Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PYRIDYL CARBENE PHOSPHORESCENT EMITTERS
Document Type and Number:
WIPO Patent Application WO/2012/121936
Kind Code:
A2
Abstract:
Organometallic compounds comprising an imidazole carbene ligand having a N- containing ring fused to the imidazole ring are provided. In particular, the N-containing ring fused to the imidazole ring may contain one nitrogen atom or more than one nitrogen atom. These compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. These materials may be especially useful as blue phosphorescent emitters.

Inventors:
WU YONGGANG (US)
XIA CHUANJUN (US)
FIORDELISO JAMES (US)
LAYEK SUMAN (US)
ALLEYNE BERT (US)
DYATKIN ALEXEY BORISOVICH (US)
ANSARI SCOTT (US)
BEERS SCOTT (US)
BARRON ED (US)
BROOKS JASON (US)
Application Number:
PCT/US2012/027044
Publication Date:
September 13, 2012
Filing Date:
February 28, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIVERSAL DISPLAY CORP (US)
WU YONGGANG (US)
XIA CHUANJUN (US)
FIORDELISO JAMES (US)
LAYEK SUMAN (US)
ALLEYNE BERT (US)
DYATKIN ALEXEY BORISOVICH (US)
ANSARI SCOTT (US)
BEERS SCOTT (US)
BARRON ED (US)
BROOKS JASON (US)
International Classes:
C07F15/00; C09K11/00; H01L51/00; H05B33/00
Domestic Patent References:
WO2009046266A12009-04-09
WO2011158204A12011-12-22
WO2011073149A12011-06-23
Foreign References:
US5844363A1998-12-01
US6303238B12001-10-16
US5707745A1998-01-13
US7279704B22007-10-09
US4769292A1988-09-06
US20030230980A12003-12-18
US5703436A1997-12-30
US6097147A2000-08-01
US20040174116A12004-09-09
US5247190A1993-09-21
US6091195A2000-07-18
US5834893A1998-11-10
US6013982A2000-01-11
US6087196A2000-07-11
US6337102B12002-01-08
US23347002A2002-09-04
US6294398B12001-09-25
US6468819B12002-10-22
Other References:
BALDO ET AL.: "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices", NATURE, vol. 395, 1998, pages 151 - 154
BALDO ET AL.: "Very high-efficiency green organic light-emitting devices based on electrophosphorescence", APPL. PHYS. LETT., vol. 75, no. 3, 1999, pages 4 - 6
HANSCH, C. ET AL., CHEM. REV., vol. 91, 1991, pages 165 - 195
Attorney, Agent or Firm:
MCGROARTY, John et al. (TOWNSEND & STOCKTON LLP,Two Embarcadero Center, 8th Floo, San Francisco California, US)
Download PDF:
Claims:
CLAIMS: nd comprising a ligand L having the formula:

Formula I,

wherein A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; wherein R2 and RA may represent mono, di, tri or tetra substitutions; wherein each of Ri, R2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof;

wherein two adjacent substituents of R2 and RA are optionally joined to form a fused ring;

wherein each of Xi, X2, X3 and X4 are independently selected from the group consisting of C and N;

wherein at least two of Xi, X2, X3 and X4 are N;

wherein the ligand L is coordinated to a metal M having an atomic number greater than 40; and

wherein the bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

2. The compound of claim 1, wherein A is benzene.

3. The compound of claim 1, wherein the metal M is Ir or Pt.

4. The compound of claim 1 , wherein the metal M is Ir.

5. The compound of claim 1 , wherein Ri is alkyl or cycloalkyl.

6. The compound of claim 1 , wherein Ri is aryl.

7. The compound of claim 1 , wherein RA is an electron donating group with a Hammett sigma constant less than 0.

8. The compound of claim 7, wherein RA is selected from the group consisting of alkyl, arylamino, alkylamino, aryloxyl, and alkyloxyl.

9. The compound of claim 1 , wherein the ligand L is selected from the group consisting of:

ormula II

Formula III

Formula IV,

wherein R3 may represent mono, di, tri or tetra substitutions;

wherein R3 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof; and

wherein two adjacent substituents of R3 are optionally joined to form a fused ring.

The compound of claim 1, wherein the compound is homoleptic. The compound of claim 1, wherein the compound is heteroleptic.

12. The compound of claim 1, wherein the compound has a formula selected from the group consisting of:

Formula V

Formula VI

Formula VII;

wherein L' is a different ligand; and

wherein m is 1, 2, or 3.

13. The compound of claim 12, wherein m is 3.

14. The compound of claim 12, wherein L' is a monoanionic bidentate ligand.

109

wherein Ra, Rb, and Rc may represent mono, di, tri or tetra substitutions;

wherein Ra, Rb, and Rc are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof; and

wherein two adjacent substituents of Ra, Rb, and Rc are optionally joined to form a fused ring.

16. The compound of claim 1, wherein the compound is selected from the consisting of:

-fac -mer fac

ompound 1 Compound 2 Compound 3

Compound 4 Compound 5 Compound 6

Compound

A compound selected from the group consisting of:

mer mer

fac

Compound 1 1 Compound 12 Compound 13

Compound 14 Compound 15 Compound 16

Compound 17 Compound 18 Com ound 19

mer- Compound 25

Com ound 26

Compound 28

Compound 29 Compound 30

Compound 31 Compound 32

18. A first device comprising an organic light emitting device, further comprising:

an anode;

a cathode; and

ganic layer, disposed between the anode and the cathode, wherein the organic layer further comprises a compound comprising a ligand L having the formula:

wherein A is a 5-membered or 6-membered carbocyclic or heterocyclic ring; wherein R2 and RA may represent mono, di, tri or tetra substitutions;

wherein each of Ri, R2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof;

wherein two adjacent substituents of R2 and RA are optionally joined to form a fused ring;

wherein each of Xi, X2, X3 and X4 are independently selected from the group consisting of C and N; wherein at least two of Xi, X2, X3 and X4 are N;

wherein the ligand L is coordinated to a metal M having an atomic number greater than 40; and

wherein the bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

19. The first device of claim 18, wherein the organic layer is an emissive layer and the compound comprising the ligand L is an emissive dopant.

20. The first device of claim 19, wherein the organic layer further comprises a host.

21. The first device of claim 20, wherein the host comprises at least one of the chemical groups selected from the group consisting of:

wherein each of R"'i, Rm2, R'"3, Rm4, Rm5, Rm6 and R'"7 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof;

wherein k is an integer from 0 to 20; and

wherein each of X1, X2, X3, X4, X5, X6, X7 and X8 are independently selected from the group consisting of CH and N.

22. The first device of claim 20, wherein the host is a metal complex.

23. The first device of claim 20, wherein the host is a metal carbene complex.

24. The first device of claim 18, wherein the first device is an organic light emitting device.

25. The first device of claim 18, wherein the first device is a consumer product.

26. A first device comprising an organic light emitting device, further comprising:

an anode;

a cathode; and

an organic layer, disposed between the anode and the cathode, wherein the organic layer further comprises a compound selected from the group consisting of:

Compound 8 Compound 9 Compound 10

mer mer

fac

Compound 1 1 Compound 12 Compound 13

Com ound 14 Compound 15 Compound 16

Compound 20 Compound 21 Compound 22

Compound 23 Compound 24

mer- Compound 25

fac- Com ound 26

Compound

Compound 31 Compound 32

Description:
PYRIDYL CARBENE PHOSPHORESCENT EMITTERS

[0001] The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Regents of the University of Michigan, Princeton University, The University of Southern California, and the Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

FIELD OF THE INVENTION

[0002] The present invention relates to organic light emitting devices (OLEDs). More specifically, the present invention is related to organometallic compounds comprising an imidazole carbene ligand having a N-containing ring fused to the imidazole ring. These compounds may be used in OLEDs to provide devices with improved efficiency and lifetime. In particular, these compounds may be especially useful as blue phosphorescent emitters.

BACKGROUND

[0003] Opto-electronic devices that make use of organic materials are becoming increasingly desirable for a number of reasons. Many of the materials used to make such devices are relatively inexpensive, so organic opto-electronic devices have the potential for cost advantages over inorganic devices. In addition, the inherent properties of organic materials, such as their flexibility, may make them well suited for particular applications such as fabrication on a flexible substrate. Examples of organic opto-electronic devices include organic light emitting devices (OLEDs), organic phototransistors, organic photovoltaic cells, and organic

photodetectors. For OLEDs, the organic materials may have performance advantages over conventional materials. For example, the wavelength at which an organic emissive layer emits light may generally be readily tuned with appropriate dopants.

[0004] OLEDs make use of thin organic films that emit light when voltage is applied across the device. OLEDs are becoming an increasingly interesting technology for use in applications such as flat panel displays, illumination, and backlighting. Several OLED materials and configurations are described in U.S. Pat. Nos. 5,844,363, 6,303,238, and 5,707,745, which are incorporated herein by reference in their entirety.

[0005] One application for phosphorescent emissive molecules is a full color display. Industry standards for such a display call for pixels adapted to emit particular colors, referred to as "saturated" colors. In particular, these standards call for saturated red, green, and blue pixels. Color may be measured using CIE coordinates, which are well known to the art.

[0006] One example of a green emissive molecule is tris(2-phenylpyridine) iridium, denoted Ir(ppy) 3 , which has the structure:

[0007] In this, and later figures herein, we depict the dative bond from nitrogen to metal (here, Ir) as a straight line.

[0008] As used herein, the term "organic" includes polymeric materials as well as small molecule organic materials that may be used to fabricate organic opto-electronic devices. "Small molecule" refers to any organic material that is not a polymer, and "small molecules" may actually be quite large. Small molecules may include repeat units in some circumstances. For example, using a long chain alkyl group as a substituent does not remove a molecule from the "small molecule" class. Small molecules may also be incorporated into polymers, for example as a pendent group on a polymer backbone or as a part of the backbone. Small molecules may also serve as the core moiety of a dendrimer, which consists of a series of chemical shells built on the core moiety. The core moiety of a dendrimer may be a fluorescent or phosphorescent small molecule emitter. A dendrimer may be a "small molecule," and it is believed that all dendrimers currently used in the field of OLEDs are small molecules.

[0009] As used herein, "top" means furthest away from the substrate, while "bottom" means closest to the substrate. Where a first layer is described as "disposed over" a second layer, the first layer is disposed further away from substrate. There may be other layers between the first and second layer, unless it is specified that the first layer is "in contact with" the second layer. For example, a cathode may be described as "disposed over" an anode, even though there are various organic layers in between.

[0010] As used herein, "solution processible" means capable of being dissolved, dispersed, or transported in and/or deposited from a liquid medium, either in solution or suspension form.

[0011] A ligand may be referred to as "photoactive" when it is believed that the ligand directly contributes to the photoactive properties of an emissive material. A ligand may be referred to as "ancillary" when it is believed that the ligand does not contribute to the photoactive properties of an emissive material, although an ancillary ligand may alter the properties of a photoactive ligand.

[0012] As used herein, and as would be generally understood by one skilled in the art, a first "Highest Occupied Molecular Orbital" (HOMO) or "Lowest Unoccupied Molecular Orbital" (LUMO) energy level is "greater than" or "higher than" a second HOMO or LUMO energy level if the first energy level is closer to the vacuum energy level. Since ionization potentials (IP) are measured as a negative energy relative to a vacuum level, a higher HOMO energy level corresponds to an IP having a smaller absolute value (an IP that is less negative). Similarly, a higher LUMO energy level corresponds to an electron affinity (EA) having a smaller absolute value (an EA that is less negative). On a conventional energy level diagram, with the vacuum level at the top, the LUMO energy level of a material is higher than the HOMO energy level of the same material. A "higher" HOMO or LUMO energy level appears closer to the top of such a diagram than a "lower" HOMO or LUMO energy level.

[0013] As used herein, and as would be generally understood by one skilled in the art, a first work function is "greater than" or "higher than" a second work function if the first work function has a higher absolute value. Because work functions are generally measured as negative numbers relative to vacuum level, this means that a "higher" work function is more negative. On a conventional energy level diagram, with the vacuum level at the top, a "higher" work function is illustrated as further away from the vacuum level in the downward direction. Thus, the definitions of HOMO and LUMO energy levels follow a different convention than work functions. [0014] More details on OLEDs, and the definitions described above, can be found in US Pat. No. 7,279,704, which is incorporated herein by reference in its entirety.

SUMMARY OF THE INVENTION

[0015] Organometallic compounds comprising an imidazole carbene ligand having a N- containing ring fused to the imidazole ring are provided. In one aspect, the organometallic compounds comprise an imidazole carbene ligand with a diazine ring fused to the imidazole ring. The compounds comprise a ligand L having the formula:

[0016] A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is benzene. R 2 and RA may represent mono, di, tri or tetra substitutions. Each of Ri, R 2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 2 and RA are optionally joined to form a fused ring. Each of X ls X 2 , X 3 and X 4 are

independently selected from the group consisting of C and N. At least two of Xi, X 2 , X 3 and X 4 are N. The ligand L is coordinated to a metal M having an atomic number greater than 40.

Preferably, the metal M is Ir or Pt. More preferably, the metal M is Ir. The bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0017] In one aspect, Ri is alkyl or cycloalkyl. [0018] In another aspect, Ri is aryl. [0019] In one aspect, RA is an electron donating group with a Hammett constant less than 0. another aspect, RA is selected from the group consisting of alkyl, arylamino, alkylamino, aryloxyl, and alkyloxyl.

[0020] In one aspect, the ligand L is selected from the group consisting of:

ormula II,

Formula III, and

Formula IV.

[0021] R 3 may represent mono, di, tri or tetra substitutions. R 3 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 3 are optionally joined to form a fused ring.

[0022] In one aspect, the compound is homoleptic. In another aspect, the compound is heteroleptic. [0023] In another aspect, the compound has a formula selected from the group consisting of:

Formula V,

Formula VI, and

Formula VII.

[0024] L' is a different ligand. m is 1, 2, or 3. Preferably, m is 3.

[0025] In one aspect, L' is a monoanionic bidentate ligand. In another aspect, L' is selected from the group consisting of:

[0026] R a , R b , and R c may represent mono, di, tri or tetra substitutions. R a , R b , and R c are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R a , R b , and R c are optionally joined to form a fused ring. [0027] Specific, non-limiting examples of organometallic compounds comprising an imidazole carbene ligand with a diazine ring fused to the imidazole ring are provided. In one aspect, the compound is selected from the group consisting of:

-fac -mer fac mer

Compound 1 Compound 2 Compound 3 Compound 4

Compound 5 Compound 6 Compound 7

[0028] In another aspect, the organometallic compounds comprise an imidazole carbene ligand with a pyridine ring fused to the imidazole ring of the imidazole carbene ligand. Preferably, the compound is selected from the group consisting of:

Compound 8 Compound 9 Compound 10

mer mer

fac Compound 1 1 Compound 12 Compound 13

Compound 14 Compound 15 Compound 16

Compound 17 Compound 18 Compound 19

Compound 23 Compound 24

fac- Compound 26

Compound 27

Compound 31 Compound 32

[0029] Additionally, a first device comprising an organic light emitting device is provided. The organic light emitting device further comprises an anode, a cathode and an organic layer, disposed between the anode and the cathode. The organic layer further comprises a compound comprising a ligand L having Formula I, as described above.

[0030] A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. R 2 and RA may represent mono, di, tri or tetra substitutions. Each of Ri, R 2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 2 and RA are optionally joined to form a fused ring. Each of X ls X 2 , X 3 and X 4 are independently selected from the group consisting of C and N. At least two of Xi, X 2 , X 3 and X 4 are N. The ligand L is coordinated to a metal M having an atomic number greater than 40. The bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0031] Specific, non-limiting examples of devices comprising the compounds are provided. In one aspect, the compound used in the first device is selected from the group consisting of Compound 1 - Compound 7.

[0032] The various specific aspects discussed above for compounds comprising a ligand L having Formula I are also applicable to a compound comprising a ligand L having Formula I that is used in the first device. In particular, specific aspects of A, M, R ls R 2 , R A , Xi, X 2 , X 3 , X 4 , L', Ra, Rb, Rc, Formula II, Formula III, Formula IV, Formula V, Formula VI, and Formula VII of the compound comprising a ligand L having Formula I discussed above are also applicable to a compound comprising a ligand L having Formula I that is used in the first device.

[0033] In one aspect, the organic layer is an emissive layer and the compound comprising the ligand L is an emissive dopant. In another aspect, the organic layer further comprises a host that comprises at least one of the chemical groups selected from the group consisting of:

[0034] Each of R"'i , R m 2 , R m 3, R m 4, R'" 5 , R" 6 and R'" 7 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof, k is an integer from 0 to 20. Each of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 and X 8 are independently selected from the group consisting of CH and N.

[0035] In one aspect, the first device is an organic light emitting device. In another aspect, the first device is a consumer product.

[0036] Another first device comprising an organic light emitting device is also provided. The organic light emitting device further comprises an anode, a cathode and an organic layer, disposed between the anode and the cathode. The organic layer further comprises a compound selected from the group consisting of Compound 8- Compound 32.

BRIEF DESCRIPTION OF THE DRAWINGS [0037] FIG. 1 shows an organic light emitting device.

[0038] FIG. 2 shows an inverted organic light emitting device that does not have a separate electron transport layer.

[0039] FIG. 3 shows an exemplary organometallic compound comprising a nitrogen- containing heterocyclic ring fused to the imidazole ring of the imidazole carbene ligand.

DETAILED DESCRIPTION

[0040] Generally, an OLED comprises at least one organic layer disposed between and electrically connected to an anode and a cathode. When a current is applied, the anode injects holes and the cathode injects electrons into the organic layer(s). The injected holes and electrons each migrate toward the oppositely charged electrode. When an electron and hole localize on the same molecule, an "exciton," which is a localized electron-hole pair having an excited energy state, is formed. Light is emitted when the exciton relaxes via a photoemissive mechanism. In some cases, the exciton may be localized on an excimer or an exciplex. Non-radiative mechanisms, such as thermal relaxation, may also occur, but are generally considered undesirable.

[0041] The initial OLEDs used emissive molecules that emitted light from their singlet states ("fluorescence") as disclosed, for example, in U.S. Pat. No. 4,769,292, which is incorporated by reference in its entirety. Fluorescent emission generally occurs in a time frame of less than 10 nanoseconds.

[0042] More recently, OLEDs having emissive materials that emit light from triplet states ("phosphorescence") have been demonstrated. Baldo et al., "Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices," Nature, vol. 395, 151-154, 1998; ("Baldo- I") and Baldo et al., "Very high-efficiency green organic light-emitting devices based on electrophosphorescence," Appl. Phys. Lett., vol. 75, No. 3, 4-6 (1999) ("Baldo-II"), which are incorporated by reference in their entireties. Phosphorescence is described in more detail in US Pat. No. 7,279,704 at cols. 5-6, which are incorporated by reference. [0043] FIG. 1 shows an organic light emitting device 100. The figures are not necessarily drawn to scale. Device 100 may include a substrate 110, an anode 115, a hole injection layer 120, a hole transport layer 125, an electron blocking layer 130, an emissive layer 135, a hole blocking layer 140, an electron transport layer 145, an electron injection layer 150, a protective layer 155, and a cathode 160. Cathode 160 is a compound cathode having a first conductive layer 162 and a second conductive layer 164. Device 100 may be fabricated by depositing the layers described, in order. The properties and functions of these various layers, as well as example materials, are described in more detail in US 7,279,704 at cols. 6-10, which are incorporated by reference.

[0044] More examples for each of these layers are available. For example, a flexible and transparent substrate-anode combination is disclosed in U.S. Pat. No. 5,844,363, which is incorporated by reference in its entirety. An example of a p-doped hole transport layer is m- MTDATA doped with F.sub.4-TCNQ at a molar ratio of 50: 1, as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. Examples of emissive and host materials are disclosed in U.S. Pat. No. 6,303,238 to Thompson et al., which is incorporated by reference in its entirety. An example of an n-doped electron transport layer is BPhen doped with Li at a molar ratio of 1 : 1 , as disclosed in U.S. Patent Application Publication No. 2003/0230980, which is incorporated by reference in its entirety. U.S. Pat. Nos. 5,703,436 and 5,707,745, which are incorporated by reference in their entireties, disclose examples of cathodes including compound cathodes having a thin layer of metal such as Mg:Ag with an overlying transparent, electrically-conductive, sputter-deposited ITO layer. The theory and use of blocking layers is described in more detail in U.S. Pat. No. 6,097,147 and U.S. Patent Application Publication No. 2003/0230980, which are incorporated by reference in their entireties. Examples of injection layers are provided in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety. A description of protective layers may be found in U.S. Patent Application Publication No. 2004/0174116, which is incorporated by reference in its entirety.

[0045] FIG. 2 shows an inverted OLED 200. The device includes a substrate 210, a cathode 215, an emissive layer 220, a hole transport layer 225, and an anode 230. Device 200 may be fabricated by depositing the layers described, in order. Because the most common OLED configuration has a cathode disposed over the anode, and device 200 has cathode 215 disposed under anode 230, device 200 may be referred to as an "inverted" OLED. Materials similar to those described with respect to device 100 may be used in the corresponding layers of device 200. FIG. 2 provides one example of how some layers may be omitted from the structure of device 100.

[0046] The simple layered structure illustrated in FIGS. 1 and 2 is provided by way of non- limiting example, and it is understood that embodiments of the invention may be used in connection with a wide variety of other structures. The specific materials and structures described are exemplary in nature, and other materials and structures may be used. Functional OLEDs may be achieved by combining the various layers described in different ways, or layers may be omitted entirely, based on design, performance, and cost factors. Other layers not specifically described may also be included. Materials other than those specifically described may be used. Although many of the examples provided herein describe various layers as comprising a single material, it is understood that combinations of materials, such as a mixture of host and dopant, or more generally a mixture, may be used. Also, the layers may have various sublayers. The names given to the various layers herein are not intended to be strictly limiting. For example, in device 200, hole transport layer 225 transports holes and injects holes into emissive layer 220, and may be described as a hole transport layer or a hole injection layer. In one embodiment, an OLED may be described as having an "organic layer" disposed between a cathode and an anode. This organic layer may comprise a single layer, or may further comprise multiple layers of different organic materials as described, for example, with respect to FIGS. 1 and 2.

[0047] Structures and materials not specifically described may also be used, such as OLEDs comprised of polymeric materials (PLEDs) such as disclosed in U.S. Pat. No. 5,247,190 to Friend et al., which is incorporated by reference in its entirety. By way of further example, OLEDs having a single organic layer may be used. OLEDs may be stacked, for example as described in U.S. Pat. No. 5,707,745 to Forrest et al, which is incorporated by reference in its entirety. The OLED structure may deviate from the simple layered structure illustrated in FIGS. 1 and 2. For example, the substrate may include an angled reflective surface to improve out- coupling, such as a mesa structure as described in U.S. Pat. No. 6,091,195 to Forrest et al, and/or a pit structure as described in U.S. Pat. No. 5,834,893 to Bulovic et al, which are incorporated by reference in their entireties.

[0048] Unless otherwise specified, any of the layers of the various embodiments may be deposited by any suitable method. For the organic layers, preferred methods include thermal evaporation, ink-jet, such as described in U.S. Pat. Nos. 6,013,982 and 6,087,196, which are incorporated by reference in their entireties, organic vapor phase deposition (OVPD), such as described in U.S. Pat. No. 6,337,102 to Forrest et al, which is incorporated by reference in its entirety, and deposition by organic vapor jet printing (OVJP), such as described in U.S. patent application Ser. No. 10/233,470, which is incorporated by reference in its entirety. Other suitable deposition methods include spin coating and other solution based processes. Solution based processes are preferably carried out in nitrogen or an inert atmosphere. For the other layers, preferred methods include thermal evaporation. Preferred patterning methods include deposition through a mask, cold welding such as described in U.S. Pat. Nos. 6,294,398 and 6,468,819, which are incorporated by reference in their entireties, and patterning associated with some of the deposition methods such as ink-jet and OVJD. Other methods may also be used. The materials to be deposited may be modified to make them compatible with a particular deposition method. For example, substituents such as alkyl and aryl groups, branched or unbranched, and preferably containing at least 3 carbons, may be used in small molecules to enhance their ability to undergo solution processing. Substituents having 20 carbons or more may be used, and 3-20 carbons is a preferred range. Materials with asymmetric structures may have better solution processibility than those having symmetric structures, because asymmetric materials may have a lower tendency to recrystallize. Dendrimer substituents may be used to enhance the ability of small molecules to undergo solution processing.

[0049] Devices fabricated in accordance with embodiments of the invention may be incorporated into a wide variety of consumer products, including flat panel displays, computer monitors, televisions, billboards, lights for interior or exterior illumination and/or signaling, heads up displays, fully transparent displays, flexible displays, laser printers, telephones, cell phones, personal digital assistants (PDAs), laptop computers, digital cameras, camcorders, viewfmders, micro-displays, vehicles, a large area wall, theater or stadium screen, or a sign. Various control mechanisms may be used to control devices fabricated in accordance with the present invention, including passive matrix and active matrix. Many of the devices are intended for use in a temperature range comfortable to humans, such as 18 degrees C. to 30 degrees C, and more preferably at room temperature (20-25 degrees C).

[0050] The materials and structures described herein may have applications in devices other than OLEDs. For example, other optoelectronic devices such as organic solar cells and organic photodetectors may employ the materials and structures. More generally, organic devices, such as organic transistors, may employ the materials and structures.

[0051] The terms halo, halogen, alkyl, cycloalkyl, alkenyl, alkynyl, arylkyl, heterocyclic group, aryl, aromatic group, and heteroaryl are known to the art, and are defined in US 7,279,704 at cols. 31-32, which are incorporated herein by reference.

[0052] Organometallic compounds comprising an imidazole carbene ligand having a N- containing ring fused to the imidazole ring are provided (as illustrated in FIG. 3). In one aspect, the organometallic compounds comprise an imidazole carbene ligand with a diazine ring fused to the imidazole ring, e.g., a pyrazine (1,4-diazine), a pyrimidine (1,3-diazine), or a pyridazine (1,2- diazine) ring may be fused to the imidazole ring of the imidazole carbene ligand. In another aspect, the organometallic compounds comprise an imidazole carbene ligand with a pyridine ring fused to the imidazole ring of the imidazole carbene ligand.

[0053] The compounds comprising a nitrogen-containing heterocyclic ring fused to the imidazole ring of the imidazole carbene ligand may have very strong photoluminescent properties. In particular, these compounds may demonstrate high photoluminescent (PL) efficiency, Gaussian emission spectra, and/or short excited state lifetimes. Therefore, these compounds may be useful as emitters in OLEDs. In particular, these materials may be especially useful as blue phosphorescent emitters, because of their desirable deep blue emission

characteristics.

[0054] N-heterocylic imidazole carbene complexes with fused nitrogen-containing rings may have strong photoluminescent properties as compared to corresponding imidazole and benzimidazole carbene compounds. The compounds disclosed herein may have high PL efficiency, short radiative lifetime, and/or Gaussian emission characteristic of strong MLCT character. In comparison, the emission property of the imidazole and benzimidazole carbenes without nitrogen-containing fused rings may have longer radiative lifetime and lower PL efficiency. In addition, a nitrogen-containing heterocylic ring fused to the imidazole can tune the HOMO/LUMO energy levels and change emission color of the complex.

[0055] Without being bound by theory, it is believed that increasing the number of nitrogen atoms in the heterocyclic ring that is fused to the carbene may further increase the charge transfer character of the emission. For example, several inventive compounds having two nitrogen atoms in the ring fused to the carbene, e.g., Compounds 1-5, demonstrate a substantial red-shifting effect relative to benzimidazole carbenes, e.g., Comparative Compounds A and B, which only emit in the UV region, but not in the desired visible region. One possible benefit of red-shifting using this method is that the degree of MLCT emission is not affected. The compounds having two nitrogen atoms in the ring fused to the carbene may have high quantum yield with short excited state lifetime. In particular, the Gaussian emission profile of these compounds may show the increased charge transfer character. On the other hand, red shifting the emission through increasing ligand conjugation in the imidazole carbene ring results in long excited state lifetime and more ligand based emission.

[0056] In addition, a subset of the compounds provided may be advantageously red-shifted by incorporating electron donating groups to the cyclometallated ring. This method of red-shifting may raise the HOMO energy of the material, allowing for better charge trapping property while maintaining desired optical properties, such as short excited state lifetime. In contrast, compounds that are red-shifted by different methods may have limitations. For example, compounds that are red-shifted by extending conjugation through aromatic substitution in the cyclometallated ring may have very long excited state lifetimes.

[0057] Red-shifting the compounds by extending the conjugation with aromatic rings in the cyclometallated ring may result in more ligand-based emission with a long excited state lifetime, whereas red-shifting the emission with electron donating groups can red-shift the emission while maintaining strong MLCT properties and short excited state lifetime. For example, each of Compounds 12, 13, 16, and 17 have a very long excited state lifetime and a large amount of ligand based emission. Compound 20 has electron-donating groups that red-shift the emission but the compound maintains strong MLCT properties and a short excited state lifetime. Red- shifting the emission with electron donating groups can also raise the HOMO energy, which can allow for the compound to be a better charge trap. As a result, these compounds may provide devices having improved efficiency.

[0058] The compounds described herein emit with high energy, and therefore may be particularly useful as deep blue phosphorescent emitters in OLEDs.

[0059] The photoluminescent properties of several of the inventive compounds are

summarized below in Table 1.

TABLE 1.

[0060] (G) is Gaussian emission. 77K and room temperature (RT) emission in 2-methyl THF. PMMA films at 100:5 weight percent, dissolved in toluene and drop cast on quartz substrate. 77K transient also in 2-Methyl THF.

[0061] Organometallic compounds comprising an imidazole carbene ligand having a N- containing ring fused to the imidazole ring are provided. In one aspect, the organometallic compounds comprise an imidazole carbene ligand with a diazine ring fused to the imidazole, e.g., a pyrazine (1,4-diazine), a pyrimidine (1,3-diazine), or a pyridazine (1,2-diazine) ring may be fused to the imidazole ring of the imidazole carbene ligand. The compounds comprise a ligand L having the formula:

[0062] A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. Preferably, A is benzene. R 2 and RA may represent mono, di, tri or terra substitutions. Each of Ri, R 2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 2 and RA are optionally joined to form a fused ring. Each of Xi, X 2 , X 3 and X 4 are

independently selected from the group consisting of C and N. At least two of Xi, X 2 , X 3 and X 4 are N. The ligand L is coordinated to a metal M having an atomic number greater than 40. Preferably, the metal M is Ir or Pt. More preferably, the metal M is Ir. The bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0063] In one aspect, Ri is alkyl or cycloalkyl. [0064] In another aspect, Ri is aryl.

[0065] The Hammett sigma constant is a measurement of electron withdrawing and donating ability of a given substituent. See, e.g., Hansch, C. et al, Chem. Rev. 1991, 91, 165-195. A large negative sigma value implies high electron donating power relative to H. In one aspect, RA is an electron donating group with a Hammett sigma constant less than 0. Without being bound by theory, it is believed that incorporating an electron donating group having a Hammett sigma constant less than 0 may raise the HOMO energy level of the compound, which has a deep HOMO. In another aspect, RA is selected from the group consisting of alkyl, aryl

alkylamino, aryloxyl, and alkyloxyl.

[0066] In one aspect, the ligand L is selected from the group consisting of:

Formula II,

[0067] R 3 may represent mono, di, tri or tetra substitutions. R 3 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 3 are optionally joined to form a fused ring.

[0068] In one aspect, the compound is homoleptic. In another aspect, the compound is heteroleptic.

[0069] In another aspect, the compound has a formula selected from the group consisting of: Formula V,

Formula VI, and

Formula VII.

[0070] L' is a different ligand. m is 1, 2, or 3. Preferably, m is 3.

[0071] In one aspect, L' is a monoanionic bidentate ligand. In another aspect, L' is selected from the group consisting of:

[0072] R a , R b , and R c may represent mono, di, tri or tetra substitutions. R a , R b , and R c are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R a , R b , and R c are optionally joined to form a fused ring. [0073] Specific, non-limiting examples of organometallic compounds comprising an imidazole carbene ligand with a diazine ring fused to the imidazole ring are provided. In one aspect, the compound is selected from the group consisting of:

-fac -mer fac mer

Compound 1 Compound 2 Compound 3 Compound 4

Compound 5 Compound 6 Compound 7

[0074] In another aspect, the organometallic compounds comprise an imidazole carbene ligand with a pyridine ring fused to the imidazole ring of the imidazole carbene ligand. Preferably, the compound is selected from the group consisting of:

Compound 8 Compound 9 Compound 10

mer mer

fac Compound 1 1 Compound 12 Compound 13

Compound 14 Compound 15 Compound 16

Compound 17 Compound 18 Compound 19

Compound 23 Compound 24

fac- Compound 26

Compound 27

Compound 31 Compound 32

[0075] Additionally, a first device comprising an organic light emitting device is provided. The organic light emitting device further comprises an anode, a cathode and an organic layer, disposed between the anode and the cathode. The organic layer further comprises a compound comprising a ligand L having the formula:

Formula I.

[0076] A is a 5-membered or 6-membered carbocyclic or heterocyclic ring. R 2 and RA may represent mono, di, tri or tetra substitutions. Each of Ri, R 2 and RA is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R 2 and RA are optionally joined to form a fused ring. Each of Xi, X 2 , X 3 and X 4 are independently selected from the group consisting of C and N. At least two of Xi, X 2 , X 3 and X 4 are N. The ligand L is coordinated to a metal M having an atomic number greater than 40. The bidentate ligand may be linked with other ligands to comprise a tridentate, tetradentate, pentadentate or hexadentate ligand.

[0077] In one aspect, the ligand L is selected from the group consisting of Formula II, Formula III, and Formula IV, as described above.

[0078] In one aspect, the compound is homoleptic. In another aspect, the compound is heteroleptic.

[0079] In another aspect, the compound has a formula selected from the group consisting of Formula V, Formula VI, and Formula VII, as described above.

[0080] In one aspect, L' is a monoanionic bidentate ligand. In another aspect, L' is selected from the group consisting of:

30

[0081] R a , R b , and R c may represent mono, di, tri or tetra substitutions. R a , R b , and R c are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. Two adjacent substituents of R a , R b , and R c are optionally joined to form a fused ring.

[0082] Specific, non-limiting examples of organometallic compounds comprising an imidazole carbene ligand with a diazine ring fused to the imidazole ring are provided. In one aspect, the compound is selected from the group consisting of Compound 1 - Compound 7.

[0083] In one aspect, the organic layer is an emissive layer and the compound comprising the ligand L is an emissive dopant. In another aspect, the organic layer further comprises a host that comprises at least one of the chemical groups selected from the group consisting of:

[0084] Each of R"'i, R m 2 , R m 3, R m 4, R'" 5 , R" 6 and R'" 7 are independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof, k is an integer from 0 to 20. Each of X 1 , X 2 , X 3 , X 4 , X 5 , X 6 , X 7 and X 8 are independently selected from the group consisting of CH and N.

[0085] In one aspect, the first device is an organic light emitting device. In another aspect, the first device is a consumer product.

[0086] Another first device comprising an organic light emitting device is also provided. The organic light emitting device further comprises an anode, a cathode and an organic layer, disposed between the anode and the cathode. The organic layer further comprises a compound selected from the group consisting of Compound 8- Compound 32.

COMBINATION WITH OTHER MATERIALS [0087] The materials described herein as useful for a particular layer in an organic light emitting device may be used in combination with a wide variety of other materials present in the device. For example, emissive dopants disclosed herein may be used in conjunction with a wide variety of hosts, transport layers, blocking layers, injection layers, electrodes and other layers that may be present. The materials described or referred to below are non-limiting examples of materials that may be useful in combination with the compounds disclosed herein, and one of skill in the art can readily consult the literature to identify other materials that may be useful in combination.

HIL/HTL:

[0088] A hole injecting/transporting material to be used in some embodiments of the present invention is not particularly limited, and any compound may be used as long as the compound is typically used as a hole injecting/transporting material. Examples of the material may include, but are not limited to: a phthalocyanine or porphryin derivative; an aromatic amine derivative; an indolocarbazole derivative; a polymer containing fluorohydrocarbon; a polymer with

conductivity dopants; a conducting polymer, such as PEDOT/PSS; a self-assembly monomer derived from compounds such as phosphonic acid and sliane derivatives; a metal oxide derivative, such as MoO x ; a p-type semiconducting organic compound, such as 1,4,5,8,9,12- Hexaazatriphenylenehexacarbonitrile; a metal complex, and a cross-linkable compounds.

[0089] Examples of aromatic amine derivatives used in HIL or HTL may include, but are not limited to, the following general structures:

Ar 2 Ar 4

\ N— A 1 7 Ar

r— N

\

Ar 3 Ar

Ar ^ Ar 2 .Ar a

Ar 6 — N N— Ar 9 " '

\ / I I

Ar 7 Ar 8 Ar 7 Ar 8

[0090] Each of Ar 1 to Ar 9 is selected from the group consisting aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole,

benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine,

phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine, benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each Ar is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof.

[0091] In one aspect, Ar 1 to Ar 9 is independently selected from the group consisting of:

[0092] k is an integer from 1 to 20; X 1 to X 8 is CH or N; Ar 1 has the same group defined above.

[0093] Examples of metal complexes that may used in HIL or HTL include, but are not limited to, the following general formula:

[0094] M is a metal having an atomic weight greater than 40; (Y^Y 2 ) is a bidentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P, and S; L is a different ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

[0095] In one aspect, (Y^Y 2 ) is a 2-phenylpyridine derivative.

[0096] In another aspect, (Y^Y 2 ) is a carbene ligand.

[0097] In another aspect, M is selected from Ir, Pt, Os, and Zn.

[0098] In a further aspect, the metal complex has a smallest oxidation potential in solution vs. Fc + /Fc couple less than about 0.6 V.

Host:

[0099] The light emitting layer of the organic EL device in some embodiments of the present invention preferably contains at least a metal complex as light emitting material, and may contain a host material using the metal complex as a dopant material. Examples of the host material are not particularly limited, and any metal complexes or organic compounds may be used as long as the triplet energy of the host is larger than that of the dopant.

[0100] Examples of metal complexes used as host materials are preferred to have the following general formula:

[0101] M is a metal; (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S; L is a different ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal; and m+n is the maximum number of ligands that may be attached to the metal.

[0102] In one aspect, the metal complexes are:

[0103] (O-N) is a bidentate ligand, having metal coordinated to atoms O and N. [0104] In another aspect, M is selected from Ir and Pt. [0105] In a further aspect, (Y 3 -Y 4 ) is a carbene ligand.

[0106] Examples of organic compounds used as host materials include materials selected from the group consisting of: aromatic hydrocarbon cyclic compounds such as benzene, biphenyl, triphenyl, triphenylene, naphthalene, anthracene, phenalene, phenanthrene, fluorene, pyrene, chrysene, perylene, azulene; group consisting aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran,

benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole,

pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, indole, benzimidazole, indazole, indoxazine, benzoxazole, benzisoxazole, benzothiazole, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, pteridine, xanthene, acridine, phenazine, phenothiazine, phenoxazine, benzofuropyridine, furodipyridine, benzothienopyridine, thienodipyridine,

benzoselenophenopyridine, and selenophenodipyridine; and group consisting 2 to 10 cyclic structural units which are groups of the same type or different types selected from the aromatic hydrocarbon cyclic group and the aromatic heterocyclic group and are bonded to each other directly or via at least one of oxygen atom, nitrogen atom, sulfur atom, silicon atom, phosphorus atom, boron atom, chain structural unit and the aliphatic cyclic group. Each group is further substituted by a substituent selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof.

[0107] In one aspect, the host compound contains at least one of the following groups in the molecule:

[0108] R 1 to R 7 is independently selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfinyl, sulfonyl, phosphino, and combinations thereof. When it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

[0109] k is an integer from 0 to 20.

[0110] X 1 to X 8 is selected from CH or N.

HBL:

[0111] A hole blocking layer (HBL) may be used to reduce the number of holes and/or excitons that leave the emissive layer. The presence of such a blocking layer in a device may result in substantially higher efficiencies as compared to a similar device lacking a blocking layer. Also, a blocking layer may be used to confine emission to a desired region of an OLED.

[0112] In one aspect, the compound used in the HBL contains the same molecule used as host described above.

[0113] In another aspect, the compound used in the HBL contains at least one of the following groups in the molecule:

[0114] k is an integer from 0 to 20; L is a different ligand, m is an integer from 1 to 3. ETL:

[0115] The electron transport layer (ETL) may include a material capable of transporting electrons. The electron transport layer may be intrinsic (undoped) or doped. Doping may be used to enhance conductivity. Examples of the ETL material are not particularly limited, and any metal complexes or organic compounds may be used as long as they are typically used to transport electrons. [0116] In one aspect, the compound used in the ETL contains at least one of the following groups in the molecule:

[0117] R 1 is selected from the group consisting of hydrogen, deuterium, halide, alkyl, cycloalkyl, heteroalkyl, arylalkyl, alkoxy, aryloxy, amino, silyl, alkenyl, cycloalkenyl, heteroalkenyl, alkynyl, aryl, heteroaryl, acyl, carbonyl, carboxylic acids, ester, nitrile, isonitrile, sulfanyl, sulfmyl, sulfonyl, phosphino, and combinations thereof. When it is aryl or heteroaryl, it has the similar definition as Ar's mentioned above.

[0118] Ar 1 to Ar 3 has the similar definition as Ar's mentioned above.

[0119] k is an integer from 0 to 20.

[0120] X 1 to X 8 is selected from CH or N.

[0121] In another aspect, the metal complexes used in the ETL may contain, but are not limit to, the following general formula: n-L 2- ,

[0122] (O-N) or (N-N) is a bidentate ligand, having metal coordinated to atoms O, N or N, N; L is a different ligand; m is an integer value from 1 to the maximum number of ligands that may be attached to the metal. [0123] In any above-mentioned compounds used in each layer of OLED device, the hydrogen atoms can be partially or fully deuterated.

[0124] In addition to and / or in combination with the materials disclosed herein, many hole injection materials, hole transporting materials, host materials, dopant materials, exiton/hole blocking layer materials, electron transporting and electron injecting materials may be used in an OLED. Non- limiting examples of the materials that may be used in an OLED in combination with materials disclosed herein are listed in Table 2 below. Table 2 lists non-limiting classes of materials, non-limiting examples of compounds for each class, and references that disclose the materials.

(e.g., triazole, oxadiazole)

Red dopants

ectron transportng materas

EXPERIMENTAL Compound Examples

[0125] Example 1. Synthesis of Compound 1 and Compound 2

[0126] Synthesis of 3-chloro- V-methylpyrazin-2-amine. 2,3-dichloropyrazine (15 g, 101 mmol), methanamine (9.48 g, 101 mmol), and 100 mL of THF were stirred at room temperature for 24 h. The solvent was evaporated. The residue was dissolved in dichloromethane and washed with NaOH solution. The organic layer was separated and dried over MgSC^. After evaporating solvent, the residue was purified by column using dichloromethane as solvent to give 3-chloro-N-methylpyrazin-2-amine (6.3 g, 43.6% yield).

[0127] Synthesis of V 2 -methyl- V J -(m-tolyl)pyrazine-2,3-diamine. 3-chloro-N- methylpyrazin-2-amine (6 g, 41.8 mmol), m-toluidine (6.72 g, 62.7 mmol), 2,2'- bis(diphenylphosphino)-l,r-binaphthalene (0.520 g, 0.836 mmol), Pd 2 (dba) 3 (0.383 g, 0.418 mmol), and sodium t-butoxide (6.02 g, 62.7 mmol) were mixed in 200 mL of toluene and degassed for 20 minutes. The mixture was heated to reflux overnight. TLC indicated the reaction did not go to completion. 0.3 g of Pd 2 (dba) 3 and 0.56 g of BINAP was added and heated up to reflux again for 24 h. The reaction was filtered through Celite and concentrated. The residue was purified by column using 10% ethyl acetate and dichloromethane as solvent to give N -methyl-N 3 -(m-tolyl)pyrazine-2,3-diamine (2.7 g, 30.2%).

[0128] Synthesis of 3-m-tolyl-3H-imidazo[4,5-b]pyrazine methyl salt. N -methyl-N 3 -(m- tolyl)pyrazine-2,3-diamine (2.7 g, 12.6 mmol), concentrated HCl (1 mL), and 5 drops of formic acid were added in triethyl orthoformate (52 mL). The reaction was refluxed overnight. After cooled to room temperature, the white solid was collected by filtration. The solid was further purified by recrystallizing from ethanol to give 3-m-tolyl-3H-imidazo[4,5-b]pyrazine methyl salt (3 g, 80% yield).

compound 1 compound 2

[0129] Synthesis of Compound 1 and Compound 2. Carbene ligand (2.9 g, 9.79 mmol), Ir 2 (COD) 2 Cl 2 (1.093 g, 1.632 mmol), silver oxide (2.269 g, 9.79 mmol), triethylamine (1.365 ml, 9.79 mmol), and chlorobenzene (200 mL) were mixed in a 500 mL flask and degassed for 30 minutes. The mixture was then heated up to reflux for 24 h. After the reaction cooled to room temperature, it was filtered through Celite ® . The solvent was evaporated and purified by column using hexanes and ethyl aceate as solvent to give Compound 1 (0.9 g, 30%> yield) and Compound 2 (0.3 g, 10% yield).

[0130] Example 2. Synthesis of Compound 3 and Compound 4

[0131] Synthesis of 3-chloro- V-isopropylpyrazin-2-amine. 2,3-dichloropyrazine (10 g, 67.1 mmol), propan-2-amine (11.90 g, 201 mmol), and 50 mL of THF were mixed in a three-neck flask and stirred at room temperature overnight. The reaction was brought to reflux overnight. The reaction was cooled and the solvent was evaporated. The residue was dissolved in dichloromethane and the salt was filtered. The solvent was then evaporated and the residue was purified by column using dichloromethane as solvent to give 3-chloro-N-isopropylpyrazin-2- amine (6.2 g, 53.8%).

[0132] Synthesis of TV^-isopropyl-TV^-im-tolylJpyrazine-l^-diamine. 3-chloro-N- isopropylpyrazin-2-amine (6 g, 35.0 mmol), m-toluidine (5.62 g, 52.4 mmol), 2,2'- bis(diphenylphosphino)-l,r-binaphthalene (0.435 g, 0.699 mmol), Pd 2 (dba) 3 (0.320 g, 0.350 mmol), and sodium t-butoxide (5.04 g, 52.4 mmol) were mixed in 200 mL of toluene and degassed for 20 minutes. The mixture was heated to reflux for 5 h. The reaction was cooled to room temperature and water was added. The reaction mixture was extracted with

dichloromethane and washed with water. The crude was columned with 10% ethyl acetate and dichloromethane to give N -isopropyl-N 3 -(m-tolyl)pyrazine-2,3-diamine (7.4 g, 87%>).

[0133] Synthesis of carbene precursor. N -isopropyl-N 3 -(m-tolyl)pyrazine-2,3-diamine (7.3 g, 30.5 mmol), concentrated HC1 (2 mL), and 20 drops of formic acid were added in triethyl orthoformate (124 mL). The reaction was refluxed overnight. After it cooled to room temperature, the white solid was collected by filtration and washed with ethyl acetate to give desired product (7.3 g, 75% yield).

compound 3

[0134] Synthesis of Compound 3. Carbene ligand (3.8 g, 11.72 mmol), Ir 2 (COD) 2 Cl 2 (1.308 g, 1.953 mmol), silver oxide (2.72 g, 11.72 mmol), and DMF (Volume: 200 ml) were mixed in a 500 mL flask and degassed for 30 minutes. The mixture was then heated up to reflux for 24 h. After it cooled to room temperature, the reaction mixture was filtered through Celite ® . The solvent was then distilled under vacuum. The residue was dissolved in dichloromethane and washed with sodium hydroxide solution and dried over MgSC The solvent was evaporated and residue was purified by column using dichloromethane and 3 : 1 dichloromethane and hexanes as solvent to give Compound 3 (1 g, 27%).

compound 4

[0135] Synthesis of Compound 4. Carbene ligand (7 g, 21.59 mmol), Ir 2 (COD) 2 Cl 2 (2.065 g, 3.08 mmol), silver(I) oxide (5.00 g, 21.59 mmol), triethylamine (3.07 ml, 21.59 mmol) were mixed in 400 mL of chlorobenzene. The mixture was bubbled with nitrogen for 20 minutes. The reaction was then heated up to reflux for 24 h. After it cooled to room temperature, the mixture was filtered through Celite ® . The solvent was evaporated. The residue was purified by column using dichloromethane to 5% ethyl acetate and dichloromethane to give compound 4 (1.8 g, 62% yield).

[0136] Example 3. Synthesis of Compound 5

[0137] Synthesis of 3-chloro- V-phenylpyrazin-2-amine. Aniline (11.25 g, 121 mmol), dichloropyrazine (20 g, 134 mmol), sodium t-butoxide (15.48 g, 161 mmol) were stirred in toluene (300 mL) under nitrogen purging for 15 minutes. Pd 2 (dba) 3 (1.23g, 1.34 mmol) and BINAP (3.34 g, 5.47 mmol) were added. The reaction was heated to 90 °C for 5 h. After it cooled to room temperature, the reaction was filtered through Celite ® . After solvent evaporation, the residue was purified with column chromatography using 30% ethyl acetate in hexanes as solvent to give 3-chloro-N-phenylpyrazin-2-amine (4.5 g, 16.3% yield).

[0138] Synthesis of TV^-methyl-TV^-phenylpyrazine-l^-diamine. 3-chloro-N-phenylpyrazin- 2-amine (4.5 g, 21.22 mmol) was stirred with methyl amine (20.59 g, 20.9 mmol, 33 wt% in THF) under reflux overnight. The solvent was evaporated and the residue was purified by column chromatography using 50% ethyl acetate and hexanes to give N -methyl-N 3 - phenylpyrazine-2,3-diamine (2.4 g, 54.8%).

[0139] Synthesis of 3-phenyl-3H-imidazo[4,5-b]pyrazine methyl salt. N -methyl-N 3 - phenylpyrazine-2,3-diamine (2.5 g, 12.5 mmol), concentrated HCI (1 mL), and 5 drops of formic acid were added in triethyl orthoformate (52 mL). The reaction was refluxed overnight. After it cooled to room temperature, the white solid was collected by filtration. The solid was further purified by recrystallizing from ethanol to give 3-phenyl-3H-imidazo[4,5-b]pyrazine methyl salt (1.2 g, 34% yield).

compound 5

[0140] Synthesis of Compound 5. The carbene precursor (1.2 g, 4.25 mmol), silver oxide (0.99 g, 4.25 mmol), triethylamine (0.43 g, 4.25 mmol), Ir 2 (COD) 2 Cl 2 (0.475 g, 0.7 mmol) and chlorobenzene (50 mL) were added to the reaction flask and heated to reflux overnight. After it cooled to room temperature, the reaction mixture was filtered through Celite®. The solution was concentrated and purified by column using 5-20% of ethyl acetate and dichloromethane as solvent to give compound 5 (0.37 g, 32% yield).

[0141] Example 4. Synthesis of Compound 8 and Compound 9

[0142] Synthesis of 3-nitro-N-phenylpyridin-2-amine. 2-chloro-3-nitropyridine (25 g, 158 mmol), aniline (17.62 g, 189 mmol), and triethylamine (19.15 g, 189 mmol) were mixed in 1- butanol (500 mL). The reaction was heated to reflux overnight. After it cooled to room temperature, the solvent was distilled. The residue was purified by column chromatography using hexanes/ethyl acetate to give 3-nitro-N-phenylpyridin-2-amine (29 g, 85% yield).

[0143] Synthesis of 7V 2 -phenylpyridine-2,3-diamine. 3-nitro-N-phenylpyridin-2-amine (29 g, 135 mmol) and palladium on carbon (10 wt%, 3 g) in ethanol (200 mL) were hydrogenated on a Parr hydrogenator at 45 psi for 8 h. The catalyst was filtered. The solution was concentrated to give N -phenylpyridine-2, 3 -diamine (20 g, 80% yield).

[0144] Synthesis of V J -methyl- V 2 -phenylpyridine-2,3-diamine. Pd/C (10%, 1 1.49 g) was added to a three-neck flask. A gentle nitrogen flow was applied to the flask. Water (40 mL) and methanol (800 mL) were added to the flask. Then, N -phenylpyridine-2,3-diamine (20 g, 108 mmol), formaldehyde (8.76 g, 108 mmol), and ammonium formate (136 g, 2160 mmol) were added. The reaction was stirred at room temperature overnight. The solution was filtered through a Celite® plug. The filtrate was concentrated and water was added. The solution was extracted with dichloromethane. The combined organic layer was concentrated and purified by column chromatography (30% ethyl acetate in hexanes) to give N 3 -methyl-N -phenylpyridine- 2,3-diamine (12 g, 55.8% yield).

[0145] Synthesis of 3-phenyl-3H-imidazo[4,5-b] pyridine methyl salt. N 3 -methyl-N 2 - phenylpyridine-2,3-diamine (9 g, 45.2 mmol), concentrated HCl (2 mL), and 10 drops of formic acid were added in triethyl ortho formate (376 mL). The reaction was refluxed overnight. After it cooled to room temperature, the white solid was collected by filtration. The solid was further purified by recrystallizing from ethanol to give 3-phenyl-3H-imidazo[4,5-b]pyridine methyl salt (10 g, 79% yield).

compound 8 compound 9

[0146] Synthesis of Compound 8 and Compound 9. The carbene precursor (9 g, 32 mmol), silver oxide (7.42 g, 32 mmol), triethylamine (3.24 g, 32 mmol), Ir 2 (COD) 2 Cl 2 (3.57 g, 5.34 mmol) and chlorobenzene (500 mL) were added to the reaction flask and heated to reflux overnight. After it cooled to room temperature, the reaction mixture was filtered through Celite ® . The solution was concentrated and purified by column using dichloromethane as solvent to give Compound 8 (6 g, 70% yield) and Compound 9 (1 g, 10%> yield).

[0147] Example s. Synthesis of Compound 10

[0148] Synthesis of 3-nitro- V-(«i-tolyl)pyridine-2-amine. 2-chloro-3-nitropyridine (25 g, 158 mmol), m-toluidine (20.5 mL, 189 mmol), triethylamine (26.4 mL, 189 mmol), and 400 mL butanol were added to a 1 L 3 -neck round-bottom flask. The reaction mixture was heated overnight under nitrogen. The solvent was evaporated leaving a bright orange solid. The solid was triturated with hexanes and filtered. The filtrate was not pure and contained product, so it was evaporated and purified by column chromatography eluting with 10 and 20% ethyl acetate/hexanes. A total of 3.15 g was obtained from the column. The bulk of the material was dissolved in dichloromethane and washed twice with water, dried over magnesium sulfate, filtered, and evaporated to an orange solid (31.2 g). The total amount obtained was 34.35 g (95%).

[0149] Synthesis of 7V 2 -(ra-tolyl)pyridine-2,3-diamine. 10% palladium on carbon (10%, 1.84 g, 1.729 mmol) was added to a Parr Hydrogenator bottle. The bottle was purged with nitrogen and 3-nitro-N-(m-tolyl)pyridin-2-amine (17.97 g, 78 mmol) was added in 250 mL of ethanol. The material was hydrogenated on a Parr hydrogenator overnight. The reaction mixture was filtered through Celite ® , and the Celite ® was washed with dichloromethane. The filtrate was evaporated leaving a brown solid (15.44 g, 99%).

[0150] Synthesis of V 3 -methyl- V 2 -(«i-tolyl)pyridine-2,3-diamine. 600 mL of methanol and 24 mL water were added to a 3 -neck 2 L round bottom flask. Nitrogen was bubbled directly into the solution. Palladium on carbon was added (10%, 10.35 g, 9.73 mmol) while bubbling continued. Next, N 2 -(m-tolyl)pyridine-2,3-diamine (19.38 g, 97 mmol) and formaldehyde (37%, 14.48 mL, 195 mmol) were added. The reaction mixture was stirred under nitrogen for 3 h. Next, nitrogen was bubbled into the solution and ammonium formate (123 g, 1945 mmol) was added slowly. The reaction mixture was stirred under nitrogen overnight at room temperature. The reaction mixture was filtered through Celite ® and the Celite ® was washed with

dichloromethane. The filtrate was washed with water twice, and the organic layer was dried over magnesium sulfate, filtered, and evaporated. The residue was purified using column

chromatography eluting with 30% ethyl acetate/hexanes to isolate the desired product. The product was combined with material from other reactions and purified by column

chromatography eluting with 30% ethyl acetate/hexanes. A dark reddish-brown solid was obtained. The solid was recrystallized from boiling hexanes with a small amount of ethyl acetate to dissolve the solid. The product was filtered off as needles with some reddish color which were washed with hexanes, obtained 15.1 g.

[0151] Synthesis of 3-(«i-tolyl)-3H-imidazo [4,5-6] pyridine methyl salt. In a 1 L round bottom flask, N 3 -methyl-N 2 -(m-tolyl)pyridine-2,3-diamine (15.1 g, 70.8 mmol),

triethylorthoformate (589 ml, 3540 mmol), 15 drops of formic acid, and 3 mL of concentrated HC1 were added. The reaction mixture was heated to reflux overnight under nitrogen. The reaction mixture was cooled to room temperature, and a purple solid was filtered off. The material was recrystallized from boiling ethyl acetate with enough ethanol to dissolve it. The product was isolated as needles with a purple tinge (6.7 g, 32% yield).

fac

compound 10

[0152] Synthesis of Compound 10. 350 mL chlorobenzene was added to a 1 L 3-neck round bottom flask. Nitrogen was bubbled in directly, and the imidazole salt was added (6.7 g, 22.62 mmol) as well as Ir 2 (COD) 2 Cl 2 (2.52 g, 3.77 mmol), silver oxide (5.24 g, 22.62 mmol), and triethylamine (2.289 g, 22.62 mmol). The flask was covered with aluminum foil and the mixture refluxed overnight under nitrogen. The reaction mixture was cooled and filtered through a pad of Celite ® , the Celite ® rinsed with dichloromethane. The filtrate was evaporated and purified by column chromatography twice, eluting with dichloromethane both times. 1.63 g of material was obtained (50% yield).

[0153] Example 6. Synthesis of Compound 11

[0154] Synthesis of 4-azidodibenzo[6,i/]furan. Dibenzo[£,<i]furan and 114 mL THF were added to a 500 mL 3-neck round bottom flask. The solution was cooled in a dry ice/acetone bath under nitrogen. Next, butyllithium was added dropwise via dropping funnel. The reaction mixture was allowed to warm to room temperature overnight. It was cooled in a dry ice/acetone bath again, and 4-dodecylbenzenesulfonyl azide in 70 mL of THF was added dropwise via dropping funnel. The solution turned from yellow to orange after the addition. The cooling bath was removed, and the reaction mixture was stirred at room temperature for 3 h. Next, the reaction was quenched with water dropwise, diluted with IN HC1, and extracted with ether. The ether extracts were dried over magnesium sulfate, filtered, and evaporated. The residue was purified by column chromatography eluting with 5% dichloromethane/hexanes (7.39 g, 55% yield).

[0155] Synthesis of dibenzo[6,i ]furan-4-amine. Palladium hydroxide (20%, 0.75 g, 1.068 mmol) was added to a Parr hydrogenation bottle, and the bottle was purged with nitrogen. Next, 4-azidodibenzo[£,<i]furan (7.39 g, 35.3 mmol) and 150 mL ethanol were added, and the reaction mixture was hydrogenated on Parr hydrogenator overnight. The reaction mixture was filtered through a pad of Celite ® , and the Celite ® was washed with dichloromethane. The filtrate was evaporated, and the residue was purified by column chromatography eluting with 50% dichloromethane/hexanes (5.58 g, 86%).

[0156] Synthesis of V-(dibenzo[0,i ]furan-4-yl)-3-nitropyridin-2-amine. 2-chloro-3- nitropyridine (4.39 g, 27.7 mmol), dibenzo[¾,<i]furan-4-amine (5.58 g, 30.5 mmol), triethylamine (4.3 mL, 30.9 mmol), and butanol (90 mL) were mixed in a 250 mL round bottom flask. The reaction mixture was refluxed overnight under nitrogen. The solvent was evaporated, leaving an orange solid which was dried under vacuum. The solid was taken up in ethyl acetate, water was added and the layers were separated. The organic layer with washed with brine, dried over magnesium sulfate, filtered, and evaporated to a residue. The residue was purified on by column chromatography eluting with 10% ethyl acetate/hexanes followed by ethyl acetate (4.6 g, 54%).

[0157] Synthesis of V 2 -(dibenzo[0,i ]furan-4-yl)pyridine-2,3-diamine. 10% palladium on carbon (10%>, 0.50 g, 0.47 mmol) was added to a Parr hydrogenation bottle. The bottle was purged with nitrogen. Next, N-(dibenzo[¾, ]furan-4-yl)-3-nitropyridin-2-amine (3.8 g, 12.45 mmol) and 200 mL ethanol were added. The reaction mixture was hydrogenated overnight using a Parr hydrogenator. The reaction mixture was filtered through Celite® and the Celite® washed with dichloromethane and ethyl acetate. The filtrate was evaporated leaving a dark brown solid, which was not purified (3.32 g, 97%).

[0158] Synthesis of V 2 -(dibenzo[6,i ]furan-4-yl)- V 3 -methylpyridine-2,3-diamine. 100 mL methanol and 4 mL water were added to a 250 mL 3 -neck round bottom flask. Nitrogen was bubbled directly into the solution. Palladium on carbon was added (10%, 1.71 g, 1.607 mmol) as bubbling of nitrogen continued. Next, N 2 -(dibenzo[¾, ]furan-4-yl)pyridine-2,3-diamine (3.85 g, 13.98 mmol) and formaldehyde (37%, 2.08 mL, 28.0 mmol) were added, and the mixture was stirred for 2 h under nitrogen. Nitrogen was bubbled into the solution and ammonium formate (17.64 g, 280 mmol) was added. The reaction mixture was stirred overnight under nitrogen. The mixture was filtered through a pad of Celite®, and the Celite® washed with dichloromethane. The solution was washed with water, dried over magnesium sulfate, filtered, and evaporated. The material was purified by column chromatography eluting with 20% ethyl acetate/hexanes. The product was recrystallized from boiling hexanes and a small amount of dichloromethane

(0.77 g, 18% yield).

[0159] Synthesis of 3-(dibenzo [6,^ furan-4-yl)-3H-imidazo [4,5-6] pyridine methyl salt. N 2 -

(dibenzo[£, ]furan-4-yl)-N 3 -methylpyridine-2,3-diamine (0.77 g, 2.66 mmol),

triethylortho formate (22 mL, 132 mmol), 15 drops concentrated HC1, and 3 drops formic acid were added to a 100 mL round bottom flask. The reaction mixture was heated to reflux overnight under nitrogen, and a solid precipitated out. The solid was filtered; washed with a small amount of methanol, and dried under vacuum (0.3 g, 30%).

mer

compound 1 1

[0160] Synthesis of Compound 11. 20 mL of chlorobenzene was added to a 100 mL round- bottom flask, and was degassed by bubbling nitrogen into solvent. To the solvent was added the imidazole salt (0.30 g, 0.806 mmol), Ir 2 (COD) 2 Cl 2 (0.090 g, 0.134 mmol), silver oxide (0.187 g, 0.806 mmol), and triethylamine (0.112 mL, 0.806 mmol). The flask was covered with aluminum foil, and the mixture refluxed overnight under nitrogen. The next day, the mixture was cooled and filtered through a pad of Celite ® . The Celite ® pad was washed with dichloromethane, and the filtrate evaporated. The residue was purified by column chromatography eluting with 5% ethyl acetate/dichloromethane twice (70 mg, 48%).

[0161] Example 7. Synthesis of Compound 12 and Compound 13

[0162] Synthesis of 6-chloro-3-nitro- V-phenylpyridin-2-amine. A mixture of aniline (7.24 g, 78 mmol), triethylamine (13 mL, 93 mmol), and 2,6-dichloro-3-nitropyridine (15 g, 78 mmol) was stirred overnight in 500 mL ethanol at room temperature under nitrogen. The solid that formed was filtered off, washed with water and ethanol, and dried. The solid was purified by column chromatography eluting with 20% ethyl acetate/hexane (8.62 g, 44%).

[0163] Synthesis of 3-nitro-N-6-diphenylpyridin-2-amine. 6-chloro-3-nitro-N- phenylpyridin-2-amine (8.62 g, 34.5 mmol), phenylboronic acid (5.05 g, 41.4 mmol), dicyclohexyl(2',6'-dimethoxy-[l, -biphenyl]-2-yl)phosphine (0.567 g, 1.381 mmol), potassium phosphate tribasic monohydrate (23.85 g, 104 mmol), 300 mL toluene and 30 mL water were added to a 3 -neck 1000 mL round bottom flask. Nitrogen was bubbled directly into the mixture for 20 minutes. Pd 2 (dba) 3 (0.316 g, 0.345 mmol) was added and the mixture refluxed overnight under nitrogen. The reaction mixture was diluted with ethyl acetate/water. The layers were separated, and the aqueous layer was extracted with ethyl acetate. The organic layers were dried over magnesium sulfate, filtered, and evaporated to a residue. The residue was purified by column chromatography eluting with 20% ethyl acetate/hexanes initially, and ethyl acetate was added to flush off the product. The product was washed with hexanes (7.58 g, 75%).

[0164] Synthesis of V-2,6-diphenylpyridine-2,3-diamine. Palladium on carbon (10%, 0.8 g, 0.752 mmol) was added to a Parr Hydrogenator bottle. The bottle was purged with nitrogen, and 3-nitro-N-6-diphenylpyridin-2-amine (7.58 g, 26.0 mmol) in 150 mL of ethanol was added. The material was hydrogenated overnight on a Parr hydrogenator. The mixture was filtered through Celite ® to remove the palladium on carbon. The Celite® pad was washed with dichloromethane and evaporated to a dark brown solid (6.3 g, 93%).

[0165] Synthesis of V3-methyl- V-2,6-diphenylpyridine-2,3-diamine. 200 mL of methanol and 8 mL of water was added to a 500 mL 3 -neck round bottom flask. Nitrogen was bubbled into the liquid. Next, palladium on carbon was added (10%, 2.57 g, 2.41 1 mmol), followed by N-2,6-diphenylpyridine-2,3-diamine (6.3 g, 24.1 1 mmol) and formaldehyde in water solution (37%, 3.59 mL, 48.2 mmol). The mixture was stirred at room temperature under nitrogen for 3 h. Then, nitrogen was bubbled into the mixture and ammonium formate (30.4 g, 482 mmol) was added. The reaction mixture was stirred overnight at room temperature under nitrogen. Next, the reaction mixture was filtered through a pad of Celite® and washed Celite® with

dichloromethane. The filtrate was evaporated and the residue partitioned between ethyl acetate and water. The layers were separated and the aqueous layer extracted with ethyl acetate. The organic layers were dried over magnesium sulfate, filtered, and evaporated leaving a residue. The residue was purified by column chromatography eluting with 20% ethyl acetate/hexanes twice (2.57 g, 39%).

[0166] Synthesis of 3,5-diphenyl-3H-imidazo [4,5-6] yridine methyl salt. N 3 -methyl-N-2,6- diphenylpyridine-2,3-diamine (2.57 g, 9.33 mmol), triethyl orthoformate (100 mL, 601 mmol), 0.4 mL concentrated HCl, and a few drops of formic acid were added to a 500 mL round bottom flask. The mixture was heated to reflux overnight under nitrogen. The mixture was cooled, and a solid was filtered off and rinsed with hexanes. The solid was recrystallized from boiling ethyl acetate and a small amount of ethanol (1.3 g, 39%).

mer = compound 12

fac = compound 13

[0167] Synthesis of Compounds 12 and 13. 60 mL of chlorobenzene was added to a 250 mL round bottom flask. Nitrogen was bubbled into the chlorobenzene, and the imidazole salt (1.30 g, 3.64 mmol), Ir 2 (COD) 2 Cl 2 (0.406 g, 0.606 mmol), silver(I) oxide (0.843 g, 3.64 mmol), and triethylamine (0.507 mL, 3.64 mmol) was added to the flask. The flask was covered with aluminum foil, and the mixture heated to reflux overnight under nitrogen. The reaction mixture was filtered through Celite ® , washed Celite ® with dichloromethane. The filtrate was evaporated leaving a residue which was purified by column chromatography eluting with 70%

dichloromethane/hexanes. The first spot was collected cleanly as the mer isomer (Compound 12), 0.27 g. The second spot was collected and purified material again by column

chromatography eluting with 60 and 70% dichloromethane/hexanes, isolated as the fac isomer (Compound 13), 0.22 g. A total of 0.49 g was obtained (39% yield).

[0168] Example 8. Synthesis of Compound 14 and Compound 15

compound 14 compound 15

[0169] Synthesis of Compound 14 and Compound 15. The ligand precursor was prepared the same way as the ligand for Compound 8. The carbene precursor (4.4 g, 14.2 mmol), silver oxide (3.3 g, 14.2 mmol), triethylamine (1.44 g, 14.2 mmol), Ir 2 (COD) 2 Cl 2 (1.59 g, 2.4 mmol) and chlorobenzene (300 mL) were added to the reaction flask and heated to reflux overnight under nitrogen. After it cooled to room temperature, the reaction mixture was filtered through Celite ® . The solution was concentrated and purified by column using dichloromethane as solvent to give Compound 14 (1.3 g, 30% yield), then 5% ethyl acetate in dichloromethane to give Compound 15 (1.8 g, 42% yield).

[0170] Example 9. Synthesis of Compound 16 and Compound 17

[0171] Synthesis of [l,l'-biphenyl]-3-amine. Palladium on carbon (10%, 0.70 g, 0.658 mmol) was added to a Parr hydrogenator bottle. The bottle was purged with nitrogen. Next, 3- nitro-l,l'-biphenyl (10 g, 50.2 mmol) and 190 mL ethanol were added to the bottle. The material was hydrogenated on a Parr hydrogenator. After 3 h, the reaction mixture was filtered through Celite ® and the Celite ® washed with dichloromethane. The filtrate was evaporated, obtained a brown oil, 8.69 g, assume quantitative yield (8.49 g).

[0172] Synthesis of V-([l,l'-biphenyl]-3-yl)-3-nitropyridin-2-amine. [l,l * -biphenyl]-3- amine (8.49 g, 50.2 mmol), 2-chloro-3-nitropyridine (7.23 g, 45.6 mmol), triethylamine (6.99 mL, 50.2 mmol), and 200 mL of butanol were added to a 1 L round bottom flask. The mixture was refluxed overnight under nitrogen. The next day the solvent was evaporated, and the residue was taken up in dichloromethane and washed twice with water. The organic layer was dried over magnesium sulfate, filtered, and evaporated leaving an orange oil. 14.61 g, assume quantitative yield (13.29 g).

[0173] Synthesis of V 2 -([l,l'-biphenyl]-3-yl)pyridine-2,3-diamine. 1.40 g of palladium on carbon (10%, 1.40 g, 1.316 mmol) was added to a Parr Hydrogenation bottle. The bottle was purged with nitrogen, and N-([l, -biphenyl]-3-yl)-3-nitropyridin-2-amine was added (13.29 g, 45.6 mmol) in 175 mL ethanol and 25 mL THF. The reaction mixture was hydrogenated overnight using a Parr hydrogenator. The reaction mixture was filtered through Celite ® , washed Celite ® with dichloromethane, evaporated filtrate to yield a tan solid with quantitiative yield.

[0174] Synthesis of V 2 -([l,l'-biphenyl]-3-yl)- V3-methylpyridine-2,3-diamine. 325 mL of methanol and 13 mL of water were added to a 1 L 3 -neck round bottom flask. Nitrogen was bubbled into the liquid. Palladium on carbon was added (10%>, 5.55 g, 5.22 mmol) followed by N 2 -([l, -biphenyl)pyridine-2,3-diamine (13.63 g, 52.2 mmol) and formaldehyde in water solution (37%, 7.77 mL, 104 mmol). The mixture was stirred at room temperature under nitrogen for 2 h, then nitrogen was bubbled into the mixture and added ammonium formate (65.8 g, 1043 mmol). The reaction mixture was stirred overnight at room temperature under nitrogen. The mixture was filtered through a pad of Celite ® , and washed Celite ® with dichloromethane. The filtrate was evaporated and the residue partitioned between dichloromethane and water. The layers were separated and the aqueous layer extracted with dichloromethane. The organic layers were dried over magnesium sulfate, filtered, and evaporated leaving a brown oil. The material was purifed by column chromatography eluting with 30% ethyl acetate/hexanes to obtain product

(5.37 g, 37%).

[0175] Synthesis of 3-([l,l'-biphenyl]-3-yl)-3H-imidazo[4,5-6]pyridine methyl salt. N 2 -

([l, -biphenyl]-3-yl)-N3-methylpyridine-2,3-diamine (5.37 g, 19.50 mmol), triethyl

orthoformate (162 mL, 975 mmol), 1.0 mL concentrated HCl, and 8 drops of formic acid were added in a 500 mL round bottom flask. The mixture was heated to 85 °C overnight under nitrogen. A solid was filtered off and washed with ethyl acetate. The solid was recrystallized from ethyl acetate and small amount of ethanol (3.0 g, 43%).

mer = compound 16

fac = compound 17

[0176] Synthesis of Compound 16 and Compound 17. 120 mL of chlorobenzene was added to a 250 mL round bottom flask. Nitrogen was bubbled into the chlorobenzene, and the imidazole salt (3.00 g, 8.40 mmol), Ir 2 (COD) 2 Cl 2 (0.937 g, 1.400 mmol), silver(I) oxide (1.946 g, 8.40 mmol), and triethylamine (1.170 mL, 8.40 mmol) were added to the flask. The flask was covered with aluminum foil, and the mixture heated to reflux overnight under nitrogen. The reaction mixture was filtered through Celite ® , and then the Celite ® was washed with

dichloromethane. The filtrate was evaporated, the residue purified by silica gel plug and eluted with dichloromethane. The material was collected and purified by column chromatography eluting with 80% dichloromethane/hexanes followed by pure dichloromethane. The first compound was collected as the mer isomer, Compound 16 (1 g). The second compound was collected as fac isomer isomer which was purified by column chromatography eluting with dichloromethane Compound 17 (1 g). The total amount of material obtained is 2 g, 68% yield.

[0177] Example 10. Synthesis of Compound 18 and Compound 19

[0178] Synthesis of 5-methyl-3-nitro- V-(«i-tolyl)pyridine-2-amine. A mixture of 2-chloro- 5-methyl-3-nitropyridine (13 g, 75 mmol), triethylamine (12.6 mL, 90 mmol), and m-toluidine (9.8 mL, 90 mmol) in 200 mL butanol was heated overnight under nitrogen. The solvent was evaporated, and the residue dissolved in dichloromethane. The organic layer was washed twice with water, brine, dried over magnesium sulfate, filtered, and evaporated (15.5 g, 85%).

[0179] Synthesis of 5-methyl- V 2 -(«i-tolyl)pyridine-2,3-diamine. Palladium on carbon (10%, 1.55 g, 1.456 mmol) was added to a Parr Hydrogenator bottle. The bottle was purged with nitrogen. Then, 5-methyl-3-nitro-N-(m-tolyl)pyridin-2-amine (15.5 g, 63.7 mmol) in 90 mL of ethanol and 90 mL of THF was added. The material was hydrogenated overnight on a Parr Hydrogenator. The mixture was filtered through Celite® to remove the palladium on carbon. The Celite® pad was washed with dichloromethane and evaporated to a solid(13.5 g, 99%).

[0180] Synthesis of V-3,5-dimethyl- V 2 («i-tolyl)pyridine-2,3-diamine. 400 mL of methanol and 16 mL of water were added to a 1 L 3 -neck round bottom flask. Nitrogen was bubbled into the liquid and palladium on carbon was added (10%, 6.71 g, 6.30 mmol). Then, 5-methyl-N 2 -(m- tolyl)pyridine-2,3-diamine (13.44 g, 63.0 mmol) and formaldehyde in water solution (37%, 9.38 mL, 126 mmol) were also added. Methanol (100 mL) was used to aid in the transfer of the diamine. The mixture was stirred at room temperature under nitrogen for 2 h, then nitrogen was bubbled into mixture and ammonium formate (79 g, 1260 mmol) was added. The reaction mixture was stirred overnight at room temperature under nitrogen for one week. The reaction mixture was filtered through Celite® and the Celite® washed with dichloromethane. The filtrate was evaporated, and water was added. The mixture was extracted twice with dichloromethane, dried over magnesium sulfate, filtered, and evaporated. The residue was purified by column chromatography eluting with 30% ethyl acetate/hexanes to give product (5.31 g, 37%).

[0181] Synthesis of 6-methyl-3-(«i-tolyl)-3H-imidazo [4,5-6] yridine methyl salt. N-3,5- dimethyl-N 2 (m-tolyl)pyridine-2,3-diamine (5.31 g, 23.36 mmol), triethyl orthoformate (194 mL, 1 168 mmol), 0.8 mL concentrated HC1, and 6 drops of formic acid were added to a 500 mL round bottom flask. The mixture was heated to 85 °C overnight under nitrogen. The reaction mixture was cooled in an ice bath and diluted with ethyl acetate. A solid was filtered off, rinsed with ethyl acetate and dried in a vacuum oven (2.66 g, 37%).

mer = compound 18

fac = compound 19 [0182] Synthesis of Compound 18 and Compound 19. 120 mL of chlorobenzene was added to a 250 mL round bottom flask. Nitrogen was bubbled into the chlorobenzene and the imidazole salt (2.66 g, 8.60 mmol), Ir 2 (COD) 2 Cl 2 (0.960 g, 1.434 mmol), silver(I) oxide (1.993 g, 8.60 mmol), and triethylamine (1.199 mL, 8.60 mmol) were added to the flask. The flask was covered with aluminum foil and the mixture heated to reflux overnight under nitrogen. The reaction mixture was filtered through Celite ® , and the Celite ® was washed with dichloromethane. The filtrate was evaporated and the residue was purified by column eluting with

dichloromethane. The material was collected as a mixture of mer and fac. The mixture was purified by column chromatography eluting with 50% ethyl acetate/hexanes to isolate the mer isomer which was purified again by column chromatography eluting with 5:2:3 hexanes:ethyl acetate: dichloromethane. A total of 1.04 g of the mer isomer, Compound 18 was isolated. Next, dichloromethane was eluted to isolate the fac isomer, Compound 19 (0.61 g). The total amount of material obtained is 1.65 g, 64% yield.

[0183] Example 11. Synthesis of Compound 20

Compound 20

[0184] Synthesis of Compound 20. Iridium dimer (1 g, 1.493 mmol), l-(2,3- dihydrobenzo[b][l,4]dioxin-6-yl)-3-methyl-lH-imidazo[4,5-b]p yridin-3-ium chloride (3.67 g, 12.10 mmol) and silver(I) oxide (2.77 g, 11.95 mmol) were added to 75 mL DMF and degassed with nitrogen for 30 minutes. Reaction mixture was heated to reflux for 24 h. Upon cooling to room temperature, the reaction mixture was diluted with 1 :2 mixture of ether and hexanes (200 mL) and filtered through a Celite ® plug. Compound 20 (1.5g, 51%> yield) was finally purified by column chromatography over silica gel using THF/hexanes as eluent.

[0185] Example 12. Synthesis of Compound 21

[0186] Synthesis of V-ethyl-3-nitropyridin-2-amine. 2-Chloro-3-nitropyridine (20.00 g, 126 mmol) was added to ethylamine in ethanol (40 mL, 80 mmol) at room temperature and kept overnight. The solution was evaporated, the residue was diluted with 150 mL of EtOAc, washed with aqueous NaHC0 3 and purified by column chromatography on silica gel (hexane/ethyl acetate 4/1) to give yellow solid (19.5 g, 92%).

[0187] Synthesis of V 2 -ethylpyridine-2,3-diamine. N-ethyl-3-nitropyridin-2-amine (19.50 g, 117 mmol) was dissolved in 200 mL of ethanol at room temperature with suspended palladium on carbon 10% (1 g, 9.40 mmol). A solution of hydrazine (14.95 g, 467 mmol) in 50 mL of ethanol was added dropwise at room temperature, and reaction was stirred overnight. Filtering through Celite ® pad and evaporation provided N 2 -ethylpyridine-2,3-diamine as a dark red solid (12 g, 75%).

[0188] Synthesis of V 2 -ethyl- V 3 -phenylpyridine-2,3-diamine. N 2 -ethylpyridine-2,3-diamine (16.00 g, 117 mmol) and iodobenzene (19.61 mL, 175 mmol) were suspended in 300 mL of toluene. 8,8'-Bis(diphenylphosphino)-l, -binaphthalene (BINAP) (2.179 g, 3.50 mmol) and Pd 2 dba 3 (2.136 g, 2.333 mmol) were added, followed by sodium 2-methylpropan-2-olate (16.81 g, 175 mmol). The reaction flask was filled with nitrogen, stirred and refluxed overnight. The reaction mixture was cooled down, filtered through a silica plug and evaporated. The residue was purified by column chromatography on silica gel (hexane/ethyl acetate 4/1) to provide N 2 - ethyl-A^-phenylpyridine^, 3 -diamine as a brown solid (8.5 g, 34%).

[0189] Synthesis of 3-chloro-3-ethyl-l-phenyl-2,3-dihydro-lH-imidazo[4,5-b]pyrid in-3- ium-2-ide. A^-ethyl-A^-phenylpyridine- ^-diamine (8.5 g, 40 mmol), concentrated HCl (6 mL), and 4 mL of formic acid were added to the triethyl ortho formate (376 mL). The reaction was refluxed overnight. After it cooled to room temperature, the beige solid was collected by filtration. The solid was further purified by recrystallizing from ethanol to give 3-chloro-3-ethyl- l-phenyl-2,3-dihydro-lH-imidazo[4,5-b]pyridin-3-ium-2-ide (9.4 g, 91% yield).

mer

compound 21

[0190] Synthesis of Compound 21. Iridium dimer (1.00 g, 1.493 mmol), carbene ligand precursor (2.327 g, 8.96 mmol) and silver(I) oxide (2.076 g, 8.96 mmol) were added to 166 mL DMF and degassed with bubbled nitrogen for 30 minutes. The reaction mixture was heated to reflux for 24 h. Upon cooling, reaction mixture was filtered through a Celite® plug and organic solvents were removed from filtrate via distillation. Crude product was dissolved in

dichloromethane, washed with dilute Na 2 C0 3 solution and dried. Compound 21 (0.4 g, 31% yield) was obtained after column chromatography of crude material using dichloromethane as solvent.

[0191] Example 13. Synthesis of Compound 22

[0192] Synthesis of V-(benzo[d] [l,3]dioxol-5-yl)-3-nitropyridin-2-amine. A 500 mL round bottom flask was charged with 2-chloro-3-nitropyridine (12.0 g, 76.0 mmol), 3,4- (methylenedioxy)aniline (12.97 g, 95.0 mmol), sodium acetate (7.76 g, 95.0 mmol) and acetic acid (200 mL). This was stirred at reflux for 6 h. The solvent was evaporated on a rotovap, and the crude product was column chromatographed with silica gel using a mobile phase gradient of 50-100% dichloromethane in hexane to give N-(benzo[d][l,3]dioxol-5-yl)-3-nitropyridin-2- amine (13.1 g, 67%>) as a red solid.

[0193] Synthesis of 7V 2 -(benzo[d] [l,3]dioxol-5-yl)pyridine-2,3-diamine. The N-

(benzo[d][l,3]dioxol-5-yl)-3-nitropyridin-2-amine was hydrogenated in a 1 : 1 mixture of ethyl acetate and ethanol using Pd/C 10%> (2 g) under 35 psi of hydrogen. The product was chromatographed using a gradient of 50-100% ethyl acetate in dichloromethane to afford N 2 - (benzo[d][l,3]dioxol-5-yl)pyridine-2,3-diamine.

[0194] Synthesis of ^-(benzoIdl ll^ldioxol-S-ylJ-TN^-isopropylpyridine-l^-diamine. The

N 2 -(benzo[d][l,3]dioxol-5-yl)pyridine-2,3-diamine (8.5 g, 37.1 mmol) was dissolved in dichloromethane (150 mL). Acetone (4.1 mL, 55.6 mmol), sodium triacetoxyborohydride (11.79 g, 55.6 mmol) and acetic acid (4.2 mL, 74.2 mmol) were added to it. This was stirred at ambient temperature for 18 h. The mixture was washed with IN NaOH and then washed with water. The organic layer was concentrated in vacuo and chromatographed using a gradient of 0-10% ethyl acetate in dichloromethane to give N 2 -(benzo[d][l,3]dioxol-5-yl)-N 3 -isopropylpyridine-2,3- diamine (7.8 grams, 78%).

[0195] Synthesis of 3-(benzo[d] [l,3]dioxol-5-yl)-l-isopropyl-3H-imidazo[4,5-b]pyridin-l- ium chloride. The diamino pyridine (7.78 g, 28.7 mmol) was stirred in triethylorthoformate (189 mL). Concentrated HC1 (2.4 mL) and formic acid (11 xL) were added and this was stirred at reflux overnight. The mixture was concentrated in vacuo and hexane was then added to give 3-(benzo[d][l,3]dioxol-5-yl)-l-isopropyl-3H-imidazo[4,5-b]py ridin-l-ium chloride (6.81 g, 75%>) as a pink powder which was filtered and washed with hexane.

compound 22

[0196] Synthesis of Compound 22. Iridium dimer (1 g, 1.493 mmol), 3-(benzo[d][l,3]dioxol- 5-yl)-l-isopropyl-3H-imidazo[4,5-b]pyridin-l-ium chloride (3.37 g, 11.95 mmol), and silver(I) oxide (2.80 g, 12.10 mmol) were added to 15 mL degassed DMF in a three neck flask. The reaction mixture was degassed further for another 20 minutes and heated to 150° C for 24 h. Crude reaction mixture was filtered through a Celite® plug and solvents were removed under reduced pressure. Compound 22 (0.9 g, 58%) was isolated from crude by column

chromatography over silica gel using THF/ dichloromethane/ hexanes as eluent.

[0197] Example 14. Synthesis of Compound 24

[0198] Synthesis of 3-nitro- V, V-diphenylaniline. A I L round bottom flask was charged with diphenylamine (13.29 g, 79.0 mmol), l-iodo-3 -nitrobenzene (19.56 g, 79.0 mmol), palladium (II) acetate (0.70 g, 3.12 mmol), biphenyl-2-dicyclohexylphosphine (2.19 g, 6.25 mmol), sodium tert-butoxide (10.48 g, 109 mmol) and toluene (400 mL). This was stirred at reflux for 18 h. The mixture was then filtered. The filtrate was concentrated in vacuo, and the crude product was chromatographed (silica gel) using a gradient of 10-20% dichloromethane in hexane to give 3-nitro-N,N-diphenylaniline (14.15 g, 62%) as an orange solid.

[0199] Synthesis of TN^^-diphenylbenzene-l^-diamine. A hydrogenation bottle was charged with 3-nitrotriphenylamine (14.0 g, 48.2 mmol), Pd/C 10% (3 g) and ethyl acetate (300 mL). This was shaken under 40 psi of hydrogen for 1 h. The mixture was filtered and the filtrate was chromatographed using a gradient of 20-100% dichloromethane in hexane to give N l ,N l - diphenylbenzene- 1,3 -diamine (10.97 g, 87.4% yield).

[0200] Synthesis of 2-fluoro-3-iodopyridine. A I L 2-necked flask was charged with 100 mL of a 2 N solution of lithium diisopropylamide and 400 mL of tetrahydrofuran. This was cooled to " 72 °C and 2-fluoropyridine (19.42 g, 200 mmol) dissolved in 100 mL of tetrahydrofuran was added dropwise. This was stirred at " 70 °C for 4 h before dropwise addition of 51 g (200 mmol) of iodine dissolved in 150 mL of tetrahydrofuran. This was stirred for 1 h before being quenched with water. The mixture was diluted with ethyl acetate and aqueous sodium bisulfite. The organic layer was evaporated in vacuo and the product was distilled on a Kugelrohr yielding 2- fluoro-3-iodopyridine (27.0 g, 60.6% yield).

[0201] Synthesis of 3-iodo- V-methylpyridin-2-amine. A I L round bottom flask was charged with 2-fluoro-3-iodopyridine (27.0 g, 121 mmol) and 500 mL of 40%> aqueous solution of methylamine. This was stirred at reflux for 4 h before being cooled to ambient temperature. The product was extracted with dichloromethane. Evaporation of the dichloromethane gave 3- iodo-N-methylpyridin-2-amine (26.8 g, 95 %> yield).

[0202] Synthesis of V 3 -(3-(diphenylamino)phenyl)- V 2 -methylpyridine-2,3-diamine. A I L round-bottomed flask was charged with 3-iodo-N-methylpyridin-2-amine (8.95 g, 38.3 mmol), N l ,N l -diphenylbenzene 1 ,3 -diamine (9.96 g, 38.3 mmol), dicyclohexyl(2',4',6'-triisopropyl -\ Ι ,Γ- biphenyl]-2-yl)phosphine (0.183 g, 0.384 mmol) and sodium 2-methylpropan-2-olate (5.15 g, 53.6 mmol) in toluene (500 mL). Nitrogen was bubbled through for 10 minutes. Then Pd 2 dba 3 (88 mg, 0.10 mmol) was added and this was stirred at 120 C for overnight. The mixture was then filtered and the filtrate was concentrated and chromatographed using a mobile phase gradient of 0-20% ethyl acetate in dichloromethane to give N 3 -(3-(diphenylamino)phenyl)-N 2 - methylpyridine-2, 3 -diamine (12.2 g, 91% yield).

Θ

I

[0203] Synthesis of l-(3-(diphenylamino)phenyl)-3-methyl-lH-imidazo[4,5-b]pyridi n-3- ium chloride. A 500 mL round bottom flask was charged with N 3 -(3-(diphenylamino)phenyl)- N 2 -methylpyridine-2,3-diamine (12.1 g, 33.0 mmol), triethoxymethane (150 mL), cone. HCL (3 mL, 12N) and formic acid (0.10 mL). This was stirred at reflux overnight. The mixture was then cooled to ambient temperature and the product was filtered and washed with hexane to give l-(3-(diphenylamino)phenyl)-3-methyl-lH-imidazo[4,5-b]pyridi n-3-ium chloride as a white powder (9.3 g, 68%).

compound 24

[0204] Synthesis of Compound 24. Dimethylformamide (250 mL), l-(3- (diphenylamino)phenyl)-3-methyl-lH-imidazo[4,5-b]pyridin-3-i um, CI- (8.7 g, 21.1 mmol), Silver (I) oxide (5.10 g, 22.0 mmol) and the iridium dimer (2.02 g, 3.0 mmol) were placed into a 500 mL 2-necked round bottom flask. This was stirred at an internal temperature of 145 °C for 20 h. The mixture was then filtered through Celite ® and the cake was washed with

dichloromethane. The filtrate was concentrated in vacuo and the crude product was purified on a silica gel column eluted with a gradient of 0-3% ethyl acetate in dichloromethane giving

Compound 24 (1.40 g, 17.5% yield) as a yellow solid.

[0205] Example 15. Synthesis of Compound 25

[0206] Synthesis of Compound 25. Carbene ligand precursor (1 g, 3.56 mmol), iridium chloro-bridged dimer (0.877 g, 0.445 mmol) and silver oxide (0.824 g, 3.56 mmol) were mixed in DMF (50 mL) and re fluxed for 4 h. The mixture was cooled to room temperature and monitored by TLC. The reaction was stopped and filtered through a Celite ® plug.

Dichloromethane was added and mixture was washed with LiCl solution three times and dried over MgS0 4 . The solvent was evaporated. The residue was purified by a triethylamine treated column using 1 :2 dichloromethane/hexanes as solvent to give Compound 25 (0.75 g, 73% yield).

[0207] Example 16. Synthesis of Compound 26

compound 25 compound 26

[0208] Synthesis of Compound 26. Compound 25 (1.3 g, 1.1 mmol) was dissolved in DMSO (80 mL) and degassed with nitrogen. The compound was isomerized under UV irradiation. The reaction was monitored by NMR. After the reaction was complete, the reaction mixture was poured into water. The precipitate was collected by filtration. The solid was further purified by a short column to give Compound 26 (1.0 g, 77% yield).

[0209] Example 17. Synthesis of Compound 28

[0210] Synthesis of V 3 -isopropyl- V 2 -phenylpyridine-2,3-diamine. N 2 -phenylpyridine-2,3- diamine (14.1 g, 76 mmol) and acetone (8.39 mL, 114 mmol) was added to a solution of acetic acid and dichloromethane. Sodium triacetoxyborohydride (22.59 g, 107 mmol) was added to the reaction mixture and stirred overnight at room temperature. Reaction mixture was quenched with IN HCl. Organic layer was extracted with ethyl acetate. Ethyl acetate solution was washed with IN sodium hydroxide solution followed by brine and dried over anhd. MgS0 4 . N 3 - isopropyl-N 2 -phenylpyridine-2,3-diamine (16.3 g, 94% yield) was isolated from crude by column chromatography using hexanes and ethyl acetate as eluent.

[0211] Synthesis of l-isopropyl-3-phenyl-3H-imidazo[4,5-b]pyridin-l-ium chloride. N 3 - isopropyl-N 2 -phenylpyridine-2,3-diamine (10 g, 44.0 mmol), triethoxymethane (293 mL, 1760 mmol), formic acid (0.017 mL, 0.440 mmol) and hydrogen chloride (4.24 mL, 44.0 mmol) were mixed together and heated to reflux overnight. The reaction mixture was cooled to room temperature and the precipitate was filtered off. The solid product was collected and washed with hexanes. l-isopropyl-3-phenyl-3H-imidazo[4,5-b]pyridin-l-ium chloride (8.1 g, 67% yield) was isolated as white crystalline solid after recrystallization from boiling ethanol.

Ag 2 0

[0212] Synthesis of Compound 28. Iridium chloro-bridged dimer (2 g, 1.013 mmol), silver(l) oxide (0.939 g, 4.05 mmol) and l-isopropyl-3-phenyl-3H-imidazo[4,5-b]pyridin-l-ium chloride (1.1 1 g, 4.05 mmol) were added to 100 mL DMF and degassed for 30 minutes by bubbling nitrogen gas. The reaction mixture was heated to 50 °C for 1 h. Crude reaction mixture was poured into 200 mL 3 : 1 mixture of hexanes and ether. Precipitate thus obtained was filtered through a Celite® pad. Organic solvent was removed under reduced pressure to give a light yellow color crude product. Crude mixture of compounds was photoisomerized in 100 mL DMSO. The DMSO solution was poured over 400 mL ice water and solids were collected by filtration. Compound 28 (0.15 g, 7% yield) thus obtained was further purified by sublimation under high vacuum.

[0213] Example 18. Synthesis of Compound 29 and Compound 30

[0214] Synthesis of V-methyl-3-nitropyridin-2-amine. Methylamine (33% in EtOH) (1 10 mL, 883 mmol) was placed in a 500 mL three necked round bottom flask. It was cooled to 0 °C using ice bath. 2-chloro-3-nitropyridine (20 g, 126 mmol) was added to the above solution in portions as this is an exothermic reaction. After the addition was complete the reaction mixture was stirred for 2 h at 0 °C and later 1 h at room temperature. Solvent was concentrated and residue was taken in 500 mL of water and extracted with EtOAc 3 x 150 mL. Combine organic layer was dried over Na2SC"4, filtered and concentrated to give a bright orangish yellow solid

(19 g , 98.5%).

[0215] Synthesis of V 2 -methylpyridine-2,3-diamine. Palladium (0.924 g, 0.868 mmol) was added to a three necked 1 L round bottom flask equipped with a condenser and flow of N2, and it was wet by adding a few mL of water. Then, N-methyl-3-nitropyridin-2-amine (19.0 g, 124 mmol) dissolved in ethanol (130 mL) was added. Hydrazine (15.41 ml, 496 mmol) was added to the above solution dropwise over a period of 20 minutes with continuous stirring. The reaction was exothermic, and ¾ gas evolved during the reaction. The reaction mixture was stirred at room temperature for about 2 h. The color of the reaction changed from yellow to colorless. Completion of the reaction was checked by TLC. Pd was filtered on a tightly packed Celite ® plug. The Celite ® was first washed with DCM, and Pd was filtered off. A little bit of Celite ® was placed on the top of Pd for safety, and it was washed with DCM until all the product was washed off of the Celite ® . Combined solvent was concentrated and residue was taken in EtOAc washed with ¾(). NaCl solid was added to remove any left over hydrazine. EtOAc was dried on Na2SC>4, filtered and concentrated to give a dark brown solid (11.95 g; 78.25%).

[0216] Synthesis of V 2 -methyl- V 3 -phenylpyridine-2,3-diamine. N 2 -methylpyridine-2,3- diamine (11.95 g, 97 mmol), iodobenzene (16.22 ml, 146 mmol), sodium 2-methylpropan-2- olate (13.99 g, 146 mmol), 8,8 * -bis(diphenylphosphino)-l,r-binaphthalene (BINAP) (60.4 g, 97 mmol) with toluene (400 mL) were added to a three necked 1L round bottom flask. The reaction was degassed with N2 for 20 minutes. Pd 2 (dba)3 (1.777 g, 1.941 mmol) was added and the reaction mixture was refluxed for 20h. The reaction mixture was concentrated to dryness.

Residue was dissolved in EtOAc. It was not clear solution, but a suspension was obtained and then filtered through a silica gel plug. The desired product was concentrated and recrystallized from DCM/hexanes providing a yield of 6.45 g, 33.3%.

[0217] Synthesis of carbene precursor. N^methyl-A^-phenylpyridine^^-diamine (6.45 g, 32.4 mmol) and triethoxymethane (269 mL, 1619 mmol) were added to a 500 mL three necked round bottom flask, followed by the addition of hydrogen chloride (4.6 mL, 32.4 mmol) and formic acid (3.1 mL, 32.4 mmol) under N 2 at room temperature. The reaction was heated to 80 °C overnight and stirred under nitrogen. After 18 h, a blue solution with a solid was obtained. The reaction was cooled to room temperature, and filtered. The solid was washed with EtOAc and hexanes, then it was dried to afford a light blue fluffy solid ( 4.3 g, 54%).

[0218] Synthesis of compound 29. The carbene precursor (2.3 g, 9.36 mmol) and silver oxide (2.71 g, 11.70 mmol) with toluene (Volume: 100 ml) were added to a 250 mL round bottom flask. The reaction mixture was stirred for 10 minutes at room temperature, followed by the addition of iridium dimer (2.3 g, 1.605 mmol). The reaction mixture was refluxed for 1 h, and then it was cooled to room temperature. The reaction mixture was concentrated by removing toluene upon rotoevaporation. The dark residue obtained was dissolved in dichloromethane. Ag 2 0 was removed by passing it through a tightly packed Celite ® plug. The Celite ® plug was washed with dichloromethane. The compound in DCM solution was passed through a pretreated silica gel plug with 20% triethyl amine and hexane. The filtered dichloromethane solution was concentrated to one fourth of its volume. 2-Isopropyl alcohol was added and concentrated on rotoevaporation. The product crashed out as a yellow precipitate in the solvent. The yellow precipitate was filtered and washed with MeOH, followed by hexane, to give 2.35 g of the desired product as mer isomer (57.3% yield). The isomer was photoisomerized in CH 3 CN under UV irradiation. The crude compound was purified by column to afford 0.67 g of Compound 29.

[0219] Synthesis of Compound 30. A 250 mL round bottom flask was charged with carbene precursor (1.58 g, 6.43 mmol) and silver oxide (1.863 g, 8.04 mmol) with toluene (100 mL). The reaction mixture was stirred for few minutes, followed by the addition of dimer (1.58g, 1.103 mmol). The reaction mixture was refluxed for lh. After 1 h, the reaction mixture was cooled to room temperature. Toluene was removed upon rotoevaporation. The dark residue obtained was dissolved in dichloromethane. Ag 2 0 was removed by passing it through a tightly packed Celite plug. The Celite ® plug was washed with dichloromethane. The DCM solution was passed through a silica gel plug pretreated with 20% triethyl amine/hexane and eluted with DCM. This was concentrated to dryness. Residue was dissolved in DCM and IPA was added and concentrated. The yellow precipitate was filtered and washed with MeOH followed by hexane to give 1.2 g of the desired compound as mer isomer. The mer isomer was isomerized under UV irradiation to give 0.9 g of Compound 30 as fac isomer.

[0220] Example 19. Synthesis of Compound 31

[0221] Synthesis of mer isomer. Carbene precursor (1.0 g, 4.07 mmol) and silver oxide (1.179 g, 5.09 mmol) were suspended in toluene, stirred for 10 minutes and IrPPy dimer (0.742 g, 0.692 mmol) was added as one portion. The reaction mixture was then heated to reflux for 1 h, cooled to room temperature and the toluene was evaporated. The residue was purified by column chromatography on silica gel (treated with Et 3 N, hexane/DCM 1/1 eluent). Evaporation of pure fractions provided target complex (0.98 g) as yellow solid.

[0222] Synthesis of Compound 31. The mer complex (0.720 g, 1.014 mmol) was dissolved in 300 mL of acetonitrile at room temperature and subjected to photolysis for 2 h. Evaporation, followed by crystalliziation from DCM/MeCN, provided 0.65 g of fac-isomcr (Compound 31) as yellow solid.

[0223] Example 20. Synthesis of Compound 32

[0224] Synthesis of mer isomer. 3-Chloro-3-isopropyl-l-phenyl-2,3-dihydro-lH- imidazo[4,5-b]pyridin-3-ium-2-ide (2.0 g, 7.31 mmol) and silver oxide (2.116 g, 9.13 mmol) were suspended in 200 mL of toluene, stirred for 30 minutes. Then, the dimer complex (1.779 g, 1.242 mmol) was added, and it was refluxed under nitrogen for 1 h. It was filtered through a short silica plug, and concentrated to 1/4 of the volume. 75 mL of z ' -PrOH was added and a yellow solid was filtered (2.0 g, 88%).

compound 32

[0225] Synthesis of Compound 32. The solution of 2.0 g of mer isomer in 200 mL of DMSO was subjected to photolysis at 40-45 °C (Rayonet, 3 h). The reaction was monitored by HPLC. After completion the reaction mixture was diluted with 200 mL of water, and the yellow solid was separated by filtration. It was purified by column chromatography on silica, and then eluted with hexane/DCM 3/7 mixture. Pure fractions were concentrated and the yellow solid was filtered. Sublimation at 295 °C/10-5 provided 1.8 g (90%) of pure Compound 32.

Device Examples

[0226] All device examples were fabricated by high vacuum (<10 "7 Torr) thermal evaporation. The anode electrode is 1200 A of indium tin oxide (ITO). The cathode consisted of 10 A of LiF followed by 1000 A of Al. All devices were encapsulated with a glass lid sealed with an epoxy resin in a nitrogen glove box (<1 ppm of H 2 0 and 0 2 ) immediately after fabrication, and a moisture getter was incorporated inside the package.

[0227] The organic stack of the Devices consisted of sequentially, from the ITO surface, 100 A of hole injection layer (HIL), 300 A of 4,4'-bis[N-(l-naphthyl)-N-phenylamino]biphenyl (a- NPD) as the hole transporting later (HTL), 300 A of a host-dopant mixture as the emissive layer (EML), 50 A or 100 A of blocking layer (BL), and 400 A of electron transporting layer (ETL).

[0228] Comparative Device Examples were fabricated similarly to Device Examples, except that Compounds A or H were used as the emitter. [0229] As used herein, the following compounds have the following structures:

Compound B

[0230] Device examples are detailed in Table 3 with doping percentages (%) and thickness (A) noted in parenthesis. Ex. is an abbreviate for Example. Cmpd. is an abbreviation for

Compound. Comp. is an abbreviation for Comparative. The corresponding device data is summarized in Table 4.

TABLE 3.

TABLE 4.

[0231] Examples 1-4 demonstrate deep blue emission of the parent pyridyl carbene structures. Example 2, in particular demonstrates high efficiency of 8.2% at a brightness of 1000 nits and very good deep blue color (CIE 0.162, 0.060) with a peak emission wavelength of 430 nm. The emission from these devices is Gaussian, due to the strong MLCT character of the pyridine containing dopants, whereas comparative example 2 has vibronic structured emission intrinsic to compound A. Device examples 1-4 are red-shifted from the comparative example resulting in a more useful color in the visible wavelengths. An example of redshifting comparative compound A by extending the conjugation is shown in comparative example 2. This device is measured to have an electroluminescent transient of 53 μβ, due to enhanced ligand centered emission character. This results in low device efficiency. Nitrogen containing carbenes can be used to red shift the emission without losing the desireable MLCT emission. Substitution of electron donating groups, as shown for compounds 20, 22, 23, 24 can further red shift the emission into the desirable range without losing strong MLCT properties.

[0232] Examples 5-7 demonstrate pyridyl carbene ligands used on heteroleptic dopants with phenyl imidazole ligands. These materials have an approximate 10 nm blue-shift from the highest energy peak compared to tris phenyl imidazole analogues due to the effect of the carbene ligand. In devices these materials give modest efficiency with quantum efficiency in the range of 4-8 % and blue CIE. It is found that TV-isopropyl substitution in Compound 28 (Example 7) improves the sublimation making it a better material for vacuum deposition. This may explain the improved performance with respect to device efficiency shown for Example 7 compared to Example 6.

[0233] Examples 9, 10, 13 and 14 demonstrate pyridyl carbene ligands used on heteroleptic dopants in combination with phenyl pyridine ligands. The carbene ligand can be used to tune the emission properties compared to the tris phenyl pyridine analogues. For example, Example 13 shows a peak emission at 494 nm compared to 510 nm for tris Ir(ppy) 3 .

[0234] Examples 8, 11, and 12 demonstrate devices with pyrazine containing compounds, i.e., 2 nitrogen atoms. These materials are significantly red- shifted, compared to the pyridyl containing compounds in Examples 1-4, to the more desirable color region with broad Gaussian emission. This broad emission may be useful for white lighting. It is seen that mer isomers in Examples 8 and 12 have higher efficiency as they are red- shifted compared to the analogous fac isomer. The fac isomer in Example 11 is likely quenched due to the triplet energy of compound F resulting in low device efficiency. The TV-isopropyl group is again found to improve sublimation which may explain the improved device efficiency compared to Example 8 (TV- methyl).

[0235] Examples 1-4 demonstrate deep blue emitters in a wide bandgap host. The nitrogen containing rings show a useful red-shifting effect compared to the non-nitrogen containing comparative example, which emits in the UV part of the spectrum.

[0236] Examples 8, 11 and 12 demonstrate that devices comprising two nitrogen-containing emitters can have further red-shifted emission into a desired emission range. These materials may be promising as broadband emitters.

[0237] Further examples demonstrate that these nitrogen containing TV-heterocyclic carbene ligands can be used in red and green heteroleptic complexes. These ligands can be successfully used to tune the color of emission to the desired range. [0238] It is understood that the various embodiments described herein are by way of example only, and are not intended to limit the scope of the invention. For example, many of the materials and structures described herein may be substituted with other materials and structures without deviating from the spirit of the invention. The present invention as claimed may therefore includes variations from the particular examples and preferred embodiments described herein, as will be apparent to one of skill in the art. It is understood that various theories as to why the invention works are not intended to be limiting.