Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PYRIDINYLIMIDAZOLONES AS HERBICIDES
Document Type and Number:
WIPO Patent Application WO/2015/059262
Kind Code:
A1
Abstract:
The invention relates to dihydro hydantoincompounds of the formula (I) wherein X, R3, Ra,Rb Rcand Rd are as defined in the specification.Furthermore, the present invention relates to processes and intermediates for making compounds of formula (I), to herbicidal compositions comprising these compounds and to methods of using these compounds to control plant growth.

Inventors:
PHADTE MANGALA (IN)
SONAWANE RAVINDRA (IN)
HENNESSY ALAN JOSEPH (GB)
MORRIS JAMES ALAN (GB)
BOEHMER JUTTA ELISABETH (GB)
DESSON TIMOTHY ROBERT (GB)
GOODWIN-TINDALL JAKE (GB)
Application Number:
PCT/EP2014/072818
Publication Date:
April 30, 2015
Filing Date:
October 24, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SYNGENTA PARTICIPATIONS AG (CH)
SYNGENTA LTD (GB)
International Classes:
C07D401/04; A01N43/50
Foreign References:
US4604127A1986-08-05
US4600430A1986-07-15
Attorney, Agent or Firm:
SYNGENTA INTERNATIONAL AG (WRO 1008-Z1-26Schwarzwaldallee 215, Basel, CH)
Download PDF:
Claims:
CLAIMS

1. A herbicidal compound of formula (I)

(I)

wherein

X is selected from O and S;

Ra is selected from hydrogen and halogen;

Rb is selected from hydrogen, halogen, Ci-C6 alkyl, C2-C6 alkenyl, Ci-C6 alkoxy, C2-C4 alkenyloxy, C2-C4 alkynyloxy, Ci-C4 alkoxy C1-C4 alkyl ,Ci-C4 alkoxy-Ci-C4 alkoxy, Ci-C4 alkoxy Ci-C4 alkoxy Ci-C4 alkyl, Ci-C4 haloalkoxy, Ci-C4 alkylthio, Ci-C4 alkylsulfinyl, Ci-C4 alkylsulfonyl, a group R5R6N-, a group R5C(0)N(R6)-, a group R5S(02)N(R6)-, a group R5R6NS02-, a group R5R6NC(0)-, aryl optionally substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano, R5C(0)N(R6)-, R5R6NC(0)-, R5R6NS02- , R5S(02)N(R6)-, R5S(0)-, R5S(02)-, d-d alkyl, d-d alkoxy, d-d alkoxy-d-d alkyl, d- d haloalkyi and d-C3 haloalkoxy and heteroaryl optionally substituted substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano, R5C(0)NR6-, R5OC(0)-, d-d alkyl, d- alkoxy, d-d haloalkyi, d-d haloalkoxy and a heterocyclyl group.

Rc is selected from d- haloalkyi, - alkenyl, d- cyanoalkyl, d- alkoxy, d- hydroxyalkyl, d- alkoxy d- alkyl, d- alkoxy d- haloalkyi, - alkenyloxy d- alkyl, a group R5R6NC(0)Crd alkyl and d- cycloalkyi optionally substituted by from 1 to 3 groups independently selected from cyano, d-d alkyl and d-d alkoxy,; or when Rb is R5R6NC(0)-, Rc can be, in addition to the above, hydrogen, halogen or d- alkyl.

Rd is selected from hydrogen, halogen, cyano, d- alkyl and d- haloalkyi;

R3 is selected from halogen, hydroxyl, -NR 4R15 or any of the following groups

R5 and R6 are, independently, selected from hydrogen, Ci-C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkenyl, C2-C6 alkynyl, Ci-C6 alkoxy, C1-C4 alkoxy C1-C4 alkyl, Ci-C6 cyanoalkyl, or R5 and R6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and Ci-C6 alkyl;

R7 and R8 are, independently, selected from Ci-C6 alkyl, Ci-C6 haloalkyl, C2-C6 alkenyl, C2- C6 alkynyl, a C5-C10 monocyclic heteroaryl group comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with from 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyl and C1-C3 alkoxy and a C6-Cio aryl group optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3

haloalkoxy;

R9 is selected from Ci-C6 alkyl and benzyl optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy;

R4 and R5 are, independently, selected from hydrogen, Ci-C20 alkyl, Ci-C20 haloalkyl, C2- C20 alkenyl, C2-C20 alkynyl, or R4 and R5 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and Ci-C6 alkyl; or an N-oxide or salt form thereof.

The compound of claim 1 , wherein X is O.

The compound of claim 1 or claim 2, wherein Ra is hydrogen.

4. The compound of any one of claims 1 to 3, wherein Rd is hydrogen.

5. The compound of any one of claims 1 to 4, wherein R3 is selected from hydroxyl, halogen, Ci-C6 alkylcarbonyloxy, Ci-C6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy.

6. The compound of claim 5, wherein R3 is selected from hydroxyl and halogen.

7. The compound of claim 1 , wherein R3 is hydroxyl.

The compound of any one of claims 1 to 7, wherein Rb is selected from hydrogen, halogen, Ci-C3 alkyl, Ci-C3 alkoxy, Ci-C3 alkoxy Ci-C3 alkyl, Ci-C3 alkoxy Ci-C3 alkoxy Ci-C3 alkyl, heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy and aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy,

The compound of claim 8, wherein Rb is selected from hydrogen, halogen, methyl, methoxy, methoxymethyl, methoxyethoxyethyl, heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy or aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy.

10. The compound of claim 9, wherein Rb is selected from hydrogen, halogen, methoxy,

heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy or aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy.

1 1. The compound of any one of claims 1 to 10, wherein Rc is selected from Ci-C6 haloalkyl, C2-C8 alkenyl, Ci-C6 cyanoalkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and Ci-C3 alkyl.

12. The compound of claim 1 1 , wherein Rc is selected from Ci-C3 haloalkyl, Ci-C6 cyanoalkyl and C3-C6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and Ci-C3 alkyl. 13. The compound of claim 12, wherein Rc is selected from cyclobutyl, cyclopropyl, (1- m ethyl)cycloprop- 1 -yl , ( 1 -m ethyl- 1 -cyano)-eth- 1 -yl , ( 1 -m ethyl- 1 -ethyl-2-cyano)-prop- 1 -yl , (1 , 1-dimethyl-2-cyano)-prop-1-yl, 1-fluoroethyl, 1 , 1-difluoroethyl, difluoromethyl, 1-fluoro-1- methylethyl and trifluoromethyl. 14. The compound of claim 13, wherein Rc is selected from (1-methyl-1-cyano)-eth-1-yl, 1 , 1- difluoroethyl, 1-fluoro-1-methylethyl and trifluoromethyl.

15. The compound of claim 14, wherein Rc is trifluoromethyl.

16. The compound of any one of claims 1 to 7, wherein Rb is R5R6NC(0)- and Rc is selected from hydrogen, halogen, Ci-C4 alkyl and C1-C4 haloalkyl.

17. The compound of any one of claims 1 to 7, wherein Rb is selected from halogen and C1-C4 alkyl and Rc is C1-C3 haloalkyl.

18. The compound of claim 16, wherein Rc is trifluoromethyl.

19. A herbicidal composition comprising a compound of formula I as defined in any one of claims 1 to 18 together with at least one agriculturally acceptable adjuvant or diluent.

20. A composition according to claim 19 which comprises a further herbicide in addition to the compound of formula I. 21. A composition according to claim 19 or 20 which comprises a safener.

22. Use of a compound of formula I as defined in any one of claims 1 to 18 or a composition as defined in any one of claims 19 to 21 as a herbicide. 23. A method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound of formula I as defined in any one of claims 1 to 18 or a composition as claimed in any one of claims 19 to 21.

Description:
HERBBICIDAL COMPOUNDS

The present invention relates to certain substituted dihydro-hydantoin derivatives, to processes for their preparation, herbicidal compositions comprising them, and their use in controlling plants or inhibiting plant growth.

Herbicidal dihydro-hydantoins of the formula

wherein A a pyridine ring are taught in US Patent No, 4,600,430. Similar compounds wherein A is a pyridazine ring are taught in US Patent No. 4, 604,127.

Summary of the Invention In a first aspect, the invention provides compounds of the formula (I)

(I)

wherein

X is selected from O and S; R a is selected from hydrogen and halogen;

R b is selected from hydrogen, halogen, Ci-C 6 alkyl, C 2 -C 6 alkenyl, Ci-C 6 alkoxy, C 2 -C 4 alkenyloxy, C 2 -C 4 alkynyloxy, Ci-C 4 alkoxy C1-C4 alkyl ,Ci-C 4 alkoxy-Ci-C 4 alkoxy, Ci-C 4 alkoxy Ci-C 4 alkoxy Ci-C 4 alkyl, Ci-C 4 haloalkoxy, Ci-C 4 alkylthio, Ci-C 4 alkylsulfinyl, Ci-C 4 alkylsulfonyl, a group R 5 R 6 N-, a group R 5 C(0)N(R 6 )-, a group R 5 S(0 2 )N(R 6 )-, a group R 5 R 6 NS0 2 -, a group R 5 R 6 NC(0)-, aryl optionally substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano, R 5 C(0)N(R 6 )-, R 5 R 6 NC(0)-, R 5 R 6 NS0 2 -, R 5 S(0 2 )N(R 6 )-, R 5 S(0)-, R 5 S(0 2 )- - -

, Ci-C 3 alkyl, C1-C3 alkoxy, C1-C3 alkoxy-Ci-C 3 alkyl, C C 3 haloalkyi and Ci-C 3 haloalkoxy and heteroaryl optionally substituted substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano, R 5 C(0)NR 6 -, R 5 OC(0)-, C r C 3 alkyl, C r C 3 alkoxy, C C 3 haloalkyi, C C 3 haloalkoxy and a heterocyclyl group.

R c is selected from Ci-C 6 haloalkyi, C 2 -C 8 alkenyl, Ci-C 6 cyanoalkyl, Ci-C 6 alkoxy, Ci-C 6 hydroxyalkyl, Ci-C 6 alkoxy Ci-C 6 alkyl, Ci-C 6 alkoxy Ci-C 6 haloalkyi, C 2 -C 6 alkenyloxy Ci-C 6 alkyl, a group R 5 R 6 NC(0)Ci-C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, Ci-C 3 alkyl and Ci-C 3 alkoxy,; or when R b is R 5 R 6 NC(0)-, R c can be, in addition to the above, hydrogen, halogen or Ci-C 6 alkyl.

R d is selected from hydrogen, halogen, cyano, Ci-C 6 alkyl and Ci-C 6 haloalkyi;

R 3 is selected from halogen, hydroxyl, -NR 4 R 15 or any of the following groups

R 5 and R 6 are, independently, selected from hydrogen, Ci-C 6 alkyl, Ci-C 6 haloalkyi, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, Ci-C 6 alkoxy, C1-C4 alkoxy C1-C4 alkyl, Ci-C 6 cyanoalkyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and Ci-C 6 alkyl;

R 7 and R 8 are, independently, selected from Ci-C 6 alkyl, Ci-C 6 haloalkyi, C 2 -C 6 alkenyl, C 2 - C 6 alkynyl, a C5-C10 monocyclic heteroaryl group comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with from 1 to 3 groups independently selected from halogen, Ci-C 3 alkyl, Ci-C 3 haloalkyi and Ci-C 3 alkoxy and a C 6 -Ci 0 aryl group optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, Ci-C 3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyi and Ci-C 3 haloalkoxy;

R 9 is selected from Ci-C 6 alkyl and benzyl optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, Ci-C 3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyi and Ci-C 3 haloalkoxy; - -

R 4 and R 5 are, independently, selected from hydrogen, C1-C20 alkyi, C1-C20 haloalkyl, C 2 - C 2 o alkenyl, C 2 -C 2 o alkynyl, or R 4 and R 5 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and Ci-C 6 alkyi; or an N-oxide or salt form thereof.

In a second aspect, the invention provides herbicidal compositions comprising a compound of the invention together with at least one agriculturally acceptable adjuvant or diluent.

In a third aspect, the invention provides the use of a compound or a composition of the invention for use as a herbicide.

In a fourth aspect, the invention provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful crop plants, a compound or a composition of the invention.

In a fifth aspect, the invention relates to processes useful in the preparation of compounds of the invention.

In a sixth aspect, the invention relates to intermediates useful in the preparation of compounds of the invention.

Detailed Description

In particularly preferred embodiments of the invention, the preferred groups for X, R a , R b R c , R d and R 3 , in any combination thereof, are as set out below.

Preferably, X is O.

Preferably R a is hydrogen.

Preferably, R d is hydrogen.

Preferably, R 3 is selected from hydroxyl, halogen, Ci-C 6 alkylcarbonyloxy, Ci-C 6

alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyi, C1-C3 alkoxy, C1-C3 haloalkyl and C1-C3 haloalkoxy. Even more preferably, R 3 is selected from hydroxyl or halogen. Most preferably, R 3 is hydroxyl.

In one embodiment, X, R a , R d and R 3 are as described above in any combination and R b and R c are as described below in any combination.

Preferably R b is selected from hydrogen, halogen, C1-C3 alkyi, C1-C3 alkoxy, C1-C3 alkoxy C1-C3 alkyi, C1-C3 alkoxy C1-C3 alkoxy C1-C3 alkyi, heteroaryl optionally substituted by from 1 to 3 - - groups independently selected from halogen, cyano and methoxy and aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy, More preferably, R b is selected from hydrogen, halogen, methyl, methoxy, methoxymethyl, methoxyethoxyethyl, heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy or aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy. Even more preferably, R b is selected from hydrogen, halogen, methoxy, heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy or aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy. Most preferably, R b is hydrogen.

Preferably, R c is selected from Ci-C 6 haloalkyl, C 2 -C 8 alkenyl, Ci-C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and d- C 3 alkyl.

Even more preferably, R c is selected from C1-C3 haloalkyl, Ci-C 6 cyanoalkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano and d- C 3 alkyl.

Even more preferably R c is selected from cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, ( 1 -m ethyl- 1 -cyano)-eth- 1 -yl , ( 1 -m ethyl- 1 -ethyl-2-cyano)-prop- 1 -yl , ( 1 , 1 -d imethyl-2-cyano)-prop- 1 - yl, 1-fluoroethyl, 1 , 1-difluoroethyl, difluorom ethyl, 1-fluoro-1-methylethyl and trifluoromethyl. Even more preferably, R c is selected from (1-m ethyl- 1-cyano)-eth-1-yl, 1 , 1-difluoroethyl, 1- fluoro-1-methylethyl and trifluoromethyl.

Most preferably, R c is trifluoromethyl.

In particular, the substituted pyridine may be 4-(( 1-m ethyl- 1-cyano)-eth-1-yl)-pyrid-2-yl, 4- (1 , 1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl. In a further embodiment, X, R a , R d and R 3 are as described above in any combination and

R b is R 5 R 6 NC(0)-, wherein R 5 and R 6 are as described above, and R c is selected from hydrogen, halogen, Ci-C 4 alkyl and Ci-C 4 haloalkyl.

In a further embodiment, X, R a , R d and R 3 are as described above in any combination and R b is selected from halogen and Ci-C 4 alkyl and R c is Ci-C 3 haloalkyl, preferably trifluoromethyl.

In another embodiment, the invention provides compounds of the formula (I) - -

(I)

wherein X is O or S; R a is selected from hydrogen and halogen;

R b is selected from hydrogen, halogen, Ci-C 6 alkyl, Ci-C 6 alkoxy, a group R 5 R 6 N-, a group R 5 C(0)N(R 6 )-, a group R 5 S(0 2 )N(R 6 )-, a group R 5 R 6 NS0 2 -, a group R 5 R 6 NC(0)-, aryl optionally substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano,

R 5 C(0)N(R 6 )-, R 5 R 6 NC(0)-, R 5 R 6 NS0 2 -, R 5 S(0 2 )N(R 6 )-, R 5 S(0)-, R 5 S(0 2 )-, d-C 3 alkyl, d-C 3 alkoxy, C1-C3 alkoxy-Ci-C 3 alkyl, Ci-C 3 haloalkyl and Ci-C 3 haloalkoxy and heteroaryl optionally substituted substituted by from 1 to 3 groups independently selected from halogen, nitro, cyano, Ci-C 3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyl and Ci-C 3 haloalkoxy.

R c is selected from Ci-C 6 haloalkyl, C 2 -C 8 alkenyl, Ci-C 6 cyanoalkyl, Ci-C 6 alkoxy, Ci-C 6 hydroxyalkyl, C 2 -C 6 alkenyloxy Ci-C 6 alkyl, a group R 5 R 6 NC(0)Ci-C 6 alkyl and C 3 -C 6 cycloalkyl optionally substituted by from 1 to 3 groups independently selected from cyano, Ci-C 3 alkyl and Ci-C 3 alkoxy,; or when R b is R 5 R 6 NC(0)-, R c can be, in addition to the above, hydrogen, halogen or Ci-C 6 alkyl.

R d is selected from hydrogen, halogen, cyano, Ci-C 6 alkyl and Ci-C 6 haloalkyl; R 3 is selected from halogen, hydroxyl, or any of the following groups - -

R 5 and R 6 are, independently, selected from hydrogen, Ci-C 6 alkyl, Ci-C 6 haloalkyi, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, or R 5 and R 6 together with the carbon atoms to which they are attached form a 3-6 membered saturated or partially unsaturated ring optionally comprising from 1 to 3 heteroatoms independently selected from S, O and N and optionally substituted with from 1 to 3 groups independently selected from halogen and Ci-C 6 alkyl;

R 7 and R 8 are, independently, selected from Ci-C 6 alkyl, Ci-C 6 haloalkyi, C 2 -C 6 alkenyl, C 2 - C 6 alkynyl, a C 5 -Ci 0 monocyclic heteroaryl group comprising from 1 to 4 heteroatoms independently selected from N, O and S and optionally substituted with from 1 to 3 groups independently selected from halogen, C1-C3 alkyl, C1-C3 haloalkyi and C1-C3 alkoxy and a C 6 -Ci 0 aryl group optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, C1-C3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyi and Ci-C 3 haloalkoxy;

R 9 is selected from Ci-C 6 alkyl and benzyl optionally substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, Ci-C 3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyi and Ci-C 3 haloalkoxy; or an N-oxide or salt form thereof.

In this particular embodiment, the preferred groups for X, R a , R b R c , R d and R 3 , in any combination thereof, are as set out below.

Preferably, X is O.

Preferably R a is hydrogen.

Preferably, R d is hydrogen.

Preferably, R 3 is selected from hydroxyl, halogen, Ci-C 6 alkylcarbonyloxy, Ci-C 6 alkoxycarbonyloxy and aryloxycarbonyloxy wherein the aryl group may be substituted with from 1 to 3 groups independently selected from halogen, nitro, cyano, Ci-C 3 alkyl, Ci-C 3 alkoxy, Ci-C 3 haloalkyi and Ci-C 3 haloalkoxy. Even more preferably, R 3 is selected from hydroxyl or halogen. Most preferably, R 3 is hydroxyl. - -

In one embodiment of this embodiment, X, R a , R d and R 3 are as described above in any combination and R b and R c are as described below in any combination.

Preferably R b is selected from hydrogen, halogen, methoxy, heteroaryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy or aryl optionally substituted by from 1 to 3 groups independently selected from halogen, cyano and methoxy. Most preferably, R b is hydrogen.

Preferably, R c is selected from Ci-C 6 haloalkyl, C 2 -C 8 alkenyl, Ci-C 6 cyanoalkyl and C 3 -C 6 cycloalkyi optionally substituted by from 1 to 3 groups independently selected from cyano and d- C 3 alkyl.

Even more preferably, R c is selected from C 1 -C3 haloalkyl, Ci-C 6 cyanoalkyl and C 3 -C 6 cycloalkyi optionally substituted by from 1 to 3 groups independently selected from cyano and d- C 3 alkyl.

Even more preferably R c is selected from cyclobutyl, cyclopropyl, (1-methyl)cycloprop-1-yl, ( 1 -m ethyl- 1 -cyano)-eth- 1 -yl , ( 1 -methyl- 1 -ethyl-2-cyano)-prop- 1 -yl , ( 1 , 1 -d imethyl-2-cyano)-prop- 1 - yl, 1-fluoroethyl, 1 , 1-difluoroethyl, difluorom ethyl, 1-fluoro-1-methylethyl and trifluoromethyl.

Even more preferably, R c is selected from (1-m ethyl- 1-cyano)-eth-1-yl, 1 , 1-difluoroethyl, 1- fluoro-1-methylethyl and trifluoromethyl.

Most preferably, R c is trifluoromethyl.

In particular, the substituted pyridine may be 4-(( 1-m ethyl- 1-cyano)-eth-1-yl)-pyrid-2-yl, 4- (1 , 1-difluoroethyl)-pyrid-2-yl, 4-(1-fluoro-1-methylethyl)-pyrid-2-yl or 4-(trifluoromethyl)-pyrid-2-yl.

In a further embodiment of this embodiment, X, R a , R d and R 3 are as described above in any combination and R b is R 5 R 6 NC(0)-, wherein R 5 and R 6 are as described above, and R c is selected from hydrogen, halogen, Ci-C 4 alkyl and Ci-C 4 haloalkyl.

In a yet further embodiment of this embodiment, X, R a , R d and R 3 are as described above in any combination and R b is selected from halogen and Ci-C 4 alkyl and R c is Ci-C 3 haloalkyl, preferably trifluoromethyl.

The compounds of formula (I) may exist as different geometric isomers, or in different tautomeric forms. This invention covers all such isomers and tautomers, and mixtures thereof in all proportions, as well as isotopic forms such as deuterated compounds.

The compounds of this invention may contain one or more asymmetric centers and may thus give rise to optical isomers and diastereomers. While shown without respect to

stereochemistry, the present invention includes all such optical isomers and diastereomers as well as the racemic and resolved, enantiomerically pure R and S stereoisomers and other mixtures of the R and S stereoisomers and agrochemically acceptable salts thereof. It is - - recognized that certain optical isomers, or diastereomers may have favorable properties over the other. Thus when disclosing and claiming the invention, when a racemic mixture is disclosed, it is clearly contemplated that both optical isomers, including diastereomers substantially free of the other are disclosed and claimed as well. Alkyl, as used herein refers to an aliphatic hydrocarbon chain and includes straight and branched chains e. g. of 1 to 8 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, n-pentyl, isopentyl, neo-pentyl, n-hexyl, and isohexyl.

Alkenyl, as used herein, refers to an aliphatic hydrocarbon chain having at least one double bond, and preferably one double bond, and includes straight and branched chains e. g. of 2 to 8 carbon atoms such as ethenyl (vinyl), prop-1-enyl, prop-2-enyl (allyl), isopropenyl, but-1- enyl, but-2-enyl, but-3-enyl, 2-methypropenyl.

Alkynyl, as used herein, refers to an aliphatic hydrocarbon chain having at least one triple bond, and preferably one triple bond, and includes straight and branched chains e. g. of 2 to 8 carbon atoms such as ethynyl, prop-1-ynyl, prop-2-ynyl (propargyl) but-1-ynyl, but-2-ynyl and but- 3-ynyl.

Cycloalkyl, as used herein, refers to a cyclic, saturated hydrocarbon group having from 3 to 6 ring carbon atoms. Examples of cycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

Cyanoalkyl, as used herein, refers to an alkyl group substituted with one or more cyano groups.

Hydroxyalkyl as used herein refers to the group -ROH, wherein R is alkyl as defined herein.

Alkoxy as used herein refers to the group -OR, wherein R is alkyl as defined above.

Examples of alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy, t-butoxy, n-pentoxy, isopentoxy, neo-pentoxy, n-hexyloxy, and isohexyloxy.

Alkenyloxy, as used herein, refers to the group -OR, wherein R is alkenyl as defined above. Examples of alkenyloxy groups are ethenyloxy, propenyloxy, isopropenyloxy, but-1- enyloxy, but-2-enyloxy, but-3-enyloxy, 2-methypropenyloxy etc.

Alkynyloxy, as used herein, refers to the group -OR, wherein R is alkynyl is as defined above. Examples of alkynyloxy groups are ethynyloxy, propynyloxy, but-1-ynyloxy, but-2-ynyloxy and but-3-ynyloxy.

Alkenyloxyalkyl refers to the group -ROR', wherein R is alkyl as defined above and R' is alkenyl as defined above. - -

Alkoxyalkyl, as used herein, refers to a group R, substituted at any position with one or more groups -OR, wherein each R is, independently, alkyl as defined herein.

Alkoxyalkoxy, as used herein, refers to the group -OROR, wherein each R is, independently, an alkyl group as defined above. Alkoxyalkoxylalkyl, as used herein, refers to the group -ROROR, wherein each R is, independently, alkyl as defined herein.

Halogen, halide and halo refer to iodine, bromine, chlorine and fluorine.

Haloalkyi as used herein refers to an alkyl group as defined above wherein at least one hydrogen atom has been replaced with a halogen atom as defined above. Examples of haloalkyi groups include chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl and trifluoromethyl. Preferred haloalkyi groups are fluoroalkyi groups {i.e. haloalkyi groups, containing fluorine as the only halogen). More highly preferred haloalkyi groups are perfluoroalkyl groups, i.e. alkyl groups wherein all the hydrogen atoms are replaced with fluorine atoms.

Haloalkoxy as used herein refers to the group -OR, wherein R is haloalkyi as defined above.

Alkoxyhaloalkyl, as used herein, refers to the group R, substituted at any position with one or more groups -OR', wherein R is haloalkyi as defined herein and R' is alkyl as defined herein.

Alkylthio, as used herein, refers to the group -SR, wherein R is an alkyl group as defined above. Alkylthio groups include, but are not limited to, methylthio, ethylthio, propylthio, tert- butylthio, and the like.

Alkylsulfinyl, as used herein, refers to the group -S(0)R, wherein R is an alkyl group as defined above.

Alkylsulfonyl, as used herein, refers to the group -S(0) 2 R, wherein R is an alkyl group as defined above. Alkylcarbonyloxy, as used herein, refers to the group -OC(0)R, wherein R is an alkyl group as defined herein.

Alkoxycarbonyloxy as used herein, refers to the group -OC(0)OR, wherein R is an alkyl group as defined above. Examples of alkoxycarbonyloxy groups are methoxycarbonyloxy, ethoxycarbonyloxy, propoxycarbonyloxy, but-1-oxycarbonyloxy, but-2-oxycarbonyloxy and but-3- oxycarbonyloxy.

Hydroxy or hydroxyl, as used herein, refers to the group -OH.

Nitro, as used herein, refers to the group -N0 2 . - -

Cyano as used herein, refers to the group -CN.

Aryl, as used herein, refers to an unsaturated aromatic carbocyclic group of from 6 to 10 carbon atoms having a single ring (e. g., phenyl) or multiple condensed (fused) rings, at least one of which is aromatic (e.g., indanyl, naphthyl). Preferred aryl groups include phenyl, naphthyl and the like. Most preferably, an aryl group is a phenyl group.

Aryloxycarbonyloxy as used herein, refers to the group -OC(0)0-aryl wherein aryl is a as defined above.

Benzyl, as used herein, refers to the group -CH 2 C 6 H5.

Heteroaryl, as used herein, refers to a ring system containing 5 to 10 ring atoms, 1 to 4 ring heteroatoms and consisting either of a single aromatic ring or of two or more fused rings, at least one of which is aromatic. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be independently chosen from nitrogen, oxygen and sulfur. Examples of such groups include pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, furanyl, thiophenyl, oxazolyl, isoxazolyl, oxadiazolyl, thiazolyl, isothiazolyl, thiadiazolyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl and tetrazolyl. Examples of bicyclic groups are

benzothiophenyl, benzimidazolyl, benzothiadiazolyl, quinolinyl, cinnolinyl, quinoxalinyl and pyrazolo[1 ,5-a]pyrimidinyl.

Heterocyclyl, as used herein, refers to a non-aromatic ring system containing 3 to 10 ring atoms, at least one ring heteroatom and consisting either of a single ring or of two or more fused rings. Preferably, single rings will contain up to three and bicyclic systems up to four heteroatoms which will preferably be chosen from nitrogen, oxygen and sulfur. Examples of such groups include pyrrolidinyl, imidazolinyl, pyrazolidinyl, piperidyl, piperazinyl, quinuclidinyl, morpholinyl, together with unsaturated or partially unsaturated analogues such as 4,5,6,7-tetrahydro- benzothiophenyl, chromen-4-onyl, 9H-fluorenyl, 3,4-dihydro-2H-benzo-l,4-dioxepinyl, 2,3-dihydro- benzofuranyl, piperidinyl, 1 ,3-dioxolanyl, 1 ,3-dioxanyl, 4,5-dihydro-isoxazolyl, tetrahydrofuranyl and morpholinyl.

'Saturated ring', as used herein, refers to a ring system in which the atoms in the ring are linked by single bonds.

'Partially unsaturated ring', as used herein, refers to a ring system in which at least two atoms in the ring are linked by a double bond. Partially unsaturated ring systems do not include aromatic rings.

'Optionally substituted' as used herein means the group referred to can be substituted at one or more positions by any one or any combination of the radicals listed thereafter. For most groups, one or more hydrogen atoms are replaced by the radicals listed thereafter. For halogenated groups, for example, haloalkyl groups, one or more halogen atoms are replaced by the radicals listed thereafter. - -

Suitable salts include those derived from alkali or alkaline earth metals and those derived from ammonia and amines. Preferred cations include sodium, potassium, magnesium, and ammonium cations of the formula N + (R 9 R 20 R 2 R 22 ) wherein R 9 , R 20 , R 2 and R 22 are

independently selected from hydrogen, Ci-C 6 alkyl and Ci-C 6 hydroxyalkyl. Salts of the compounds of formula I can be prepared by treatment of compounds of formula I with a metal hydroxide, such as sodium hydroxide, or an amine, such as ammonia, trimethylamine, diethanolamine, 2-methylthiopropylamine, bisallylamine, 2-butoxyethylamine, morpholine, cyclododecylamine, or benzylamine. Amine salts are often preferred forms of the compounds of formula I because they are water-soluble and lend themselves to the preparation of desirable aqueous based herbicidal compositions.

Acceptable salts can be formed from organic and inorganic acids, for example, acetic, propionic, lactic, citric, tartaric, succinic, fumaric, maleic, malonic, mandelic, malic, phthalic, hydrochloric, hydrobromic, phosphoric, nitric, sulfuric, methanesulfonic, naphthalenesulfonic, benzenesulfonic, toluenesulfonic, camphorsulfonic, and similarly known acceptable acids when a compound of this invention contains a basic moiety.

In another aspect the present invention provides intermediates useful in the preparation of compounds of the invention.

In one embodiment, there are provided intermediates of the formula (III) wherein X, R a , R b , R c and R d are as defined above.

(III)

In another embodiment, there are provided intermediates shown below wherein R 4 , R 5 , R a , R b , R c and R d are as defined above. - -

Compounds of the invention may be prepared by techniques known to the person skilled in the art of organic chemistry. General methods for the production of compounds of formula (I) are described below. Unless otherwise stated in the text, the substituents X, R 3 , R a , R b , R c and R d are as defined hereinbefore. The starting materials used for the preparation of the compounds of the invention may be purchased from usual commercial suppliers or may be prepared by known methods. The starting materials as well as the intermediates may be purified before use in the next step by state of the art methodologies such as chromatography, crystallization, distillation and filtration.

For example, compounds of formula (IX) may be prepared by reaction of amino-pyridine (IV) with phenylchloroformate to give carbamate product (V). The subsequent reaction with an appropriately substutited amino-ester (VI) gives compounds of type (VII) and subsequent cyclisation gives compounds of type (VIII) and reduction with e.g. with sodium borohydride gives compounds of type (IX). The methyl amino-ester (VI) may also be replaced by other amino esters or amino-acids. Phenyl chloroformate may be replaced by other activating groups such as phosgene or para-nitrophenyl chlorofomate. The cyclisation to (VIII) may occur in situ or require heating for carboxylic acids or esters or treatment with a reagent such as thionyl chloride for carboxylic acids. Compounds of type (VII) can be converted to compounds of type (IX) directly by treatment with a reducing reagent such as DIBAL-H or NaBH 4 . Esters of type (VII) may also be reduced to their corresponding primary alcohols and then such alcohols can be re-oxidised to compounds of type (IX) with oxidants such as Dess-Martin periodinane. - -

Alternatively, compounds of formula (IX) may be prepared by Palladium catalysed reaction of chloro-pyridine (X) with urea (XI) to give (XII) (for a reference to a related reaction see WO2006048249, example 3.1 ) and then subsequent cyclisation gives compounds of type (IX).

Alternatively, compounds of formula (V) may be reacted with compounds of formula (XIII) to give products of type (XIV). Cyclisation with a suitable reagent such as thionyl chloride gives compounds of formula (XV), which can be alkylated with a suitable base such as LiHMDS and a suitable alkylating agent such as methyl iodide to give compound (VIII). Reduction as before gives compounds of type (IX). - -

(IX) (VIII)

Alternatively oxidative cleavage (using ozonolysis or Os0 4 /Nal0 4 or similar conditions) of an appropriate vinyl compound such as (XVI) or derivatives thereof and cyclisation gives the desired products of type (IX).

(XVI)

Alternatively, compounds of type (XVII) may be coupled with compounds of type (X) under Palladium catalysed conditions to give compounds of type (VIII) and then standard reduction with NaBH 4 for example gives products of type (IX).

- -

Amino and chloro-pyridines, where not commercially available, may be made by literature routes such as below and as detailed in J. March, Advanced Organic Chemistry, 4th ed. Wiley, New York, 1992.

Suitable conditions for effecting these transformations are set out in J. March, Advanced

Organic Chemistry, 4th ed. Wiley, New York, 1992.

The compounds of formula (I) according to the invention can be used as herbicides in unmodified form, as obtained in the synthesis, but they are generally formulated into herbicidal compositions in various ways using formulation adjuvants, such as carriers, solvents and surface- active substances. Therefore, the invention also relates to a herbicidal composition which comprises a herbicidally effective amount of a compound of formula (I) in addition to formulation adjuvants. The formulations can be in various physical forms, e.g. in the form of dusting powders, gels, wettable powders, water-dispersible granules, water-dispersible tablets, effervescent pellets, emulsifiable concentrates, microemulsifiable concentrates, oil-in-water emulsions, oil- flowables, aqueous dispersions, oily dispersions, suspo-emulsions, capsule suspensions, emulsifiable granules, soluble liquids, water-soluble concentrates (with water or a water-miscible organic solvent as carrier), impregnated polymer films or in other forms known e.g. from the Manual on Development and Use of FAO Specifications for Plant Protection Products, 5th Edition, 1999. Such formulations can either be used directly or they are diluted prior to use. The dilutions can be made, for example, with water, liquid fertilizers, micronutrients, biological organisms, oil or solvents.

The formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions. The active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof. The active ingredients can also be contained in very fine microcapsules consisting of a polymer. Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release).

Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight. The active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution. The encapsulating membranes comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, - - polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art in this connection. Alternatively, very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the microcapsules are not themselves encapsulated.

The formulation adjuvants that are suitable for the preparation of the compositions according to the invention are known per se. As liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1 ,2- dichloropropane, diethanolamine, p-diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, N,N- dimethylformamide, dimethyl sulfoxide, 1 ,4-dioxane, dipropylene glycol, dipropylene glycol methyl ether, dipropylene glycol dibenzoate, diproxitol, alkylpyrrolidone, ethyl acetate, 2-ethylhexanol, ethylene carbonate, 1 ,1 , 1-trichloroethane, 2-heptanone, alpha-pinene, d-limonene, ethyl lactate, ethylene glycol, ethylene glycol butyl ether, ethylene glycol methyl ether, gamma-butyrolactone, glycerol, glycerol acetate, glycerol diacetate, glycerol triacetate, hexadecane, hexylene glycol, isoamyl acetate, isobornyl acetate, isooctane, isophorone, isopropylbenzene, isopropyl myristate, lactic acid, laurylamine, mesityl oxide, methoxypropanol, methyl isoamyl ketone, methyl isobutyl ketone, methyl laurate, methyl octanoate, methyl oleate, methylene chloride, m-xylene, n-hexane, n-octylamine, octadecanoic acid, octylamine acetate, oleic acid, oleylamine, o-xylene, phenol, polyethylene glycol (PEG400), propionic acid, propyl lactate, propylene carbonate, propylene glycol, propylene glycol methyl ether, p-xylene, toluene, triethyl phosphate, triethylene glycol, xylenesulfonic acid, paraffin, mineral oil, trichloroethylene, perchloroethylene, ethyl acetate, amyl acetate, butyl acetate, propylene glycol methyl ether, diethylene glycol methyl ether, methanol, ethanol, isopropanol, and alcohols of higher molecular weight, such as amyl alcohol, tetrahydro- furfuryl alcohol, hexanol, octanol, ethylene glycol, propylene glycol, glycerol, N-methyl-2- pyrrolidone and the like. Water is generally the carrier of choice for diluting the concentrates. Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances, as described, for example, in CFR 180.1001. (c) & (d).

A large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use. Surface-active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes. Typical surface-active substances include, for example, salts of alkyl sulfates, such as

diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecyl- benzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; - - alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonat.es, such as sodium

dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2- ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of fatty acids, such as polyethylene glycol stearate; block copolymers of ethylene oxide and propylene oxide; and salts of mono- and di-alkylphosphate esters; and also further substances described e.g. in "McCutcheon's

Detergents and Emulsifiers Annual" MC Publishing Corp., Ridgewood New Jersey, 1981.

Further adjuvants that can usually be used in pesticidal formulations include crystallization inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralizing or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and also liquid and solid fertilizers. The compositions according to the invention can additionally include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives. The amount of oil additive in the composition according to the invention is generally from 0.01 to 10 %, based on the spray mixture. For example, the oil additive can be added to the spray tank in the desired concentration after the spray mixture has been prepared. Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, such as AMIGO® (Rhone-Poulenc Canada Inc.), alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow. A preferred additive contains, for example, as active components essentially 80 % by weight alkyl esters of fish oils and 15 % by weight methylated rapeseed oil, and also 5 % by weight of customary emulsifiers and pH modifiers. Especially preferred oil additives comprise alkyl esters of C 8 -C 22 fatty acids, especially the methyl derivatives of Ci 2 -Ci 8 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid, being of importance. Those esters are known as methyl laurate (CAS-1 1 1- 82-0), methyl palmitate (CAS-1 12-39-0) and methyl oleate (CAS-1 12-62-9). A preferred fatty acid methyl ester derivative is Emery® 2230 and 2231 (Cognis GmbH). Those and other oil derivatives are also known from the Compendium of Herbicide Adjuvants, 5th Edition, Southern Illinois University, 2000.

The application and action of the oil additives can be further improved by combination with surface-active substances, such as non-ionic, anionic or cationic surfactants. Examples of suitable anionic, non-ionic and cationic surfactants are listed on pages 7 and 8 of WO 97/34485. Preferred surface-active substances are anionic surfactants of the dodecylbenzylsulfonate type, especially the calcium salts thereof, and also non-ionic surfactants of the fatty alcohol ethoxylate type. Special preference is given to ethoxylated C 12 -C 22 fatty alcohols having a degree of ethoxylation of from 5 to 40. Examples of commercially available surfactants are the Genapol - - types (Clariant AG). Also preferred are silicone surfactants, especially polyalkyl-oxide-modified heptamethyltriloxanes which are commercially available e.g. as Silwet L-77®, and also perfluorinated surfactants. The concentration of the surface-active substances in relation to the total additive is generally from 1 to 30 % by weight. Examples of oil additives consisting of mixtures of oil or mineral oils or derivatives thereof with surfactants are Edenor ME SU®, Turbocharge® (Syngenta AG, CH) or ActipronC (BP Oil UK Limited, GB).

If desired, it is also possible for the mentioned surface-active substances to be used in the formulations on their own, that is to say, without oil additives.

Furthermore, the addition of an organic solvent to the oil additive/surfactant mixture may contribute to an additional enhancement of action. Suitable solvents are, for example, Solvesso® (ESSO) or Aromatic Solvent® (Exxon Corporation). The concentration of such solvents can be from 10 to 80 % by weight of the total weight. Oil additives that are present in admixture with solvents are described, for example, in US-A-4,834,908. A commercially available oil additive disclosed therein is known by the name MERGE® (BASF Corporation). A further oil additive that is preferred according to the invention is SCORE® (Syngenta Crop Protection Canada).

In addition to the oil additives listed above, for the purpose of enhancing the action of the compositions according to the invention it is also possible for formulations of alkylpyrrolidones (e.g. Agrimax®) to be added to the spray mixture. Formulations of synthetic lattices, e.g.

polyacrylamide, polyvinyl compounds or poly-1-p-menthene (e.g. Bond®, Courier® or Emerald®) may also be used. It is also possible for solutions that contain propionic acid, for example Eurogkem Pen-e-trate®, to be added to the spray mixture as action-enhancing agent.

The herbicidal compositions generally comprise from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, compounds of formula (I) and from 1 to 99.9 % by weight of a formulation adjuvant which preferably includes from 0 to 25 % by weight of a surface-active substance. Whereas commercial products will preferably be formulated as concentrates, the end user will normally employ dilute formulations.

The rates of application of compounds of formula (I) may vary within wide limits and depend on the nature of the soil, the method of application (pre- or post-emergence; seed dressing; application to the seed furrow; no tillage application etc.), the crop plant, the grass or weed to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop. The compounds of formula (I) according to the invention are generally applied at a rate of from 10 to 2000 g/ha, especially from 50 to 1000 g/ha.

Preferred formulations have especially the following compositions (% = percent by weight): Emulsifiable concentrates: - - active ingredient: 1 to 95 %, preferably 60 to 90 %

surface-active agent: 1 to 30 %, preferably 5 to 20 %

liquid carrier: 1 to 80 %, preferably 1 to 35 %

Dusts: active ingredient: 0.1 to 10 %, preferably 0.1 to 5 %

solid carrier: 99.9 to 90 %, preferably 99.9 to 99 %

Suspension concentrates: active ingredient: 5 to 75 %, preferably 10 to 50 %

water: 94 to 24 %, preferably 88 to 30 %

surface-active agent: 1 to 40 %, preferably 2 to 30 %

Wettable powders: active ingredient: 0.5 to 90 %, preferably 1 to 80 %

surface-active agent: 0.5 to 20 %, preferably 1 to 15 %

solid carrier: 5 to 95 %, preferably 15 to 90 % Granules: active ingredient: 0.1 to 30 %, preferably 0.1 to 15 %

solid carrier: 99.5 to 70 %, preferably 97 to 85 %

The following Examples further illustrate, but do not limit, the invention. Formulation Examples for herbicides of formula (I) (% = % by weight) F1. Emulsifiable concentrates a) b) c) d) active ingredient 5 % 10 % 25 % 50 % calcium dodecylbenzenesulfonate 6 % 8 % 6 % 8 % castor oil polyglycol ether 4 % 4 % 4 %

(36 mol of ethylene oxide)

octylphenol polyglycol ether 4 % 2 % (7-8 mol of ethylene oxide)

Emulsions of any desired concentration can be obtained from such concentrates by dilution with water.

F2. Solutions a) b) c) d) - - active ingredient 5 % 10 % 50 % 90 %

1 -methoxy-3-(3-methoxy- propoxy)-propane 20 % 20 %

polyethylene glycol MW 400 20 % 10 %

NMP 30 % 10 % arom. hydrocarbon mixture 75 % 60 %

The solutions are suitable for use in the form of microdrops.

F3. Wettable powders a) b) c) d) active ingredient 5 % 25 % 50 % 80 % sodium lignosulfonate 4 % 3 %

sodium lauryl sulfate 2 % 3 % 4 % sodium diisobutylnaphthalene- sulfonate 6 % 5 % 6 % octylphenol polyglycol ether 1 % 2 %

(7-8 mol of ethylene oxide)

highly dispersed silicic acid 3 % 5 % 10 % kaolin 62 % 35 %

The active ingredient is mixed thoroughly with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders which can be diluted with water to give suspensions of any desired concentration.

F4. Coated granules a) b) c) active ingredient 0.1 % 5 % 15 %

highly dispersed silicic acid 0.9 % 2 % 2 %

inorganic carrier 99.0 % 93 % 83 %

(diameter 0.1 - 1 mm)

e.g. CaC0 3 or Si0 2

The active ingredient is dissolved in methylene chloride and applied to the carrier by spraying, and the solvent is then evaporated off in vacuo. F5. Coated granules a) b) c) active ingredient 0.1 % 5 % 15 % polyethylene glycol MW 200 1.0 % 2 % 3 %

highly dispersed silicic acid 0.9 % 1 % 2 %

inorganic carrier 98.0 % 92 % 80 %

(diameter 0.1 - 1 mm) - - e.g. CaC0 3 or Si0 2

The finely ground active ingredient is uniformly applied, in a mixer, to the carrier moistened with polyethylene glycol. Non-dusty coated granules are obtained in this manner.

F6. Extruder granules a) b) c) d) active ingredient 0.1 % 3 % 5 % 15 % sodium lignosulfonate 1.5 % 2 % 3 % 4 % carboxymethylcellulose 1.4 % 2 % 2 % 2 % kaolin 97.0 % 93 % 90 % 79 %

The active ingredient is mixed and ground with the adjuvants, and the mixture is moistened with water. The mixture is extruded and then dried in a stream of air.

F7. Dusts a) b) c) active ingredient 0.1 % 1 % 5 %

talcum 39.9 % 49 % 35 %

kaolin 60.0 % 50 % 60 %

Ready-to-use dusts are obtained by mixing the active ingredient with the carriers and grinding the mixture in a suitable mill.

F8. Suspension concentrates a) b) c) d) active ingredient 3 % 10 % 25 % 50 % ethylene glycol 5 % 5 % 5 % 5 % nonylphenol polyglycol ether 1 % 2 %

(15 mol of ethylene oxide)

sodium lignosulfonate 3 % 3 % 4 % 5 % carboxymethylcellulose 1 % 1 % 1 % 1 % 37 % aqueous formaldehyde 0.2 % 0.2 % 0.2 % 0.2 % solution

silicone oil emulsion 0.8 % 0.8 % 0.8 % 0.8 % water 87 % 79 % 62 % 38 %

The finely ground active ingredient is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired concentration can be obtained by dilution with water.

The invention also provides a method of controlling plants which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I).

The invention also provides a method of inhibiting plant growth which comprises applying to the plants or to the locus thereof a herbicidally effective amount of a compound of formula (I). - -

The invention also provides a method of controlling weeds in crops of useful plants, comprising applying to said weeds or to the locus of said weeds, or to said useful plants or to the locus of said useful plants, a compound or a composition of the invention.

The invention also provides a method of selectively controlling grasses and/or weeds in crops of useful plants which comprises applying to the useful plants or locus thereof or to the area of cultivation a herbicidally effective amount of a compound of formula (I).

The term "herbicide" as used herein means a compound that controls or modifies the growth of plants. The term "herbicidally effective amount" means the quantity of such a compound or combination of such compounds that is capable of producing a controlling or modifying effect on the growth of plants. Controlling or modifying effects include all deviation from natural development, for example: killing, retardation, leaf burn, albinism, dwarfing and the like. The term "plants" refers to all physical parts of a plant, including seeds, seedlings, saplings, roots, tubers, stems, stalks, foliage, and fruits. The term "locus" is intended to include soil, seeds, and seedlings, as well as established vegetation and includes not only areas where weeds may already be growing, but also areas where weeds have yet to emerge, and also to areas under cultivation with respect to crops of useful plants. "Areas under cultivation" include land on which the crop plants are already growing and land intended for cultivation with such crop plants. The term "weeds" as used herein means any undesired plant, and thus includes not only

agronomically important weeds as described below, but also volunteer crop plants. The compounds of the invention can be applied before or after planting of the crops, before weeds emerge (pre-emergence application) or after weeds emerge (post-emergence application), and are particularly effective when applied post-emergence to the weeds.

Crops of useful plants in which the composition according to the invention can be used include, but are not limited to, perennial crops, such as citrus fruit, grapevines, nuts, oil palms, olives, pome fruit, stone fruit and rubber, and annual arable crops, such as cereals, for example barley and wheat, cotton, oilseed rape, maize, rice, soy beans, sugar beet, sugar cane, sunflowers, ornamentals, switchgrass, turf and vegetables, especially cereals, maize and soy beans.

The grasses and weeds to be controlled may be both monocotyledonous species, for example Agrostis, Alopecurus, Avena, Brachiaria, Bromus, Cenchrus, Cyperus, Digitaria, Echinochloa, Eriochloa, Lolium, Monochoria, Panicum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sida and Sorghum, and dicotyledonous species, for example Abutilon, Amaranthus, Chenopodium, Chrysanthemum, Euphorbia, Galium, Ipomoea, Kochia, Nasturtium, Polygonum, Sida, Sinapis, Solanum, Stellaria, Veronica, Viola and Xanthium. In all aspects of the invention, in a particular embodiment, the weeds, e.g. to be controlled and/or growth-inhibited may be monocotyledonous or dicotyledonous weeds, which are tolerant or resistant to one or more other herbicides for example, HPPD inhibitor herbicides such as - - mesotrione, PSII inhibitor herbicides such as atrazine or EPSPS inhibitors such as glyphosate. Such weeds include, but are not limited to resistant Amaranthus biotypes.

Crops are to be understood as also including those crops which have been rendered tolerant to herbicides or classes of herbicides (e.g. auxins or ALS-, EPSPS-, PPO- and HPPD- inhibitors) by conventional methods of breeding or by genetic engineering. An example of a crop that has been rendered tolerant to imidazolinones, e.g. imazamox, by conventional methods of breeding is Clearfield® summer rape (canola). Examples of crops that have been rendered tolerant to herbicides by genetic engineering methods include e.g. glyphosate- and glufosinate- resistant maize varieties commercially available under the trade names RoundupReady® and LibertyLink®, respectively.

Crops are also to be understood as being those which have been rendered resistant to harmful insects by genetic engineering methods, for example Bt maize (resistant to European corn borer), Bt cotton (resistant to cotton boll weevil) and also Bt potatoes (resistant to Colorado beetle). Examples of Bt maize are the Bt 176 maize hybrids of NK® (Syngenta Seeds). The Bt toxin is a protein that is formed naturally by Bacillus thuringiensis soil bacteria. Examples of toxins, or transgenic plants able to synthesize such toxins, are described in EP-A-451 878, EP-A- 374 753, WO 93/07278, WO 95/34656, WO 03/052073 and EP-A-427 529. Examples of transgenic plants comprising one or more genes that code for an insecticidal resistance and express one or more toxins are KnockOut® (maize), Yield Gard® (maize), NuCOTIN33B® (cotton), Bollgard® (cotton), NewLeaf® (potatoes), NatureGard® and Protexcta®. Plant crops or seed material thereof can be both resistant to herbicides and, at the same time, resistant to insect feeding ("stacked" transgenic events). For example, seed can have the ability to express an insecticidal Cry3 protein while at the same time being tolerant to glyphosate.

Crops are also to be understood as being those which are obtained by conventional methods of breeding or genetic engineering and contain so-called output traits (e.g. improved storage stability, higher nutritional value and improved flavor).

Any method of application to weeds/crop of useful plant, or locus thereof, which is routinely used in agriculture may be used, for example application by spray or broadcast method typically after suitable dilution of a compound of formula (I) (whether said compound is formulated and/or in combination with one or more further active ingredients and/or safeners, as described herein).

The compounds of formula (I) according to the invention can also be used in combination with other active ingredients, e.g. other herbicides, and/or insecticides, and/or acaricides, and/or nematocides, and/or molluscicides, and/or fungicides, and/or plant growth regulators. Such mixtures, and the use of such mixtures to control weeds and/or undesired plant growth, form yet further aspects of the invention. For the avoidance of doubt, mixtures of invention also include mixtures of two or more different compounds of formula (I). In particular, the present invention also relates to a composition of the invention which comprises at least one further herbicide in addition to the compound of formula (I). - -

When a compound of formula (I) is combined with at least one additional herbicide, the following mixtures of the compound of formula (I) are preferred. Compound of formula (I) + acetochlor, compound of formula (I) + acifluorfen, compound of formula (I) + acifluorfen-sodium, compound of formula (I) + aclonifen, compound of formula (I) + acrolein, compound of formula (I) + alachlor, compound of formula (I) + alloxydim, compound of formula (I) + allyl alcohol, compound of formula (I) + ametryn, compound of formula (I) + amicarbazone, compound of formula (I) + amidosulfuron, compound of formula (I) + aminocyclopyrachlor, compound of formula (I) + aminopyralid, compound of formula (I) + amitrole, compound of formula (I) + ammonium sulfamate, compound of formula (I) + anilofos, compound of formula (I) + asulam, compound of formula (I) + atrazine, formula (I) + aviglycine, formula (I) + azafenidin, compound of formula (I) + azimsulfuron, compound of formula (I) + BCPC, compound of formula (I) + beflubutamid, compound of formula (I) + benazolin, formula (I) + bencarbazone, compound of formula (I) + benfluralin, compound of formula (I) + benfuresate, compound of formula (I) + bensulfuron, compound of formula (I) + bensulfuron-methyl, compound of formula (I) + bensulide, compound of formula (I) + bentazone, compound of formula (I) + benzfendizone, compound of formula (I) + benzobicyclon, compound of formula (I) + benzofenap, compound of formula (I) + bicyclopyrone, compound of formula (I) + bifenox, compound of formula (I) + bilanafos, compound of formula (I) + bispyribac, compound of formula (I) + bispyribac-sodium, compound of formula (I) + borax, compound of formula (I) + bromacil, compound of formula (I) + bromobutide, formula (I) + bromophenoxim, compound of formula (I) + bromoxynil, compound of formula (I) + butachlor, compound of formula (I) + butafenacil, compound of formula (I) + butamifos, compound of formula (I) + butralin, compound of formula (I) + butroxydim, compound of formula (I) + butylate, compound of formula (I) + cacodylic acid, compound of formula (I) + calcium chlorate, compound of formula (I) + cafenstrole, compound of formula (I) + carbetamide, compound of formula (I) + carfentrazone, compound of formula (I) + carfentrazone-ethyl, compound of formula (I) + CDEA, compound of formula (I) + CEPC, compound of formula (I) + chlorflurenol, compound of formula (I) + chlorflurenol-methyl, compound of formula (I) + chloridazon, compound of formula (I) + chlorimuron, compound of formula (I) + chlorimuron-ethyl, compound of formula (I) + chloroacetic acid, compound of formula (I) + chlorotoluron, compound of formula (I) + chlorpropham, compound of formula (I) + chlorsulfuron, compound of formula (I) + chlorthal, compound of formula (I) + chlorthal-dimethyl, compound of formula (I) + cinidon-ethyl, compound of formula (I) + cinmethylin, compound of formula (I) + cinosulfuron, compound of formula (I) + cisanilide, compound of formula (I) + clethodim, compound of formula (I) + clodinafop, compound of formula (I) + clodinafop-propargyl, compound of formula (I) + clomazone, compound of formula (I) + clomeprop, compound of formula (I) + clopyralid, compound of formula (I) + cloransulam, compound of formula (I) + cloransulam-methyl, compound of formula (I) + CMA, compound of formula (I) + 4-CPB, compound of formula (I) + CPMF, compound of formula (I) + 4-CPP, compound of formula (I) + CPPC, compound of formula (I) + cresol, compound of formula (I) + cumyluron, compound of formula (I) + cyanamide, compound of formula (I) + cyanazine, compound of formula (I) + cycloate, compound of formula (I) + cyclosulfamuron, compound of formula (I) + cycloxydim, compound of formula (I) + - - cyhalofop, compound of formula (I) + cyhalofop-butyl, compound of formula (I) + 2,4-D, compound of formula (I) + 3,4-DA, compound of formula (I) + daimuron, compound of formula (I) + dalapon, compound of formula (I) + dazomet, compound of formula (I) + 2,4-DB, compound of formula (I) + 3,4-DB, compound of formula (I) + 2,4-DEB, compound of formula (I) +

desmedipham, formula (I) + desmetryn, compound of formula (I) + dicamba, compound of formula (I) + dichlobenil, compound of formula (I) + ortho-dichlorobenzene, compound of formula (I) + para-dichlorobenzene, compound of formula (I) + dichlorprop, compound of formula (I) + dichlorprop-P, compound of formula (I) + diclofop, compound of formula (I) + diclofop-methyl, compound of formula (I) + diclosulam, compound of formula (I) + difenzoquat, compound of formula (I) + difenzoquat metilsulfate, compound of formula (I) + diflufenican, compound of formula (I) + diflufenzopyr, compound of formula (I) + dimefuron, compound of formula (I) + dimepiperate, compound of formula (I) + dimethachlor, compound of formula (I) + dimethametryn, compound of formula (I) + dimethenamid, compound of formula (I) + dimethenamid-P, compound of formula (I) + dimethipin, compound of formula (I) + dimethylarsinic acid, compound of formula (I) + dinitramine, compound of formula (I) + dinoterb, compound of formula (I) + diphenamid, formula (I) + dipropetryn, compound of formula (I) + diquat, compound of formula (I) + diquat dibromide, compound of formula (I) + dithiopyr, compound of formula (I) + diuron, compound of formula (I) + DNOC, compound of formula (I) + 3,4-DP, compound of formula (I) + DSMA, compound of formula (I) + EBEP, compound of formula (I) + endothal, compound of formula (I) + EPTC, compound of formula (I) + esprocarb, compound of formula (I) + ethalfluralin, compound of formula (I) + ethametsulfuron, compound of formula (I) + ethametsulfuron-methyl, formula (I) + ethephon, compound of formula (I) + ethofumesate, compound of formula (I) + ethoxyfen, compound of formula (I) + ethoxysulfuron, compound of formula (I) + etobenzanid, compound of formual (I) + fenoxaprop, compound of formula (I) + fenoxaprop-P, compound of formula (I) + fenoxaprop-ethyl, compound of formula (I) + fenoxaprop-P-ethyl, compound of formula (I) + fentrazamide, compound of formula (I) + ferrous sulfate, compound of formula (I) + flamprop-M, compound of formula (I) + flazasulfuron, compound of formula (I) + florasulam, compound of formula (I) + fluazifop, compound of formula (I) + fluazifop-butyl, compound of formula (I) + fluazifop-P, compound of formula (I) + fluazifop-P-butyl, formula (I) + fluazolate, compound of formula (I) + flucarbazone, compound of formula (I) + flucarbazone-sodium, compound of formula (I) + flucetosulfuron, compound of formula (I) + fluchloralin, compound of formula (I) + flufenacet, compound of formula (I) + flufenpyr, compound of formula (I) + flufenpyr-ethyl, formula (I) + flumetralin, compound of formula (I) + flumetsulam, compound of formula (I) + flumiclorac, compound of formula (I) + flumiclorac-pentyl, compound of formula (I) + flumioxazin, formula (I) + flumipropin, compound of formula (I) + fluometuron, compound of formula (I) + fluoroglycofen, compound of formula (I) + fluoroglycofen-ethyl, formula (I) + fluoxaprop, formula (I) + flupoxam, formula (I) + flupropacil, compound of formula (I) + flupropanate, compound of formula (I) + flupyrsulfuron, compound of formula (I) + flupyrsulfuron-methyl-sodium, compound of formula (I) + flurenol, compound of formula (I) + fluridone, compound of formula (I) + flurochloridone, compound of formula (I) + fluroxypyr, compound of formula (I) + flurtamone, compound of formula (I) + fluthiacet, compound of formula (I) + fluthiacet-m ethyl, compound of formula (I) + fomesafen, - - compound of formula (I) + foramsulfuron, compound of formula (I) + fosamine, compound of formula (I) + glufosinate, compound of formula (I) + glufosinate-ammonium, compound of formula (I) + glyphosate, compound of formula (I) + halauxifen, compound of formula (I) + halauxifen- methyl, compound of formula (I) + halosulfuron, compound of formula (I) + halosulfuron-methyl, compound of formula (I) + haloxyfop, compound of formula (I) + haloxyfop-P, compound of formula (I) + HC-252, compound of formula (I) + hexazinone, compound of formula (I) + imazamethabenz, compound of formula (I) + imazamethabenz-methyl, compound of formula (I) + imazamox, compound of formula (I) + imazapic, compound of formula (I) + imazapyr, compound of formula (I) + imazaquin, compound of formula (I) + imazethapyr, compound of formula (I) + imazosulfuron, compound of formula (I) + indanofan, compound of formula (I) and indaziflam, compound of formula (I) + iodomethane, compound of formula (I) + iodosulfuron, compound of formula (I) + iodosulfuron-methyl-sodium, compound of formula (I) + ioxynil, compound of formula (I) and ipfencarbazone, compound of formula (I) + isoproturon, compound of formula (I) + isouron, compound of formula (I) + isoxaben, compound of formula (I) + isoxachlortole, compound of formula (I) + isoxaflutole, formula (I) + isoxapyrifop, compound of formula (I) + karbutilate, compound of formula (I) + lactofen, compound of formula (I) + lenacil, compound of formula (I) + linuron, compound of formula (I) + MAA, compound of formula (I) + MAMA, compound of formula (I) + MCPA, compound of formula (I) + MCPA-thioethyl, compound of formula (I) + MCPB, compound of formula (I) + mecoprop, compound of formula (I) + mecoprop- P, compound of formula (I) + mefenacet, compound of formula (I) + mefluidide, compound of formula (I) + mesosulfuron, compound of formula (I) + mesosulfuron-methyl, compound of formula (I) + mesotrione, compound of formula (I) + metam, compound of formula (I) + metamifop, compound of formula (I) + metamitron, compound of formula (I) + metazachlor, compound of formula (I) and metazosulfuron, compound of formula (I) + methabenzthiazuron, formula (I) + methazole, a compound of formula (I) and methiozolin, compound of formula (I) + methylarsonic acid, compound of formula (I) + methyldymron, compound of formula (I) + methyl isothiocyanate, compound of formula (I) + metobenzuron, formula (I) + metobromuron, compound of formula (I) + metolachlor, compound of formula (I) + S-metolachlor, compound of formula (I) + metosulam, compound of formula (I) + metoxuron, compound of formula (I) + metribuzin, compound of formula (I) + metsulfuron, compound of formula (I) + metsulfuron-methyl, compound of formula (I) + MK-616, compound of formula (I) + molinate, compound of formula (I) + monolinuron, a compound of formula (I) and monosulfuron, a compound of formula (I) and monosulfuron-ester compound of formula (I) + MSMA, compound of formula (I) + naproanilide, compound of formula (I) + napropamide, compound of formula (I) + naptalam, formula (I) + NDA- 402989, compound of formula (I) + neburon, compound of formula (I) + nicosulfuron, formula (I) + nipyraclofen, formula (I) + n-methyl glyphosate, compound of formula (I) + nonanoic acid, compound of formula (I) + norflurazon, compound of formula (I) + oleic acid (fatty acids), compound of formula (I) + orbencarb, compound of formula (I) + orthosulfamuron, compound of formula (I) + oryzalin, compound of formula (I) + oxadiargyl, compound of formula (I) + oxadiazon, compound of formula (I) + oxasulfuron, compound of formula (I) + oxaziclomefone, compound of formula (I) + oxyfluorfen, compound of formula (I) + paraquat, compound of formula - -

(I) + paraquat dichloride, compound of formula (I) + pebulate, compound of formula (I) + pendimethalin, compound of formula (I) + penoxsulam, compound of formula (I) +

pentachlorophenol, compound of formula (I) + pentanochlor, compound of formula (I) + pentoxazone, compound of formula (I) + pethoxamid, compound of formula (I) + petrolium oils, compound of formula (I) + phenmedipham, compound of formula (I) + phenmedipham-ethyl, compound of formula (I) + picloram, compound of formula (I) + picolinafen, compound of formula (I) + pinoxaden, compound of formula (I) + piperophos, compound of formula (I) + potassium arsenite, compound of formula (I) + potassium azide, compound of formula (I) + pretilachlor, compound of formula (I) + primisulfuron, compound of formula (I) + primisulfuron-methyl, compound of formula (I) + prodiamine, compound of formula (I) + profluazol, compound of formula (I) + profoxydim, formula (I) + prohexadione-calcium, compound of formula (I) + prometon, compound of formula (I) + prometryn, compound of formula (I) + propachlor, compound of formula (I) + propanil, compound of formula (I) + propaquizafop, compound of formula (I) + propazine, compound of formula (I) + propham, compound of formula (I) + propisochlor, compound of formula (I) + propoxycarbazone, compound of formula (I) + propoxycarbazone-sodium, compound of formula (I) + propyzamide, compound of formula (I) + prosulfocarb, compound of formula (I) + prosulfuron, compound of formula (I) + pyraclonil, compound of formula (I) + pyraflufen, compound of formula (I) + pyraflufen-ethyl, formula (I) + pyrasulfotole, compound of formula (I) + pyrazolynate, compound of formula (I) + pyrazosulfuron, compound of formula (I) + pyrazosulfuron-ethyl, compound of formula (I) + pyrazoxyfen, compound of formula (I) + pyribenzoxim, compound of formula (I) + pyributicarb, compound of formula (I) + pyridafol, compound of formula (I) + pyridate, compound of formula (I) + pyriftalid, compound of formula (I) + pyriminobac, compound of formula (I) + pyriminobac-methyl, compound of formula (I) + pyrimisulfan, compound of formula (I) + pyrithiobac, compound of formula (I) + pyrithiobac-sodium, formula (I) + pyroxasulfone, formula (I) + pyroxulam, compound of formula (I) + quinclorac, compound of formula (I) + quinmerac, compound of formula (I) + quinoclamine, compound of formula (I) + quizalofop, compound of formula (I) + quizalofop-P, compound of formula (I) + quizalofop-ethyl, compound of formula (I) + quizalofop-P-ethyl, compound of formula (I) + rimsulfuron, compound of formula (I) + saflufenacil, compound of formula (I) + sethoxydim, compound of formula (I) + siduron, compound of formula (I) + simazine, compound of formula (I) + simetryn, compound of formula (I) + SMA, compound of formula (I) + sodium arsenite, compound of formula (I) + sodium azide, compound of formula (I) + sodium chlorate, compound of formula (I) + sulcotrione, compound of formula (I) + sulfentrazone, compound of formula (I) + sulfometuron, compound of formula (I) + sulfometuron-methyl, compound of formula (I) + sulfosate, compound of formula (I) + sulfosulfuron, compound of formula (I) + sulfuric acid, compound of formula (I) + tar oils, compound of formula (I) + 2,3,6- TBA, compound of formula (I) + TCA, compound of formula (I) + TCA-sodium, formula (I) + tebutam, compound of formula (I) + tebuthiuron, formula (I) + tefuryltrione, compound of formula 1 + tembotrione, compound of formula (I) + tepraloxydim, compound of formula (I) + terbacil, compound of formula (I) + terbumeton, compound of formula (I) + terbuthylazine, compound of formula (I) + terbutryn, compound of formula (I) + thenylchlor, compound of formula (I) + thiazafluron, compound of formula (I) + thiazopyr, compound of formula (I) + thifensulfuron, compound of formula (I) + thiencarbazone, compound of formula (I) + thifensulfuron-methyl, compound of formula (I) + thiobencarb, compound of formula (I) + tiocarbazil, compound of formula (I) + topramezone, compound of formula (I) + tralkoxydim, a compound of formula (I) and triafamone compound of formula (I) + tri-allate, compound of formula (I) + triasulfuron, compound of formula (I) + triaziflam, compound of formula (I) + tribenuron, compound of formula (I) + tribenuron-methyl, compound of formula (I) + tricamba, compound of formula (I) + triclopyr, compound of formula (I) + trietazine, compound of formula (I) + trifloxysulfuron, compound of formula (I) + trifloxysulfuron-sodium, compound of formula (I) + trifluralin, compound of formula (I) + triflusulfuron, compound of formula (I) + triflusulfuron-methyl, compound of formula (I) + trifop, compound of formula (I) + trifop-methyl, compound of formula (I) + trihydroxytriazine, compound of formula (I) + trinexapac-ethyl, compound of formula (I) + tritosulfuron, compound of formula (I) + [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-diox o-1 ,2,3,4-tetrahydropyrimidin-3- yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS RN 353292-31-6), compound of formula (I) + 2-[[8-chloro-3,4-dihydro-4-(4-methoxyphenyl)-3-oxo-2-quinoxa linyl]carbonyl-1 ,3- cyclohexanedione and the compound of formula (I) + VX-573.

In particular, the following mixtures are important: mixtures of a compound of formula (I) with an acetanilide (e.g. compound of formula (I) + acetochlor, compound of formula (I) + dimethenamid, compound of formula (I) + metolachlor, compound of formula (I) + S-metolachlor, or compound of formula (I) + pretilachlor) or with other inhibitors of VLCFAE (e.g. compound of formula (I) + pyroxasulfone). mixtures of a compound of formula (I) with an HPPD inhibitor (e.g. compound of formula (I) + isoxaflutole, compound of formula (I) + mesotrione, compound of formula (I) + pyrasulfotole, compound of formula (I) + sulcotrione, compound of formula (I) + tembotrione, compound of formula (I) + topramezone, compound of formula (I) + bicyclopyrone; mixtures of a compound of formula (I) with a triazine (e.g. compound of formula (I) + atrazine, or compound of formula (I) + terbuthylazine); mixtures of a compound of formula (I) with glyphosate; mixtures of a compound of formula (I) with glufosinate-ammonium; mixtures of a compound of formula (I) with a PPO inhibitor (e.g. compound of formula (I) + acifluorfen-sodium, compound of formula (I) + butafenacil, compound of formula (I) +

carfentrazone-ethyl, compound of formula (I) + cinidon-ethyl, compound of formula (I) + flumioxazin, compound of formula (I) + fomesafen, compound of formula (I) + lactofen, or compound of formula (I) + SYN 523 ([3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-dio xo- 1 ,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester) (CAS RN 353292- 31-6)). - -

Whilst two-way mixtures of a compound of formula (I) and another herbicide are explicitly disclosed above, the skilled man will appreciate that the invention extends to three-way, and further multiple combinations comprising the above two-way mixtures. In particular, the invention extends to: mixtures of a compound of formula (I) with a triazine and an HPPD inhibitor (e.g.

compound of formula (I) + triazine + isoxaflutole, compound of formula (I) + triazine + mesotrione, compound of formula (I) + triazine + pyrasulfotole, compound of formula (I) + triazine + sulcotrione, compound of formula (I) + triazine + tembotrione, compound of formula (I) + triazine + topramezone, compound of formula (I) + triazine + bicyclopyrone; mixtures of a compound of formula (I) with glyphosate and an HPPD inhibitor (e.g.

compound of formula (I) + glyphosate + isoxaflutole, compound of formula (I) + glyphosate + mesotrione, compound of formula (I) + glyphosate + pyrasulfotole, compound of formula (I) + glyphosate + sulcotrione, compound of formula (I) + glyphosate + tembotrione, compound of formula (I) + glyphosate + topramezone, compound of formula (I) + glyphosate + bicyclopyrone; mixtures of a compound of formula (I) with glufosinate-ammonium and an HPPD inhibitor

(e.g. compound of formula (I) + glufosinate-ammonium + isoxaflutole, compound of formula (I) + glufosinate-ammonium + mesotrione, compound of formula (I) + glufosinate-ammonium + pyrasulfotole, compound of formula (I) + glufosinate-ammonium + sulcotrione, compound of formula (I) + glufosinate-ammonium + tembotrione, compound of formula (I) + glufosinate- ammonium + topramezone, compound of formula (I) + glufosinate-ammonium + bicyclopyrone; mixtures of a compound of formula (I) with a VLCFAE inhibitor and an HPPD inhibitor (e.g. compound of formula (I) + S-metolachlor + isoxaflutole, compound of formula (I) + S-metolachlor + mesotrione, compound of formula (I) + S-metolachlor + pyrasulfotole, compound of formula (I) + S-metolachlor + sulcotrione, compound of formula (I) + S-metolachlor + tembotrione, compound of formula (I) + S-metolachlor + topramezone, compound of formula (I) + S- metolachlor + bicyclopyrone, compound of formula (I) + acetochlor + isoxaflutole, compound of formula (I) + acetochlor + mesotrione, compound of formula (I) + acetochlor + pyrasulfotole, compound of formula (I) + acetochlor + sulcotrione, compound of formula (I) + acetochlor + tembotrione, compound of formula (I) + acetochlor + topramezone, compound of formula (I) + acetochlor + bicyclopyrone, compound of formula (I) + pyroxasulfone + isoxaflutole, compound of formula (I) + pyroxasulfone + mesotrione, compound of formula (I) + pyroxasulfone +

pyrasulfotole, compound of formula (I) + pyroxasulfone + sulcotrione, compound of formula (I) + pyroxasulfone + tembotrione, compound of formula (I) + pyroxasulfone + topramezone, compound of formula (I) + pyroxasulfone + bicyclopyrone, compound of formula (I) + S- metolachlor + mesotrione + bicyclopyrone. - - mixtures of a compound of formula (I) with glyphosate and a VLCFAE inhibitor (e.g.

compound of formula (I) + glyphosate + S-metolachlor, compound of formula (I) + glyphosate + acetochlor, compound of formula (I) + glyphosate + pyroxasulfone). Particularly preferred are mixtures of the compound of formula (I) with mesotrione, bicyclopyrone, isoxaflutole, tembotrione, topramezone, sulcotrione, pyrasulfotole, metolachlor, S- metolachlor, acetochlor, pyroxasulfone, P-dimethenamid, dimethenamid, flufenacet, pethoxamid, atrazine, terbuthylazine, bromoxynil, metribuzin, amicarbazone, bentazone, ametryn, hexazinone, diuron, tebuthiuron, glyphosate, paraquat, diquat, glufosinate, acifluorfen-sodium, butafenacil, carfentrazone-ethyl, cinidon-ethyl, flumioxazin, fomesafen, lactofen, [3-[2-chloro-4-fluoro-5-(1- methyl-6-trifluoromethyl-2,4-dioxo-1 ,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester.

The mixing partners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006. The reference to acifluorfen-sodium also applies to acifluorfen, the reference to dimethenamid also applies to dimethenamid-P, the reference to glufosinate-ammonium also applies to glufosinate, the reference to bensulfuron-methyl also applies to bensulfuron, the reference to cloransulam-methyl also applies to cloransulam, the reference to flamprop-M also applies to flamprop, and the reference to pyrithiobac-sodium also applies to pyrithiobac, etc. The mixing ratio of the compound of formula (I) to the mixing partner is preferably from 1 :

100 to 1000: 1.

The mixtures can advantageously be used in the above-mentioned formulations (in which case "active ingredient" relates to the respective mixture of compound of formula (I) with the mixing partner). The compounds of formula (I) according to the invention can also be used in combination with one or more safeners. Likewise, mixtures of a compound of formula (I) according to the invention with one or more further active ingredients, in particular with one or more further herbicides, can also be used in combination with one or more safeners. The term "safener" as used herein means a chemical that when used in combination with a herbicide reduces the undesirable effects of the herbicide on non-target organisms, for example, a safener protects crops from injury by herbicides but does not prevent the herbicide from killing the weeds. Where a compound of formula (I) is combined with a safener, the following combinations of the compound of formula (I) and the safener are particularly preferred. Compound of formula (I) + AD 67 (MON 4660), compound of formula (I) + benoxacor, compound of formula (I) + cloquintocet- mexyl, compound of formula (I) + cyometrinil and a compound of formula (I) + the corresponding (Z) isomer of cyometrinil, compound of formula (I) + cyprosulfamide (CAS RN 221667-31-8), compound of formula (I) + dichlormid, compound of formula (I) and dicyclonon, compound of formula (I) and dietholate, compound of formula (I) + fenchlorazole-ethyl, compound of formula (I) - -

+ fenclorim, compound of formula (I) + flurazole, compound of formula (I) + fluxofenim, compound of formula (I) + furilazole and a compound of formula (I) + the corresponding R isomer or furilazome, compound of formula (I) + isoxad if en-ethyl, compound of formula (I) + mefenpyr- diethyl, compound of formula (I) and mephenate, compound of formula (I) + oxabetrinil, compound of formula (I) + naphthalic anhydride (CAS RN 81-84-5), compound of formula (I) and TI-35, compound of formula (I) + N-isopropyl-4-(2-methoxy-benzoylsulfamoyl)-benzamide (CAS RN 221668-34-4) and a compound of formula (I) + N-(2-methoxybenzoyl)-4- [(methylaminocarbonyl)amino]benzenesulfonamide. Particularly preferred are mixtures of a compound of formula (I) with benoxacor, a compound of formula (I) with cloquintocet-mexyl, a compound of formula (I) + cyprosulfamide and a compound of formula (I) with N-(2- methoxybenzoyl)-4-[(methylaminocarbonyl)amino]benzenesulfona mide.

The safeners of the compound of formula (I) may also be in the form of esters or salts, as mentioned e.g. in The Pesticide Manual, 14th Edition (BCPC), 2006. The reference to cloquintocet-mexyl also applies to cloquintocet and to a lithium, sodium, potassium, calcium, magnesium, aluminium, iron, ammonium, quaternary ammonium, sulfonium or phosphonium salt thereof as disclosed in WO02/34048 and the reference to fenchlorazole-ethyl also applies to fenchlorazole, etc.

Preferably the mixing ratio of compound of formula (I) to safener is from 100:1 to 1 :10, especially from 20: 1 to 1 : 1. The mixtures can advantageously be used in the above-mentioned formulations (in which case "active ingredient" relates to the respective mixture of compound of formula (I) and any further active ingredient, in particular a further herbicide, with the safener).

It is possible that the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied simultaneously. For example, the safener, a compound of formula (I) and one or more additional herbicide(s), if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence. It is also possible that the safener and a compound of formula (I) and one or more additional herbicide(s), if any, are applied sequentially. For example, the safener might be applied before sowing the seeds as a seed treatment and a compound of formula (I) and one or more additional herbicides, if any, might be applied to the locus pre-emergence or might be applied to the crop post-emergence.

Preferred mixtures of a compound of formula (I) with further herbicides and safeners include:

Mixtures of a compound of formula (I) with S-metolachlor and a safener, particularly benoxacor. Mixtures of a compound of formula (I) with isoxaflutole and a safener.

Mixtures of a compound of formula (I) with mesotrione and a safener. Mixtures of a compound of formula with sulcotrione and a safener.

Mixtures of a compound of formula with tembotrione and a safener.

Mixtures of a compound of formula with topramezone and a safener.

Mixtures of a compound of formula with bicyclopyrone and a safener.

Mixtures of a compound of formula with a triazine and a safener.

Mixtures of a compound of formula with a triazine and isoxaflutole and a safener.

Mixtures of a compound of formula with a triazine and mesotrione and a safener.

Mixtures of a compound of formula with a triazine and sulcotrione and a safener.

Mixtures of a compound of formula with a triazine and tembotrione and a safener.

Mixtures of a compound of formula with a triazine and topramezone and a safener.

Mixtures of a compound of formula with a triazine and bicyclopyrone and a safener.

Mixtures of a compound of formula with glyphosate and a safener.

Mixtures of a compound of formula with glyphosate and isoxaflutole and a safener.

Mixtures of a compound of formula with glyphosate and mesotrione and a safener.

Mixtures of a compound of formula with glyphosate and sulcotrione and a safener.

Mixtures of a compound of formula with glyphosate and tembotrione and a safener.

Mixtures of a compound of formula with glyphosate and topramezone and a safener.

Mixtures of a compound of formula with glyphosate and bicyclopyrone and a safener.

Mixtures of a compound of formula with glufosinate-ammonium and a safener.

Mixtures of a compound of formula with glufosinate-ammonium and isoxaflutole and a safener.

Mixtures of a compound of formula with glufosinate-ammonium and mesotrione and a safener.

Mixtures of a compound of formula with glufosinate-ammonium and sulcotrione and a safener.

Mixtures of a compound of formula with glufosinate-ammonium and tembotrione and a safener. Mixtures o a compound o Formula with glufosinate-ammonium and topramezone and a safener.

Mixtures o a compound o Formula with glufosinate-ammonium and bicyclopyrone and a safener.

Mixtures o a compound o Formula with S-metolachlor and a safener.

Mixtures o a compound o Formula with S-metolachlor and isoxaflutole and a safener.

Mixtures o a compound o Formula with S-metolachlor and mesotrione and a safener.

Mixtures o a compound o Formula with S-metolachlor and sulcotrione and a safener.

Mixtures o a compound o Formula with S-metolachlor and tembotrione and a safener.

Mixtures o a compound o Formula with S-metolachlor and topramezone and a safener.

Mixtures o a compound o Formula with S-metolachlor and bicyclopyrone and a safener

Mixtures o a compound o Formula with pyroxasulfone and a safener.

Mixtures o a compound o Formula with pyroxasulfone and isoxaflutole and a safener.

Mixtures o a compound o Formula with pyroxasulfone and mesotrione and a safener.

Mixtures o a compound o Formula with pyroxasulfone and sulcotrione and a safener.

Mixtures o a compound o Formula with pyroxasulfone and tembotrione and a safener.

Mixtures o a compound o Formula with pyroxasulfone and topramezone and a safener.

Mixtures o a compound o Formula with pyroxasulfone and bicyclopyrone and a safener

Mixtures o a compound o Formula with acetochlor and a safener.

Mixtures o a compound o Formula with acetochlor and isoxaflutole and a safener.

Mixtures o a compound o Formula with acetochlor and mesotrione and a safener.

Mixtures o a compound o Formula with acetochlor and sulcotrione and a safener.

Mixtures o a compound o Formula with acetochlor and tembotrione and a safener.

Mixtures o a compound o Formula with acetochlor and topramezone and a safener.

Mixtures o a compound o Formula with acetochlor and bicyclopyrone and a safener.

Mixtures o a compound o Formula with S-metolachlor and mesotrione and

bicyclopyrone and a safener. - -

Mixtures of a compound of formula (I) with S-metolachlor and a triazine and mesotrione and bicyclopyrone and a safener. Various aspects and embodiments of the present invention will now be illustrated in more detail by way of example. It will be appreciated that modification of detail may be made without departing from the scope of the invention.

For the avoidance of doubt, where a literary reference, patent application, or patent, is cited within the text of this application, the entire text of said citation is herein incorporated by reference.

Examples

Preparation Examples

The following abbreviations were used in this section: s = singlet; bs = broad singlet; d = doublet; dd = double doublet; dt = double triplet; t = triplet, tt = triple triplet, q = quartet, sept = septet; m = multiplet; RT = retention time, MH + = molecular mass of the molecular cation.

1 H NMR spectra were recorded at 400MHz either on a Varian Unity Inova instrument 400MHz or on a Bruker AVANCE - II instrument.

Example 1 - Preparation of 4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2- pyridyl]imidazolidin-2-one (A1)

Procedure for synthesis of 4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2- pyridyl]imidazolidin-2-one (A1) - -

Phenyl N-[4-(trifluoromethyl)-2-pyridyl]carbamate (for a synthesis see WO 2007004749) (2.00 g, 7.087 mmol) was suspended in 1 ,4-dioxane (6 mL) under a Nitrogen atmosphere and then 2,2- dimethoxy-N-methyl-ethanamine (845 mg, 1 equiv.) was added and the reaction was heated at 90°C for 40 mins. The reaction mixture was cooled to room temperature and then aqueous 2N HCI (4 mL) was added to the reaction mixture and this was heated to 35°C for 15 mins and then at 50°C for 1 hour. The reaction mixture was extracted with EtOAc (75 mL) and the aqueous phase was extracted with further EtOAc (2 x 20 mL). The combined EtOAc layers were washed with sat. aqueous NaHC0 3 (2 mL), dried (Na 2 S0 4 ), filtered, evaporated and then

chromatographed on silica eluting with 0-50% EtOAc in isohexane.

Fractions containing product were evaporated then triturated with isohexane (2x5ml) to give this product as a white soild (690 mg, 37%).

LC-MS: (positive ES MH+ 262).

1 H NMR (CDCI 3 ): 8.53 (s, 1 H), 8.38 (d, 1 H), 7.17 (dd, 1 H), 6.06 (td, 1 H), 4.97 (m, 1 H), 3.71 (ddd, 1 H), 3.40 (dd, 1 H), 2.96 (s, 3H).

Example 2 - Preparation of 4-hydroxy-3-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-1 -methyl- imidazolidin-2-one (A5)

Procedure for synthesis of 1 -(2,2-dimethoxyethyl)-3-[5-iodo-4-(trifluoromethyl)-2-pyridy l]- 1 -methyl-urea (Step-1) - -

5-iodo-4-(trifluoromethyl)pyridin-2-amine (for a synthesis see Bioorganic & Medicinal Chemistry Letters, 1994, 4(6), 835-8) (1.00 g, 3.472 mmol) was dissolved in DCM (10 mL) and then carbonyl-diimidazole (2.1 1 1 g, 80% purity) was added. The reaction mixture was heated at 100°C in a microwave vial for 5 minutes. Further carbonyl-diimidazole (1.41 g) was added and the reaction mixture was heated at 100°C in a microwave vial for 10 minutes and then cooled to 15°C. 1 , 1-dimethoxy-N-methyl-propan-2-amine (4.60 mL, 10 equiv.) was added over 5 minutes and the reaction was stirred at room temperature for 10 mins. The reaction was diluted with DCM (50 mL) and water (20 mL) was added. This mixture was filtered and the aqueous layer extracted with further DCM (2 x 20 mL). The combined organics were dried (Na 2 S0 4 ), filtered and evaporated and then chromatographed on silica eluting with 20-42% EtOAc in isohexane.

Fractions containing product were evaporated to give desired product as an amber gum (551 mg, 37%).

LC-MS: (positive ES MH+ 434).

Procedure for synthesis of 4-hydroxy-3-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-1-methyl- imidazolidin-2-one (Step-2)

1-(2,2-dimethoxyethyl)-3-[5-iodo-4-(trifluoromethyl)-2-py ridyl]-1-methyl-urea (500 mg, 1.154 mmol) was dissolved in acetic acid (0.5 mL) and water (0.5 mL). The reaction mixture was heated at 80°C in a microwave vial for 30 minutes. Further acetic acid (0.6 mL) was added and the reaction was further heated in a microwave vial at 80°C for 50 minutes. The reaction mixture was then evaporated and dried (1 mBar at room temperature) to remove traces of acetic acid to give product as a yellow soild (133 mg, 59%). LC-MS: (positive ES MH+ 388).

1 H NMR (CDCI 3 ): 8.70 (s, 1 H), 8.64 (s, 1 H), 6.03 (dd, 1 H), 4.70 (br s, 1 H), 3.71 (dd, 1 H), 3.39 - -

(dd, 1 H), 2.95 (s, 3H).

Example 3 - Preparation of 4-hydroxy-1 -methyl-3-[5-(3-thienyl)-4-(trifluoromethyl)-2- pyridyl]imidazolidin-2-one (A4)

5-hydroxy-1-[5-iodo-4-(trifluoro (50 mg, 1 equiv.

0.129 mmol), 3-thienylboronic acid (23 mg, 1.4 equiv.), K 3 P0 4 (41 mg, 1.5 equiv.), 2- dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) (8 mg, 0.15 equiv.) and Pd(OAc) 2 (3 mg, 0.1 equiv.) were suspended in toluene (0.8 mL). The reaction was heated for 25 minutes at 65°C, then treated with further 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) (8 mg, 0.15 equiv.), Pd(OAc) 2 (3 mg, 0.1 equiv.) and 3-thienylboronic acid (8 mg, 0.5 equiv.), and the reaction was then heated for a further 20 minutes at 65°C. The reaction mixture was diluted with EtOAc (5 mL) then filtered through celite, evaporated, then chromatographed on silica eluting with 20-90% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (43 mg, 92%).

LC-MS: (positive ES MH+ 344). H NMR (CDCI 3 ): 8.63 (s, 1 H), 8.30 (s, 1 H), 7.41 (m, 1 H), 7.32 (m, 1 H), 7.15 (d, 1 H), 6.09 (m, 1 H), 4.96 (s, 1 H), 3.73 (dd, 1 H), 3.42 (dd, 1 H), 2.97 (s, 3H).

Example 4 - Preparation of 3-[5-ethoxy-4-(trifluoromethyl)-2-pyridyl]-4-hydroxy-1 -methyl- imidazolidin-2-one (A6)

- -

A mixture of di-ieri-butyl-[6-methoxy-3-methyl-2-(2,4,6-triisopropylpheny l)phenyl]phosphane (RockPhos) (5.4 mg, 9 mol%), allylpalladium(ll) chloride dimer (1.4 mg, 3mol%) and Cs 2 C0 3 (64 mg, 1.5 equiv.) in toluene (0.2 mL) was degassed by bubbling N 2 through the reaction mixture for 5mins. This mixture was then heated to 90°C for 3 mins then ethanol (23 μΙ_, 3 equiv.) was added, followed by 5-hydroxy-1-[5-iodo-4-(trifluoromethyl)-2-pyridyl]-3,4-dimet hyl-imidazolidin-2- one (50mg, 0.129 mmol, 1 equiv.). The reaction was then heated at 90°C for 20 minutes, then further ethanol (2 equiv.) were added and the reaction was heated in a sealed vial at 80°C for 90 minutes. Further di-ieri-butyl-[6-methoxy-3-methyl-2-(2,4,6-triisopropylpheny l)phenyl]phosphane (RockPhos) (5.4 mg, 9 mol%), allylpalladium(ll) chloride dimer (1.4 mg, 3mol%) and ethanol (2 equiv.) were added. The reaction was then heated in a sealed tube at 80°C for a further 90 mins. The reaction mixture was diluted with EtOAc (4 mL), filtered through celite, evaporated, then chromatographed on silica eluting with 0-100% EtOAc in isohexane. Fractions containing product were evaporated to give desired product as an amber gum (5.5 mg, 13%).

LC-MS: (positive ES MH+ 306). H NMR (CDCI 3 ): 8.43 (s, 1 H), 8.03 (s, 1 H), 5.98 (m, 1 H), 4.94 (br s, 1 H), 4.17 (q, 2H), 3.67 (m, 1 H), 3.37 (m, 1 H), 2.94 (s, 3H), 1.46 (t, 3H).

Tables 1 and 2 list examples of compounds of the general formula (I)

(I)

wherein R a , R b , R c , R d , R 3 and X are as defined above. These compounds were made by the general methods described. - -

Table 1

- -

- -

- -

- -

- -

- -

- -

- -

Table 2

- -

- -

- -

- -

- -

- -

- -

- -

- -

- -

Example 5: Preparation of 2-chloro-4-(1 -fluoro-1 -methyl-ethyl)pyridine as used for synthesis of examples of the type A38

Procedure for synthesis of 2-chloro-4- 1 -fluoro-1 -methyl-ethyl)pyridine (Step 1)

2-(2-chloro-4-pyridyl)propan-2-ol (commercially available)(180 mg, 1.0 mmol) was dissolved in DCM and the resultant mixture was cooled to 0°C. Diethylaminosulfur trifluoride (2.5 equiv., 5.2 mmol) was added dropwise such that the temperature did not exceed 5°C. After the addition the reaction was allowed to warm to room temperature and was then added portionwise with stirring to a mixture of ice (100ml) and NaHC0 3 in a beaker (some effervescence), making sure that the pH of the solution was >7 at all times. After ~30mins, the mixture was diluted with DCM (30 mL) and water (20 mL) and transferred to a sep funnel. The organic phase was separated. The aqueous phase was further extracted with DCM (2 x 20 mL), the organic extracts were then combined, washed with water (15 mL), dried over MgS0 4 , filtered and the filtrate evaporated giving a yellow-brown liquid. This was chromatographed on silica. Fractions containing product were evaporated to give the desired product, which was used without further purification.

LC-MS: (positive ES MH+ 174). - -

Example 6: Preparation of 4-(1 ,1 , 2,2, 2-pentafluoroethyl)pyridin-2 -amine as used for synthesis of examples of the type A48.

Procedure for synthesis of 4-(1 ,1 , 2,2, 2-pentafluoroethyl)pyridin-2 -amine (Step 1)

Prepared by analogy to the synthesis of 4-(trifluoromethyl)pyridin-2-amine (as described in EP2228366) using (E)-1-ethoxy-4,4,5,5,5-pentafluoro-pent-1-en-3-one (for a synthesis see Martins ef al, ARKIVOC Issue13, pages 187-194) as starting material. This synthesis can be applied to the synthesis of a range of related pyridine intermediates.

Exampie 7: Preparation of 2-chloro-4-[chloro(difluoro)methyl]pyridine as used for synthesis of examples of the type A4 .

Procedure for synthesis of 2-chloro-4-[chloro(difluoro)methyl]pyridine (Step 1)

2-chloro-4-(difluoromethyl)pyridine (commercially available) (0.950 g, 5.81 mmol) was suspended in CCI 4 (3.3ml), then 1 ,3,5-trichloro-1 ,3,5-triazinane-2,4,6-trione (675 mg, 0.5 equiv.) and benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) were added and the mixture was microwaved to 160°C for 30mins. Further benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) was added and the mixture was further microwaved to 180°C for 20 mins. Even further benzoyl benzenecarboperoxoate (70 mg, 0.05 equiv.) was added and the mixture was further microwaved at 180°C for 20 mins. The mixture wa filtered through celite, washed through with DCM then chromatographed eluting with 0-7% ethyl acetate in isohexane. Fractions contained product were combined and evaporated to give product as a colourless oil (700 mg, 61 % yield).

H NMR: 8.58 (dd, 1 H), 7.57 (d, 1 H), 7.45 (dd, 1 H).

Example 8: Preparation of 2-chloro-4-(1 -methoxy-1 -methyl-ethyl)pyridine as used for synthesis of examples of the type A49.

Procedure for synthesis of 2-chloro-4-[chloro difluoro)methyl]pyridine (Step 1)

A mixture of 2-(2-chloro-4-pyridyl)propan-2-ol (commercially available) (2.4 g, 14 mmol) in THF (120 mL) and methyl iodide (1.8 mL, 28 mmol) was treated with sodium hydride (0.71 g, 28 mmol). The mixture was stirred for 16h at rt. and then the reaction mix was poured into water (500 mL), and extracted with ethyl acetate. The combined organic layers were dried over sodium sulfate and chromatographed. Fractions contained product were combined and evaporated to give product as a colourless oil (2.31 g, 89% yield).

LC-MS: (positive ES MH+ 186). Example 9: Preparation of N-[6-chloro-4-(trifluoromethyl)-3-pyridyl]-2,2-dimethyl- propanamideas used for synthesis of examples of the type A42.

Procedure for synthesis of N-[6-chloro-4-(trifluoromethyl)-3-pyridyl]-2,2-dimethyl- propanamide (Step 1) - -

A mixture of 5-bromo-2-chloro-4-(trifluoromethyl)pyridine (commercially available) (75 mg, 0.288 mmol), 2,2-dimethylpropanamide (32 mg, 0.317 mmol), XantPhos Pd G3 precatalyst (13 mg, 0.014 mmol), K 2 C0 3 (79 mg, 0.57 mmol) in 1 ,4-Dioxane (0.5 mL) was heated at 90°C for 0.5h and then 1 10°C for 2h. Purification by reverse phase HPLC delivered product (14 mg, 15%). LC-MS: (positive ES MH+ 281 ).

Example 10: Preparation of N-fef -butyl-6-chloro-4-(trifluoromethyl)pyridine-3-carboxamide as used for synthesis of examples of the type A45.

Procedure for synthesis of N-ferf-butyl-6-chloro-4-(trifluoromethyl)pyridine-3-carboxam ide (Step 1)

To a stirred solution of 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylic acid (for a synthesis see Tetrahedron, 2004, 60(51 ), pages 1 1869-1 1874) (3.87 g, 17.2 mmol) in DCM (8 mL) was added iert-butylamine (3.61 mL, 34.3 mmol) followed by DIPEA (3.59 mL, 20.6 mmol). The reaction mixture was cooled to 0°C before the addition of HATU (4.84 g, 20.6 mmol). The reaction was stirred for 10 mins at 0°C, followed by stirring for 30 mins at room temperature. The reaction was then quenched with water. The aqueous layer was extracted with DCM, and the combined organic phases, dried (MgS0 4 ) and evaporated. Crude product was chromatographed eluting with 3: 1 , / ' so-hexane/ EtOAc, followed by recrystallisation (Et 2 0/ i-hexane) provided product (3.44 g, 12.3 mmol, 71 % yield).

LC-MS: (positive ES MH+ 281 ). - -

Example 11 : Preparation of N-fef -butyl-6-chloro-4-(trifluoromethyl)pyridine-3-carboxamide as used for synthesis of examples of the type A45.

Procedure for synthesis of 4-[difluoro(methoxy)methyl]pyridin-2-amine (Step 1)

4-[chloro(difluoro)methyl]pyridin-2-amine (can be prepared from 2-chloro-4- [chloro(difluoro)methyl]pyridine) (1.000 g, 5.600 mmol) was suspended in MeOH (10 mL) in a microwave vial, and then silver trifluoroacetate (2.49 g) was added. The reaction was stirred at 1 10°C. Th reaction was diluted with EtOAc (30 mL), filtered, evaporated and then purified by reverse phase chromatography, which was used without further purification.

Example 12: Preparation of 2-chloro-5-(methoxymethyl)-4-(trifluoromethyl)pyridine as used for synthesis of examples of the type A51.

Procedure for synthesis of [6-chloro-4-(trifluoromethyl)-3-pyridyl]methanol (Step 1)

- -

Methyl 6-chloro-4-(trifluoromethyl)pyridine-3-carboxylate (commercially available) (1.00 g) was dissolved in dry THF (12 mL) under a N 2 atmosphere and the reaction was cooled to -60°C then LiAIH4 (163 mg) was added over 10mins. The reaction was stirred at -60°C for 25 mins and was then treated with saturated NH 4 CI (aq) (5 mL) and then EtOAc (60 mL). Filtration through celite and then evaporation gave a crude oil which was dissolved in MeOH (5 mL), cooled to 0°C then NaBH 4 (53 mg) was added portionwise and the reaction was stirred at 0°C. The reaction was then concentrated, treated with EtOAc (10 mL) and washed with 10% citric acid and then saturated brine and finally the organic layer was dried Na 2 S0 4 and evaporated to give the desired product. H NMR: (400MHz, Chloroform) 5 8.78 (s, 1 H), 7.56 (s, 1 H), 4.93 (s, 2H), 1 .91 (very br s, 1 H).

Procedure for synthesis of 2-chloro-5-(methoxymethyl)-4-(trifluoromethyl)pyridine (Step 2)

[6-chloro-4-(trifluoromethyl)-3-pyridyl]methanol (655 mg) was dissolved in dry THF (2 mL), cooled to 5°C under N 2 then KOtBu (1.65M in THF) (2.07 mL) was added over 1 min. Then Mel (236 μί) was added. The reaction was stirred for 3 minutes, then EtOAc (10 mL) and saturated brine (aqueous), was added and the aqueous layer was extracted with further EtOAc (2 x 20 mL). The combined organic layers were dried (Na 2 S0 4 ), filtered and evaporated to give amber oil, which was chromatographed, eluting with 0-30% EtOAc in isohexane. Fractions containing product were evaporated to give product as an amber oil (332 mg, 48%).

H NMR: (400MHz, Chloroform) δ 8.70 (s, 1 H), 7.56 (s, 1 H), 4.63 (s, 2H), 3.48 (s, 3H).

LC-MS: (positive ES MH+ 226).

Example 12 - Herbicidal action

Example 12a: Pre-emerqence herbicidal activity

Seeds of a variety of test species were sown in standard soil in pots. After cultivation for one day (pre-emergence) under controlled conditions in a glasshouse (at 24/16°C, day/night; 14 hours light; 65% humidity), the plants were sprayed with an aqueous spray solution derived from the formulation of the technical active ingredient in acetone / water (50:50) solution containing 0.5% - -

Tween 20 (polyoxyethelyene sorbitan monolaurate, CAS RN 9005-64-5). The test plants were then grown in a glasshouse under controlled conditions (at 24/16°C, day/night; 14 hours light; 65% humidity) and watered twice daily. After 13 days, the test was evaluated (5= total damage to plant; 0 = no damage to plant). Results are shown in Table 3.

Table 3: Application pre-emerqence

Example Rate AM ARE j ECHCG ABUTH SETFA ALOMY ZEAMX number (g/Ha)

A1 1000 5 5 5 4 4 3

A2 1000 5 5 4 5 4 5

A3 1000 5 5 5 5 4 4

A4 1000 5 4 2 3 3 2

A5 1000 5 5 5 5 4 4

A7 1000 3 1 2 1 1 1

A8 1000 2 1 2 3 1 2

A10 1000 5 5 5 4 4 3

A11 1000 2 1 2 1 1 0

A12 1000 1 1 3 1 0 0

A13 1000 3 2 2 2 2 1

A14 1000 5 3 3 2 2 2

A15 1000 2 1 3 2 1 0

A16 1000 5 3 3 4 2 3

A17 1000 5 5 5 4 4 2

A18 1000 2 3 2 1 2 1

A19 1000 5 5 5 5 5 5

A20 1000 5 5 5 5 3

A21 1000 5 5 5 5 3

A22 1000 5 5 5 5 3

A24 1000 5 5 5 5 2

A25 1000 5 5 5 3 2

A27 1000 5 3 5 2 1

A28 1000 5 5 5 4 3

A29 1000 5 5 5 5 3 - -

A31 1000 2 0 2 2 0

A32 1000 5 5 5 5 3

A33 1000 5 4 5 3 2

A34 1000 5 4 5 3 1

A35 1000 5 2 2 2 1

A36 1000 5 5 5 4 4 2

A37 1000 5 3 5 1 4 2

A38 1000 5 4 5 4 4 0

A39 1000 5 4 5 4 4 2

A40 1000 5 5 5 4 4 4

A41 1000 5 4 4 4 2

A42 1000 5 5 5 5 3

A43 1000 5 5 5 5 2

A44 1000 5 4 5 5 2

A45 1000 5 5 5 5 3

A46 1000 5 4 5 5 2

A47 1000 4 4 4 4 0

A48 1000 5 4 5 5 2

A49 1000 5 5 5 5 2

A50 1000 5 1 2 2 1

A51 1000 5 5 5 5 3

A52 1000 5 5 5 5 4

Example 12b: Post-emergence herbicidal activity

Seeds of a variety of test species were sown in standard soil in pots. After 8 days cultivation (post-emergence) under controlled conditions in a glasshouse (at 24/16°C, day/night; 14 hours light; 65% humidity), the plants were sprayed with an aqueous spray solution derived from the formulation of the technical active ingredient in acetone / water (50:50) solution containing 0.5% Tween 20 (polyoxyethelyene sorbitan monolaurate, CAS RN 9005-64-5). The test plants were then grown in a glasshouse under controlled conditions (at 24/16°C, day/night; 14 hours light; 65% humidity) and watered twice daily. After 13 days, the test was evaluated (5 = total damage to plant; 0 = no damage to plant). Results are shown in Table 4.

Table 4: Application post-emergence - - Example Rate I A MARE I ABUTH SETFA 1 ECHCG ZEAMX ALOMY number j (g/Ha)

A1 1000

A2 1000

A3 1000

A4 1000

A5 1000

A7 1000

A8 1000

A10 1000

A11 1000

A12 1000

A13 1000

A14 1000

A15 1000

A16 1000

A17 1000

A18 1000

A19 1000

A20 1000

A21 1000

A22 1000

A24 1000

A25 1000

A27 1000

A28 1000

A29 1000

A31 1000

A32 1000

A33 1000

A34 1000

A35 1000

A36 1000

A37 1000

A38 1000 - -

A39 1000 5 5 5 5 4

A40 1000 5 5 5 5 4

A41 1000 5 5 5 5 2

A42 1000 5 5 5 5 5

A43 1000 5 5 5 5 5

A44 1000 5 5 5 5 4

A45 1000 5 5 5 5 5

A46 1000 5

A47 1000 4

A48 1000 5 5 5 5 3

A49 1000 5 5 5 5 3

A50 1000 5 5 5 5 1

A51 1000 5 5 5 5 3

A52 1000 5 5 5 5 5

ABUTH = Abutilon theophrasti; AMARE = Amaranthus retroflexus; SETFA = Setaria faberi; ALOMY = Alopecurus myosuroides; ECHCG = Echinochloa crus-galli; ZEAMX = Zea mays.