Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROTECTIVE LABEL
Document Type and Number:
WIPO Patent Application WO/2020/023855
Kind Code:
A1
Abstract:
A labeled article comprising a label (10) and an article (12), the article (12) having a top end (14), a bottom end (16), a bottom surface (18), and at least one side surface (20), wherein the at least one side surface (20) extends between the top end (14) and the bottom end (16) of the article (12). In this embodiment, the label (10) is positioned around a lower portion (32) of the side surface (20) of the article (12) to confront said side surface (20) and does not extend past the bottom end (16) of the article (12).

Inventors:
MCKILLIP BARRON (US)
BUSHMAN ALEXANDER (US)
DONOVAN CHRISTIAN (US)
Application Number:
PCT/US2019/043627
Publication Date:
January 30, 2020
Filing Date:
July 26, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MULTI COLOR CORP (US)
International Classes:
B65D23/08; G09F3/10
Foreign References:
US20050274687A12005-12-15
US3843316A1974-10-22
US20160130058A12016-05-12
Attorney, Agent or Firm:
JEFFERIES, David, E. et al. (US)
Download PDF:
Claims:
[0097] WHAT IS CLAIMED IS:

1. A labeled article comprising:

a label; and

an article, said article having a top end, a bottom end, a bottom surface, and at least one side surface, said at least one side surface extending between said top end and said bottom end;

wherein said label is positioned around a lower portion of said side surface of said article to confront said side surface, and does not extend past said bottom end of said article.

2. The labeled article of claim 1 , wherein a bottom edge of said label is substantially flush with a boundary between the side surface of the article and the bottom surface of the article.

3. The labeled article of claim 1 , wherein said label includes a machine direction- oriented film.

4. The labeled article of claim 3, wherein said label is a single ply machine direction-oriented polyolefin pressure sensitive label.

5. The labeled article of claim 1 , wherein said label includes a blend of polyethylene and polypropylene.

6. The labeled article of claim 5, wherein said label includes greater than 50% polypropylene.

7. The labeled article of claim 1 , wherein the at least one side surface of the article has a substantially circular cross-section at the location where the label confronts the at least one side surface, and wherein the label is sized and positioned relative to the article such that it wraps 370° around the at least one side surface.

8. The labeled article of claim 7, wherein the label is heat shrunk to confront and conform to the article.

9. The labeled article of claim 1 , wherein said label extends from the bottom end of the article toward the top end of the article less than 50% of the length of the article between the bottom end to the top end.

10. The labeled article of claim 1 , wherein said label extends from the bottom end of the article toward the top end of the article less than 20% of the length of the article between the bottom end to the top end.

1 1 . The labeled article of claim 1 , wherein said label extends from the bottom end of the article toward the top end of the article less than 12% of the length of the article between the bottom end to the top end.

12. The labeled article of claim 1 , wherein said label extends between ½” to 1” from the bottom end of the article toward the top end of the article.

13. The labeled article of claim 1 , further comprising an adhesive applied to a surface of the label, such that the adhesive is positioned between the label and the article.

14. The labeled article of claim 13, wherein said adhesive is a pressure sensitive adhesive.

15. The labeled article of claim 1 , wherein said label is a shrink sleeve label having a film comprising polyvinyl chloride.

16. The labeled article of claim 15, wherein said label extends from the bottom end of the article toward the top end of the article less than 50% of the length of the article between the bottom end to the top end.

17. The labeled article of claim 15, wherein said label extends from the bottom end of the article toward the top end of the article less than 20% of the length of the article between the bottom end to the top end.

18. The labeled article of claim 15, wherein said label extends from the bottom end of the article toward the top end of the article less than 12% of the length of the article between the bottom end to the top end.

19. The labeled article of claim 15, wherein said label extends between ½” to 1” from the bottom end of the article toward the top end of the article.

20. The labeled article of claim 15, further comprising an adhesive applied to a surface of the label, such that the adhesive is positioned between the label and the article.

21 . The labeled article of claim 15, wherein the label is heat shrunk to confront and conform to the article.

22. A labeled article comprising:

a label; and

an article, said article having a top end, a bottom end, and at least one side surface, said at least one side surface extending between said top end and said bottom end;

wherein said label is positioned around a portion of said side surface of said article and does not extend to said bottom end of said article, such that a lower portion of said side surface is exposed below a bottom edge of said label, and said label confronts said side surface;

wherein said label includes a machine direction-oriented film and an adhesive positioned between said label and said article; and

wherein said label is heat shrunk to the article.

23. The labeled article of claim 22, wherein said label is a single ply machine direction-oriented polyolefin pressure sensitive label.

24. The labeled article of claim 22, wherein said label includes a blend of

polyethylene and polypropylene.

25. The labeled article of claim 24, wherein said label includes greater than 50% polypropylene.

26. The labeled article of claim 22, wherein the at least one side surface of the article has a substantially circular cross-section at the location where the label confronts the at least one side surface, and wherein the label is sized and positioned relative to the article such that it wraps 370° around the at least one side surface.

27. The labeled article of claim 22, wherein said adhesive is a pressure sensitive adhesive.

28. A labeled article comprising:

a label; and

an article, said article having a top end, a bottom end, a bottom surface, and at least one side surface, said at least one side surface extending between said top end and said bottom end;

wherein said label is positioned around a lower portion of said side surface of said article and extends past said bottom end of said article, such that said label confronts said lower portion of said side surface and at least a portion of a bottom surface of said article; and

wherein said label extends from the bottom end of the article toward the top end of the article less than 50% of the length of the article between the bottom end to the top end.

29. The labeled article of claim 28, wherein said label includes a machine direction- oriented film.

30. The labeled article of claim 29, wherein said label is a single ply machine direction-oriented polyolefin pressure sensitive label.

31 . The labeled article of claim 28, wherein said label includes a blend of

polyethylene and polypropylene.

32. The labeled article of claim 31 , wherein said label includes greater than 50% polypropylene.

33. The labeled article of claim 28, wherein the at least one side surface of the article has a substantially circular cross-section at the location where the label confronts the at least one side surface, and wherein the label is sized and positioned relative to the article such that it wraps 370° around the at least one side surface.

34. The labeled article of claim 33, wherein the label is heat shrunk to confront and conform to the article.

35. The labeled article of claim 28, wherein said label extends from the bottom end of the article toward the top end of the article less than 20% of the length of the article between the bottom end to the top end.

36. The labeled article of claim 28, wherein said label extends from the bottom end of the article toward the top end of the article less than 12% of the length of the article between the bottom end to the top end.

37. The labeled article of claim 28, wherein said label extends between ½” to 1” from the bottom end of the article toward the top end of the article.

38. The labeled article of claim 28, further comprising an adhesive applied to a surface of the label, such that the adhesive is positioned between the label and the article.

39. The labeled article of claim 38, wherein said adhesive is a pressure sensitive adhesive.

40. A labeled article comprising:

a label; and

an article, said article having a top end, a bottom end, and at least one side surface, said at least one side surface extending between said top end and said bottom end;

wherein said label is positioned around a lower portion of said side surface of said article and extends past said bottom end of said article, such that said label confronts said lower portion of said side surface and at least a portion of a bottom surface of said article;

wherein said label includes a machine direction-oriented film and an adhesive positioned between said label and said article; and

wherein said label is heat shrunk to the article.

41 . The labeled article of claim 40, wherein said label is a single ply machine direction-oriented polyolefin pressure sensitive label.

42. The labeled article of claim 40, wherein said label includes a blend of polyethylene and polypropylene.

43. The labeled article of claim 42, wherein said label includes greater than 50% polypropylene.

44. The labeled article of claim 40, wherein said adhesive is a pressure sensitive adhesive.

Description:
PROTECTIVE LABEL

FIELD OF THE INVENTION

[0001] The present invention relates to a protective label that can be applied to an article to reduce or prevent damage to same.

BACKGROUND OF THE INVENTION

[0002] This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the present invention, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of various aspects of the present invention. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.

[0003] Labels are commonly used with many different types of articles that contain (or are designed to contain) various products. Such containers may generally be any receptacle or enclosure for holding a product used in storage, packaging, and shipping, or during its use. Such articles may include, but are not limited to bottles, jars, cans, tubs, boxes, etc. Further, such articles are often made from materials which are subject to damage or breakage, such as glass or polymer materials such as PET or HDPE.

[0004] Articles that are made from materials that can be damaged and/or break present certain drawbacks. For example, consumers may be dissatisfied by glass breakage associated with dropped bottles. In particular, the consumer perception of package quality can be diminished when confronted with articles (such as glass bottles) that are broken, such as during transit to the retail environment - or if bottles are broken due to being dropped after purchase. Current methods of reducing or preventing such damage are inadequate.

SUMMARY OF THE INVENTION

[0005] Certain exemplary aspects of the invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be explicitly set forth below.

[0006] Various aspects of the embodiments of the protective label described herein overcome the drawbacks of the prior art. More specifically, aspects of the present invention provide a protective label that - due to its positioning relative to an article with which it is associated, or the materials comprising the label, or a combination of materials and positioning - reduces or prevents damage and/or breakage to the article to which it is applied (for example, when a glass bottle is dropped).

[0007] To that end, one embodiment of the present invention provides a labeled article comprising a label and an article, the article having a top end, a bottom end, a bottom surface, and at least one side surface, wherein the at least one side surface extends between the top end and the bottom end of the article. In this embodiment, the label is positioned around a lower portion of the side surface of the article to confront said side surface, and does not extend past the bottom end of the article.

[0008] Another embodiment of the present invention provides a labeled article comprising a label and an article, the article having a top end, a bottom end, and at least one side surface, wherein the at least one side surface extends between the top end and the bottom end of the article. The label is positioned around a portion of the side surface of said article and does not extend to the bottom end of said article, such that a lower portion of said side surface is exposed below a bottom edge of said label.

In this embodiment, the label includes a machine direction-oriented film and an adhesive positioned between the label and the article, and the label is heat shrunk to the article.

[0009] Another embodiment of the present invention provides a labeled article comprising a label and an article, the article having a top end, a bottom end, a bottom surface, and at least one side surface, wherein the at least one side surface extends between the top end and the bottom end of the article. The label is positioned around a lower portion of the side surface of said article and extends past the bottom end of the article, such that said label confronts the lower portion of the side surface and at least a portion of a bottom surface of the article. Further, in this embodiment, the label extends from the bottom end of the article toward the top end of the article less than 50% of the length of the article between the bottom end to the top end.

[0010] Another embodiment of the present invention provides a labeled article comprising a label and an article, the article having a top end, a bottom end, and at least one side surface, wherein the at least one side surface extends between the top end and the bottom end of the article. The label is positioned around a lower portion of the side surface of the article and extends past the bottom end of the article, such that the label confronts the lower portion of the side surface and at least a portion of a bottom surface of the article. Further, the label includes a machine direction-oriented film and an adhesive positioned between said label and said article, and the label is heat shrunk to the article.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the general description of the invention given above and the detailed description of the embodiments given below, serve to explain the principles of the present invention.

[0012] Fig. 1 A is a view of a first embodiment of an exemplary article including a label associated therewith in accordance with the principles of the present invention, showing the label prior to being applied to the article.

[0013] Fig. 1 B is a view of the bottom end of the article of Fig. 1 A.

[0014] Fig. 1 C is a view of the article and label of Fig. 1 A, showing the label following application to the article.

[0015] Fig. 1 D is a view of the bottom end of the article with label applied as shown in Fig. 1 C.

[0016] Fig. 2A is a view of another embodiment of an exemplary article including a label associated therewith in accordance with the principles of the present invention, showing the label prior to being applied to the article.

[0017] Fig. 2B is a view of the bottom end of the article of Fig. 2A.

[0018] Fig. 2C is a view of the article and label of Fig. 2A, showing the label following application to the article.

[0019] Fig. 2D is a view of the bottom end of the article with label applied as shown in Fig. 2C.

[0020] Fig. 3A is a view of another embodiment of an exemplary article including a label associated therewith in accordance with the principles of the present invention, showing the label prior to being applied to the article.

[0021] Fig. 3B is a view of the bottom end of the article of Fig. 3A. [0022] Fig. 3C is a view of the article and label of Fig. 3A, showing the label following application to the article.

[0023] Fig. 3D is a view of the bottom end of the article with label applied as shown in Fig. 3C.

[0024] Fig. 4A is a view of another embodiment of an exemplary article including a label associated therewith in accordance with the principles of the present invention, showing the label prior to being applied to the article.

[0025] Fig. 4B is a view of the bottom end of the article of Fig. 4A.

[0026] Fig. 4C is a view of the article and label of Fig. 4A, showing the label following application to the article.

[0027] Fig. 4D is a view of the bottom end of the article with label applied as shown in Fig. 4C.

[0028] Fig. 5 is a perspective view of an apparatus used to test damage to, and/or breakage to, articles.

[0029] Fig. 6 is a chart showing the results from tests for damage to, and/or breakage of, articles.

[0030] Fig. 7A is a side view of a conveyor apparatus including labeled articles that progress along the conveyor.

[0031] Fig. 7B is a cross sectional view of the conveyor apparatus with labeled articles shown in Fig. 7A, further depicting a heating device used to shrink labels against the articles.

DETAILED DESCRIPTION

[0032] One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers’ specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure. [0033] As described above, various aspects of the embodiments of the protective label described herein overcome the drawbacks of the prior art. More specifically, aspects of the present invention provide a protective label that - due to its positioning relative to an article with which it is associated, or the materials comprising the label, or a combination of materials and positioning - reduces or prevents damage and/or breakage to the article to which it is applied (for example, when a glass bottle is dropped).

[0034] To that end, and referring now to Figs. 1 A-1 D, one embodiment of the present invention provides a label 10 for an article 12, wherein the label 10 is positioned, and/or prepared from materials, that may reduce or prevent damage (such as breakage) of the article 12. In the illustrated embodiment, the article 12 has a top end 14, a bottom end 16, a bottom surface 18, and at least one side surface 20. The at least one side surface 20 extends between the top end 14 and the bottom end 16 of the article 12. The top end 14 may define an opening 22 that provides access to an interior chamber 24 of the article 12. The article 12 may further include a centerpoint of the top end 14 and a centerpoint 28 of the bottom end 16 with a radial axis 30 passing therethrough. As will be recognized by those of ordinary skill in the art, the illustrated article 12 (of Figs. 1 A- 1 D) having such centerpoints and a radial axis 30 is a common bottle, and thus has such centerpoints and radial axis 30 due to its particular shape. However, it will be recognized that the protective label 10 described herein does not need to be applied only to articles having the shape shown in the Figures, but may also be used with articles having other shapes as well.

[0035] In the illustrated embodiment of Figs. 1A-1 D, the label 10 is positioned around a lower portion 32 of the side surface 20 of the article 12 to confront the side surface 20. Further, as can be seen, the label 10 does not extend past the bottom end 16 of the article 12 in this illustrated embodiment. In that regard, the label 10 may include a top edge 34 and a bottom edge 36, and the bottom edge 36 of the label 10 may be substantially flush with a junction 38 between the side surface 20 of the article 12 and the bottom surface 18 of the article 12. It will be recognized by those of ordinary skill in the art that a junction 38, as used herein, does not require a separately prepared sidewall and bottom surface 18 that are subsequently joined together to define a junction, but may also include a boundary in a molded article 12, for example, between the side wall and the bottom surface 18 that (in at least the illustrated embodiment) are substantially perpendicular to one another. The points and area, then, where a plane coplanar with the bottom surface 18 of the article 12 intersects a plane or planes coplanar with the side surface 20 (or portions of the side surface 20) would generally define this junction 38 between the side surface 20 and bottom surface 18.

[0036] As can be seen in the illustrated embodiment, the label 10 extends upward from the junction 38 of the side wall and the bottom surface 18 toward the top end 14 of the article 12. However, the label 10 does not extend fully toward the top end 14 of the article 12, such that the substantial portion of the side surface 20 is confronted by the label 10. Rather, largely a segment of the lower portion of the article 12 is confronted by the label 10. In one such embodiment, the label 10 may extend from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 50% of the length of the article 12 between the bottom end 16 to the top end 14. In another embodiment, the label 10 may extend from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 20% of the length of the article 12 between the bottom end 16 to the top end 14. And in yet another embodiment, the label 10 may extend from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 12% of the length of the article 12 between the bottom end 16 to the top end 14. In yet another embodiment, the label 10 may extend between ½” to 1” from the bottom end 16 of the article 12 toward the top end 14 of the article 12.

[0037] While the coverage of the lower portion of the article 12 with respect to the label 10 is described above with respect to extension of the label 10 toward the top end 14 of the article 12 by some percentage of the length of the article 12 (or a particular distance), it is not necessary that the label 10 (in its various embodiments) specifically adhere to a particular percentage (or distance) as recited above. Rather, the size, positioning, coverage, etc. of the label 10 with respect to the side wall of the article 12 is largely a function of article 12 geometry that is sufficient to result in a decreased breakage of articles over that seen in the prior art (e.g., sufficient enough to result in an improved result in performance in drop tests of such articles - as will be described in greater detail below).

[0038] To that end, and without being bound by any theory, it is believed that the positioning of the label 10, in this and other described aspects and embodiments, may be related to the article geometries in reducing or preventing breakage of the article 12. As noted above, one result of certain embodiments is that a smaller label 10 can be just as effective and perhaps more effective to reduce and/or prevent breakage than a label 10 that extends the full length of the side wall of the article 12. When an article 12 (such as a bottle) is dropped, a shock-wave may be propagated at the bottom of the bottle (such as when the article 12 lands at least partially or substantially with a portion or substantially all of the bottom surface 18 of the article 12 making first contact with the surface against which it is dropped). The shock-wave is the nucleation event for the glass breakage because the pressure at the base of the article 12 exceeds the yield point for the glass. In other words, a shock wave is generated during the drop impact event, and this forces the fluid in the container to move outward and create a“pressure ring” at the bottom of the article 12. This pressure ring creates stress in the article 12 which may initiate breakage. Without being bound by any theory, it is believed that in the embodiments of the present invention described herein, the label 10 is sufficiently large and/or sufficiently positioned to prevent the shock-wave propagation and the nucleation event that initiates the breakage. Further, while certain articles that may be breakable (such as those made of glass), it is contemplated that the aspects and embodiments of the present invention have application beyond articles made of glass, and are applicable to any containers of breakable materials - for example, articles made of materials including (but not limited to) polymer materials (e.g., PET, HDPE, etc.).

[0039] In certain embodiments, the label 10 of the labeled article 12 may also include a particular material or materials. For example, in certain embodiments, the label 10 may include a machine direction-oriented film. In further embodiments, the label 10 may include a single ply machine direction-oriented polyolefin pressure sensitive label. Further still, in certain embodiments, the label 10 may include a blend of polyethylene and polypropylene. And, in certain embodiments, the label 10 may be greater than 50% polypropylene.

[0040] In another embodiment, the label 10 may be a shrink sleeve label having a film comprising polyvinyl chloride.

[0041] In addition to the positioning of the label 10 and/or the type of material used in the label 10 (discussed above), another aspect of the present invention may include the manner in which the label 10 is associated with an article 12. For example, in the illustrated embodiment of Figs. 1 A-1 D, the at least one side surface 20 of the article 12 has a substantially circular cross-section at the location where the label 10 confronts the at least one side surface 20. In this and other embodiments, the label 10 may be sized and positioned relative to the article 12 such that it wraps 370° around the at least one side surface 20 (i.e., a portion of the label 10 overlaps itself when applied to the article 12).

[0042] Further, in certain embodiments, the label 10 may be heat shrunk to confront and conform to the article 12. To that end, in general, various aspects of the present invention also allow for applying labels, which may include pressure sensitive labels, to articles by moving the article 12 into proximity with a source of a pressure sensitive label 10, positioning a pressure sensitive label 10 relative to each article 12, and heating the pressure sensitive label 10 to shrink it against the article 12. In one embodiment, the pressure sensitive labels 10 are heat-shrunk on the articles 12 using high heat along a conveyor belt 42, upon which the articles and associated pressure sensitive labels are moved. Thus, various embodiments may include a heated conveyor 42, such that the pressure sensitive labels 10 are shrunk to conform to the contour of the articles due to heat radiating from the conveyor 42 to the labels and articles. Alternatively, other methods of applying heat (such as via the blowing of hot air onto the pressure sensitive labels and articles) may be used.

[0043] Referring now to Figs. 7A and 7B, in this illustrated embodiment, an apparatus 40 for shrinking the pressure sensitive labels 10 against articles 12 includes a conveyor 42 that provides a path for the articles 12 to proceed along. As shown in Figs. 7A and 7B, the labels 10 have already been applied to the articles 12 at the time they are depicted on the conveyor 42. In the case of application and heat shrinking of pressure sensitive labels, the labels may be applied to articles, in one embodiment, using a 370 Q Wrap PS label applicator, known to those of ordinary skill in the art.

Following application of the pressure sensitive labels to the articles, the labeled articles then travel along the conveyor 42.

[0044] The conveyor 42 also includes a heating device 44, which provides heat of a temperature sufficient to cause the pressure sensitive labels 10 to substantially conform to the contour of the articles with which they are associated. In the illustrated

embodiment, this heating device 44 is provided along the sides 46 of the conveyor 42. The heating device 44 may be any device sufficient to cause the pressure sensitive labels to shrink against the articles. Thus, the heating device on the conveyor 42 may be one which radiates heat from a heating element. Alternatively, it may be a device that blows hot air onto the articles as they pass by the heating device 44. Still alternatively, the heat for shrinking may be provided by steam. Further, heat may be provided by a hot air manifold. Also, heat may be applied by a combination of these methods, for example, steam heat coupled with air movement. A constant heat may be applied to the pressure sensitive label 10 and article 12. Alternatively, the pressure sensitive label 10 and article 12 may experience gradations of temperature as they move along the conveyor 42. In one embodiment, heat may be applied to the label 10 and article 12 at a temperature at or above about 140°F. In other embodiments, depending on the amount of shrink needed, the temperature may be in a range between about 140°F and about 266 °F. The desired temperature along the conveyor 42 may depend upon a number of factors, such as the speed at which the article 12 and label 10 are moved along the conveyor 42, and also the particular composition and thickness of the pressure sensitive label 10. Those of ordinary skill in the art will appreciate alternate ways in which this may be accomplished. The heating device 44 will extend along the conveyor 42 for a distance sufficient to ensure that the labels 10 are substantially shrunk against the contour of the articles 12.

[0045] Further, the conveyor 42 is designed such that the articles rotate as they move along the path of the conveyor 42. This allows the entire surface of the pressure sensitive labels 10 to be exposed to the heating device 44 as they move along the conveyor 42. This is used to facilitate complete shrinkage of the labels against the articles about the entire surface (e.g., circumference) of the labels.

[0046] Following shrinking, the article 12 and pressure sensitive label 10 may then be cooled by subjecting the article 12 and label 10 to ambient temperatures to allow for a gradual cooling process. Alternatively, the article 12 and pressure sensitive label 10 may undergo other cooling steps, such as subjecting the article 12 and label 10 to cool air or liquid.

[0047] Further still, the label 10 may include an adhesive applied to a surface of the label 10, such that the adhesive is positioned between the label 10 and the article 12 when the label 10 confronts the article 12. In one embodiment, the adhesive may be a pressure sensitive adhesive. In certain embodiments, the pressure sensitive adhesive may be a clear general purpose permanent acrylic pressure sensitive adhesive. An example of one such adhesive is Fasson ® S692N adhesive, (commercially available from Avery Dennison of Glendale, CA). In other embodiments, the pressure sensitive adhesive may be a clear general purpose acrylic pressure sensitive adhesive.

Examples of such adhesives include Flexcon V-81 adhesive, (commercially available from FLEXcon of Spencer, MA) and Flexcon V-01 adhesive, (commercially available from FLEXcon of Spencer, MA). [0048] And so, in one specific embodiment of a labeled article 12 (such as that shown in Figs. 1A-1 D, the article 12 may be made of a material that is a blend of polyethylene and polypropylene with preferably greater than 50% polypropylene content. And this construction includes a pressure sensitive adhesive. The label 10 may be applied to an article 12 using conventional pressure sensitive labeling equipment. And the label 10 extends approximately 1” toward the tope end of the article 12 from the bottom end 16 of the article 12, and wraps 370° around the article 12. After application, this construction may be heat shrunk to conform to the lower portion 32 of the at least one sidewall of the article 12.

[0049] Referring now to Figs. 2A-2D, another embodiment of the present invention provides a label 10 for an article 12, wherein the label 10 is positioned, and/or prepared from materials, that may reduce or prevent damage (such as breakage) of the article 12. In the illustrated embodiment, the article 12 has a top end 14, a bottom end 16, and at least one side surface 20. The at least one side surface 20 extends between the top end 14 and the bottom end 16 of the article 12. The top end 14 may define an opening 22 that provides access to an interior chamber 24 of the article 12. The article 12 may further include a centerpoint of the top end 14 and a centerpoint 28 of the bottom end 16 with a radial axis 30 passing therethrough. As will be recognized by those of ordinary skill in the art, the illustrated article 12 (of Figs. 2A-2D) having such

centerpoints and a radial axis 30 is a common bottle, and thus has such centerpoints and radial axis 30 due to its particular shape. However, it will be recognized that the protective label 10 described herein does not need to be applied only to articles having the shape shown in the Figures, but may also be used with articles having other shapes as well.

[0050] In the illustrated embodiment of Figs. 2A-2D), the label 10 is positioned around a portion of the side surface 20 of the article 12 to confront the side surface 20. Further, as can be seem, the label 10 does not extend to the bottom end 16 of said article 12 in this embodiment. Thus, in this illustrated embodiment, a lower portion 32 of the side surface 20 is exposed below a bottom edge 36 of the label 10. In this embodiment, the label 10 includes a machine direction-oriented film and an adhesive positioned between the label 10 and the article 12, and the label 10 is heat shrunk to the article 12.

[0051] As described, the label 10 of the embodiment of Figs. 2A-2D includes a machine direction-oriented file. More specifically (in certain embodiments) this film may be a single ply machine direction-oriented polyolefin pressure sensitive label 10.

Further still, in certain embodiments, the label 10 may include a blend of polyethylene and polypropylene. And, in certain embodiments, the label 10 may be greater than 50% polypropylene.

[0052] In addition to the positioning of the label 10 and the type of material used in the label 10 (discussed above), another aspect of the present invention may include the manner in which the label 10 is associated with an article 12. For example, in the illustrated embodiment of Figs. 2A-2D, the at least one side surface 20 of the article 12 has a substantially circular cross-section at the location where the label 10 confronts the at least one side surface 20. In this and other embodiments, the label 10 may be sized and positioned relative to the article 12 such that it wraps 370° around the at least one side surface 20 (i.e., a portion of the label 10 overlaps itself when applied to the article 12.

[0053] Further still, as noted above, this embodiment of label 10 includes an adhesive applied to a surface of the label 10, such that the adhesive is positioned between the label 10 and the article 12 when the label 10 confronts the article 12. In one embodiment, the adhesive may be a pressure sensitive adhesive.

[0054] Referring now to Figs. 3A-3D, another embodiment of the present invention provides a label 10 for an article 12, wherein the label 10 is positioned, and/or prepared from materials, that may reduce or prevent damage (such as breakage) of the article 12. In the illustrated embodiment, the article 12 has a top end 14, a bottom end 16, a bottom surface 18, and at least one side surface 20. The at least one side surface 20 extends between the top end 14 and the bottom end 16 of the article 12. The top end 14 may define an opening 22 that provides access to an interior chamber 24 of the article 12. The article 12 may further include a centerpoint of the top end 14 and a centerpoint 28 of the bottom end 16 with a radial axis 30 passing therethrough. As will be recognized by those of ordinary skill in the art, the illustrated article 12 (of Figs. 3A- 3D) having such centerpoints and a radial axis 30 is a common bottle, and thus has such centerpoints and radial axis 30 due to its particular shape. However, it will be recognized that the protective label 10 described herein does not need to be applied only to articles having the shape shown in the Figures, but may also be used with articles having other shapes as well.

[0055] In the illustrated embodiment of Figs. 3A-3D, the label 10 is positioned around a lower portion 32 of the side surface 20 of the article 12 and extends past the bottom end 16 of the article 12, such that said label 10 confronts the lower portion 32 of the side surface 20 and at least a portion of a bottom surface 18 of the article 12.

[0056] Further, in this embodiment, the label 10 extends from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 50% of the length of the article 12 between the bottom end 16 to the top end 14. To that end, as can be seen in the illustrated embodiment, the label 10 extends upward from the junction 38 of the side wall and the bottom surface 18 toward the top end 14 of the article 12. However, the label 10 does not extend fully toward the top end 14 of the article 12, such that the substantial portion of the side surface 20 is confronted by the label 10. Rather, largely a segment of the lower portion of the article 12 is confronted by the label 10. In another embodiment, the label 10 may extend from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 20% of the length of the article 12 between the bottom end 16 to the top end 14. And in yet another embodiment, the label 10 may extend from the bottom end 16 of the article 12 toward the top end 14 of the article 12 less than 12% of the length of the article 12 between the bottom end 16 to the top end 14. In yet another embodiment, the label 10 may extend between ½” to 1” from the bottom end 16 of the article 12 toward the top end 14 of the article 12.

[0057] While the coverage of the lower portion of the article 12 with respect to the label 10 is described above with respect to extension of the label 10 toward the top end 14 of the article 12 by some percentage of the length of the article 12 (or a particular distance), it is not necessary that the label 10 (in its various embodiments) specifically adhere to a particular percentage (or distance) as recited above. Rather, the size, positioning, coverage, etc. of the label 10 with respect to the side wall of the article 12 is largely a function of article 12 geometry that is sufficient to result in a decreased breakage of articles over that seen in the prior art (e.g., sufficient enough to result in an improved result in performance in drop tests of such articles - as will be described in greater detail below).

[0058] In certain embodiments, the label 10 of the labeled article 12 may also include a particular material or materials. For example, in certain embodiments, the label 10 may include a machine direction-oriented film. In further embodiments, the label 10 may include a single ply machine direction-oriented polyolefin pressure sensitive label 10. Further still, in certain embodiments, the label 10 may include a blend of polyethylene and polypropylene. And, in certain embodiments, the label 10 may be greater than 50% polypropylene. [0059] In addition to the positioning of the label 10 and/or the type of material used in the label 10 (discussed above), another aspect of the present invention may include the manner in which the label 10 is associated with an article 12. For example, in the illustrated embodiment of Figs. 3A-3D, the at least one side surface 20 of the article 12 has a substantially circular cross-section at the location where the label 10 confronts the at least one side surface 20. In this and other embodiments, the label 10 may be sized and positioned relative to the article 12 such that it wraps 370° around the at least one side surface 20 (i.e., a portion of the label 10 overlaps itself when applied to the article 12.

[0060] Further, in certain embodiments, the label 10 may be heat shrunk to confront and conform to the article 12. To that end, in general, various aspects of the present invention also allow for applying labels, which may include pressure sensitive labels, to articles by moving the article 12 into proximity with a source of a pressure sensitive label 10, positioning a pressure sensitive label 10 relative to each article 12, and heating the pressure sensitive label 10 to shrink it against the article 12. In one embodiment, the pressure sensitive labels are heat-shrunk on the articles using high heat along a conveyor belt, upon which the articles and associated pressure sensitive labels are moved. Thus, various embodiments may include a heated conveyor 42, such that the pressure sensitive labels are shrunk to conform to the contour of the articles due to heat radiating from the conveyor 42 to the labels and articles. Alternatively, other methods of applying heat (such as via the blowing of hot air onto the pressure sensitive labels and articles) may be used.

[0061] Referring now to Figs. 7A and 7B, in this illustrated embodiment, an apparatus 40 for shrinking the pressure sensitive labels against articles includes a conveyor 42 that provides a path for the articles to proceed along. As shown in Figs. 7A and 7B, the labels 10 have already been applied to the articles 12 at the time they are depicted on the conveyor 42. In the case of application and heat shrinking of pressure sensitive labels, the labels 10 may be applied to articles, in one embodiment, using a 370 Q Wrap PS label applicator, known to those of ordinary skill in the art. Following application of the pressure sensitive labels to the articles, the labeled articles then travel along the conveyor 42.

[0062] The conveyor 42 also includes a heating device 44, which provides heat of a temperature sufficient to cause the pressure sensitive labels 10 to substantially conform to the contour of the articles with which they are associated. In the illustrated embodiment, this heating device 44 is provided along the sides 46 of the conveyor 42. The heating device 44 may be any device sufficient to cause the pressure sensitive labels 10 to shrink against the articles 12. Thus, the heating deice on the conveyor 42 may be one which radiates heat from a heating element. Alternatively, it may be a device that blows hot air onto the articles as they pass by the heating device 44. Still alternatively, the heat for shrinking may be provided by steam. Further, heat may be provided by a hot air manifold. Also, heat may be applied by a combination of these methods, for example, steam heat coupled with air movement. A constant heat may be applied to the pressure sensitive label 10 and article 12. Alternatively, the pressure sensitive label 10 and article 12 may experience gradations of temperature as they move along the conveyor 42. In one embodiment, heat may be applied to the label 10 and article 12 at a temperature at or above about 140°F. In other embodiments, depending on the amount of shrink needed, the temperature may be in a range between about 140°F and about 266 °F. The desired temperature along the conveyor 42 may depend upon a number of factors, such as the speed at which the article 12 and label 10 are moved along the conveyor 42, and also the particular composition and thickness of the pressure sensitive label 10. Those of ordinary skill in the art will appreciate alternate ways in which this may be accomplished. The heating device 44 will extend along the conveyor 42 for a distance sufficient to ensure that the labels are substantially shrunk against the contour of the articles.

[0063] Further, the conveyor 42 is designed such that the articles rotate as they move along the path of the conveyor 42. This allows the entire surface of the pressure sensitive labels 10 to be exposed to the heating device 44 as they move along the conveyor 42. This is used to facilitate complete shrinkage of the labels 10 against the articles 12 about the entire surface (e.g., circumference) of the labels.

[0064] Following shrinking, the article 12 and pressure sensitive label 10 may then be cooled by subjecting the article 12 and label 10 to ambient temperatures to allow for a gradual cooling process. Alternatively, the article 12 and pressure sensitive label 10 may undergo other cooling steps, such as subjecting the article 12 and label 10 to cool air or liquid.

[0065] Further still, the label 10 may include an adhesive applied to a surface of the label 10, such that the adhesive is positioned between the label 10 and the article 12 when the label 10 confronts the article 12. In one embodiment, the adhesive may be a pressure sensitive adhesive. [0066] Referring now to Figs. 4A-4D, another embodiment of the present invention provides a label 10 for an article 12, wherein the label 10 is positioned, and/or prepared from materials, that may reduce or prevent damage (such as breakage) of the article 12. In the illustrated embodiment, the article 12 has a top end 14, a bottom end 16, and at least one side surface 20. The at least one side surface 20 extends between the top end 14 and the bottom end 16 of the article 12. The top end 14 may define an opening 22 that provides access to an interior chamber 24 of the article 12. The article 12 may further include a centerpoint of the top end 14 and a centerpoint 28 of the bottom end 16 with a radial axis 30 passing therethrough. As will be recognized by those of ordinary skill in the art, the illustrated article 12 (of Figs. 4A-4D) having such

centerpoints and a radial axis 30 is a common bottle, and thus has such centerpoints and radial axis 30 due to its particular shape. However, it will be recognized that the protective label 10 described herein does not need to be applied only to articles having the shape shown in the Figures, but may also be used with articles having other shapes as well.

[0067] In the illustrated embodiment (of Figs. 4A-4D), the label 10 is positioned around a portion of the side surface 20 of the article 12 to confront the side surface 20. Further, as can be seen, the label 10 extends past the bottom end 16 of said article 12 in this embodiment. Thus, when applied to an article 12 (such as the bottle as shown in Figs. 4C and 4D), the label 10 confronts at least the lower portion 32 of the side surface 20 of the article 12 and at least a portion of the bottom surface 18 of the article 12. In this embodiment, the label 10 includes a machine direction-oriented film and an adhesive positioned between the label 10 and the article 12, and the label 10 is heat shrunk to the article 12.

[0068] As described, the label 10 of the embodiment of Figs. 4A-4D includes a machine direction-oriented film. More specifically (in certain embodiments) this film may be a single ply machine direction-oriented polyolefin pressure sensitive label 10.

Further still, in certain embodiments, the label 10 may include a blend of polyethylene and polypropylene. And, in certain embodiments, the label 10 may be greater than 50% polypropylene.

[0069] In addition to the positioning of the label 10 and the type of material used in the label 10 (discussed above), another aspect of the present invention may include the manner in which the label 10 is associated with an article 12. For example, in the illustrated embodiment of Figs. 4A-4D, the at least one side surface 20 of the article 12 has a substantially circular cross-section at the location where the label 10 confronts the at least one side surface 20. In this and other embodiments, the label 10 may be sized and positioned relative to the article 12 such that it wraps 370° around the at least one side surface 20 (i.e., a portion of the label 10 overlaps itself when applied to the article 12.

[0070] Further still, as noted above, this embodiment of label 10 includes an adhesive applied to a surface of the label 10, such that the adhesive is positioned between the label 10 and the article 12 when the label 10 confronts the article 12. In one embodiment, the adhesive may be a pressure sensitive adhesive.

[0071] By providing a label 10, such as that described in the exemplary

embodiments herein, a label 10 and labeled article 12 is provided that reduces or eliminates many or all of the drawbacks of present labels described in the Background. For example, labels and labeled articles according to the aspects of the present invention (e.g., those shown in at least some of the embodiments herein) may be provided at lower cost than current labels, Additionally, the labels provide minimal coverage of the article 12 in certain embodiments. Further, the small size of certain embodiments of the label significantly reduces the safety concern identified with current labels.

[0072] Further, as described above, the present invention may be applicable to any article 12 that can suffer damage (such as upon an impact upon being dropped). Thus, the present invention is useful for application to articles made of glass, for example, such as glass containers for soda, beer, wine, champagne, condiments, and candles. However, those of ordinary skill in the art will recognize that the present invention would benefit other container types (non-glass), such as HDPE, PET, PP, etc.

[0073] The various aspects of the present invention will be described in greater detail with respect to the following Examples.

[0074] EXAMPLES

[0075] As described above, articles that are made from materials that can be damaged and/or break present certain drawbacks. For example, consumers may be dissatisfied by glass breakage associated with dropped bottles. In particular, the consumer perception of package quality can be diminished when confronted with articles (such as glass bottles) that are broken, such as during transit to the retail environment - or if bottles are broken due to being dropped after purchase. The various aspects of the present invention reduce or eliminate these problems by providing labels and labeled articles that reduce or prevent damage (such as breakage) of the article 12.

[0076] Example 1

[0077] To demonstrate this, standard beer and wine bottles were decorated with labels that represent conventionally decorated bottles that are on the market today. These bottles represented a control group. Additional such bottles were decorated with a label up to just below the neck of the bottles (e.g., the same or similar to that shown in Figs. 4A-4D). This group of bottles represented a test group.

[0078] Tests were then conducted with the labeled articles by dropping them from a height of approximately five feet onto concrete. The beer and wine bottles (from both the control and test groups) included bottles that were (1 ) filled and capped, (2) filled but not capped, and (3) filled one third with no cap.

[0079] When subjected to the drop test, all of the control bottles broke immediately upon impact. However, when the test group was subjected to the drop test, the filled bottles broke at five feet, but the bottle filled one third did not break, but simply bounced. The one-third filled bottle was then subjected to a second drop from a height of five feet onto concrete. Again, the bottle did not break.

[0080] Example 2

[0081] In Example 1 (above), test group bottles were decorated with a label up to just below the neck of the bottles (e.g., the same or similar to that shown in Figs. 4A- 4D). For this Example 2, the size of the label was reduced in order to cover a lower portion 32 of the side surface of a bottle (thereby leaving a large portion of the side surface underneath the neck of the bottle unlabeled).

[0082] Additional labeled bottles were then prepared. In particular, the new test groups of bottles included a label positioned around only a lower portion 32 of the side surface of the article to confront the side surface of the article (e.g., the same or similar to that shown in Figs. 3A-3D). A first test group was created with such a label, wherein the label extended ½” up the side surface of the bottle from the bottom end of the bottle. And a second test group was created with such a label, wherein the label extended 1” up the side surface of the bottle from the bottom end of the bottle.

[0083] Testing (such as that described in Example 1 ) was again conducted with control bottles (as described in Example 1 ) and the two test groups described in this Example 2 (i.e., bottles having a label extending ½” up the side surface of the bottle from the bottom end of the bottle, and bottles having a label extending 1” up the side surface of the bottle from the bottom end of the bottle). Like the results of Example 1 , the control bottles shattered on the first drop. However, one out of two bottles having a ½” label survived the drop without damage. And two bottles having a 1” label survived the drop without damage.

[0084] Example 3

[0085] Based on the information obtained by the experiments described in Examples 1 and 2 (above), further studies were performed in order to understand the relationship of the particular label substrate used to the drop test performance of the labeled bottles.

[0086] All testing described in this Example 3 was conducted with filled and capped bottles.

[0087] Samples of bottles decorated with a variety of films were evaluated (See Fig. 6 for the particular materials of the labels tested). These bottles were then tested under the standard test method ASTM D2463 - 15, which is known to those of ordinary skill in the art (and which is incorporated by reference herein in its entirety). This test method provides a means to assess the drop impact resistance of water-filled, blow-molded thermoplastic containers, which is a summation of the effects of material, manufacturing conditions, container design, and perhaps other factors. In the embodiments of the present invention, however, the articles being tested were glass bottles. Two procedures are provided by the standard test method: The Static Drop Height Method and the Bruceton Staircase Method. Embodiments of the present invention involved testing via the Bruceton Staircase Method, which is used to determine the mean failure height and the standard deviation of the distribution.

[0088] When testing, the standard test method states that any rupture visible to an observer with the unaided eye and normal eyesight is considered a failure; this includes also any evidence of contained liquid on the outside of the container through any aperture other than the molded opening. In the embodiments of the present invention, any damage to a glass bottle greater than a minor chip of glass being removed was considered a failure.

[0089] The drop impact resistance is determined by dropping conditioned containers filled with a liquid (water) from a platform onto a prescribed surface. When using the Bruceton Staircase Method, the procedure consists of dropping at least 20 test containers from varying heights above and below the mean failure height of the set. A mean failure height and standard deviation are then calculated from the data. In the embodiments of the present invention 15-30 trial were completed, such that the standard deviation was narrow. The average is then the peak of the distribution curve (i.e., the point at which 50% of all bottles dropped at that height would break).

[0090] The drop test apparatus 48 (such as that shown in Fig. 5) includes a surface upon which to set the test specimens, wherein the surface can be raised or lowered. In particular embodiments of the present invention tested via that apparatus shown in Fig. 5, the apparatus 48 includes a tube 50 with gradations 52 of height, the tube 50 being sized such that a bottle 54 can be placed therein. In a particular embodiment, the device used to test the labeled bottles (shown in Fig. 5) was designed to allow a change and control of the height of the drop from 18” to 72”. The tube 50 also includes apertures 56 at each of the gradations 52 that can receive a peg 58 that extends into the interior of the tube 50. By placing the peg 58 in an aperture 56 at a desired test height, a bottle 54 may be inserted into the tube 50 via the open top 60 of the tube 50 such that the bottom surface of the bottle 54 rests on the peg 58 at the selected height. Removing the peg 58 will then allow the bottle 54 to fall. The bottle will then land on a surface 62. The surface 62 may be within a container 64 to house the dropped bottle (or any portions of the bottle that may break). The container 64 may, in certain embodiments, include a window 66 to observe the impact of the bottle and/or observe the bottle post-impact. When using the Bruceton Staircase Method, a set of test specimens are dropped from various heights, the drop height being raised or lowered depending on the result obtained on the specimen most recently tested; that is, if the previous specimen failed, the drop height is lowered; if the previous specimen did not fail, the drop height is raised. A first test container is dropped from 300 mm (12 in.) below the expected mean failure height. If the mean failure height is unknown, several trial samples can be tested by way of the staircase procedure to obtain at least two failures and two non-failures to establish the starting height. The test containers are then visually inspected for failure as described above.

[0091] Once the test data has been obtained for the drops of multiple test bottles, the mean failure height from the test data obtained can be calculated as follows:

h = h 0 +d[(A/N) ± ½]

where:

h = mean failure height,

d = increment in height of drop,

N= number of failures or non-failures whichever is lesser,

h 0 = lowest height at which any one of N occurs, and A = where h 0 , hi, h å , he, etc., are the heights in progressive order of magnitude in the range of heights where N occurs, / ' is the subscript of h, and n is the number of failures or non failures, whichever is pertinent at the level of / ' . The negative sign is used in the parentheses to calculate // when N refers to failures and the positive sign when A/ is the number of non-failures.

[0092] In particular embodiments that were tested via this method, the testing began with a bottle from the control group (as described above in Example 1 - a standard beer bottle with a standard pressure sensitive label applied thereto). Fig. 6 shows the average height in inches each tested label was able to protect the bottle from breaking.

[0093] As can be seen from Fig. 6, all bottles decorated according to the principles of the presently claimed invention performed better than the prior art labels described in the‘584 patent.

[0094] The overall best performer includes a single ply MDO Polyolefin pressure sensitive label that was wrapped 370° around the bottom 1” of the bottles and shrunk with heat to conform to the bottle.

[0095] The prior art label tested, by contrast, is not bonded to the bottle, but rather shrunk to fit it tightly. As a result, the prior art label does not fully protect the bottle from breaking when dropped. Because the bottle is completely encapsulated in the shrink sleeve, it is possible that the bottle has broken but is being held together with the sleeve. This can result in a safety concern.

[0096] The embodiments of the present invention recited herein are intended to be merely exemplary and those skilled in the art will be able to make numerous variations and modifications to it without departing from the spirit of the present invention.

Notwithstanding the above, certain variations and modifications, while producing less than optimal results, may still produce satisfactory results. All such variations and modifications are intended to be within the scope of the present invention as defined by the claims appended hereto.