Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROTECTING BALLAST CIRCUITRY AGAINST MISWIRING
Document Type and Number:
WIPO Patent Application WO/2010/110946
Kind Code:
A1
Abstract:
A circuit for protecting an electronic ballast for use with a remote controller for gas discharge lamps against miswiring to a power source. Depletion mode MOSFETS are employed in both sides of the circuit to the controller and the MOSFETS respond to overvoltage, including polarity reversal to create an open circuit condition in the circuit to the controller.

Inventors:
NERONE LOUIS ROBERT (US)
Application Number:
PCT/US2010/023552
Publication Date:
September 30, 2010
Filing Date:
February 09, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
GEN ELECTRIC (US)
NERONE LOUIS ROBERT (US)
International Classes:
H05B41/285
Domestic Patent References:
WO2008039293A22008-04-03
Foreign References:
EP0757420A11997-02-05
EP0349750A11990-01-10
US20060023381A12006-02-02
EP0423885A11991-04-24
US20080042579A12008-02-21
US20040052022A12004-03-18
Other References:
INFINEON: "SIPMOS Small Signal Transistor", 18 January 2007 (2007-01-18), XP002584713, Retrieved from the Internet [retrieved on 20100528]
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A method of protecting an electronic ballast for a gas discharge lamp comprising:

(a) connecting a voltage interface circuit intermediate the control circuit and the electronic ballast;

(b) disposing a voltage responsive switch in circuit with each side of opposite polarity of the circuit; and,

(c) automatically opening one of said voltage responsive switches when one of (i) an overvoltage condition occurs and (ii) the controller is connected to a reverse polarity power source.

2. The method defined in claim 1, wherein the step of disposing a voltage responsive switch includes disposing a MOSFET device with the source and drain series connected in the line.

3. The method defined in claim 2, wherein the step of disposing a voltage responsive switch includes disposing a depletion mode MOSFET.

4. The method defined in claim 3, wherein the step of disposing a depletion mode MOSFET includes connecting the gate junction thereof to the opposite side of the power line.

5. The method defined in claim 1, wherein the step of automatically opening the switch includes automatically opening the switch when the voltage is one of (i) less than -2 volts and (ii) greater than +10 volts.

6. The method defined in claim 1, wherein the step of connecting a voltage interface circuit and controller to the ballast circuit includes connecting circuitry requiring about 500 μ amperes current flow.

7. A circuit for protecting an electronic ballast with controller for use with a gas discharge lamp comprising:

(a) a voltage interface circuit powered by the ballast and connected intermediate the ballast and controller; and,

(b) a voltage responsive series switch disposed one on each opposite side of the line between the interface circuit and the controller, wherein one of the switches is operative to open automatically upon the occurrence of one of (i) an overvoltage at the controller connection and (ii) a reverse polarity connection to a power source.

8. The circuit defined in claim 7, wherein the voltage responsive series switches includes MOSFET.

9. The circuit defined in claim 7, wherein the MOSFET comprises a depletion-mode MOSFET.

10. The circuit defined in claim 1, wherein the voltage responsive switch is operative to open automatically when the voltage is one of (i) less than -2 volts and (ii) greater than +12 volts.

11. A circuit for protecting an electronic controllable ballast for use with a gas discharge lamp comprising:

(a) a ballast interface circuit receiving power from the ballast and providing a relatively low voltage output for connection to a voltage controller;

(b) at least one voltage responsive switching device disposed inline between the interface circuit and the voltage controller, wherein the voltage responsive switching device is operable, in the event the device is misconnected to a power source, to switch to an open circuit state upon experiencing one of (i) an overvoltage, (ii) a negative voltage greater than -2 volts.

12. The circuit defined in claim 11, wherein the switching device is operable to switch open circuit when the voltage is in excess of + 12 volts.

13. The circuit defined in claim 11, wherein the switching device is operable to switch to an open circuit during the intervals of an alternating current voltage when the voltage is negative and greater than -2.

14. The circuit defined in claim 11, wherein the switching device includes a depletion MOSFET on each side of the circuit.

15. The circuit defined in claim 11, wherein the switching device includes a depletion MOSFET on one negative potential side of the circuit and a diode on the positive potential side of the circuit.

16. The circuit defined in claim 11, wherein the switching device operates on 500 μ amperes current flow.

Description:
PROTECTING BALLAST CIRCUITRY AGAINST MISWIRING

BACKGROUND OF THE DISCLOSURE

[0001] The present disclosure relates to circuitry for use with the ignition of gas discharge lamps and particularly to circuitry employing an electronic ballast with circuitry for interfacing with ballast with a remote controller operative for effecting dimming of the gas discharge lamps. Presently, it is common practice to house the ballast circuitry and interface circuitry in a common housing with a set of electrical leads extending therefrom for connection to a power line such as a 120 volt/240 volt single phase AC line and another set of electrical leads for outputting a low voltage low operage signal to the dimming controller.

[0002] In service, there has been encountered instances where, despite appropriate color coding of each set of electrical leads, the low voltage signal leads intended for connection to the controller have been miswired and connected to a line voltage power source. The connection of the low voltage interface circuit leads to the line power has resulted in an over current condition and burn out of the electronic ballast circuitry.

[0003] Heretofore, attempts to protect the ballast interface circuitry and ballast against over voltage have utilized a positive temperature coefficient or PTC thermistor which responds to the higher voltage by heating and increasing the resistance thereby reducing the current flow in the interface circuit. The PTC is operable to return to its lower or cold resistance state when the overvoltage is removed thereby enabling resumption of the low voltage operation with the remote controller. However, where the circuitry is encased in a potting compound, it is necessary to isolate the PTC from the potting compound to protect the potting compound from the elevated temperatures generated by the PTC in the event of miswiring. This has resulted in added cost due to the necessity of rearranging the circuitry to isolate the PTC.

[0004] Thus, it has been desired to find a simple and relatively low cost technique for protecting the controller interface circuitry employed with an electronic ballast for a gas discharge lamp from miswiring by connecting the low voltage controller leads to a high voltage power line.

SUMMARY OF THE DISCLOSURE

[0005] The present disclosure provides a solution to the above described problem by employing depletion mode MOSFETS in both sides of the circuit for connection to the remote controller for the gas discharge lamps in a manner that utilizes the switching properties of the depletion mode MOSFETS to respond to an overvoltage, including reversal of polarity, to create an open circuit condition in the circuit to the remote controller.

[0006] In the event of miswiring the leads for the low voltage controller to the high voltage power line, upon the voltage exceeding the voltage range of the controller in the positive direction one MOSFET goes open circuit; and, upon the voltage decreasing negatively outside a low voltage threshold, the MOSFET on the opposite side of the line switches to an open circuit condition thereby protecting the interface circuitry against mis-connection to a live voltage a.c. power.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIGURE 1 is a schematic of the circuitry of the present disclosure;

[0008] FIGURE 2 is an alternate arrangement of the interface circuitry portion of figure 1; and,

[0009] FIGURE 3 is a graph of the characteristic curves of the depletion mode MOSFETS of the type employed in the present disclosure.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0010] Referring to FIGURE 1, an electronic ballast circuit for gas discharge lamps is indicated generally in dashed outline by reference numeral 10 and may be of a conventional or well known design operative for connection at terminals 12, 14 to opposite sides of a power line indicated generally at LV. The ballast circuitry 10 is connected to an interface circuit indicated generally by reference numeral 16 which receives relatively low voltage D. C. power denoted, as for example 15 volts, from the electronic ballast and which is converted to a current level of about 500 microamps (500 μA) by transistor Ql which may be of the MOSFET variety and current limiting resistor Rl which has a value of nominally 5 kilo ohms zener diodes Dl, D2, which may be 1N5242 devices, limit the voltage between lines 24 and 26 to about 12 Volts. The interface circuit 16 connects with the electronic ballast internally at junctions 20, 22.

[0011] The interface circuit 16 provides a relatively low current signal of about 500 microamp along lines 24, 26 to the input of a protection circuit indicated generally at 30. The circuit 30 transfers the 500 microamp current signal at output terminals 32, 34 which may be connected to respectively the positive and negative terminals of a low voltage controller indicated by dashed-dot line and reference numeral 38.

[0012] Typically, the controller 38 is of the type which provides a variable impedance or resistance in response to a sensed condition such as, for example, the movement of a control element or member by the user, or by the signal from a sensor such as a motion, photoelectric, infrared, Doppler or other condition responsive sensor. The change in impedance (unshown) of the controller provides a variable or bi-level voltage signal for changing the voltage of the interface circuit for controlling dimming of the output of the electronic ballast to the gas discharge lamps.

[0013] The positive lead 24 of the interface circuit is connected to the source of switching device Q3; and, the drain is connected to the connector terminal 32 for connection to controller 38. The gate of Q3 is connected to the opposite side 26 of the signal line. Referring to the enlarged view in FIGURE 1, the device Q3 has an intrinsic diode D5 connected between the source and drain such that the device conducts so long as the voltage applied to the positive terminal in connector 32 is not greater than the 12 volt supply by virtue of the blocking diode D5. In the event a negative voltage greater than negative 12 is applied to the terminals, the upper transistor Q3 will continue to conduct; and, if the gate to source voltage is greater than its threshold voltage which is typically around -2.5 Vo Its,, the device will be in its ON state and the current source will supply 500 microamps to the controller. As the negative voltage increases in magnitude, i.e. gets more negative, current will continue to flow at the same level, but the drain to source voltage of the lower transistor Q4 will increase; and, the device Q4 matches the amplitude of the current source at the higher voltages to until the avalanche voltage of the device is reached, which in the present practice is about 600 volts. Thus, the circuit 30 of the arrangement of FIGURE 1 protects the interface circuit 16 from overvoltage, either positive or negative, in the event of miswiring a connection of terminals 32, 34 to a power line.

[0014] In the present practice, the electronic ballast circuit 10, the interface circuit 16 and the protection circuitry 30 may be incorporated into a common housing with a pair of color coded leads extending to terminals 12, 14 for a connection to a power line and with another pair of differently color coded leads extending therefrom for connection to terminals 32, 34 for connection to a remote controller.

[0015] Referring to FIGURE 2, an alternative arrangement of the interface circuit is indicated generally at 40 and has about 500 microamps of current supplied from the interface circuit 16 with diodes D3, D4 connected across the line thereof. Protection circuitry 40 of the arrangement of FIGURE 2 has a switching device Q5 connected in the negative side of the 12 volt signal line similar to the switching device Q4 of FIGURE 1, which device Q5 may also be of the depletion mode MOSFET type. In the arrangement of FIGURE 2 the positive side of the line 42 has a diode D5 connected therein; and, upon miswiring and application of a high voltage to the terminal 42, the diode continues to conduct current flow in the line. The voltage on switching device Q5 continues to increase until an avalanche condition occurs as in paragraph [0014]. The drain to source voltage of the device Q5 will be able to increase with the external voltage and prevent the device Q5 from switching to open circuit. If the polarity of the external source is reversed, D5 will block if this voltage exceeds about 12 Volts. The difference is that the version of FIGURE 1 will not have a diode drop because the channel of Q3 will continue to conduct until the threshold voltage is reached. In this way, the version of FIGURE 1 has better linearity, especially at low controller voltages, i.e. voltages below 2.5 Volts. [0016] Referring to FIGURE 3, typical characteristics of the type BSS 126 switching devices employed are shown where it is noted that the current is maintained, substantially constant so long as the gate voltage is maintained irrespective of the source to drain voltage.

[0017] The present circuitry provides unique low cost and simple additions to an electronic ballast and interface circuitry for gas discharge lamps where it is desired to connect a controller for dimming the lamps to the circuitry and to provide protection in the event the ballast is miswired to the power line.

[0018] The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations.