-(2-hydroxy-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro- -cyclopenta[b]naphthalen-l-yl)-ethyl]-hexyl ester

Compound 49

2-Methyl-butyric acid l-[2-(2-hydroxy-5-methoxycarbonylmethoxy-2,3,3a,4,9,9a- hexahydro- 1 H-cyclopenta[b]naphthalen- 1 -yl)-ethyl] -hexyl ester

Compound 50

[l-(3-Cyclopentyloxycarbonyloxy-octyl)-2-hydroxy-2,3,3a,4 ,9,9a-hexahydro-lH- cyclopenta[b]naphthalen- -yloxy]-acetic acid methyl ester

Compound 51

{ l-[3-(l-Aza-bicyclo[2.2.2]oct-3-yloxycarbonyloxy)-octyl]-2-h ydroxy-2,3,3a,4,9,9a- hexahydro-lH-cyclopenta[b]naphthalen-5-yloxy}-acetic acid methyl ester

Compound 52

[2-Acetoxy-l-(3-acetoxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid l-aza-bicyclo[2.2.2]oct-3-yl ester

Compound 53

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid l-aza-bicyclo[2.2.2]oct-3-yl ester

Compound 54

Propionic acid l-{2-[5-methoxycarbonylmethoxy-2-(5-methyl-2-oxo-[l,3]dioxol -4- ylmethoxycarbonyloxy)-2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[ b]naphthalen-l-yl]- ethyl}-hexyl ester

Compound 55

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2-dimethyl-propyl ester

Compound 56

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH - cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2-dimethyl-propyl ester

CORE STRUCTURE FORMULAE II AND IIA

In another embodiment, the present invention provides a compound re resented by Formula II:

R2 is selected from the group consisting of H and P2;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H, deuterium; Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P 2 is selected from the group consisting of:

wherein, m is 1, 2, 3, or 4;

Ri4 and R15 are as defined above;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the list consisting of halo, methyl and methoxy; Ri6 and Rn are independently in each occurrence H or alkyl;

Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are as defined above;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula II includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula II.

In one embodiment, R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are H. In one embodiment, at least one of R20, R21, R22, R 23 , R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R 36 are deuterium.

In one embodiment, Li is a selected from the group consisting of -O-alkyl- C(O)-, -O-alkyl-OC(O)-. In one embodiment, Li is -O-alkylene-C(O)-. In one embodiment, Li is -O-alkylene-OC(O)-. In one embodiment, the alkylene group of claim 41 is a C1-C5 alkylene group. In one embodiment, the alkylene group of claim 41 is a CI alkylene group.

In one sub-embodiment for Formula II, provided is a compound according to claim 41, wherein the compound is represented by Formula IIA:

wherein Li and R2 are defined as in Formula II.

SPECIFIC COMPOUNDS ACCORDING TO FORMULA II

The following represent specific compounds of Formula II:

Compound 57

Treprostinil 2-hydroxy lactone

Compound 58

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid carboxymethyl lactone

CORE STRUCTURE FORMULA III

In one other embodiment, the present invention also provides a compound

wherein L2 is selected from the group consisting of:

wherein, m is 1, 2, 3, or 4;

Ri4 is selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, substituted

heteroarylalkyl;

Ri6 and Ri7 are independently in each occurrence H or alkyl;

R 16 and R 17 taken together with the atoms to which they attach optionally form a 3- to 6- membered ring; and

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H, deuterium; wherein Z is -OH, -OR n , -N(R n )R 12 , -SR n , or Pj;

Rn is alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, haloalkyl, heteroalkyl, substituted heteroalkyl, cycloheteroalkyl, substituted cycloheteroalkyl, alkylcycloalkyl, substituted alkylcycloalkyl, alkylcycloheteroalkyl, substituted alkylcycloheteroalkyl, aryl, substituted aryl, alkylaryl, substituted alkylaryl, heteroaryl, substituted heteroaryl, alkylheteroaryl, or substituted alkylheteroaryl;

Ri2 is H, haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, or heteroaryl;

Pi is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy; Ri 8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R^ taken together with the atoms to which they attach optionally form a 5- to 7- membered ring;

Ri5 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula III includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula III.

In one embodiment, L2 is selected from the group consisting of:

In one embodiment, at least one of R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are deuterium, or they are all hydrogen.

One particular sub-embodiment of Formula III includes a compound represented by Formula IIIA:

wherein Z and L 2 are defined as in Formula III.

SPECIFIC EXAMPLES OF FORMULA III COMPOUNDS

The following compounds represent specific examples of Formula III compounds:

Compound 59

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester 2,3-maleate

CORE STRUCTURE FOR FORMULA IV COMPOUNDS

Another embodiment is a compound represented by Formula IV, wherein in Formula II, the Li group links to R 2 rather than Ri :

Ri is selected from the group consisting of H and P2;

R20, R21, R22, R23, R24, R25, R26, R27, R28, R29> R30, R31, R32, R33, R34, R35, and R36 are independently selected from the group consisting of H and deuterium;

Li is a selected from the group consisting of -O-alkylene-C(O)-, -O-alkylene-OC(O)-, or a bond; wherein

P2 is selected from the group consisting of:

wherein,

m is 1, 2, 3, or 4;

Ri4 and R15 are independently in each occurrence selected from the group consisting of H, alkyl, cycloalkyl, alkylcycloalkyl, haloalkyl, heteroalkyl, substituted alkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl, substituted aryl, substituted heteroaryl, substituted arylalkyl, and substituted heteroarylalkyl;

Ri4 and R15 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring optionally incorporating one or two ring heteroatoms chosen from N, O, or S, which is unsubstituted or substituted with 1, 2, or 3 substituents independently selected from the group consisting of halo, methyl, and methoxy;

Ri6 and Ri7 are independently in each occurrence H or alkyl; Ri6 and Rn taken together with the atoms to which they attach optionally form a 3- to

6- membered ring;

Ri 8 and R19 are independently in each occurrence selected from the group consisting of hydrogen and alkyl, wherein the alkyl is unsubstituted or substituted with 1 substituent selected from the list consisting of halo, hydroxy, alkoxy, amino, thio, methylthio, -C(0)OH, -C(0)0-(alkyl), -CONH 2 , aryl, and heteroaryl, wherein the aryl or heteroaryl are unsubstituted or substituted from the list consisting of alkyl, halo, haloalkyl, hydroxy, and alkoxy, haloalkoxy;

Ri4 and R^ taken together with the atoms to which they attach optionally form a 5- to

7- membered ring;

Ri4 and R19 taken together with the atoms to which they attach optionally form a 5- to 7- membered ring; wherein Formula IV includes enantiomers, pharmaceutically acceptable salts, and polymorphs of the compounds of Formula IV.

In one embodiment, at least one of R 20 , R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, and R36 are deuterium, or they are all hydrogen.

In a particular embodiment of Formula IV, a compound is represented by Formula IVA:

wherein Li and Ri are defined as in Formula IV. Similar approaches can be used to make and use Formula IV compounds as for Formula II compounds.

EMBODIMENTS FROM PRIORITY PROVISIONAL 61/751,608

One embodiment from the priority provisional is a compound according to Formula

I A A).

wherein,

Rioo and R200 are independently selected from the group consisting of H,

CONR 900 Riooo, CR 9 ooRioooOCOP 3 R9ooRiooo wherein, R 900 and R 100 o are independently selected from H, alkyl, and cycloalkyl.

R300, R400, R500, R600, R700 and Rgoo is independently selected from the group consisting of H and deuterium.

X is O, NHR 12 oo, or S

P 3 is N or O

Rnoo is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl;

R1200 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl.

In one embodiment, Rioo > R200 are H. In one embodiment, R300, R400, R500, R 6 oo, R700 and Rgoo are H. In one embodiment, X is O. In one embodiment, Rnoo is selected from

In one embodiment, X is NHR^oo-

In one embodiment, Rnoo is chosen from

In one embodiment, X is O. In one embodiment, R300, R400, R500, R600, R700 and Rgoo are H. In one embodiment, Rnoo is alkyl.

Another embodiment from the priority provisional is a compound of Formula II(AA) represented by:

wherein,

R2000 is independently selected from the group consisting of H, CONR9000R10000, CR9000R10000OCOPR9000R10000. wherein, R9000 and R10000 are independently selected from H, alkyl, cycloalkyl.

R3000, R4000, R5000, Reooo, R7000 and R 800 o is independently selected from the group consisting of H, deuterium. P is N, O

R12 000 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl. n is an integer between 1-7; and enantiomers of Formula II(AA), pharmaceutically acceptable salts of the compounds of Formula II(AA) and polymorphs of Formula II(AA).

Another embodiment from the priority provisional is a compound having Formula III(AA):

Wherein,

Rn is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl, alkylcycloheteroalkyl, aryl, heteroaryl. wherein R03, R04, R05, R06, R07 and R08 is independently selected from the group consisting of H, deuterium. wherein, X is O, NR012, S

R 0 12 is haloalkyl, heteroalkyl, cycloheteroalkyl, alkylcycloalkyl,

alkylcycloheteroalkyl, aryl, heteroaryl.

Y is C=0, and enantiomers of the compound of formula III(AA); and pharmaceutically acceptable salts of the compounds of Formula III(AA) and polymorphs of Formula III(AA).

METHODS OF MAKING FOR FORMULA I COMPOUNDS

Organic synthesis is used to make the compounds. See, for example, March 's Advanced Organic Chemistry, 6 th Ed., Wiley, 2007. The compounds of formula I where Rl = R2 = H can be synthesized according to scheme 1 by starting with the compound of formula I where Z is OH and Rl is H and R2 is PG which represents a protective group as described in Protective Groups in Organic Synthesis by Greene and Wuts. The carboxylic acid is activated using coupling conditions which involve the use of an activating agent, including but not limited to EDC, DCC, DIC, BOP, HATU, HBTU, CDI, thionyl chloride, or oxalyl chloride. Coupling conditions may also include or not include an additive, including but not limited to DMF, HOSu, HOBT, or HO AT, and may or may not include one or more nucleophilic or non-nucleophilic bases or additives including, but not limited to DMAP, TEA, DIPEA, N-methylmorpholine, pyridine, and/or imidazole. Coupling conditions also may be run in a suitable solvent or solvent mixture including, but not limited to DCM, THF, DMF, dioxane, ethyl acetate, acetonitrile. The activated acid can be isolated and purified or can be treated directly with ZH. Alternately, ZH can be present during the coupling conditions. Representative examples of coupling conditions and definitions of the activating agents, additives and bases can be found in in Handbook of Reagents for Organic Synthesis: Activating Agents and Protecting Groups, John Wiley and Sons. The resulting compound of formula I where Z is not OH, Rl is H and R2 is PG is deprotected using deprotection conditions suitable to the type of protective group represented by PG to give the compound of formula I.

Examples of suitable deprotection conditions can be found in Protective Groups in Organic Synthesis by Greene and Wuts.

Scheme 1

The compound of formula I where Rl = R2 or where Rl is H can be synthesized according to scheme 2 starting from the compound of formula I where Rl = R2 = H by employing acylation conditions and the reactive molecule ROH or RY where Y is a leaving group including, but not limited to halogen, sulfonyl, phosphoryl, or acyl. In the case where the reactive molecule ROH is used, acylation conditions are identical to coupling conditions as described above. In the case where the reactive molecule RY is used, the acylation conditions may or may not include one or more nucleophilic or non-nucleophilic bases or additives including but not limited to DMAP, TEA, DIPEA, N-methylmorpholine, pyridine, and/or imidazole and may be run in a suitable solvent or solvent mixture including, but not limited to DCM, THF, DMF, dioxane, ethyl acetate, and acetonitrile.

Scheme 2

The compounds of formula I where R2 is H can be synthesized according to scheme 3 starting from the compound of formula I where Rl is H and R2 is PG as defined above, by employing acylation conditions using ROH or RY as defined above followed by deprotection conditions as defined above.

Scheme 3

METHOD OF MAKING FORMULA II COMPOUNDS

The compounds of scheme II can be synthesized according to Scheme 4 starting from the compound of scheme I where Z is OH and R2 is PG as defined above, by employing lactonization conditions. Examples of lactonization conditions can be found in Chemical Reviews (2007), 107, 239 and Beilstein Journal of Organic Chemistry (2012), 8, 1344, and include, but are not limited to 2,4,6-trichlorobenzoic anhydride, TEA and DMAP; 4-nitrobenzoic anhydride, TEA, and DMAP; 2-chloro-l- methylpyridinium iodide and tributyl amine; 2,2'-dipyridyl disulfide and

triphenylphosphine; and the all the reactions in the coupling conditions and acylation conditions described above. The lactonization reactions may be run in a suitable solvent or solvent mixture including, but not limited to DCM, THF, DMF, dioxane, ethyl acetate, acetonitrile and toluene.

Scheme 4

deprotection

METHOD OF MAKING FORMULA III COMPOUNDS

The compounds of formula III can be synthesized according to Scheme 5 starting with the compound of formula 1 where Rl = R2 = H, by reacting with an activated carbonyl equivalent including but not limited to phosgene, carbonyl diimidazole, or 4-nitrophenyl chloroformate, in the presence or absence of one or more nucleophilic or non-nucleophilic bases or additives including but not limited to DMAP, TEA, DIPEA, N-methylmorpholine, pyridine, and/or imidazole and may be run in a suitable solvent or solvent mixture including, but not limited to DCM, THF, DMF, dioxane, ethyl acetate, acetonitrile, and toluene.

Scheme 5

COMPOSITIONS

The compounds described herein can be used alone or in combination with other components as known in the art. In particular, formulations of multiple ingredients can be prepared that are adapted for use in prophylactic and therapeutic treatments. The composition can be in the form of, for example, a solid, liquid, semisolid, solution, suspension, or emulsion formulation. Water can be used as a formulation agent. It can be in pure form or combined with one or more excipients.

In one embodiment, the compound is formulated in matrix form, comprising a matrix material in which drug is contained or dispersed. The matrix material further controls release of the drug by controlling dissolution and/or diffusion of the drug from the reservoir, and may enhance stability of the drug molecule while stored in the reservoir. In one embodiment, the drug is formulated with an excipient material that is useful for accelerating release, e.g., a water-swellable material that can aid in pushing the drug out of the reservoir and through any tissue capsule over the reservoir. Examples include hydrogels and osmotic pressure generating agents known in the art. In another embodiment, the drug is formulated with a penetration enhancer(s). The penetration enhancer further controls release of the drug by facilitating transport of the drug across the skin into the local administration site or systemic delivery.

More particularly, the drug can be dispersed in a matrix material, to further control the rate of release of drug. This matrix material can be a "release system," as described in U.S. Pat. No. 5,797,898, the degradation, dissolution, or diffusion properties of which can provide a method for controlling the release rate of the chemical molecules.

The release system may provide a temporally modulated release profile (e.g., pulsatile release) when time variation in plasma levels is desired or a more continuous or consistent release profile when a constant plasma level as needed to enhance a therapeutic effect, for example. Pulsatile release can be achieved from an individual reservoir, from a plurality of reservoirs, or a combination thereof. For example, where each reservoir provides only a single pulse, multiple pulses (i.e., pulsatile release) are achieved by temporally staggering the single pulse release from each of several reservoirs. Alternatively, multiple pulses can be achieved from a single reservoir by incorporating several layers of a release system and other materials into a single reservoir. Continuous release can be achieved by incorporating a release system that degrades, dissolves, or allows diffusion of molecules through it over an extended period. In addition, continuous release can be approximated by releasing several pulses of molecules in rapid succession ("digital" release). The active release systems described herein can be used alone or on combination with passive release systems, for example, as described in U.S. Pat. No. 5,797,898.

The pharmaceutical agent can be formulated with one or more

pharmaceutically acceptable excipients. Representative examples include bulking agents, wetting agents, stabilizers, crystal growth inhibitors, antioxidants, antimicrobials, preservatives, buffering agents (e.g., acids, bases), surfactants, desiccants, dispersants, osmotic agents, binders (e.g., starch, gelatin), disintegrants (e.g., celluloses), glidants (e.g., talc), diluents (e.g., lactose, dicalcium phosphate), color agents, lubricants (e.g., magnesium stearate, hydrogenated vegetable oils) and combinations thereof. In some embodiments, the excipient is a wax or a polymer. In one embodiment, the polymer comprises polyethylene glycol (PEG), e.g., typically one having a molecular weight between about 100 and 10,000 Daltons (e.g., PEG 200, PEG 1450). In another embodiment, the polymer comprises poly lactic acid (PLA), poly glycolic acid (PGA), copolymers thereof (PLGA), or ethyl-vinyl acetate (EVA) polymers. In yet another embodiment, the excipient material comprises a

pharmaceutically acceptable oil (e.g., sesame oil).

In one embodiment, the excipient material includes a saturated drug solution. That is, the excipient material comprises a liquid solution formed of the drug dissolved in a solvent for the drug. The solution is saturated so that the solvent does not dissolve the solid matrix form of the drug. The saturated solution acts as a non- solvent excipient material, substantially filling pores and voids in the solid matrix.

In another embodiment, the excipient material comprises a pharmaceutic ally- acceptable perhalohydrocarbon or unsubstituted saturated hydrocarbon. See, for example, U.S. Pat. No. 6,264,990 to Knepp et al., which describes anhydrous, aprotic, hydrophobic, non-polar liquids, such as biocompatible perhalohydrocarbons or unsubstituted saturated hydrocarbons, such as perfluorodecalin, perflurobutylamine, perfluorotripropylamine, perfluoro-N-methyldecahydroquindine, perfluoro-octohydro quinolidine, perfluoro-N-cyclohexylpyrilidine, perfluoro-N,N-dimethylcyclohexyl methylamine, perfluoro-dimethyl-adamantane, perfluorotri-methylbicyclo (3.3.1) nonane, bis(perfluorohexyl) ethene, bis(perfluorobutyl) ethene, perfluoro-l-butyl-2- hexyl ethene, tetradecane, methoxyflurane and mineral oil.).

In one embodiment, the pharmaceutically acceptable excipient material comprises dimethyl sulfoxide (DMSO), glycerol, or ethanol.

Mixtures of compounds according to Formulae I, II, III, and IV can be used.

EXAMPLES

Additional embodiments are provided in the following, non- limiting examples. Four assays on compounds were carried out by the following methods with the results shown in Table I:

(Test 1) Human liver microsomal stability assay was conducted by incubating 0.5 uM test compounds at 37°C for up to 45 minutes in 50 mM of potassium phosphate buffer (pH 7.4) containing 0.5 mg of microsomal protein and 50 μΐ ^ of NADPH generating system (7.8 mg of glucose 6-phosphate, 1.7 mg of NADPH and 6 U of glucose 6-phosphate dehydrogenase) per mL in 2% w/v of sodium bicarbonate). At 0, 5, 15, 30 and 45 min., an aliquot was taken, quenched with internal standard containing stop solution. No co-factor controls at 45 minutes were also prepared. After incubation, the samples were analyzed by LC-MS/MS. Peak area ratios of analyte to internal standard were used to calculate the intrinsic clearance. The intrinsic clearance (CLint) was determined from the first order elimination constant by non-linear regression. Formation of the active drug Compound A over the time course was also monitored by LCMS/MS analysis.

(Test 2) Human plasma stability assay was conducted by incubating 0.5 uM test compounds at 37°C for up to 120 minutes in heparinated human plasma. At 0, 5, 15, 30, 60 and 120 min., an aliquot was taken, quenched with internal standard containing stop solution. After incubation, the samples were analyzed by LCMS/MS. Peak area ratios of analyte to internal standard were used to calculate the half-life. Formation of the active drug Compound A over the time course was also monitored by LCMS/MS analysis.

(Test 3) Human skin homogenate stability assay was conducted, in the same way as in human liver microsomal stability assay, by incubating 0.5 uM test compounds at 37°C for up to 45 minutes in 50 mM of potassium phosphate buffer (pH 7.4) containing 0.5 mg of human skin homogenate protein and 50 μL of NADPH generating system (7.8 mg of glucose 6-phosphate, 1.7 mg of NADPH and 6 U of glucose 6-phosphate dehydrogenase) per mL in 2% w/v of sodium bicarbonate). At 0, 5, 15, 30 and 45 min., an aliquot was taken, quenched with internal standard containing stop solution. No co-factor controls at 45 minutes were also prepared. After incubation, the samples were analyzed by LC-MS/MS. Peak area ratios of analyte to internal standard were used to calculate the intrinsic clearance. The intrinsic clearance (CLint) was determined from the first order elimination constant by non-linear regression. Formation of the active drug Compound A over the time course was also monitored by LCMS/MS analysis.

(Test 4) Human hepatocyte stability assay was conducted by incubating 0.5 uM test compound at 37°C for up to 240 minutes. Cryopreserved human hepatocytes were obtained from Celsis IVT ( Baltimore MD). Cells were thawed according to vendor's instructions and were suspended in William's Medium E to 0.5 million cells/mL. Test compounds were spiked into the cell suspension to initiate the reactions. At 0, 10, 30, 60, 120 and 240 min., an aliquot was taken, quenched with internal standard containing stop solution. After incubation, the samples were analyzed by LC-MS/MS. Peak area ratios of analyte to internal standard were used to calculate the intrinsic clearance. The intrinsic clearance (CLint) was determined from the first order elimination constant by non-linear regression. Formation of the active drug Compound A over the time course was also monitored by LCMS/MS analysis.

Assay results (half life) are shown in Table I. In Table I, the code for the results of the assay testing are:

A < 15 min

B 15-30 min

C 31-60 min

D: > 60 min

TABLE I

8 432.61 455.61 A

9 434 457 A

10 448 471 A

11 447 470 A D

12 461 484 A D

13 475 498 A D A

14 471 494 A D D A

57 372 395 D D D

15 404 427 A A A

16 460 483 A B A

17 460 483 A C A

18 474 497 A D D

19 484 507 A C A

20 432 455 A C A

21 521 544 A D

22 488 511 A D D

23 488 511 A D

24 472 495 A D

25 476 499 A D C

26 446 489 A C B

27 532 555 A D 28 446 469 A C

EXAMPLES FOR SYNTHESIS

In addition, the following representative syntheses are shown for compounds according to Formulae I, II, and III.

Example 1 : Synthesis of:

2-[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-N-(2,2,2-trifluoro-ethyl)-a cetamide

A solution of {2-Hydroxy-l-[3-(tetrahydro-pyran-2-yloxy)-octyl]-2,3,3a,4,9 ,9a- hexahydro-lH-cyclopenta[b]naphthalen-5-yloxy}-acetic acid (94 mg, 0.2 mmol), trifluoroethylamine (54 mg, 0.6 mmol) and DIPEA (104 μΐ, 0.6 mmol) in DMF (2 ml) was treated with HATU and stirred 24 hr at RT. The reaction mixture was diluted with MTBE and washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated under vacuum. The residue was purified by silica gel chromatography. This resulting material was dissolved in MeOH (4 ml), treated with Amberlite IR120H and stirred 24 hr. The reaction mixture was filtered and concentrated to yield 2-[2-hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro- lH-cyclopenta[b]naphthalen-5-yloxy]-N-(2,2,2-trifluoro-ethyl )-acetamide (46 mg) as an oil. J HNMR (400 MHz, CDC1 3 ) δ 7.06 (d, IH, J=7.6); 6.80 (d, IH, J=7.2); 6.63 (d, IH, J=8.0); 4.86 (quint., IH, J=6.4); 4.60 (s, 2H); 3.7-3.8 (m, IH); 3.55-3.65 (m, IH); 2.85-2.95 (ddd, IH); 2.70-2.80 (dd, IH); 2.50-2.60 (ddd, IH); 2.40-2.50 (dd, IH); 2.15-2.3 (m, 2H); 1.75-1.95 (m, 2H); 1.24-1.70 (m, 17H); 1.20 (d, 3H, J=6.4); 0.85- 0.95 (m, 8H); MS: m/z 494 [M+Na] +

Example 2: Synthesis of:

[2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid 1,2-dimethyl-propyl ester

A solution of {2-Hydroxy-l-[3-(tetrahydro-pyran-2-yloxy)-octyl]-2,3,3a,4,9 ,9a- hexahydro-lH-cyclopenta[b]naphthalen-5-yloxy}-acetic acid (47 mg, 0.1 mmol), 3- methyl-2-butanol (26 mg, 0.3 mmol) and DMAP (12 mg, 0.1 mmol) in DCM (1 ml) was treated with EDC (26 mg, 0.14 mmol) and stirred 24 hr at RT. The reaction mixture was diluted with MTBE and washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated under vacuum. The residue was purified by silica gel chromatography. This resulting material was dissolved in MeOH/THF (4 ml), treated with Amberlite IR120H and stirred 24 hr. The reaction mixture was filtered and concentrated to yield [2-hydroxy-l-(3-hydroxy- octyl)-2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-5- yloxy]-acetic acid 1,2- dimethyl-propyl ester (16 mg) as an oil. J HNMR (400 MHz, CDC1 3 ) δ 7.06 (d, IH, J=7.6); 6.80 (d, IH, J=7.2); 6.63 (d, IH, J=8.0); 4.86 (quint, IH, J=5.6); 4.60 (s, 2H); 3.7-3.8 (m, IH); 3.55-3.80 (m, IH); 3.55-3.70 (m, IH); 2.85-2.95 (dd, IH); 2.50-2.80 (dd, IH); 2.50-2.60 (dd, IH); 2.40-2.60 (dd, IH); 2.15-2.30 (m, 2H); 1.75-1.95 (m, 2H); 1.35-1.80 (m, 17H); 1.19 (d, 3H, J=6.4); 0.85-0.95 (m, 8H); MS: m/z 483

[M+Na] +

Example 3: Synthesis of: treprostinil 2-hydroxy lactone

A solution of {2-Hydroxy-l-[3-(tetrahydro-pyran-2-yloxy)-octyl]-2,3,3a,4,9 ,9a- hexahydro-lH-cyclopenta[b]naphthalen-5-yloxy} -acetic acid (47 mg, 0.1 mmol) and DMAP (26 mg, 0.2 mmol) in DCM (1 ml) was treated with 2,4,6-trichlorobenzoyl chloride (27 mg, 0.11 mmol) and stirred 24 hr at RT. The reaction mixture was diluted with ethyl acetate and washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated under vacuum. The residue was purified by silica gel chromatography. This resulting material was dissolved in MeOH/THF (4 ml), treated with Amberlite IR120H and stirred 24 hr. The reaction mixture was filtered and concentrated to yield treprostinil 2-hydroxy lactone (8 mg) as an oil. J HNMR (400 MHz, CDC1 3 ) δ 7.03 (dd, IH, / = 8.4Hz, / = 7.6Hz ); 6.74 (d, IH, / = 7.6Hz); 6.55 (d, IH, / = 8.4Hz) 4.53 (m, IH); 4.46 (d, IH, / = 15.2Hz); 4.31 (d, IH, / = 15.2Hz); 3.53 (m, IH); 2.5 (m, IH); 2.8 (dd, IH); 2.6 (dd, IH); 2.2-2.55 (m, 4H); 1.53 (m, 4H); 1.35-1.47 (m, 4H); 1.3 (m, 6H); 0.89 (m, 3H); MS: m/z 395 [M+Na] +

Example 4: Synthesis of:

Cyclopropanecarboxylic acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester

A solution of [2-Hydroxy-l-(3-hydroxy-octyl)-2,3,3a,4,9,9a-hexahydro-lH- cyclopenta[b]naphthalen-5-yloxy]-acetic acid methyl ester (32 mg, 0.06 mmol), DIPEA (31 μΐ, 0.18 mmol) and DMAP (1 crystal) in DCM (2 ml) was treated with cyclopropanecarbonyl chloride (8 μΐ, 0.08 mmol) and stirred for 24 hr at RT under nitrogen. The reaction mixture was diluted with MTBE and washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated under vacuum. The residue was purified by silica gel chromatography. This resulting material was dissolved in MeOH/THF (4 ml), treated with Amberlite IR120H and stirred 24 nr. The reaction mixture was filtered and concentrated to yield

cyclopropanecarboxylic acid l-(3-hydroxy-octyl)-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-2-yl ester (32 mg) as an oil. J HNMR: (400 MHz, DMSO-d 6 ) δ 7.06 (d, IH, J=7.6); 6.80 (d, IH, J=7.2); 6.63 (d, IH, J=8.8); 4.78 (s, 2H); 4.1-4.2 (m, IH); 4.05-4.50 (m, IH); 3.68 (s, 3H); 2.6-2.8 (m, 2H); 2.4-2.5 (m, 2H); 2.20-2.35 (m, IH); 2.10-2.20 (m,lH); 1.8-1.95 (m, IH); 1. 1.16 (m, 15H); 0.95-1.10 (m, IH); 0.70-0.90 (m, 7H); MS: m/z 495 [M+Na] +

Example 5: Synthesis of Formula III Compound:

A solution of acrylic acid l-[2-(2-acryloyloxy-5-methoxycarbonylmethoxy- 2,3,3a,4,9,9a-hexahydro-lH-cyclopenta[b]naphthalen-l-yl)-eth yl]-hexyl ester (51 mg, 0.1 mmol) in chloroform (20 ml) is treated with a solution of (PCy3)2C12Ru=CHPh (19 mg, 0.023 mmol) in chloroform (3 ml) and stirred 24 hr at RT. TEA (1 ml) is added and the solution is concentrated under vacuum. The residue is purified by silica gel chromatography to yield the title compound.

Additional synthetic schemes are shown below: Example 6 (Formula I compound)

86