Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROTECTIVE SYSTEM FOR MACHINE TOOLS
Document Type and Number:
WIPO Patent Application WO/2009/121855
Kind Code:
A1
Abstract:
The invention relates to an emergency braking system (10) for a machine tool, for abruptly braking a rotating shaft (16), comprising at least one brake drum (12) and at least one brake shoe (18), which are brought into engagement with each other for braking the shaft (16).  According to the invention, the system is designed in such a way that the braking engagement between the brake drum (12) and the brake shoe (18) takes place under the influence of centrifugal force resulting from the rotation of a shaft (16), wherein the braking system is self-energizing, in particular self-locking.

Inventors:
WINKLER THOMAS (DE)
Application Number:
PCT/EP2009/053768
Publication Date:
October 08, 2009
Filing Date:
March 31, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BOSCH GMBH ROBERT (DE)
WINKLER THOMAS (DE)
International Classes:
B23Q11/00; F16D59/02
Foreign References:
DE19536995A11997-04-10
DE2147669A11972-04-20
US4531617A1985-07-30
DE8708955U11987-12-17
US5105925A1992-04-21
Attorney, Agent or Firm:
ROBERT BOSCH GMBH (DE)
Download PDF:
Claims:

Patentansprüche

1. Notbremssystem (10) für eine Werkzeugmaschine, zum abrupten Abbremsen einer umlaufenden Welle (16), umfassend zumindest eine Bremstrommel (12) und zumindest eine Bremsbacke (18), die zum Abbremsen der Welle (16), mit- einander in Eingriff gebracht werden, dadurch gekennzeichnet, dass der

Bremseingriff zwischen der Bremstrommel (12) und der Bremsbacke (18) unter dem Einfluss einer aus der Rotation einer Welle (16) resultierenden Fliehkraft erfolgt, wobei die Bremstrommel (12) und die zumindest eine Bremsbacke (18) derart ausgebildet und/oder angeordnet sind, dass das Bremssystem selbstver- stärkend, insbesondere selbsthemmend ist.

2. Notbremssystem (10) nach Anspruch 1, dadurch gekennzeichnet, dass im Eingriffsfall an zumindest einer Bremsbacke mindestens ein Bereich (54) ausgebildet ist, welcher selbsthemmende Eigenschaften besitzt.

3. Notbremssystem (10) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest einer der Bremspartner einen Reibbelag (19) aufweist.

4. Notbremssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Bremsbacke (18) schwenkbar an einem Bremsbackenträger (14) befestigt ist, der an der Welle (16) angeordnet ist und mit dieser umläuft.

5. Notbremssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Verriegelungseinrichtung (26) vorgesehen ist, die zwischen einer verriegelten Stellung, in der die Bremsbacke (18) an dem Bremsbackenträger (14) gehalten wird, und einer entriegelten Stellung verstell- bar, in der die zumindest eine Bremsbacke (18) derart freigegeben wird, dass

diese eine Schwenkbewegung in Richtung der Bremstrommel (12) ausführt, um den Bremseingriff zu erzeugen.

6. Notbremssystem (10) nach Anspruch 5, dadurch gekennzeichnet, dass die Verriegelungseinrichtung (26) zumindest ein Sperrelement (24) aufweist, dass zwischen einer verriegelten Stellung, in der es mit der zumindest einen Bremsbacke (18) in Eingriff ist, und einer entriegelten Stellung bewegbar ist, in der es von der Bremsbacke (18) entkoppelt ist.

7. Notbremssystem (10) nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Verriegelungseinrichtung (26) einen Aktuator (28) aufweist, der die Verriegelungseinrichtung (26) aus der verriegelten Stellung in die entriegelte Stellung überführt.

8. Notbremssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass diese eine Kopplungseinrichtung aufweist, die derart beschaffen ist, dass sie in ihrer gekoppelten Stellung die abzubremsende Welle (16) mit einem Antriebsstrang verbindet, und dass sie während einer Notbremsung automatisch in ihre entkoppelte Stellung überführt wird, in der die abzu- bremsenden Abtriebswelle (16) von dem Antriebsstrang entkoppelt ist.

9. Notbremssystem (10) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieses eine Rückstelleinrichtung zum Zurückbewegen der zumindest einen Bremsbacke (18) in ihre Ausgangslage aufweist.

10. Notbremssystem (10) nach Anspruch 9, dadurch gekennzeichnet, dass die Rückstelleinrichtung Zug- und/oder Druckfederelemente aufweist.

11. Werkzeugmaschine mit einem Notbremssystem (10) nach einem der vorherge- henden Ansprüche.

12. Werkzeugmaschine nach Anspruch 11, dadurch gekennzeichnet, dass die Werkzeugmaschine eine Säge, vorzugsweise eine Kreissäge und insbesondere eine Tischkreissäge ist.

Description:

Beschreibung

Titel

Schutzsystem für Werkzeugmaschinen

Stand der Technik

Die vorliegende Erfindung betrifft ein Schutzsystem für eine Werkzeugmaschine, insbesondere für eine Kreissäge, das seine Schutzwirkung innerhalb einer sehr ge- ringen Zeitspanne, die gewöhnlich im Bereich einiger Millisekunden liegt, entfaltet, um einen Benutzer der Werkzeugmaschine in Gefahrensituationen vor Verletzungen zu schützen.

Derzeit existieren im Wesentlichen drei verschiedene Ansätze zur Realisierung ei- nes solchen Schutzsystems für Tisch- und Format- Kreissägen, das verhindern soll, dass ein Benutzer mit dem umlaufenden Sägeblatt in Kontakt kommt oder eine folgenschwere Schnittverletzung davonträgt.

Bei dem unter dem Firmennamen Saw Stop Inc. geführten und vertriebenen Schutz- System eines amerikanischen Herstellers handelt es sich um ein Notbremssystem, das ein Abbremsen der Werkzeugmaschine aufgrund eines direkten Eingriffes einer Brems-Aktorik mit dem Sägeblatt ermöglicht, sobald ein entsprechend gestalteter Sensor eine Gefahrensituation detektiert hat. Hierbei wird durch den Einsatz eines Hitzdrahtauslösers ein drehbar angeordneter Aluminiumblock mit Hilfe einer vorge- spannten Feder in die Verzahnung des laufenden Sägeblattes gestoßen, welcher sich darin verkeilt und auf diese Weise die Rotationsenergie aller während des Sägevorgangs umlaufenden Geometrien der Werkzeugmaschine absorbiert. Als Nebeneffekt wird dieser einseitige Kraftangriff auf die Schneiden dazu genutzt, das Sägeblatt durch eine konstruktiv speziell ausgeführte Aufhängung, die am Sägetisch angeordnet ist, in den Sägetisch zu versenken. Mit Hilfe dieser Anordnung ist man

dazu in der Lage, folgenschwere körperliche Schäden von dem den Schutzmecha- nismus auslösenden Bediener der Werkzeugmaschine abzuwenden. Nachteilig ist hierbei der direkte Angriff auf das Bearbeitungswerkzeug, also auf die Schneidengeometrie des Sägeblattes, da durch Ausbrechen von Teilen der Verzahnung zu- sätzliches Gefahrenpotential für den Bediener entsteht. Des Weiteren ist zur Wiederherstellung der Bereitschaft des Schutzsystems ein Austausch der Bremseinheit inklusive des Sägeblattes durch eine einsatzbereite Ersatzeinheit erforderlich, die der Bediener bevorraten muss, um nach erfolgtem Bremsvorgang unter Inanspruchnahme der Schutzfunktion weiterarbeiten zu können. Dies ist mit erheblichen Folgekosten und entsprechendem Zeitaufwand für die Beschaffung und Installierung verbunden. Zudem kann davon ausgegangen werden, dass alle vom Bremsvorgang betroffenen Bauteile, d.h. alle umlaufenden Geometrien der Werkzeugmaschine, starken Beanspruchungen während der Verzögerungsphase ausgesetzt werden. Weder der Hersteller noch entsprechende Veröffentlichungen zu diesem System weisen Daten bezüglich der Dauerfestigkeit der Anlage aus.

Ein weiterer Ansatz verfolgt die Verwendung eines Schutzsystems zur ausschließlichen Absenkung des Sägeblattes im Sägetisch, ohne einen Bremsvorgang des Sägeblattes einzuleiten. Mit Hilfe eines pyrotechnischen Zündsatzes wird hierbei das Sägeblatt inklusive der Hauptwelle und deren Lagerung aus der Gefahrenzone entfernt, so dass schwerwiegende Verletzungen des Bedieners verhindert werden können. Nachteilig an dieser Schutzsystemart ist die Notwendigkeit der Bewegung relativ großer Massen in Form der abzusenkenden Anordnungen unter strengen Zeitvorgaben im Millisekundenbereich. Die hierdurch notwendigen pyrotechnischen Zünder, welche sich für diese Schutz-Aktorik als unerlässlich erweisen, rufen ferner eine teure Teilreversibilität hervor, welche ein sofortiges Weiterarbeiten an der Werkzeugmaschine mit einem einsatzbereiten Schutzsystem sowohl zeitlich als auch organisatorisch einschränken. Weiterhin eignet sich dieses Schutzsystem aus Gründen begrenzten Bauraumes und sehr spezifischer Verfahrensweise nur für größere stationäre Geräte, wie beispielsweise Tischkreissägen, die einen solchen

Aufbau in ihrem Innern ermöglichen. Für die Anwendung an kleineren handgeführten Geräten, wie beispielsweise Kapp- und Gehrungssägen oder Paneelsägen, scheidet dieses System hingegen aus.

Eine Offenlegung aus einem öffentlich geförderten Projekt namens "Cut-Stop" (VDI/VDE/IT) zu einem Schutzsystem für Formatkreissägen vom Institut für Werkzeugmaschinen (IFW) der Universität Stuttgart beschreibt einen Ansatz, welcher mittels einer Sonderform einer Scheibenbremsanlage, nämlich einer selbstverstär- kenden Keilbremse, die Hauptwelle der Werkzeugmaschine und somit das Sägeblatt zum Stillstand bringt. Hierbei wird mit Hilfe eines pyrotechnischen Zünders ein Keil beschleunigt und anschließend zwischen eine feststehende Keilführung in Form eines modifizierten Bremssattels und die rotierende Bremsscheibe gestoßen. Für die Auswahl und Kombination spezifischer Keilwinkel α und Bremsbelagwerte μ wirkt die Anordnung selbsthemmend, so dass mit diesem Aufbau in Abhängigkeit der zu verzögernden Massenträgheit die jeweiligen zeitlichen Anforderungen an dem Bremsvorgang erfüllt werden können. Der Nachteil dieses Schutzsystems liegt jedoch darin, dass auch hierbei, wie es in der genannten Veröffentlichung beschrieben wird, im Anschluss an die Auslösung der Schutz-Aktorik ein Austausch der kompletten Bremseinheit aufgrund des sich in der Reibpaarung verklemmenden

Keils erforderlich ist. Der benötigte zeitliche Aufwand des durchzuführenden Ar- beitsumfangs beläuft sich hierbei auf ca. 10-12 Minuten für die vollständige Wiederherstellung der Systembereitschaft. Somit gilt auch hier eine teilweise Einschränkung der unverzüglichen Systemreversibilität.

Aus der DE 195 36 995 Al ist eine Sicherheitsbremse für Aufzüge bekannt, die eine Einrichtung aufweist, die bei überschreiten einer vorgegebenen Höchstgeschwindigkeit des Transportmittels den Antrieb mit einer geschwindigkeitsabhängigen Verzögerung abbremst Und ggfls. auch anhält. Die Sicherheitsbremse der DE 195 36 995 Al wirkt drehzahlabhängig unmittelbar auf die Treibscheibe der seilbetriebenen

Förderanlage und vermag deren Drehgeschwindigkeit zu begrenzen. Die als Fliehkraftbremse ausgebildete Sicherheitsbremse weist zusätzlich eine Einrichtung zum Verstärken der Bremskraft in Abhängigkeit von der Fördergeschwindigkeit auf.

Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein Schutzsystem einer Werkzeugmaschine mit alternativem Aufbau zu schaffen, das seine Schutzwirkung innerhalb einiger Millisekunden entfaltet und die eingangs beschriebenen Probleme zumindest teilweise behebt.

Offenbarung der Erfindung

Zur Lösung dieser Aufgabe schafft die vorliegende Erfindung ein Notbremssystem zum abrupten Abbremsen einer umlaufenden Welle einer Werkzeugmaschine, wo- bei das Notbremssystem eine Bremstrommel und zumindest eine Bremsbacke aufweist, die zum Abbremsen der Welle miteinander in Eingriff gebracht werden. Erfindungsgemäß sind die Bremstrommel und die zumindest eine Bremsbacke derart ausgebildet und angeordnet, dass der Bremseingriff zwischen der Bremstrommel und der Bremsbacke unter dem Einfluss der aus der Rotation der Welle resultieren- den Fliehkraft bzw. Fliehbeschleunigung erfolgt. Erfindungsgemäß ist das Bremssystem dabei selbstverstärkend, insbesondere selbsthemmend ausgebildet.

In Abhängigkeit der geometrischen Abmessungen der Konstruktion des Bremssystems definiert sich dessen Verstärkungsfaktor C * , wobei dieser für den vorliegenden Aufbau im Bereich der Selbstverstärkung oder der Selbsthemmung des Systems liegt. Für diesen Fall der Selbstverstärkung oder der Selbsthemmung des Bremssystems wird vorteilhaft nur ein kurzer Impuls zur Bildung der Reibpaarung benötigt, da die Bremsbacken infolge des auftretenden Kräftegleichgewichts an die Bremstrommel gepresst werden.

Dies ermöglicht in vorteilhafter Weise Bremszeiten, die nochmals deutlich unter denen einer nur die die Fliehkraft getriebenen Bremse liegen.

Die vorliegende Erfindung ist demnach darauf ausgerichtet, die Verzögerung der umlaufenden Welle der Werkzeugmaschine, bei der es sich beispielsweise um eine

Tischkreissäge, um eine Kapp- und Gehrungssäge oder um eine Paneelsäge handeln kann, durch die Nutzung der vorhandenen Rotationsenergie der umlaufenden Welle mit Hilfe des Aufbaus einer selbstverstärkenden oder selbsthemmenden Reibpaarung zu realisieren. Auf diese Weise kann der vorgegebene Zeitrahmen der Ab- bremsung, der im Bereich einiger Millisekunden liegt, gewährleistet werden. Die erfindungsgemäße Ausgestaltung der Bremse erlaubt die Abbremsung eines von einer Welle direkt oder indirekt angetriebenen Werkzeuges in sehr kurzen Zeiten, die typischerweise im Bereich von 1 bis 50 ms, vorteilhafterweise im Bereich von 1 bis 20 ms und insbesondere im Bereich von 10ms und weniger liegen.

Vorteilhafterweise wird bei der Abbremsung der Werkzeugmaschine nicht direkt in das Werkzeug eingegriffen. Ein solcher Eingriff würde unweigerlich mit der Zerstörung des Werkzeuges einhergehen. Die erfindungsgemäße Werkzeugmaschine bremst die das Werkzeug direkt oder indirekt antreibende Welle ab. Auf diese Weise bleibt das Werkzeug selbst unbeschädigt.

Zudem realisiert der erfindungsgemäße Aufbau ein elektromechanisches System ohne die Verwendung weiterer Energieformen, welche unter Umständen die vollständige Reversibilität gefährden und eine Einschränkung für diese bedeuten wür- den.

Dabei sollte klar sein, dass die Auslösung des Abbremsvorgangs, die beispielsweise als Antwort auf ein Ausgangssignal eines Sensors erfolgt, der eine Gefahrensituation für den Benutzer detektiert, mechanisch, elektromechanisch, pyrotechnisch, pneumatisch oder hydraulisch erfolgen kann und prinzipiell an kein bestimmtes Medium gebunden ist, wobei jedoch eine elektromechanische Auslösung aufgrund eines einfachen Aufbaus und einer sehr guten Reversibilität bevorzugt wird.

Gemäß einer Ausgestaltung der vorliegenden Erfindung ist die zumindest eine Bremsbacke schwenkbar an einem Bremsbackenträger befestigt, der an der umlaufenden Welle angeordnet ist und mit dieser umläuft. Bevorzugt ist eine Verriegelungseinrichtung vorgesehen, die zwischen einer verriegelten Stellung, in der die Bremsbacke an dem Bremsbackenträger gehalten wird, und einer entriegelten Stellung verstellbar ist, in der die zumindest eine Bremsbacke derart freigegeben wird, dass diese eine Schwenkbewegung in Richtung der Bremstrommel ausführt, um den Bremseingriff zu erzeugen. Mit anderen Worten wird die mit der umlaufenden Welle rotierende zumindest eine Bremsbacke unter Ausnutzung der Fliehkraft der umlaufenden Welle abrupt innerhalb weniger Millisekunden in Richtung der ortsfesten Bremstrommel bewegt, sobald die Verriegelungseinrichtung in ihre entriegelte Stellung überführt wird.

Die Verriegelungseinrichtung umfasst bevorzugt zumindest ein Sperrelement, das zwischen einer verriegelten Stellung, in der es mit der zumindest einen Bremsbacke in Eingriff ist, und einer entriegelten Stellung bewegbar ist, in der es von der Brems-

backe entkoppelt ist. Ein solches Sperrelement kann beispielsweise als Sperrbolzen oder dergleichen ausgebildet sein.

Die Verriegelungseinrichtung umfasst vorteilhaft einen Aktuator, der die Verriege- lungseinrichtung aus der verriegelten Stellung in die entriegelte Stellung überführt.

Bei diesem Aktuator kann es sich beispielsweise um einen Magnet-Aktuator handeln, der einen Ringanker zieht, an welchem ein Sperrelement in Form eines Sperrbolzens befestigt ist, um den Sperrbolzen aus der Bremsbacke auszurücken, so dass diese freigegeben wird.

Das Notbremssystem umfasst zudem bevorzugt eine Kopplungseinrichtung, die derart beschaffen ist, dass sie in ihrer gekoppelten Stellung die abzubremsende Welle mit einem Antriebsstrang verbindet, und dass sie während einer Notbremsung automatisch in ihre entkoppelte Stellung überführt wird, in der die abzubremsende An- triebswelle von dem Antriebsstrang entkoppelt ist. Eine derartige Entkopplung des

Antriebsstrangs während eines Notbremsvorgangs stellt sicher, dass der Antriebsstrang, der beispielsweise eine Antriebswelle und etwaige übersetzungsstufen aufweisen kann, von dem eigentlichen Bremsvorgang ausgeklammert wird, wodurch der Antriebsstrang den während des Bremsvorgangs auftretenden großen Verzöge- rungsmomenten nicht ausgesetzt ist. Dies bringt zum einen den Vorteil, dass Komponenten des Antriebsstranges aufgrund des Bremsvorgangs nicht beschädigt werden können. Zum anderen müssen die Geometrien der antriebsseitigen Komponenten konstruktiv nicht an die Erfordernisse des Bremsvorgangs angepasst werden, weshalb sie weniger robust und preiswerter produziert werden können. Zusätzlich ergibt sich hierdurch eine nutzbringende Verringerung des zu verzögernden Massenträgheitsmomentes, da die Komponenten des Antriebsstranges nicht abgebremst werden müssen. Somit kann die Systemlast während der Verzögerungsphase entscheidend vermindert werden. Entsprechend kann die für den Abbremsvorgang des Sägeblattes erforderliche Zeitdauer bei gleicher Krafteinwirkung wesent- lieh verkürzt werden. Alternativ kann natürlich auch die Krafteinwirkung bei unveränderter Abbremszeitdauer verringert werden.

Gemäß einer bevorzugten Ausgestaltung ist die abzubremsende Welle als Hohlwelle ausgebildet, in deren Hohlraum eine Antriebswelle des Antriebsstranges positio- niert ist. Die Kopplungseinrichtung ist dabei vorteilhaft durch einen an der zumindest

einen Bremsbacke vorgesehenen Vorsprung gebildet, der in der gekoppelten Stellung durch eine in der abzubremsenden Welle vorgesehene Durchgangsöffnung in eine Aussparung der Antriebswelle greift, so dass die Antriebswelle und die abzubremsende Welle drehfest miteinander verbunden sind, und der in der entkoppelten Stellung aus dem Eingriff mit der Aussparung der Antriebswelle kommt, so dass die abzubremsende Welle nicht länger von der Antriebswelle angetrieben wird. Auf diese Weise kann eine Entkopplung des Antriebsstranges während des Abbremsvorgangs realisiert werden. Bevorzugt ist der Vorsprung mit der Aussparung formschlüssig in Eingriff, wodurch ein sicherer Eingriff des Vorsprungs in der Ausspa- rung erzielt wird. Hierzu kann der Vorsprung beispielsweise bogenförmig und die

Aussparung prismaförmig ausgebildet sein.

An dieser Stelle sei darauf hingewiesen, dass die Anzahl der Vorsprünge nicht der Anzahl der Aussparungen entsprechen muss. So können beispielsweise vier Aus- sparungen und lediglich zwei Vorsprünge vorgesehen sein. Dies ist dahingehend von Vorteil, dass die Antriebswelle nach einem Auslösen des Notbremssystems nur geringfügig gedreht werden muss, um die Vorsprünge wieder in einem Paar von Aussparungen anzuordnen. Auch können mehr als zwei Bremsbacken vorgesehen werden, von denen jedoch nur zwei über entsprechende aus einem Vorsprung und einer Aussparung gebildete Verbindungen an der Antriebswelle festgelegt werden müssen.

Zudem weist das erfindungsgemäße Notbremssystem bevorzugt eine Rückstelleinrichtung zum Zurückbewegen der zumindest einen Bremsbacke in ihre Ausgangsla- ge auf, um eine vollständige Systemreversibilität nach erfolgtem Abbremsvorgang zu gewährleisten. Die Rückstelleinrichtung ist dabei in enger Abstimmung mit der Selbstverstärkung der Reibpaarung und damit mit der Geometrie des Bremssystems ausgelegt. Die Rückstelleinrichtung kann beispielsweise sowohl durch den Einsatz von entsprechend dimensionierten Zug- als auch Druckfederelementen rea- lisiert werden.

Zudem bezieht sich die vorliegende Erfindung auf eine Werkzeugmaschine mit einem Notbremssystem der zuvor beschriebenen Art, wobei es sich bei der Werkzeugmaschine bevorzugt um eine Kreissäge handelt, genauer gesagt um eine Tischkreissäge, eine Kapp- und Gehrungssäge oder eine Paneelsäge.

Es sollte jedoch klar sein, dass das erfindungsgemäße Bremssystem auch auf andere Werkzeugmaschinen anwendbar ist, welche aus spezifischem Anlass auf eine gezielt auslösbare Verzögerung unter gegebenem Zeitrahmen im Bereich weniger Millisekunden angewiesen sind. Eine Anpassung dieser Erfindung an eine andere

Werkzeugmaschine ist im Einzelfall also prinzipiell möglich.

Ausführungsbeispiel

Nachfolgend werden beispielhafte Ausführungsformen der vorliegenden Erfindung unter Bezugnahme auf die beiliegenden Zeichnungen genauer beschrieben. Die Beschreibung, die zugehörigen Figuren sowie die Ansprüche enthalten zahlreiche Merkmale in Kombination. Ein Fachmann wird diese Merkmale, insbesondere auch die Merkmale verschiedener Ausführungsbeispiele, auch einzeln betrachten und zu sinnvollen, weiteren Kombinationen zusammenfassen.

Fig. 1 eine schematische Vorderansicht eines Notbremssystems gemäß einer Ausführungsform der vorliegenden Erfindung in einem Zustand, in dem der Bremsvorgang nicht ausgelöst wurde;

Fig. 2 eine schematische Vorderansicht des in Fig. 1 dargestellten Notbremssystems in einem Zustand, in dem der Abbremsvorgang ausgelöst wurde;

Fig. 3 eine Längsschnittansicht des in den Fig. 1 und 2 dargestellten Notbremssystems in einem Zustand, in dem der Bremsvorgang nicht ausgelöst wurde;

Fig. 4 eine schematische Längsschnittansicht des in den Fig. 1 bis 3 dargestellten Notbremssystems in einem Zustand, in dem der Bremsvorgang ausgelöst wurde;

Fig. 5 eine schematische Querschnittansicht des in den Fig. 1 bis 4 dargestellten Notbremssystems in einem Zustand, in dem der Bremsvorgang nicht aus- gelöst wurde; und

Fig. 6 eine schematische Querschnittansicht des in den Fig. 1 bis 5 dargestellten Notbremssystems in einem Zustand, in dem der Bremsvorgang ausgelöst wurde;

Fig. 7 eine schematische Darstellung eines Modells zur Selbstverstärkung der

Bremswirkung;

Fig. 8 ein Detailauszug der schematischen Darstellung gemäß Figur 7 zur Verdeutlichung der wirkenden Kräfte;

Fig. 9 ein graphischer überblick zu Anfangsgeschwindigkeiten verschiedener Massepunkt der Bremsbacke des erfindungsgemäßen Bremssystems;

Fig. 10 eine schematische Darstellung des Bremssystems zur Verdeutlichung der Reibcharakteristik der erfindungsgemäßen Fliehkraftbremse;

Fig. 11 ein Ausführungsbeispiel einer erfindungsgemäßen Werkzeugmaschine in Form einer Tischkreissäge

Mit den Figuren 1 bis 6 wird der prinzipielle Aufbau des erfindungsgemäßen

Notbremssystems erläutert.

Die Figuren 7 bis 10 dienen der Darstellung der selbstverstärkenden Eigenschaft des erfindungsgemäßen Notbremssystems.

Figur 11 zeigt eine erfindungsgemäße Werkzeugmaschine in Form einer Tischkreissäge mit einem solchen Notbremssystem.

Die Fig. 1 bis 6 zeigen schematische Ansichten eines Notbremssystems gemäß ei- ner Ausführungsform der vorliegenden Erfindung, das allgemein mit der Bezugsziffer 10 bezeichnet ist und dazu dient, beispielweise ein Sägeblatt einer Tischkreissäge (hier nicht gezeigt, siehe vielmehr Figur 11) in einer Gefahrensituation innerhalb eines sehr kurzen Zeitraums, der im Bereich weniger Millisekunden liegt, zum Stillstand zu bringen. Das Notbremssystem 10 umfasst eine feststehende Bremstrom- mel 12, die an einem nicht näher dargestellten Rahmenbauteil der Tischkreissäge

befestigt ist. Dieses Rahmenbauteil muss konstruktiv derart ausgelegt sein, dass es den während der Verzögerungsphase entstehenden Bremsmomenten standhält und diese aufnehmen kann. Ferner umfasst das Notbremssystem 10 einen Bremsbackenträger 14, der fest mit einer sägeblattseitigen Abtriebswelle 16 verbunden ist, so dass er mit dieser in der mit dem Pfeil 17 gekennzeichneten Drehrichtung umläuft. An dem Bremsbackenträger 14 sind zwei diametral einander gegenüberliegende Bremsbacken 18 befestigt, die jeweils um einen Schwenkbolzen 20 drehbar gelagert sind. Die Bremsbacken 18 sind an ihrer zur Bremstrommel 12 weisenden Fläche jeweils mit einem Reibbelag 22 versehen, wobei diese Reibbeläge 22 wäh- rend eines Abbremsvorgangs des Notbremssystems 10 mit der feststehenden

Bremstrommel 12 in Eingriff kommen, so dass die Reibbeläge 22 und die Bremstrommel 12 eine Reibpaarung bilden. In dem in Fig. 1 dargestellten Zustand, in dem der Bremsvorgang noch nicht ausgelöst wurde, werden die Bremsbacken 18 mit Hilfe von Sperrbolzen 24 fest an dem Bremsbackenträger 14 gehalten, so dass sie sich nicht um die Schwenkbolzen 20 drehen können.

Diese Sperrbolzen 24 sind Teil einer Verriegelungseinrichtung 26, die ferner einen Magnet-Aktuator 28 aufweist, mit dem die Sperrbolzen 24 zwischen einer verriegelten Stellung, in der die Bremsbacken 18 an dem Bremsbackenträger 14 gehalten werden, und einer entriegelten Stellung verstellbar sind, in der die Bremsbacken 18 derart freigegeben werden, dass diese eine Schwenkbewegung um ihre Schwenkbolzen 20 in Richtung der Bremstrommel 12 ausführen, um den Bremseingriff zwischen den Reibbelägen 22 und der Bremstrommel 12 zu erzeugen. Wie es in Fig. 3 gezeigt ist, ist der Magnet-Aktuator 28 der Verriegelungseinrichtung 26 fest an der Abtriebswelle 16 befestigt. Alternativ kann der Magnet-Aktuator 28 auch an einem nicht dargestellten, ortfesten Gehäuseteil befestigt sein und berührungslos auf die Sperrbolzen 24 einwirken. Die Sperrbolzen 24, die durch den Magnet-Aktuator 28 vor- und zurückbewegbar sind, erstrecken sich durch in dem Bremsbackenträger 14 vorgesehene Durchgangsöffnungen 30 und greifen in dem in den Fig. 1, 3 und 5 dargestellten Zustand, in dem der Bremsvorgang noch nicht eingeleitet wurde, in

Eingriffsöffnungen 32 ein, die jeweils in den Bremsbacken 18 vorgesehen sind. Auf diese Weise werden die Bremsbacken 18 an dem Bremsbackenträger 14 arretiert. Im Falle der Auslösung des Bremssystems zieht der Magnet-Aktuator 28 einen Ringanker, an welchem die Sperrbolzen 24 befestigt sind, um einen definierten Aus- rückweg s aus dem Bremsbackenträger 14 und gibt somit die Bremsbacken 18 frei,

siehe Fig. 4. Diese legen sich infolge der durch die umlaufende Abtriebswelle 16 erzeugten Fliehkräfte bzw. der Fliehbeschleunigung an die feststehende Bremstrom- mel 12 an, wodurch die zur Verzögerung der Abtriebswelle 16 erforderliche Reibpaarung zwischen den Reibbelägen 22 der Bremsbacken 18 und der Bremstrommel 12 gebildet wird. Auch wenn die Sperrbolzen 24 bei dem vorliegenden Ausführungsbeispiel mit Hilfe des Magnet-Aktators 28 vor- und zurückbewegt, sei darauf hingewiesen, dass die Sperrbolzen 24 alternativ auch unter der Wirkung einer Federkraft oder dergleichen in einer der beiden Bewegungsrichtungen bewegt werden können. So kann die Vorwärtsbewegung der Sperrbolzen 24 unter Einfluss des Magnet-Aktuators 28 erfolgen, während die Zurückstellung der Sperrbolzen 24 durch ein oder mehrere Federelemente erfolgt, oder umgekehrt.

Wie es insbesondere aus den Fig. 3 und 4 hervorgeht, ist die mit Hilfe des Notbremssystems 10 abzubremsende Abtriebswelle 16 als Hohlwelle ausgebildet, in deren Hohlraum eine Antriebswelle 34 aufgenommen ist, die einen Teil des nicht näher dargestellten Antriebsstranges bildet. Um die Abtriebswelle 16 und die Antriebswelle 34 drehfest miteinander zu verbinden, sind an den Bremsbacken 18 in Richtung des Mittelpunktes der Abtriebswelle 16 und der Antriebswelle 34 vorstehende bogenförmige Vorsprünge 36 ausgebildet, die jeweils durch Durchgangsöff- nungen 38, die in der Abtriebswelle 16 vorgesehen sind, hindurch greifen und in prismaförmige Aussparungen 40 der Antriebswelle 34 eingreifen, wie es in Fig. 5 dargestellt ist. Durch den Eingriff der an den Bremsbacken 18 vorgesehenen Vorsprünge 36 in die entsprechenden Aussparungen 40 der Antriebswelle 34 werden die Abtriebswelle 16 und die Antriebswelle 34 drehfest miteinander verbunden. Wird der Bremsvorgang ausgehend von dem in Fig. 5 dargestellten Zustand eingeleitet, so drehen sich die Bremsbacken 18, nachdem die Sperrbolzen 24 um den Ausrückweg s aus den Bremsbacken 18 gezogen wurden, um ihre jeweiligen Schwenkbolzen 20 in Richtung der Bremstrommel 12, so dass die an den Bremsbacken 18 angeordneten Vorsprünge 36 aus dem Eingriff mit den zugeordneten Aussparungen 40 der Antriebswelle 34 kommen, wodurch die Antriebswelle 34 von der Abtriebswelle 16 entkoppelt wird. Durch diese Entkopplung wird der Antriebsstrang nicht den während des Abbremsvorgangs erzeugten Verzögerungsmomenten ausgesetzt, so dass dieser nicht beschädigt werden kann. Zudem ist es möglich, die Komponenten des Antriebsstranges weniger robust auszuführen, da diese während des Abbrems- Vorgangs keinen großen Belastungen unterliegen. So kann beispielsweise der

Querschnitt der motorseitigen Antriebswelle 34 kleiner als in demjenigen Fall ausgeführt werden, in dem keine Entkopplungseinrichtung zum Entkoppeln des Antriebstranges vorgesehen ist. Entscheidend ist jedoch der sich hieraus ergebende Vorteil, dass die Anzahl der zu verzögernden Komponenten auf ein Minimum reduziert wird. Dies wirkt sich während der Verzögerungsphase positiv auf die Systemlast aus, wie es zuvor bereits beschrieben wurde.

In Abhängigkeit der geometrischen Abmessungen der Konstruktion des Bremssystems definiert sich dessen Verstärkungsfaktor C * , wobei dieser für den vorliegenden Aufbau im Bereich der Selbstverstärkung oder der Selbsthemmung des Systems liegt. Für diesen Fall der Selbstverstärkung oder der Selbsthemmung des Systems wird nur ein kurzer Impuls zur Bildung der Reibpaarung benötigt, da die Bremsbacken 18 infolge des auftretenden Kräftegleichgewichts an die Bremstrommel 12 ge- presst werden.

Nachfolgend soll eine Konstruktion, die diesen Verstärkungsfaktor realisieren kann, näher beleuchtet werden.

Aufgrund der kritischen Zeitvorgaben des genannten Bremssystems scheint es un- ter anderem zielführend, ein Konzept zu wählen, welches die Anwendung des technischen Prinzips der Selbsthilfe ermöglicht. Dies bedeutet, dass die zur Auslösung eingebrachte Spannkraft F Sp innerhalb des Systems um ein Vielfaches verstärkt wird, wobei die erzeugte Reaktionskraft F Reakt , hier in Form einer Reibkraft F R wiederum zur Erhöhung der eingeleiteten Spannkraft F Sp beiträgt. Diese Eigenschaft wird auch Selbstverstärkung oder Servo-Wirkung genannt. Die hierdurch charakterisierten Systeme liefern prinzipiell die geringst möglichen Verzögerungszeiten unter Verwendung niedriger Spannkräfte, so dass sowohl die Masse der Auslöseglieder als auch die benötigte Auslösezeit t A minimiert werden können. Das Basismodell einer solchen Anordnung ist schematisch und zur Darstellung der Zusammenhänge in Abbildung 7 dargestellt.

Hierbei wird ein Reibklotz R auf einem mit konstanter Geschwindigkeit V x umlaufenden Band B aufgelegt. Ein schwenkbar gelagerter Stützstab S, welcher unter einem Anstellwinkel α bzgl. der Vertikalen gehalten wird, dient, die Position des Reibklot- zes horizontal festzulegen und führt R gegenüber dem Gestell. Zwischen Klotz und

Laufband herrscht im Betriebszustand Gleitreibung. Die Kräfte am freigeschnittenen Klotz gehen aus Abbildung 8 hervor. Es gelten folgende Bezeichnungen:

FSP - Spannkraft

FF - Federkraft Stützstab

FN - Normalkraft

FR - resultierende Reibkraft

Für das Kräftegleichgewicht gilt somit:

- F f - sκu/-f F s - 0

■■■ F 1 . a -f- F 11 - F Sf , ■■■■■ 0 U

Daraus folgt als Zusammenhang für Reib- und Spannkraft:

_ i i μ tan /J 1

Für einen Winkel α=90° gilt, wie die Anschauung bestätigt, das Coulombsche Reibgesetz.

Der Verstärkungsfaktor definiert sich weiterhin wie folgt:

Ist der Faktor C* positiv, so wirken die Kräfte in dem in der Skizze angenommenen

Richtungssinn. Die Reibkraft F R ergibt sich hierbei aus der um den Faktor C* verstärkten Spannkraft F S p. Für μ=tanα weist die Gleichung für C* eine Polstelle auf, so dass dieser Verstärkungsfaktor gegen Unendlich geht. In diesem Punkt herrscht praktisch der Systemzustand eines labilen Gleichgewichts. Für die Wahl der Parameter tanα < μ ergibt sich ein negativer Verstärkungsfaktor C*. Dies bedeutet eine theoretische Umkehr des Richtungssinns der Spannkraft F S p, welche eintreten müsste, um das Kräftegleichgewicht aufrecht zu erhalten. In Realität kennzeichnet dieser Fall einen speziellen Zustand eines selbstverstärkenden Systems. Der Reib- klotz wird hier durch die resultierende Reibkraft F zusätzlich an das Laufband ge- presst. Aufgrund der somit entstehenden, stetigen, wechselseitigen Erhöhung der Reib- und Normalkräfte tritt im Idealfall nach kurzer Zeit Haftreibung innerhalb der

Reibpaarung auf. Diese führt in Folge zur Blockierung des gesamten Systems. In diesem Zusammenhang wird gemeinhin von Selbsthemmung gesprochen. In vorteilhafter Weise treten dabei Kräfte auf, die größer sind, als die durch die Fliehkraft der Bremsbacken vermittelten Kräfte.

In Abhängigkeit von dem relativen Reibkoeffizienten μ der Reibpartner ergeben sich somit Winkel α, die Bereiche bezeichnen, in denen Selbstverstärkung bzw. Selbsthemmung auftritt.

Die Konfiguration des erfindungsgemäßen Notbremssystems bzw. der aus der Geometrie des Systems resultierende Verstärkungsfaktor werden nunmehr anhand der Figuren 9 und 10 erläutert.

In Abbildung 9 ist die Ermittlung der Anlagegeschwindigkeit V 0x der Bremsbeläge an der Bremstrommel qualitativ für zwei willkürlich gewählte Punkte rru, m 2 am Trommelumfang durchgeführt. Diese stellen Massepunkte der Reibbeläge dar, welche um den Punkt B schwenkbar sind. Die Geschwindigkeitskomponente V 0x orientiert sich hierbei immer rechtwinklig am Kreisbogen und vollzieht hierdurch Richtungsänderung tangential zur Trommel.

Die Winkel αi und α 2 sind für die jeweiligen Punkte m^ m 2 angetragen, wobei die änderung der Anstellung beider Massepunkte gegenüber Punkt B an einem gedachten Gehäuse sichtbar wird. Wie oben beschrieben, ist ein kleinerer Anstellwinkel α 2 günstiger, um eine hohe Selbstverstärkung oder gar Selbsthemmung bei ei- nem bestimmten Reibwert μ zu erreichen. Aus diesem Grund wird der Punkt m 2 einen stets höheren Einfluss auf den Verstärkungsfaktor C * des Gesamtsystems besitzen, falls das Auslegungsziel Selbsthemmung ist. In diesem Fall ergibt sich ein selbsthemmender Bereich am vorderen Ende der Bremsbacke 18 bzw. des Reibbelags 19 dieser Bremsbacken.

Ein überblick zu den Reibverhältnissen innerhalb des Bremssystems gibt Abbildung 10. Es sei angenommen, dass der hier gewählte Winkel α=19,3° den Punkt des labilen Gleichgewichts C * =±∞ darstellt, so entspricht dies einen Reibwert μ=0,35 der Reibpaarung, welcher mindestens vorhanden sein muss, um in Richtung des Pfeils

eine 50 selbsthemmende Zone des Reibbelages auszubilden. In Richtung des Pfeils 52 ist die Reibpaarung selbstverstärkend.

Es könnte hierbei vorteilhaft sein, den Reibbelag zumindest eines Reib- bzw. Bremspartners inhomogen zu gestalten. So wäre es möglich, die Vergrößerung des

Winkels α in Richtung des 54 dadurch zu kompensieren, dass der relative Reibungskoeffizient μ der Reibpartner in dieser Richtung ansteigen würde, was sich beispielsweise durch einen inhomogenen Reibbelag auf der Bremsbacke realisieren lassen könnte.

Aufgrund des zuvor beschriebenen Aufbaus des Notbremssystems 10 kann das Zeitintervall für die Auslösezeit des Bremsvorgangs stark verkürzt werden, da der Bremseingriff zwischen der Bremstrommel 12 und den Bremsbacken 18 unter dem Einfluss der Fliehkraft bzw. Fliehbeschleunigung erfolgt, welche aus der Rotation der Abtriebswelle 16 resultiert. Darüber hinaus kommt es zu einer selbstverstärkenden und sogar selbsthemmenden Wirkung der Abbremsung, so dass das die Bremswirkung erhöht und die Bremszeiten vorteilhaft verkürzt werden können.

Aufgrund der Verwendung eines zweiseitigen Angriffes der Reibumfangskraft der Reibpaarung werden die vorliegenden eingesetzten Wälzlagerungen geschont und müssen aufgrund von Belangen der Dauerhaltbarkeit des Gesamtsystems nicht ü- berarbeitet oder gar neu konzipiert werden, wodurch wiederum eine erhöhte Massenträgheit ins System eingebracht würde.

Durch einen Aufbau, wie er vorliegend beschrieben wurde, werden zudem umlaufende Außengeometrien der Bremseinheit vermieden, wodurch ein leicht zu kapselndes, geschlossenes System mit kompaktem Aufbau realisiert werden kann, welches sich zusätzlich positiv in die speziellen Belange des Arbeitsschutzes im Umgang mit Werkzeugmaschinen eingliedert.

Es sollte klar sein, dass die Betätigung des Magnet-Aktuators 28 durch Ausgangssignale entsprechender Sensoren erfolgt, die einen Zustand erfassen, in dem ein Bediener gefährlich nahe an das Sägeblatt der Tischkreissäge kommt oder dieses berührt wird. Derartige Sensoren sind im Stand der Technik bekannt, weshalb auf diese in der vorliegenden Beschreibung nicht näher eingegangen wurde.

Auch wenn bei der zuvor beschriebenen Ausführungsform eine Kreissäge als Beispiel einer Werkzeugmaschine gewählt wurde, sollte klar sein, dass das Prinzip der vorliegenden Erfindung auch auf andere Werkzeugmaschinen anwendbar ist.

Schließlich sollte klar sein, dass die zuvor beschriebene Ausführungsform des erfindungsgemäßen Notbremssystems in keiner Weise einschränkend ist. Vielmehr sind Modifikationen und änderungen möglich, ohne den Schutzbereich der vorliegenden Erfindung zu verlassen, der durch die beiliegenden Ansprüche definiert ist.