Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PROXIMAL-END SECUREMENT OF A MINIMALLY INVASIVE WORKING CHANNEL
Document Type and Number:
WIPO Patent Application WO/2016/040146
Kind Code:
A1
Abstract:
The present invention is directed at minimally invasive systems in which the proximal end portion of the working channel has either zero or a limited range of movement in the lateral direction. A first embodiment has a slidable collar attached to a pair of flanges, wherein movement of the collar is bounded by an annular frame. A second embodiment has a substantially spherical element attached to the tube. A third embodiment has a plurality of caps.

Inventors:
CHEGINI SALMAN (CH)
RICHTER JOERN (CH)
THOMMEN DANIEL (CH)
SENN PETER (CH)
Application Number:
PCT/US2015/048485
Publication Date:
March 17, 2016
Filing Date:
September 04, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DEPUY SYNTHES PRODUCTS INC (US)
International Classes:
A61B17/34; A61B17/00
Foreign References:
US20130282022A12013-10-24
DE9415039U11994-11-03
US20040122446A12004-06-24
US20130289399A12013-10-31
US20110319941A12011-12-29
EP0807415A21997-11-19
US6110182A2000-08-29
Other References:
See also references of EP 3190995A1
Attorney, Agent or Firm:
PLANTZ, Bernard F. et al. (One Johnson & Johnson PlazaNew Brunswick, New Jersey, US)
Download PDF:
Claims:
We claim:

1. A minimally -invasive surgical access system, comprising; a) a tube having an outer wall, a longitudinal bore, a proximal end portion and a distal end portion;

b) a sliding tab comprising a collar having a pair of opposed flanges extending therefrom, wherein the collar is slidable along the outer wall of the tube; and

c) an annular frame having a pair of substantially opposed slots,

wherein the flanges of the collar respectively extend through the slots of the annular frame, and

wherein the tube extends through the annular frame.

The system of claim 1 further comprising :

d) an arm extending from a stationary unit, wherein the arm is attached to the annular frame.

3. The system of claim 1 wherein the collar comprises a threaded hole, and further comprising:

d) a set screw received in the threaded hole of the collar.

4. The system of claim 3 wherein the set screw can extend through the collar and contact the outer wall of the tube in the proximal end portion of the tube to lock the collar to the tube.

5. The system of claim 1 wherein each flange comprises a portion of a spherical surface and each slot describes an arc, wherein the flange mates with the slot.

6. The system of claim 1 wherein the distal end portion of the tube has a docking feature adapted to dock to bone or cartilage.

7. The system of claim 1 wherein the collar does not contact the annular frame.

8. The system of claim 3 wherein the annular frame has a cutout.

9. The system of claim 8 wherein the cutout aligns radially with the set screw.

10. The system of claim 1 wherein the proximal portion of the tube is able to move in a substantially frustoconcical volume when the distal end portion of the tube is fixed.

11. A minimally -invasive surgical access system, comprising; a) a tube having an outer wall, a longitudinal bore, a proximal end portion, a distal end portion, and a substantially spherical element radially surrounding a segment of the outer wall;

b) a sliding tab having a base and a pair of opposed flanges extending therefrom; the base having a hole therethrough defining a rim having a static portion and a slidable portion,

c) an annular frame having a pair of substantially opposed slots,

wherein each flange of the sliding tab extends through a respective slot of the annular frame,

wherein the tube extends through the annular frame, and

wherein the static portion of the rim releasably contacts a first portion of the substantially spherical element and the slidable portion of the rim releasably contacts a second portion of the substantially spherical element.

12. The system of claim 11 further comprising:

d) an arm extending from a stationary unit, wherein the arm is attached to the annular frame.

13. The system of claim 11 wherein the base comprises a first cutout, and further comprising:

d) a sliding door slidably received in the cutout.

14. The system of claim 13 wherein the sliding door comprises the slidable portion of the rim.

15. The system of claim 14 wherein the slidable portion of the rim comprises a substantially hemispherical portion, wherein the substantially hemispherical portion releasably mates with the second portion of the substantially spherical element.

16. The system of claim 13 wherein the sliding door is slidably actuated by a screw.

17. The system of claim 13 wherein the annular frame has a second cutout.

18. The system of claim 1 1 wherein the distal end portion of the tube has a docking feature adapted to dock to bone or cartilage.

19. The system of claim 1 1 wherein each flange is flat and each slot is substantially rectangular, wherein the flange mates with the slot.

20. The system of claim 19 wherein the second cutout aligns radially with the set screw.

21. The system of claim 11 wherein the static portion of the rim comprises a substantially hemispherical portion that releasably mates with the first portion of the substantially spherical element.

22. The system of claim 1 1 wherein the flanges of the sliding tab are not orthogonal to the tube.

23. A minimally invasive surgical access system, comprising;

a) an upper cap describing a first portion of a substantially spherical surface, b) an middle cap describing a second portion of the substantially spherical surface and having a central hole,

c) a lower cap describing a third portion of the substantially spherical surface, d) a tube having an outer wall having an attachment portion, a longitudinal bore, a proximal end portion, a distal end portion,

wherein the upper cap and the lower cap are attached to and radially extend from the outer wall of the tube,

wherein at least one of the upper cap and the lower cap is removably attached to the outer wall of the tube,

wherein the tube is received in the central hole of the middle cap, and

wherein the middle cap is received between between the upper cap and the lower cap.

24. The system of claim 23 wherein the upper cap is located proximal to the lower cap. 25. The system of claim 23 wherein the middle cap has a fixation element for fixation to a stationary unit.

26. The system of claim 25 further comprising: e) an arm extending from the stationary unit, wherein the arm is attached to the fixation element.

27. The system of claim 23 wherein the proximal portion of the tube is able to move in a substantially frustoconcical volume when the distal end portion of the tube is fixed.

28. The system of claim 23 wherein the distal end portion of the tube has a docking feature adapted to dock to bone.

29. The system of claim 23 wherein the upper cap, middle cap, and lower cap are located in a proximal-most quarter of the tube.

30. The system of claim 23 wherein one of the upper or lower cap has a threaded hole, the outer wall has a threaded portion, and the cap having the threaded hole is threadably received on the threaded portion of the outer wall of the tube.

31. The system of claim 23 wherein one of the upper cap and the lower cap is removably attached to the outer wall of the tube, and the other of the caps is integrally attached to the outer wall of the tube.

32. The system of claim 23 wherein both of the upper cap and the lower cap are removably attached to the outer wall of the tube.

33. The system of claim 23 wherein both of the upper cap and the lower cap are threadably attached to the outer wall of the tube.

Description:
PROXIMAL-END SECUREMENT OF A MINIMALLY INVASIVE

WORKING CHANNEL

BACKGROUND OF THE INVENTION

The general trend in the treatment of the spinal pathologies is toward minimally invasive

approaches to reduce the trauma on the surrounding tissues during the operation. For treatment of the lumbar spine pathologies, a percutaneous approach may be chosen within a working channel of 4-12 mm. The working channel serves as a safety barrier between the working instruments and the sensitive tissues (e.g. nerves and blood vessels) during the operation. The process of treatment including disc removal, endplate preparation, implant insertion and graft material insertion should be performed through the working channel. SUMMARY OF THE INVENTION

In order to ensure the safety of these procedures, the distal end portion of the working channel (from surgeon's perspective) should be secured/anchored onto desired points (see FIGS. 1A and IB). Typically, these points are either bone or disc tissue. In addition to the fixation of the distal end portion of the working channel, depending on the procedure that is being performed, the proximal end portion of the working channel needs to be able to either move laterally, move cranially/caudally, or be substantially fixed. For example, during disc removal, the surgeon might want to change the angle of the working channel in order to gain better access to more of the remaining disc tissue (see FIG. IB). At the same time, it might be desired that this motion be limited to a given range, and to be fixed in the axial direction. Furthermore, in some instances, it might be desired for the proximal portion of the working channel to be fully fixed in order to create a two-point fixed channel between proximal and distal portion.

Therefore, the present invention is directed at minimally invasive systems in which the proximal end portion of the working channel has either zero or a limited range of movement in the lateral direction. Therefore, in accordance with the present invention, there is provided a minimally - invasive surgical access system, comprising;

a) a tube having an outer wall, a longitudinal bore, a proximal end portion and a distal end portion;

b) a sliding tab comprising a collar having a pair of opposed flanges extending therefrom, wherein the collar is slidable along the outer wall of the tube; and c) an annular frame having a pair of substantially opposed slots, wherein the flanges of the collar respectively extend through the slots of the annular frame, and

wherein the tube extends through the annular frame.

Therefore, in accordance with the present invention, there is provided a minimally -invasive surgical access system, comprising;

a) a tube having an outer wall, a longitudinal bore, a proximal end portion, a distal end portion, and a substantially spherical element radially surrounding a segment of the outer wall;

b) a sliding tab having a base and a pair of opposed flanges extending therefrom; the base having a hole therethrough defining a rim having a static portion and a slidable portion,

c) an annular frame having a pair of substantially opposed slots, wherein each flange of the sliding tab extends through a respective slot of the annular frame,

wherein the tube extends through the annular frame, and

wherein the static portion of the rim releasably contacts a first portion of the substantially spherical element and the slidable portion of the rim releasably contacts a second portion of the substantially spherical element.

Therefore, in accordance with the present invention, there is provided a minimally invasive surgical access system, comprising;

a) an upper cap describing a first portion of a substantially spherical surface, b) an middle cap describing a second portion of the substantially spherical surface and having a central hole, c) a lower cap describing a third portion of the substantially spherical surface, d) a tube having an outer wall having an attachment portion, a longitudinal bore, a proximal end portion, a distal end portion,

wherein the upper cap and the lower cap are attached to and radially extend from the outer wall of the tube,

wherein at least one of the upper cap and the lower cap is removably attached to the outer wall of the tube,

wherein the tube is received in the central hole of the middle cap, and

wherein the middle cap is received between between the upper cap and the lower cap.

DESCRIPTION OF THE FIGURES

FIGS. 1A and IB disclose the desired ranges of motion for the systems of the present invention.

FIG. 2 discloses a first embodiment of the present invention having a slidable collar.

FIG. 3 discloses a second embodiment of the present invention having a substantially sphereical element attached to the tube.

FIGS. 4 A-B disclose a third embodiment of the present invention having a plurality of caps.

FIGS. 5A-C disclose the different steps of mounting and securing the embodiment of FIG. 4.

DETAILED DESCRIPTION OF THE INVENTION

For the purposes of the present invention, the "distal end portion of the tube" is the portion of the tube that is nearest to the patient and furthest from the surgeon when the tube is inserted into the patient, and the "proximal end portion of the tube" is the portion of the tube that is furthest from the patient and nearest to the surgeon when the tube is inserted into the patient. Also, "a working channel" and "a tube" are considered to be interchangeable.

In the following description, several concepts are described covering the subjects of a) limiting lateral motion of the proximal end portion of the tube, b) eliminating the lateral motion of the proximal end portion of the tube, and c) eliminating the axial motion of the proximal end portion of the tube.

Now referring to FIG. 2, there is provided a minimally -invasive surgical access system, comprising;

a) a tube 1 having an outer wall 3, a longitudinal bore 5, a proximal end portion 7 and a distal end portion 9;

b) a sliding tab 11 comprising a collar 13 having a pair of opposed flanges 15 extending therefrom, wherein the collar is slidable along the outer wall of the tube; and

c) an annular frame 17 having a pair of substantially opposed slots 19, wherein the flanges of the collar respectively extend through the slots of the annular frame, and

wherein the tube extends through the annular frame.

The embodiment shown in FIG. 2 includes an annular frame that can be fixed onto a stationary unit, such as the operating table, so as to anchor the system. As previously described, the distal end portion of the tube can be fixed onto the bony structures (such as a vertebral body) or soft tissues (such as disc cartilage) within the lumbar spine. When the tube is so distally anchored, the proximal end portion of the tube can move in a substantially conical volume, with the distal end of the tube being its apex. The fixed-in-space annular frame of the embodiment of FIG. 2 limits the range of the motion of the proximal end portion of the tube. The sliding tab component of the system is comprised of a collar with a pair of opposed flanges extending therefrom. Preferably, the shape of the flanges describes a portion of a spherical surface that mimics the limited motion of the tube. The outer annular frame has a pair of opposed matching slots that slidably receive their respective flanges. Preferably, each slot is shaped as an arc that matches the arc-like transverse cross-section of the flange it receives. The working channel is mounted and fixed onto the sliding tab using a set screw 21 that is received in a threaded hole in the collar. The set screw can extend through the collar and contact the outer wall of the tube in the proximal end portion of the tube so as to lock the collar to the tube, thereby preventing the motion of the tube channel in the axial direction. The limits of the lateral motion of the proximal end portion are defined by the outer annular frame. The outer annular frame can be fixed onto the operating table 24 using an extension arm 23.

Therefore, in preferred embodiments of the first embodiment of the present invention, the system further comprises an arm extending from a stationary unit, wherein the arm is attached to the annular frame. Preferably, the collar comprises a threaded hole, and the system further comprises a set screw received in the threaded hole of the collar. Preferably, the set screw can extend through the collar and contact the outer wall of the tube in the proximal end portion of the tube to lock the collar to the tube. Preferably, each flange comprises a portion of a spherical surface 25 and each slot describes an arc, wherein the flange mates with the slot. Preferably, the distal end portion of the tube has a docking feature (such as a plurality of distally -extending teeth 27) adapted to dock to bone or cartilage. In some embodiments, the collar does not contact the annular frame. In some embodiments, the annular frame has a cutout 29 adapted to allow access by a screwdriver to the collar in order to tighten or loosen the set screw. Preferably, this cutout aligns radially with the set screw. Preferably, the proximal end portion of the tube is able to move in a substantially frustoconical volume when the distal end portion of the tube is fixed.

Now referring to FIG. 3, there is provided a minimally -invasive surgical access system, comprising;

a) a tube 31 having an outer wall 33, a longitudinal bore 35, a proximal end portion

37, a distal end portion 39, and a substantially spherical element 41 radially surrounding a segment of the outer wall;

b) a sliding tab 43 having a base 45 and a pair of opposed flanges 47 extending therefrom; the base having a hole 48 therethrough defining a rim 49 having a static portion 51 and a slidable portion 53,

c) an annular frame 55 having a pair of substantially opposed slots 57, wherein each flange of the sliding tab extends through a respective slot of the annular frame,

wherein the tube extends through the annular frame, and

wherein the static portion of the rim releasably contacts a first portion of the substantially spherical element and the slidable portion of the rim releasably contacts a second portion of the substantially spherical element.

The second embodiment of FIG. 3 includes an outer annular frame that could be fixed onto a stationary unit, such as the operating table. As previously described, the distal end portion of the tube can be fixed onto the bony structures or soft tissues of the spine, so that the proximal end portion of the tube can move in a substantially frustoconical volume with the distal tip being the apex. In this particular embodiment, the sliding tab has flat flanges, which are easier to manufacture. Likewise, the outer annular frame has a pair of simple, linear slots to slidably receive the flanges. The sliding tab has an axial hole therein defining a rim, the rim comprising a static hemispherical portion, as well as a movable hemispherical portion. As the working channel passes into the sliding-tab, the set screw 61 can be turned to move the dynamic hemisphere to hold or release the spherical protrusion of the working channel, thereby fixing or release the angel of the sliding tab with respect to the tube. This allows for the movement on the desired range. The whole structure allows for sideways motion of the distal end in a given range (defined by the slot on the outer frame) and blocks the axial motion of the distal end. Preferably, in this second embodiment, the system further comprises an arm 63 extending from a stationary unit 64, wherein the arm is attached to the annular frame. Preferably, the base comprises a first cutout 65, and further comprises a sliding door 66 slidably received in the cutout. Preferably, the sliding door comprises the second portion of the rim. Preferably, the sliding door further comprises a substantially hemispherical portion extending from the slidable portion of the rim, wherein the substantially hemispherical portion releasably contacts the second portion of the substantially spherical element to lock the sliding tab to the tube. Preferably, the sliding sliding door is slidably actuated by a set screw. Preferably, each flange of the sliding tab is flat and each respective slot is substantially rectangular, so that the flange mates with the slot. Preferably, the distal end portion of the tube has a docking feature (such as distally extending teeth 67) adapted to dock to bone or cartilage. In some embodiments, the substantially spherical element does not contact the annular frame. Preferably, the annular frame has a second cutout 69 (designed to allow access by a screwdriver) that aligns radially with the set screw. Preferably, the proximal end portion of the tube is able to move in a substantially frustoconical volume when the distal end portion of the tube is fixed. In some embodiments, the flat flanges of the sliding tab are not orthogonal to the tube.

Now referring to FIGS. 4A -4B, there is provided a minimally invasive surgical access system, comprising;

a) an upper cap 71 describing a first portion 73 of a substantially spherical surface, b) an middle cap 75 describing a second portion 77 of the substantially spherical surface and having a central hole 79,

c) a lower cap 81 describing a third portion 83 of the substantially spherical surface,

d) a tube 85 having an outer wall 87 having an attachment portion 89, a longitudinal bore 91, a proximal end portion 93, a distal end portion 95,

wherein the upper cap and the lower cap are attached to and radially extend from the outer wall of the tube,

wherein at least one of the upper cap and the lower cap is removably attached to the outer wall of the tube,

wherein the tube is received in the central hole of the middle cap, and

wherein the middle cap is received between between the upper cap and the lower cap.

This concept comprises three spherical caps on top of each other. The middle cap is the proximal point where the rigid arm is fixed. The lower cap extends from the working channel and is preferably integral with the working channel. This lower cap helps to prevent the working channel from being pulled proximally through the hole of the middle cap. The middle cap has a hole of predetermined size that allows for limited lateral motion of the working channel, thereby defining the boundaries of allowed motion. The middle cap is fixed to the operating table via attachments as described above. This middle cap may have a fixation element to help with the fixation. The upper cap has a threaded hole 97 and, when threaded onto the threaded 89 portion of the working channel, helps preventing the channel from advancing distally. In this concept, if the upper cap is advanced distally, it will create friction between the caps and will prevent the motion of the caps relative to each other. In other words, this concept allows for the motion of the working channel and at the same time allows for complete fixation of the distal and proximal ends of the working channel at desired direction.

Preferably, in the embodiment of FIG. 4, the upper cap is located proximal to the lower cap. Preferably, the middle cap has a fixation element 101 for fixation to a stationary unit. Preferably, the system further comprises an arm 103 extending from a stationary unit 105, wherein the arm is attached to the fixation element. Preferably, the proximal portion of the tube is able to move in a substantially frustoconical volume when the distal end portion of the tube is fixed. Preferably, the distal end portion of the tube has a docking feature 107 adapted to dock to bone. Preferably, the upper cap, middle cap, and lower cap are located in a proximal-most quarter PQ of the tube.

In some embodiments, the upper cap has a threaded hole 97, the outer wall of the working channel has a threaded portion 89 , and wherein the upper cap is threadably received on the threaded portion of the outer wall of the tube. In FIG. 4, the upper cap is shown to be removable by virtue of its threadability upon the outer wall of the tube. However, removability is not restricted to threaded features. For example, in some embodiments, the tube and cap may provide a Morse taper lock. In other embodiments, the cap is made of an elastic material that snugly fits the outer wall of the tube.

In some embodiments, one of the upper cap and the lower cap is removably attached to the outer wall of the tube, and the other is integrally attached to the outer wall of the tube. In some embodiments, one of the upper or lower cap has a threaded hole, the outer wall has a threaded portion, and the cap having the threaded hole is threadably received on the threaded portion of the outer wall of the tube.

In some embodiments, both of the upper cap and the lower cap are removably attached to the outer wall of the tube, preferably threadably attached.

A functional prototype of this method is shown in FIGS. 5A-C, with different steps of mounting and securing. In FIG. 5A, a tube having an upper threaded portion and a lower cap permanently attached thereto is provided. In FIG. 5B, the middle cap is lowered onto the lower cap. In FIG. 5C, an upper cap with a threaded hole is placed over the middle cap and threaded onto the threaded portion of the tube, thereby trapping the middle cap between the upper and lower caps. Lastly, the middle cap is affixed to a stationary unit.

In some embodiments, the features of the upper and lower caps are reversed. Therefore, in accordance with the present invention, one of the upper cap and the lower cap is removably attached to the outer wall of the tube, and the other of the caps is integrally attached to the outer wall of the tube. Alternatively, both of the upper cap and the lower cap are removably attached to the outer wall of the tube. The components of the present invention are preferably made from a biocompatible metal such as stainless steel, titanium alloy or cobalt-chrome. However, it is contemplated that the components can be made from polymeric materials so as to provide an inexpensive, single use system.