Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PURIFICATION OF 1,1,1,3,3-PENTAFLUOROBUTANE
Document Type and Number:
WIPO Patent Application WO/2002/060845
Kind Code:
A1
Abstract:
In the synthesis of 1,1,1,3,3-pentafluorobutane (R-365mfc), a mixture of R-365mfc and the impurity 1,1,1,3-tetrathioro-2-butene (R-1354zd) is purified and R-1354zd is removed from the mixture by contacting the mixture with 1-5 mols of chlorine for each mol of R-1354zd in the presence of ultraviolet light having a wavelength between about 300 to 400 nm which provides at least 0.02 watts-hour/kg of the mixture. The R-1354zd is reduced to below 10 wt. ppm as it is converted to 2,3-dichloro-1,1,1,3-tetrafluorobutane (R-354) or other butane containing more chlorine and having a higher boiling point than R-365mfc. The butane(s) may be spearated more easily from R-365mfc. The photochlorination is effected in a manner such that at least about 96 weight percent of the starting amount of R-365mfc is maintained in the mixture.

Inventors:
YATES STEPHEN FREDERIC
TUNG HSUEH SUNG
Application Number:
PCT/US2001/048949
Publication Date:
August 08, 2002
Filing Date:
December 13, 2001
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HONEYWELL INT INC (US)
International Classes:
C07C17/383; C07C17/395; C07C19/08; (IPC1-7): C07C17/395; C07C17/04; C07C19/08; C07C19/01
Domestic Patent References:
WO1997037955A11997-10-16
Foreign References:
US5944962A1999-08-31
DE10029283A12000-12-21
Attorney, Agent or Firm:
Roger, Criss H. (NJ, US)
Download PDF:
Claims:
CLAIMS:
1. A process for removing 1chloro3, 3,3trifluoropropene (R1354zd) or other olefinic impurities from 1,1,1,3,3pentafluorobutane (R365mfc) by photochlorination comprising (a) contacting a mixture consisting substantially of a predetermined weight amount of R365mfc and up to about 20,000 wt. ppm R1354zd with about 15 mols of chlorine for each mol of R1354zd or other olefins in the presence of ultraviolet light having wavelengths between about 300 and 400 nm providing an exposure greater than zero and at least about 0.02 watthour/kg of said mixture, said photochlorination being effective to reduce the concentration in the mixture of R1354zd or other olefins to less than 100 wt. ppm by converting said R1354zd to 2,3dichloro1, 1, 1,3tetrafluorobutane (R354) or other butane which contains greater amounts of chlorine, as at least about 96% of said predetermined weight amount of R365mfc is maintained in the mixture; and (b) separating the R354 or other butane formed in (a) from R365mfc.
2. A process according to Claim 1 wherein the boiling point of said R354 or other butane is at least about 40 °C above the boiling point of said R365mfc and separating the R365mfc and the R354 or other butane by distillation.
3. The process of Claim 1 effected as a batch process.
4. The process of Claim 1 wherein said ultraviolet light provides an exposure of about 0.02 to 2 wattshour/kg of said mixture.
5. The process of Claim 1 wherein about 1 to about 1.5 mols of chlorine are present for each mol of R1354zd.
6. The process of Claim 1 wherein the contacting of (a) is carried out at a temperature and a pressure sufficient to assure that R365mfc is liquid.
7. The process of Claim 1 wherein the contacting of (a) is carried out at a temperature and a pressure at which R365mfc is vapor.
8. The process of Claim 1 wherein the temperature is in the range of about50°C to 200°C.
9. The process of Claim 8 wherein the temperature is in the range of about 25°C to 60°C.
10. The process of Claim 1 wherein the separation of (b) is carried out by distillation.
11. The process of Claim 1 wherein said other olefinic impurities comprise R1353.
12. The process of Claim 1 effected as a continuous process.
Description:
PURIFICATION OF 1, 1, 1, 3, 3-PENTAFLUOROBUTANE BACKGROUND OF THE INVENTION This invention relates principally to the purification of 1,1,1,3,3- pentafluorobutane, also designated R-365mfc, which has been of particular interest as a replacement for chlorofluorocarbons and hydrochlorofluorocarbons having similar physical properties, for example, 1, 1, 2-trichloro-1, 2,2-trifluoroethane (R-113), fluorotrichloromethane (R-11) and 1,1-dichloro-1-fluoroethane (R-141b).

R-365mfc may be prepared by a two-step process involving the addition of carbon tetrachloride to 2-chloroprene to produce 1,1,1,3,3-pentachlorobutane (R-360) in the presence of a copper salt and an amine followed by fluorination with hydrogen fluoride as disclosed in U. S. Patent No. 5,917,098.

It is characteristic of such reactions that many by-products are formed, containing varying numbers of hydrogen, chlorine, and fluorine atoms on Cl-C4 compounds. These by-products and the unreacted feed material may be separated by distillation where possible. Some compounds are relatively harmless since their presence does not greatly alter the physical properties for which R-365mfc is useful. One by-product which must be removed because of its toxicity is 1, 1, 1, 3-tetrafluoro-2-butene (R-1354zd), although only relatively small amounts are typically present in R-365mfc as formed. R-1354zd has a boiling point close to that of R-365mfc making them difficult to separate by distillation. After distillation of the crude product, R-1354zd will still be present in amounts from about 300 to 20,000 wt. ppm. It should be reduced to below about 100 wt. ppm due to the potential toxicity of unsaturated compounds. Preferably, the amount of R-1354zd should be reduced to 20 ppm (wt.) and most preferably below about 10 wt. ppm.

Further improvement in methods of purifying R-365mfc, particularly with respect to eliminating R-1354zd, is desired and the present inventors have discovered a means for purification by photochlorination.

It is advantageous also to remove other unsaturated by-products that can be present in the R-365mfc reaction product, including, for example, R-1353 and the like.

SUMMARY OF THE INVENTION Unsaturated by-products including R-1354zd are removed from a mixture consisting substantially of R-365mfc and containing up to about 20,000 wt. ppm R-1354zd by contacting the R-365mfc mixture with 1-5 moles of chlorine for each mole of R-1354zd in the presence of ultraviolet light having a wavelength between about 300 to 400 nm which provides at least 0.02 watts-hour/kg of the mixture, preferably 0.02 to 2.0 watts-hour/kg. The R-1354zd can be reduced to below 10 wt. ppm or lower as it is converted to 2,3-dichloro-1,1,1,3-tetrafluorobutane (R-354) or other butanes containing more chlorine such as 2,2,3-trichloro-1,1,1,3-tetrafluorobutane (R-344) or 2,2,3,4- tetrachlorol, 1, 1, 3-tetrafluorobutane (R-334), which have higher boiling points and can be easily separated from R-365mfc. Other unsaturated compounds, such as 3-chloro-1,1,1- trifluoro-2-butene (R-1353), are also removed by chlorination to other derivatives that can be separated, for example, by distillation. The temperature and pressure used may be adjusted to provide R-365mfc in either the vapor or liquid phase, the vapor phase being preferred.

An advantage of the photochlorination of the present invention is that it does not affect materially the desired R-365mfc product. Thus, while a high proportion of the R- 1354zd impurity is in effect removed by the photochlorination, a substantially high proportion of the R-365mfc is maintained. For example, the photochlorination can be effected in a manner such that at least about 96 weight percent, preferably at least about 98 wt. %, of the starting amount of R-365mfc is maintained in the mixture. This is indeed surprising when it is considered that the proportion of R-365mfc in the starting mixture is high, for example, at least about 98 weight percent.

DETAILED DESCRIPTION OF THE INVENTION

R-365 may be produced by the process of U. S. Patent No. 5,917,098, beginning from carbon tetrachloride and 2-chloroprene. The crude product will contain a variety of by-products. It is of particular importance to remove 1, 1, 1, 3-tetrafluoro-2-butene (R- 1354zd) from the crude product. Preliminary separation of R-365mfc by distillation will leave about 300 to 20,000 wt. ppm of R-1354zd having a boiling point of about 16°C compared to 40°C for R-365mic, the difference in boiling points making R-1354zd difficult to separate from R365mfc. In the process of the invention, R-1354zd or other unsaturated compounds which may be present, for example, 3-chloro-1,1,1-trifluoro-2- butene (R-1353), are reacted with chlorine to provide more highly chlorinated compounds which have a higher boiling point and can be readily separated from R-365mfc.

As mentioned above, the photochlorination may be effected so that at least about 96% (based on weight amount) or more of the desired starting amount of R-365mfc is maintained in the mixture, i. e. not affected by the photochlorination.

In the process, crude R-365mfc containing about 300 to 20,000 wt. ppm of R-1354zd along with minor amounts of other by-products such as those mentioned above will be contacted with chlorine in the presence of ultraviolet light having a wavelength of about 300 to 400 nm. It should be understood that an ultraviolet lamp may have radiation outside this range also, but that photochlorination requires UV light within this range.

The ultraviolet light will have an intensity which provides an exposure greater than zero and at least about 0.02 watts-hour/kg of the R-365mfc mixture, preferably 0.02 to 2.0 watts-hour/kg.

The ultraviolet light may be provided by arc lamps including mercury, argon, or xenon and filament lamps including tungsten and halogen.

Chlorine is introduced into the crude R-365mfc stream at a rate sufficient to provide about 1 to 5 moles of chlorine for each mole of R-1354zd, preferably about 1 to about 1.5. It has been found that increasing either the ratio of chlorine to R-1354zd (Cl2/R-1354zd) or the ultraviolet light exposure improves the chlorination of R-1354zd.

Generally, we have been able to reduce the R-1354zd to below 10 wt. ppm using a UV

exposure above about 0.04 watts-hour/kg but with quite low ratios of Cl2/R-1354zd.

Conversely, much lower UV exposures can be used if higher C12/R-1354zd ratios are used. The Cl2/R-1354zd ratio and UV exposure may be adjusted to provide the desired set of conditions.

The temperature employed may vary but may be from about-50°C to 200°C, preferably about 25° to 60°C.

The pressure selected will be a convenient value to suit the processing conditions for R-365mfc and to assure that R-365mfc is a liquid or vapor, as desired.

The UV radiation from a lamp ordinarily will be expressed as watts, which is a rate of delivering energy. For present purposes, it is considered more useful to express radiation as the quantity of energy delivered over a period of time, i. e. the"exposure," rather than as the rate. Thus, the exposure may be expressed as watts-hours, which is related to the number of photons of energy delivered and their wavelength and these, in turn, relate to the chlorination of unsaturated molecules such as R-1354zd. Since the exposure is the product of the rate of delivering energy (photons/time) and the time, it will be clear that either the rate or the time could be varied. However, for practical applications the rate and the time will have limits imposed by the need to carry out the desired photochlorination reaction within constraints of time and product yield. If a high rate or a long time is used, not only will R-1354zd be chlorinated to R-354 (or R-344 or R-334), but also chlorine will react with other molecules, particularly with R-365mfc to make 2-chloro-1, 1, 1, 3,3-pentaflurobutane (R-355mdc). Alternatively, if a very low rate, or a short time, is used then insufficient chlorination of R-1354zd would be expected.

Increasing the ratio of chlorine to R-365mfc will tend to increase the production of R- 355mdc. Conditions which involve a UV exposure of about 1.5 to 5.0 watts-hour/kg of R-365mfc and a C12/R-1354zd molar ratio of greater than about 1.5: 1 and up to about 50: 1 will tend to result in increased production of R-355mdc.

As illustrated in the examples, the photochlorination can be effected in a batch process or a continuous process.

After the R-365mfc-containing mixture has been photochlorinated, the chlorinated products may be separated from the R-365mfc, for example, by distillation, since the boiling points are no longer close to that of R-365mfc.

For example, the boiling points of R-354, R-344, R-334 and other chlorinated butanes that are typically produced in the photochlorination are at least about 40°C above the boiling point of R-365mfc (40°C). To exemplify, the boiling points of R-354 isomers are estimated to be about 83°C ; the boiling points of R-344 isomers are estimated to be about 120 °C ; and boiling points of R-334 isomers are estimated to be about 155°C. The boiling point of R-355 is estimated to be about 48°C. (The boiling points referred to in this specification are at one atmosphere pressure.) Separation of the Cl-containing-by- : products can be effected readily by conventional distillation. Any residual chlorine, HCI or HF may be separated by absorption of chlorine in aqueous caustic, by adsorption on carbon molecular sieves, or reaction with aqueous sodium sulfite or sodium thiosulfate.

EXAMPLES Example 1: Liquid phase purification of R-365mfc The photochlorination of R-365mfc is carried out in a 125 mL Pyrex pressure vessel equipped with a dip leg inlet and a pressure gauge. This vessel is chilled in ice water and 20.0 grams of impure R-365mfc containing 0.08% R-1354zd is condensed into it. Then, while still cold, a stream of chlorine gas is passed at 10 mL/min through this solution for about 52 seconds. We calculate according to the ideal gas law that this should correspond to 3.6 x 10-4 moles of chlorine, or a 1: 1 mole ratio with the R-1354zd impurity. The vessel is then allowed to warm to room temperature.

The reactor vessel is placed for 5 minutes at the focus of RPR-100 Rayonet reactor (Southern New England Ultraviolet Company) equipped with 16 RPR-3500 lamps having their peak intensity at a wavelength of 350 nm. The Pyrex walls of the pressure vessel remove light below 300 nm. Ferrioxalate actinometry is used to measure the radiation received (see The Chemists Companion, A. J. Gordon & R. A. Ford, Wiley

Interscience (1972), pages 362-368). In this vessel under these conditions this procedure gives an incident light intensity of 1.317 x10-7 Einstein/sec (0.0417 watts). One Einstein is equal to a mol of photons. A five minute exposure should therefore supply, 3. 95 x 10-5 Einsteins of light (0.039 watt-hour/kg). After exposure, the vapor head of the pressure vessel is sampled by gas chromatography.

Example 2: Vapor phase purification of R-365mfc The photochlorination of R-365mfc is carried out in a 125-mL Pyrex pressure <BR> <BR> vessel equipped with an inlet at the bottom and an outlet at the top. The reactor ! vessel'is<BR> , i,.,.,..., |,.-. placed at the focus of RPR-100 Rayonet reactor (Southern New England U'ttrawiblet ! Company) equipped with 16 RPR-3500 lamps having their peak intensity atLRiwavelength of 350 nm. The Pyrex walls of the pressure vessel remove light below 300'nn'nOThe vessel is immersed in a Pyrex constant temperature bath held at 59°C to ensurethatthe R-365mfc remains in the vapor phase.

Two feed streams are passed through separate lengths of capillary tubing and then mixed and passed into the reactor at 5 psig (34.5 kPa gauge). The impure R 365mfc contains 0.08 % R-1354zd plus other impurities. One stream contains impurelR-365mfc while the second contains chlorine. By blending the two streams the ratio of chlorine to R-1354zd is varied. The radiation exposure is calculated from the residence time and the light intensity and varies from 2 to 3.5 watts-hour/kg. After exposure to the ultraviolet light the product stream is analyzed by gas chromatography using the procedures of Example 1.

It is observed that, as the molar ratio of chlorine to R-1354zd is increased from 0.1 to about 1.5, the concentration of R-1354zd, and of the other olefins is reduced from their feed concentrations to concentrations below the detection limit (10 ppm) : In proportion to the decrease in R-1354zd and the other olefins, the corresponding chlorinated products are observed to increase. At the molar ratio corresponding to an R- 1354zd concentration of about 100 ppm (i. e. a molar ratio near 1.0), the concentration of R-355mdc is observed to begin increasing with increasing molar ratio.