Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
PYRIMIDINYLOXY BENZENE DERIVATIVES AS HERBICIDES
Document Type and Number:
WIPO Patent Application WO/2015/108779
Kind Code:
A1
Abstract:
Disclosed are compounds of Formula (1), including all stereoisomers, N-oxides, and salts thereof, wherein Q, Z, R2, R3 and m are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula (1) and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.

Inventors:
DEPREZ NICHOLAS RYAN (US)
REDDY RAVISEKHARA P (IN)
SHARPE PAULA LOUISE (US)
STEVENSON THOMAS MARTIN (US)
Application Number:
PCT/US2015/010823
Publication Date:
July 23, 2015
Filing Date:
January 09, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DU PONT (US)
International Classes:
C07D403/12; A01N43/54; A61K31/506; C07D239/34; C07D401/12; C07D409/12; C07D413/12; C07D417/12
Domestic Patent References:
WO1994017059A11994-08-04
WO1994017059A11994-08-04
WO2007043278A12007-04-19
WO2003024222A12003-03-27
WO1991013546A11991-09-19
Foreign References:
JPS61236766A1986-10-22
US8080566B12011-12-20
US3060084A1962-10-23
US4172714A1979-10-30
US4144050A1979-03-13
US3920442A1975-11-18
DE3246493A11984-06-20
US5180587A1993-01-19
US5232701A1993-08-03
US5208030A1993-05-04
GB2095558A1982-10-06
US3299566A1967-01-24
US3235361A1966-02-15
US3309192A1967-03-14
US2891855A1959-06-23
Other References:
"Comprehensive Heterocyclic Chemistry", 1984, PERGAMON PRESS
"Comprehensive Heterocyclic Chemistry", vol. II, 1996, PERGAMON PRESS
"Polymorphism in the Pharmaceutical Industry", 2006, WILEY-VCH
T. L. GILCHRIST: "Comprehensive Organic Synthesis", vol. 7, PERGAMON PRESS, pages: 748 - 750
M. TISLER; B. STANOVNIK: "Comprehensive Heterocyclic Chemistry", vol. 3, PERGAMON PRESS, pages: 18 - 20
M. R. GRIMMETT; B. R. T. KEENE: "Advances in Heterocyclic Chemistry", vol. 43, ACADEMIC PRESS, pages: 149 - 161
M. TISLER; B. STANOVNIK: "Advances in Heterocyclic Chemistry", vol. 9, ACADEMIC PRESS, pages: 285 - 291
G. W. H. CHEESEMAN; E. S. G. WERSTIUK: "Advances in Heterocyclic Chemistry", vol. 22, ACADEMIC PRESS, pages: 390 - 392
ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 45, 2006, pages 3484
TETRAHEDRON LETTERS, vol. 58, no. 14, 2002, pages 2885
ORGANIC LETTERS, vol. 13, no. 6, 2011, pages 1366
ORGANIC LETTERS, vol. 14, no. 2, 2012, pages 600
CHEMICAL REVIEWS, vol. 107, no. 1, 2007, pages 133 - 173
DAS ET AL., TETRAHEDRON, vol. 59, 2003, pages 1049 - 1054
DAS ET AL., TET. LETT., vol. 44, 2003, pages 5465 - 5468
NARENDER, T. ET AL., SYNTHETIC COMMUNICATIONS, vol. 39, no. 11, 2009, pages 1949 - 1956
GREENE, T. W.; WUTS, P. G. M.: "Protective Groups in Organic Synthesis", 1991, WILEY
"Metal-Catalyzed Cross-Coupling Reactions", vol. 1, 2, 2004, WILEY-VCH
KATRITSKY: "Advances in Heterocyclic Chemistry", vol. 1-104, ELSEVIER
CHEMICAL REVIEWS, vol. 110, 2010, pages 575 - 1211
WENCEL-DELORD ET AL., NATURE CHEMISTRY, vol. 5, 2013, pages 369 - 375
ACCOUNTS OF CHEMICAL RESEARCH, vol. 45, 2012, pages 777 - 958
QI, JUNSHENG, CHIN. J. CHEM., vol. 28, 2010, pages 1441 - 1443
ORGAN, MICHAEL G., ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 3314 - 3322
TAKASHIRO ITOH, J. ORG. CHEM., vol. 71, 2006, pages 2203 - 2206
LLOYD-JONES; GUY C., SYNTHESIS, 2008, pages 661 - 689
LAROCK, R. C.: "Comprehensive Organic Transformations: A Guide to Functional Group Preparations", 1999, WILEY-VCH
BIOORGANIC MED. CHEM., vol. 12, 2004, pages 3965
WATKINS ET AL.: "Handbook of Insecticide Dust Diluents and Carriers", DORLAND BOOKS
MARSDEN: "Solvents Guide", 1950, INTERSCIENCE
"McCutcheon's Emulsifiers and Detergents", THE MANUFACTURING CONFECTIONER PUBLISHING CO.
SISELY; WOOD: "Encyclopedia of Surface Active Agents", 1964, CHEMICAL PUBL. CO., INC.
A. S. DAVIDSON; B. MILWIDSKY: "Synthetic Detergents", 1987, JOHN WILEY AND SONS
"McCutcheon's Volume 2: Functional Materials", vol. 2, THE MANUFACTURING CONFECTIONER PUBLISHING CO.
BROWNING: "Agglomeration", CHEMICAL ENGINEERING, 4 December 1967 (1967-12-04), pages 147 - 48
"Perry's Chemical Engineer's Handbook", 1963, MCGRAW-HILL, pages: 8 - 57
T. S. WOODS: "Pesticide Chemistry and Bioscience, The Food-Environment Challenge", 1999, THE ROYAL SOCIETY OF CHEMISTRY, article "The Formulator's Toolbox - Product Forms for Modern Agriculture", pages: 120 - 133
KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
HANCE ET AL.: "Weed Control Handbook", 1989, BLACKWELL SCIENTIFIC PUBLICATIONS
"Developments in formulation technology", 2000, PJB PUBLICATIONS
"The Pesticide Manual", 2003, BRITISH CROP PROTECTION COUNCIL
"The BioPesticide Manual", 2001, BRITISH CROP PROTECTION COUNCIL
Attorney, Agent or Firm:
LETT, Renee M. (Legal Patent Records CenterChestnut Run Plaza 721/2640,974 Centre Roa, PO Box 2915 Wilmington Delaware, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

A compound selected from Formula 1, N-oxides and salts thereof,

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of

Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R1; Z is O or S;

each R1 is independently halogen, cyano, nitro, SF5, CHO, C(=0)NH2, C(=S)NH2, S02NH2, CrC4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, CrC4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-Cg alkylcycloalkyl, C4-Cg cycloalkylalkyl, C2-Cg alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C2-Cg alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C^-C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Cj-C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-Cg cycloalkylalkoxy, C2-Cg alkoxyalkyl, haloalkoxyalkyl, C2-Cg alkoxyhaloalkyl, C2-Cg alkoxyalkoxy, C2-C4 alkylcarbonyloxy,

cyanoalkyl, C2-C£ cyanoalkoxy, C^-C4 hydroxyalkyl, C2-C4 alkylthioalkyl, SOnR1A, Si(CH3)3 or B(-OC(R1B)2C(R1B)20-); or a phenyl ring optionally substituted with up to 5 substituents independently selected from R1C; or a 5- or

6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R1C on carbon atom ring members and R1D on nitrogen atom ring members;

R2 is halogen, cyano, nitro, Cj-C4 alkoxy, Cj-C4 alkyl, C2-C£ alkenyl, C2-C£ alkynyl,

SOnR2A, C1-C4 haloalkyl or C3-C6 cycloalkyl;

each R3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(=0)NH2, C(=S)NH2, S02NH2, CrC4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, CrC4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-Cg alkylcycloalkyl, C4-Cg cycloalkylalkyl, C2-Cg alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, C1 -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-Cg alkoxyhaloalkyl, C2~Cg alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-Cg cyanoalkyl, C2-Cg cyanoalkoxy, C2-C4 alkylthioalkyl,

Si(CH3)3, C≡CSi(CH3)3, C(=0)N(R3A)(R3B), C(=NOR3C)H, C(=NR3D)H, SOnR E; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R3F; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R F on carbon atom ring members and R3G on nitrogen atom ring members; or pyrimidinyloxy;

m is 0, 1, 2 or 3;

each n is independently 0, 1 or 2;

each R1A, R2A and R3E is independently CrC4 alkyl, CrC4 haloalkyl, CrC4

alkylamino or C2-Cg dialkylamino;

each R1B is independently H or Ci -C4 alkyl;

each R1C is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy;

each R1D is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2- Cg alkylcarbonyl;

each R3A is independently Ci -C4 alkyl or Ci -C4 haloalkyl;

each R B is independently H, Ci -C4 alkyl or Ci -C4 haloalkyl;

each R C is independently H or Ci -C4 alkyl;

each R3D is independently H, amino, Ci -C4 alkyl or Ci -C4 alkylamino;

each R F is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy; and

each R G is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2- Cg alkylcarbonyl;

2. A compound of Claim 1 wherein

Q is selected from Q-l through Q-55 wherein r is 0, 1, 2 or 3; and s is 0 or 1;

each R1 is independently halogen, cyano, SF5, CHO, Ci -C4 alkyl, C2-C4 alkenyl,

C2-C4 alkynyl, Ci -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C2~Cg alkylcarbonyl, C2~Cg haloalkylcarbonyl, C2~Cg alkoxycarbonyl, Ci -C4 alkoxy,

C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 cyanoalkyl, C 1 -C4 hydroxyalkyl, C2-C4 alkylthioalkyl or SOnR1A;

R3 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, Ci -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C2-Cg alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C1 -C4 alkoxy, C3-C4 alkenyloxy, C3- C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4

haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C2-Cg

alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C(=0)N(R3A)(R3B), C(=NOR3C)H, SOnR3E; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R3F; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R3F on carbon atom ring members and R3G on nitrogen atom ring members;

Z is O; and

m is 0, 1 or 2.

3. A compound of Claim 2 wherein

each R1 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C1 -C4 hydroxyalkyl, C2-C4 alkylthioalkyl or SOnR1A;

R2 is halogen, Ci -C4 alkyl or Ci -C4 haloalkyl;

each R3 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-C6 alkylcarbonyl, C2-C6

haloalkylcarbonyl, C2-C6 alkoxycarbonyl, Ci -C4 alkoxy, Ci -C4 haloalkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 cyanoalkyl, SOnR3E; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R3F on carbon atom ring members and R3G on nitrogen atom ring members; and

m is 0 or 1.

4. A compound of Claim 3 wherein Q is selected from Q-7 through Q-24;

each R1 is independently halogen, cyano, Ci -C4 alkyl, Ci -C4 haloalkyl, Ci -C4 alkoxy,

CrC4 haloalkoxy or SOnR1A;

R2 is halogen or Ci -C4 alkyl;

each R3 is independently halogen, cyano, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1 -C4 haloalkyl, C2-Cg alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl; and

each R1A is independently Ci -C4 alkyl or Ci -C4 haloalkyl.

5. A compound of Claim 4 wherein

Q is selected from Q-16 and Q-18;

each R1 is independently halogen, Ci -C4 alkyl, Ci -C4 haloalkyl or Ci -C4 haloalkoxy; R2 is halogen or CH3; and

each R3 is independently halogen, cyano, Ci -C4 alkyl or Ci -C4 haloalkyl.

6. A compound of Claim 3 wherein

Q is selected from Q-43, Q-44, Q-45, Q-48, Q-49 and Q-50;

each R1 is independently halogen, cyano, Ci -C4 alkyl, Ci -C4 haloalkyl, Ci -C4 alkoxy,

CrC4 haloalkoxy or SOnR1A;

R2 is halogen or Ci -C4 alkyl;

each R3 is independently halogen, cyano, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1 -C4 haloalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl; and

each R1A is independently Ci -C4 alkyl or Ci -C4 haloalkyl.

7. A compound of Claim 6 wherein

Q is selected from Q-43, Q-44 and Q-45;

each R1 is independently halogen, Ci -C4 alkyl, Ci -C4 haloalkyl or Ci -C4 haloalkoxy; R2 is halogen or CH3; and

each R3 is independently halogen, cyano, Ci -C4 alkyl or Ci -C4 haloalkyl.

8. A compound of Claim 1 selected from the group consisting of

5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine,

5-chloro-2-[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine,

2- [2-(3 -bromo-5 -isoxazolyl)phenoxy] -5 -chloropyrimidine,

5 -chloro-2- [2- [5 -(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine,

5-chloro-2-[3-chloro-2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine,

4-[2-[(5-bromo-2-pyrimidinyl)oxy]phenyl]-2-(trifluoromethyl)pyrimidine, 2- [2-(2-bromo-5 -thiazolyl)phenoxy] -5 -(trifluoromethyl)pyrimidine,

5 -chloro-2- [4-methyl-2- [2-(trifluoromethyl)-4-pyridinyl]phenoxy]pyrimidine,

5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine,

5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]pyrimidine,

5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]-3-fiuorophenoxy]pyrimidine,

5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine,

5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl]phenoxy]pyrimidine,

5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fiuorophenoxy]pyrimidine,

5 -bromo-2- [2- [3 -(difluoromethyl)-5 -isoxazolyl]-3 -fluorophenoxy]pyrimidine,

5 -chloro-2- [2- [5 -(trifluoromethyl)-3 -isoxazolyl] -3 -fluorophenoxy]pyrimidine and

5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine.

9. A herbicidal composition comprising a compound of Claim 1 and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

10. A herbicidal composition comprising a compound of Claim 1, at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners, and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

11. A herbicidal mixture comprising (a) a compound of Claim 1 , and (b) at least one additional active ingredient selected from (bl) through (bl6) and salts of compounds of (bl) through (b 16).

12. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

AMENDED CLAIMS

received by the International Bureau on 20 April 2015 (20.04.2015)

CLAIMS

What is claimed is:

l . A compound selected from Formula 1, N-oxides and salts thereof,

Q is a 5- or 6-membered aromatic heterocylie ring, bound to the remainder of

Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R1 ; Z is O or S;

each R1 is independently halogen, cyano, nitro, SF5, CHO, C(=0)NH2, C(=S)NII2, S02NH2, Cj-C4 alkyl, C2-C4 alkenyl, C C4 alkynyl, CrC4 haloalkyl, C2-C4 aloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C4 C8 cycloalkylalkyl, C2-C6 alkylcarbonyl, C -C6 haloalkylcarbonyl, C2--C6 alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C2-C8 alkylaminocarbonyl, Cj-C^ dialkylaitunocatbonyl, CrC4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Cj-C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, cycloalkoxy, C3-C6 halocycloalkoxy, C4- Cg cycloalkylaikoxy, C2-C6 alkoxyalkyl, C -C6 haloalkoxyalkyl, C2-C6 alkoxyhaloalkyl, C2-C6 alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-C6 cyanoalkoxy, C\-C hydroxyalkyl, C2-C4 alkylfhioalkyl, SOnR1A, Si(CH3)3 or or a phenyl ring optionally substituted with up to 5 substituents independently selected from R1 C or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R1C 011 carbon atom ring members and R1D on nitrogen atom ring members;

R2 is halogen, cyano, nitro, C [ -C4 alkoxy, C1 -C4 allcyl, C2-C6 alkenyl, C2-C6 alkynyl, SOuR2A, C1 -C4 haloalkyl or C3-C6 cycloalkyl;

each R3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(-0)NH2, C(=S)NH2, S02NH2, C 1 -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C,-C4 haloall yl, C2-C haloalkenyl, C2-C haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C -C8 alkylcycloalkyl, C4-C3 cycloall ylallcyl, C -C6 alkylcarbonyl, C2 -C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, CrC4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkytiyloxy, C^ haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloall ynyloxy, C3--C6 cycloalkoxy, C3 C6 halocycloalkoxy, C4 Cg cycloallcyl alkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C¾ alkoxyhaloalkyl, C2-C6 alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-Cg cyanoalkoxy, C2-C4 alkylthioalkyl, Si(CH3)3) OCSi(CH3)3, C(-0)N(R3A)(R3B)) C(=NOR3C)H, C(=NR3D)H, SOnR3E; or a phenyl ring optionally substituted with up to 5 substitiients independently selected from R3F; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substitiients independently selected from R3F on carbon atom ring members and R3G on nitrogen atom ring members; or pyrimidinyloxy;

m is O, 1, 2 or 3;

each n is independently 0, 1 or 2;

each R1A, R2A and R3E is independently CrC4 alkyl, CrC4 haloalkyl, C C4

alkylamino or C2-C6 dialkylamino;

each R1B is independently H or C1 -C4 alkyl;

each R1C is independently hydroxy, halogen, cyano, nitro, C]-C6 alkyl, C]-C6

haloalkyl, Cj C6 alkoxy or haloalkoxy;

each R1D is independently cyano, Cj- C6 alkyl, C| -Cg haloallcy], Ci~C^ alkoxy or C2-

C6 alkylcarbonyl;

each R3A is independently C1-C4 alkyl or CJ-C4 haloalkyl;

each R3B is independently H, C]-C4 alkyl or C C4 haloalkyl;

each R3C is independently H or [-C^ alkyl;

each R3D is independently II, amino, C^C^ alkyl or C] -C4 all ylamino;

each R3F is independently hydroxy, halogen, cyano, nitro, Cj-Cg alkyl, Cj-C6

haloalkyl, C| C6 alkoxy or Cj-C6 haloalkoxy; and

each R3G is independently cyano, Cj- C6 alkyl, Cj-C6 haloalkyl, Cj-Cg alkoxy or C2-

C(5 alkylcarbonyl;

2. A compound of Claim 1 wherein

Q is selected from

Q-l Q-2 Q-3 Q-4 Q-5 190

Q-41 Q-42 Q-44

wherein r is 0, 1 , 2 or 3; and s is 0 or I;

each R1 is independently halogen, cyano, SF5, CHO, CJ-C alkyl, C2-C4 alkenyl, C2-C4 allcynyl, C^ haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C2-C6 alkylcarbonyl, C2 C6 haloalkylcarbonyl, C2-C<5 alkoxycarbonyl, C^C^ alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloallcoxyalkyl, C2-C6 cyanoalkyl, CrC4 hydroxyalkyl, C2-C4 alkylthioalkyl or SOnR!A;

R3 is independently halogen, cyano, CHO, C C4 alkyl, C2-C4 alkenyl, C2-C4 allcynyl, C]-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C^-Cg alkylcycloalkyl, C2- ; alkylcarbonyl, C2-Q, haloalkylcarbonyl, C2-C6 alkoxycarbonyl, Q -C4 alkoxy, C3-C4 alkenyloxy, C3- C4 alkynyloxy, C]-C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4

haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C2-C6 alkoxyalkyl, C -C6 haloalkoxyalkyl, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C(=0)N(R3A)(R3B)> C(=NOR3C)H, SOnR E; 0r a phenyl ring optionally substituted with up to 5 substituents independently selected from R3F; or a 5- or 6-membered heteroaroniatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R3F on carbon atom ring members and R3G on nitrogen atom ring members;

Z is O; and

m is 0, 1 or 2.

3. A compound of Claim 2 wherein

each R1 is independently halogen, cyano, CHO, C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, C1-C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, Cj-C4 hydroxyalkyl, C2-C4 alkylthioalkyl or SOnRlA;

R2 is halogen, Cj -C4 alkyl or Cj -C4 haloalkyl;

each R3 is independently halogen, cyano, CHO, Cj -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, ^-C^ haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-Cg alkylcarbonyl, C2-C6

haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C] -C4 alkoxy, C] -C4 haloalkoxy, C2-C(i alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 cyanoalkyl, SOnR3E; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R31* on carbon atom ring members and R3G on nitrogen atom ring members; and

m is 0 or 1.

4. A compound of Claim 3 wherein

Q is selected from Q-7 through Q-24;

each R1 is independently halogen, cyano, Cj-C4 alkyl, C1-C4 haloallcyl, Cj-C4 alkoxy,

CrC haloalkoxy or SOnRIA;

R2 is halogen or CJ-C4 alkyl;

each R3 is independently halogen, cyano, CJ-C4 alkyl, C2-C4 alkenyl, C2-C4 allcynyl, C] -C4 haloalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C[-C^ alkoxy, Cj-C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl; and

each R1A is independently CpC4 alkyl or ^ -C^ haloalkyl.

5. A compound of Clai m 4 wherein

Q is selected from Q-16 and Q-18;

each R1 is independently halogen, Cj-C^ alkyl, C - ^ haloalkyl or C]-C4 haloalkoxy; R2 is halogen or CH3; and

each R3 is independently halogen, cyano, -C alkyl or Cj-C4 haloalkyl.

6. A compound of Claim 3 wherein

Q is selected from Q-43, Q-44, Q-45, Q-48, Q-4 and Q-50;

each R1 is independently halogen, cyano, Cj -C4 alkyl, C1 -C4 haloaJkyl, C C alkoxy, Cj-C4 haloalkoxy or SOnR1A;

R2 is halogen or C1 -C4 alkyl;

each R3 is independently halogen, cyano, alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C C4 haloalkyl, C2-C6 alkylcarbonyl, C2 C6 haloalkylcarbonyl, C2-C6 alkoxycavbonyl, Cj-C4 alkoxy, C1-C4 haloalkoxy, C2-Cg alkoxyalkyl or C2-Cg haloalkoxyalkyl; and

each RIA is independently CrC4 all y] or Cj -C4 haloalkyl.

7. A compound of Claim 6 wherein

Q is selected from Q-43, Q-44 and Q-45;

each R1 is independently halogen, Cj-C4 alkyl, -C4 haloalkyl or C1-C4 haloalkoxy; R2 is halogen or CH3; and

each R3 is independently halogen, cyano, C1 -C4 alkyl or Cj-C4 haloalkyl.

8. A compound of Claim 1 selected from the group consisting of

5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine,

5-chloro-2-t2-[5-(fluot iuethyl)-3-isoxazolyl]phenoxy]pyrimidiiie,

2-[2-(3-biOmo-5-isoxazolyl)phenoxy]-5-chloiOpyrimicline,

5-c oro-2-[2-(5-(lrilluoiOmethyl)-2-pyridinyl]phenoxy]pyrimidine,

5-chloro-2-r3-chloiO-2-(5-chloro-2-pyridinyl)phenoxy]pyrimidiiie,

4- t2-[(5-bromo-2-pyrimidinyl)oxy]phenylj-2-(UittuoromethyI)pyrimidine!

2-[2-(2-biOmo-5-thiazolyl)phenoxy]-5-(trifluoi mcthyl)pyrimidine,

5- chloro-2-[4-inethyl-2-[2-(triiliiot methyl)-4-pyridinyI]phenoxy]pyrimidine,

5-chloiO-2-[2-[5-(difluoi methyl)-3-isoxazolyl]phenoxy]pyriniidine,

5-chloiO-2-[2-[3-(dinuoromethyl)-5-isoxazolyl]phenoxy]pyrimidine.

5-chloi -2-[2-[5-(difluoromethyI)-3-isoxa*/x)lyl]-3-iluoropheiioxy]pyrimtdine, 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimidine,

5-cliloro-2-[2-[3-(ti iflvxoromethyl)-5-isoxazolyl]phenoxy]pyrimidine,

5-chloro-2-[2-[3-(difluoiOmethyl)-5-isoxazolyl]-3-fluorophenoxy]pyrimidine, 5-bromo-2-[2-f3-(difluoiOmethyl)-5-isoxazolyl]-3-iluorophcnoxy]pyrimidine, 5-chloro-2-f2-[5-(trifluoromethyl)-3-isoxa2:olyI]-3-iluoiOphenoxy]pyrimidine and 5-chloiO-2-[2-[5-(trinuoromethyl)-3-isoxazolyl]phenoxy]pymnidhie.

9. A herbicidal composition comprising a compound of Claim 1 and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

10. A herbicidal composition comprising a compound of Claim 1, at least one additional acti ve ingredient selected from the group consisting of other herbicides and herbicide safeners, and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

11. A herbicidal mixture comprising (a) a compound of Claim 1, and (b) at least one additional active ingredient selected from (bl) through (bl6) and salts of compounds of (bl) through (b 16).

12. A method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

13. A method for controlling the growth of undesired vegetation in a genetically modified plants that exhibit traits of glyphosate tolerance, glufosinate tolerance, ALS herbicide tolerance, dicamba tolerance, imidazolinone herbicide tolerance, 2,4-D tolerance, liPPD tolerance and mesotrione tolerance, comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of Claim 1.

14. A herbicidal mixture comprising (a) a compound of Claim I , and (b) at least one additional active ingredient selected from (bl) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b4) auxin mimics, (b5) 5-enol-py vylshikimate-3- phosphate (EPSP) synthase inhibitors, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors and (bl 2)

4-hydroxyphenyl-pyrtivate dioxygenase (I1PPD) inhibitors.

15. A herbicidal mixture comprising (a) a compound of Claim 1, and (b) at least one additional active ingi'edient selected from the group consisting of 2,4-D} acetochloi, alachlor, atrazine, bromoxynil, bentazon, bicyclopyrone, carfentrazone-ethyl, cloransulam-methyl, dicamba, dimethenamid-p, florasulam, flufenacet, flumioxazin, flupyrsulfuron-methyl, fluroxypyr-meptyl, glyphosate, halauxifen-mefhyl, isoxafliitole, MC A, mesotrione, metolachlor, metsulfiiron-methyl, nicosulfuron, pyrasulfotole, pyroxasulfone, pyroxsulam, vimsulfuron, saflufenacil, tcmbotrione, thifcnsulfuron-methyl, topramazone and tribenuron.

Description:
TITLE

PYRIMIDINYLOXY BENZENE DERIVATIVES AS HERBICIDES

FIELD OF THE INVENTION

This invention relates to certain pyrimidinyloxy benzene derivatives, their N-oxides, salts and compositions, and methods of their use for controlling undesirable vegetation.

BACKGROUND OF THE INVENTION

The control of undesired vegetation is extremely important in achieving high crop efficiency. Achievement of selective control of the growth of weeds especially in such useful crops as rice, soybean, sugar beet, maize, potato, wheat, barley, tomato and plantation crops, among others, is very desirable. Unchecked weed growth in such useful crops can cause significant reduction in productivity and thereby result in increased costs to the consumer. The control of undesired vegetation in noncrop areas is also important. Many products are commercially available for these purposes, but the need continues for new compounds that are more effective, less costly, less toxic, environmentally safer or have different sites of action.

JP 61236766 A (Sumitomo, 1986) discloses certain carbon-linked pyrimidinyloxy benzene derivitaves as herbicides. WO 94/17059 (Nippon Soda, 1994) discloses certain carbon linked pyrimidinyloxy benzene derivative as herbicides.

SUMMARY OF THE INVENTION

This invention is directed to compounds of Formula 1 (including all stereoisomers),

(N-oxides, and salts thereof), agricultural compositions containing them and their use as herbicides:

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of

Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R 1 ; Z is O or S;

each R 1 is independently halogen, cyano, nitro, SF 5 , CHO, C(=0)NH 2 , C(=S)NH 2 , S0 2 NH 2 , C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C 2 -C 4 haloalkenyl, C 2 -C 4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C 4 -Cg alkylcycloalkyl, C 4 -Cg cycloalkylalkyl, C 2 -Cg alkylcarbonyl, C 2 -Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C2~Cg alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6

alkoxyhaloalkyl, C2-C6 alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-C6 cyanoalkoxy, Ci -C4 hydroxyalkyl, C2-C4 alkylthioalkyl, SO n R 1A , Si(CH 3 ) 3 or B(-OC(R 1B ) 2 C(R 1B ) 2 0-); or a phenyl ring optionally substituted with up to 5 substituents independently selected from R 1C ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 1C on carbon atom ring members and R 1D on nitrogen atom ring members;

R 2 is halogen, cyano, nitro, C1 -C4 alkoxy, C 1 -C4 alkyl, C2-Cg alkenyl, C2-Cg alkynyl,

SO n R 2A , C1-C4 haloalkyl or C 3 -C 6 cycloalkyl;

each R 3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(=0)NH 2 , C(=S)NH 2 , S0 2 NH 2 , C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C4-C8 cycloalkylalkyl, C2-Cg alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, C1 -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 alkoxyhaloalkyl, C2-C6 alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-C6 cyanoalkyl, C2-C6 cyanoalkoxy, C2-C4 alkylthioalkyl, Si(CH 3 ) 3 , C≡CSi(CH 3 ) 3 , C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, C(=NR 3D )H, SO n R E ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R 3F ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R F on carbon atom ring members and R 3G on nitrogen atom ring members; or pyrimidinyloxy;

m is 0, 1, 2 or 3;

each n is independently 0, 1 or 2;

each R 1A , R 2A and R 3E is independently C r C 4 alkyl, C r C 4 haloalkyl, C r C 4

alkylamino or C2-C6 dialkylamino; each R 1B is independently H or Ci -C4 alkyl;

each R 1C is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy;

each R 1D is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2

Cg alkylcarbonyl;

each R 3A is independently Ci -C4 alkyl or Ci -C4 haloalkyl;

each R 3B is independently H, Ci -C4 alkyl or Ci -C4 haloalkyl;

each R 3C is independently H or Ci -C4 alkyl;

each R 3D is independently H, amino, Ci -C4 alkyl or Ci -C4 alkylamino;

each R F is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy; and

each R G is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2

Cg alkylcarbonyl;

More particularly, this invention pertains to a compound of Formula 1 (including all stereoisomers), an N-oxide or a salt thereof. This invention also relates to a herbicidal composition comprising a compound of the invention (i.e. in a herbicidally effective amount) and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents. This invention further relates to a method for controlling the growth of undesired vegetation comprising contacting the vegetation or its environment with a herbicidally effective amount of a compound of the invention (e.g., as a composition described herein).

This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (bl) through (b 16); and salts of compounds of (bl) through (bl6).

DETAILS OF THE INVENTION

As used herein, the terms "comprises," "comprising," "includes," "including," "has," "having," "contains", "containing," "characterized by" or any other variation thereof, are intended to cover a non-exclusive inclusion, subject to any limitation explicitly indicated. For example, a composition, mixture, process or method that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such composition, mixture, process or method.

The transitional phrase "consisting of excludes any element, step, or ingredient not specified. If in the claim, such would close the claim to the inclusion of materials other than those recited except for impurities ordinarily associated therewith. When the phrase "consisting of appears in a clause of the body of a claim, rather than immediately following the preamble, it limits only the element set forth in that clause; other elements are not excluded from the claim as a whole. The transitional phrase "consisting essentially of is used to define a composition, process or method that includes materials, steps, features, components, or elements, in addition to those literally disclosed, provided that these additional materials, steps, features, components, or elements do not materially affect the basic and novel characteristic(s) of the claimed invention. The term "consisting essentially of occupies a middle ground between "comprising" and "consisting of.

Where applicants have defined an invention or a portion thereof with an open-ended term such as "comprising," it should be readily understood that (unless otherwise stated) the description should be interpreted to also describe such an invention using the terms "consisting essentially of or "consisting of."

Further, unless expressly stated to the contrary, "or" refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Also, the indefinite articles "a" and "an" preceding an element or component of the invention are intended to be nonrestrictive regarding the number of instances (i.e. occurrences) of the element or component. Therefore "a" or "an" should be read to include one or at least one, and the singular word form of the element or component also includes the plural unless the number is obviously meant to be singular.

As referred to herein, the term "seedling", used either alone or in a combination of words means a young plant developing from the embryo of a seed.

As referred to herein, the term "broadleaf used either alone or in words such as "broadleaf weed" means dicot or dicotyledon, a term used to describe a group of angiosperms characterized by embryos having two cotyledons. As used herein, the term "alkylating agent" refers to a chemical compound in which a carbon-containing radical is bound through a carbon atom to a leaving group such as halide or sulfonate, which is displaceable by bonding of a nucleophile to said carbon atom. Unless otherwise indicated, the term "alkylating" does not limit the carbon-containing radical to alkyl; the carbon- containing radicals in alkylating agents include the variety of carbon-bound substituent radicals specified for Q, R 1 and R 3 .

In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as, methyl, ethyl, n-propyl, /-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" includes straight-chain or branched alkenes such as ethenyl, 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1 ,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as ethynyl, 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkoxy" includes, for example, methoxy, ethoxy, n-propyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH 3 OCH 2 , CH 3 OCH 2 CH 2 , CH 3 CH 2 OCH 2 , CH 3 CH 2 CH 2 CH 2 OCH 2 and CH 3 CH 2 OCH 2 CH 2 . "Alkenyloxy" includes straight-chain or branched alkenyloxy moieties. Examples of "alkenyloxy" include H 2 C=CHCH 2 0, (CH 3 ) 2 C=CHCH 2 0, (CH 3 )CH=CHCH 2 0, (CH 3 )CH=C(CH 3 )CH 2 0 and

CH 2 =CHCH 2 CH 2 0. "Alkynyloxy" includes straight-chain or branched alkynyloxy moieties. Examples of "alkynyloxy" include HC≡CCH 2 0, CH 3 C≡CCH 2 0 and CH 3 C≡CCH 2 CH 2 0. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Alkylthioalkyl" denotes alkylthio substitution on alkyl. Examples of "alkylthioalkyl" include CH 3 SCH 2 , CH 3 SCH 2 CH 2 , CH 3 CH 2 SCH 2 , CH 3 CH 2 CH 2 CH 2 SCH 2 and CH 3 CH 2 SCH 2 CH 2 . "Alkylthioalkoxy" denotes alkylthio substitution on alkoxy. "Cyanoalkyl" denotes an alkyl group substituted with one cyano group. Examples of "cyanoalkyl" include NCCH 2 , NCCH 2 CH 2 and CH 3 CH(CN)CH 2 . "Alkylamino", "dialkylamino", and the like, are defined analogously to the above examples.

"Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "halogen", either alone or in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", or when used in descriptions such as "alkyl substituted with halogen" said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" or "alkyl substituted with halogen" include F 3 C, C1CH 2 , CF 3 CH 2 and CF 3 CC1 2 . The terms "haloalkoxy", and the like, is defined analogously to the term "haloalkyl". Examples of "haloalkoxy" include CF 3 0-, CC1 3 CH 2 0-, HCF 2 CH 2 CH 2 0- and CF 3 CH 2 0-. "Alkylcarbonyl" denotes a straight-chain or branched alkyl moieties bonded to a C(=0) moiety. Examples of "alkylcarbonyl" include CH 3 C(=0)-, CH 3 CH 2 CH 2 C(=0)- and (CH 3 ) 2 CHC(=0)-. Examples of "alkoxycarbonyl" include CH 3 OC(=0)-, CH 3 CH 2 OC(=0)-, CH 3 CH 2 CH 2 OC(=0)-, (CH 3 ) 2 CHOC(=0)- and the different butoxy- or pentoxycarbonyl isomers.

The total number of carbon atoms in a substituent group is indicated by the "C -Cj" prefix where i and j are numbers from 1 to 6. For example, C1-C4 alkylsulfonyl designates methylsulfonyl through butylsulfonyl; C 2 alkoxyalkyl designates CH 3 OCH 2 -; C 3 alkoxyalkyl designates, for example, CH 3 CH(OCH 3 )-, CH 3 OCH 2 CH 2 - or CH 3 CH 2 OCH 2 -; and C4 alkoxyalkyl designates the various isomers of an alkyl group substituted with an alkoxy group containing a total of four carbon atoms, examples including CH 3 CH 2 CH 2 OCH 2 - and CH 3 CH 2 OCH 2 CH 2 -. When a compound is substituted with a substituent bearing a subscript that indicates the number of said substituents can exceed 1 , said substituents (when they exceed 1) are independently selected from the group of defined substituents, (e.g., (R^) n , n is 0, 1 , 2 or 3). Further, when the subscript indicates a range, e.g. (R)i_j, then the number of substituents may be selected from the integers between i and j inclusive. When a group contains a substituent which can be hydrogen, for example (when m = 0), then when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted. When a variable group is shown to be optionally attached to a position, (for example (R^) n attached to Q wherein n may be 0, then hydrogen may be at the position even if not recited in the variable group definition. When one or more positions on a group are said to be "not substituted" or "unsubstituted", then hydrogen atoms are attached to take up any free valency.

Unless otherwise indicated, a "ring" as a component of Formula 1 (e.g., substituent Q) is carbocyclic or heterocyclic. The term "ring member" refers to an atom or heteroatom forming the backbone of a ring. When a fully unsaturated carbocyclic ring satisfies Huckel's rule, then said ring is also called an "aromatic ring". "Saturated carbocyclic" refers to a ring having a backbone consisting of carbon atoms linked to one another by single bonds; unless otherwise specified, the remaining carbon valences are occupied by hydrogen atoms.

The terms "heterocyclic ring", "heterocycle" denote a ring in which at least one atom forming the ring backbone is not carbon, e.g., nitrogen, oxygen or sulfur. Typically a heterocyclic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs. Unless otherwise indicated, a heterocyclic ring can be a saturated, partially unsaturated, or fully unsaturated ring. When a fully unsaturated heterocyclic ring satisfies Huckel's rule, then said ring is also called a "heteroaromatic ring" or "aromatic heterocyclic ring". Unless otherwise indicated, heterocyclic rings can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.

"Aromatic" indicates that each of the ring atoms is essentially in the same plane and has a /^-orbital perpendicular to the ring plane, and that (4n + 2) π electrons, where n is a positive integer, are associated with the ring to comply with Huckel's rule.

The term "optionally substituted" in connection with the heterocyclic rings refers to groups which are unsubstituted or have at least one non-hydrogen substituent that does not extinguish the biological activity possessed by the unsubstituted analog. As used herein, the following definitions shall apply unless otherwise indicated. The term "optionally substituted" is used interchangeably with the phrase "substituted or unsubstituted" or with the term "(un)substituted." Unless otherwise indicated, an optionally substituted group may have a substituent at each substitutable position of the group, and each substitution is independent of the other. When Q is a 5- or 6-membered (nitrogen-containing) heterocyclic ring, it may be attached to the remainder of Formula 1 though any available carbon or nitrogen ring atom, unless otherwise described. As noted above, Q can be (among others) phenyl optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. An example of phenyl optionally substituted with one to five substituents is the ring illustrated as U-l in Exhibit 1, wherein R v is R 1 as defined in the Summary of the Invention for Q and r is an integer (from 0 to 4).

As noted above, Q can be (among others) 5- or 6-membered aromatic heterocyclic ring, which may be saturated or unsaturated, optionally substituted with one or more substituents selected from a group of substituents as defined in the Summary of the Invention. Examples of a 5- or 6-membered unsaturated aromatic heterocyclic ring optionally substituted with from one or more substituents include the rings U-2 through U-61 illustrated in Exhibit 1 wherein R v is any substituent as defined in the Summary of the Invention for Q (i.e. R 1 ) and r is an integer from 0 to 4, limited by the number of available positions on each U group. As U-29, U-30, U-36, U-37, U-38, U-39, U-40, U-41, U-42 and U-43 have only one available position, for these U groups r is limited to the integers 0 or 1 , and r being 0 means that the U group is unsubstituted and a hydrogen is present at the position indicated by (R v ) r .

Exhibit 1

U-2 U-3 U-4 U-5

U-7 U-8 U-9 U-10 U-l l

U-12 U-13 U-14 U-16 U-17

U-18 U-20 U-21 U-22

U-23 U-24 U-26 U-27 U-28

U-29 U-30 U-32 U-33 U-34

-42 -43 -45 -46

U-58 U-59 U-60 U-61

Although R v groups are shown in the structures U-l through U-61, it is noted that they do not need to be present since they are optional substituents. Note that when R v is H when attached to an atom, this is the same as if said atom is unsubstituted. The nitrogen atoms that require substitution to fill their valence are substituted with H or R v . Note that when the attachment point between (R v ) r and the U group is illustrated as floating, (R v ) r can be attached to any available carbon atom or nitrogen atom of the U group. Note that when the attachment point on the U group is illustrated as floating, the U group can be attached to the remainder of Formula 1 through any available carbon or nitrogen of the U group by replacement of a hydrogen atom. Note that some U groups can only be substituted with less than 4 R v groups (e.g., U-2 through U-47 and U-52 through U-61).

A wide variety of synthetic methods are known in the art to enable preparation of aromatic and nonaromatic heterocyclic rings and ring systems; for extensive reviews see the eight volume set of Comprehensive Heterocyclic Chemistry, A. R. Katritzky and C. W. Rees editors-in-chief, Pergamon Press, Oxford, 1984 and the twelve volume set of Comprehensive Heterocyclic Chemistry II, A. R. Katritzky, C. W. Rees and E. F. V. Scriven editors-in-chief, Pergamon Press, Oxford, 1996.

Compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. Stereoisomers are isomers of identical constitution but differing in the arrangement of their atoms in space and include enantiomers, diastereomers, cis-trans isomers (also known as geometric isomers) and atropisomers. Atropisomers result from restricted rotation about single bonds where the rotational barrier is high enough to permit isolation of the isomeric species. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. The compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers or as an optically active form.

Compounds of Formula 1 typically exist in more than one form, and Formula 1 thus include all crystalline and non-crystalline forms of the compounds they represent. Noncrystalline forms include embodiments which are solids such as waxes and gums as well as embodiments which are liquids such as solutions and melts. Crystalline forms include embodiments which represent essentially a single crystal type and embodiments which represent a mixture of polymorphs (i.e. different crystalline types). The term "polymorph" refers to a particular crystalline form of a chemical compound that can crystallize in different crystalline forms, these forms having different arrangements and/or conformations of the molecules in the crystal lattice. Although polymorphs can have the same chemical composition, they can also differ in composition due the presence or absence of co- crystallized water or other molecules, which can be weakly or strongly bound in the lattice. Polymorphs can differ in such chemical, physical and biological properties as crystal shape, density, hardness, color, chemical stability, melting point, hygroscopicity, suspensibility, dissolution rate and biological availability. One skilled in the art will appreciate that a polymorph of a compound of Formula 1 can exhibit beneficial effects (e.g., suitability for preparation of useful formulations, improved biological performance) relative to another polymorph or a mixture of polymorphs of the same compound of Formula 1. Preparation and isolation of a particular polymorph of a compound of Formula 1 can be achieved by methods known to those skilled in the art including, for example, crystallization using selected solvents and temperatures. For a comprehensive discussion of polymorphism see R. Hilfiker, Ed., Polymorphism in the Pharmaceutical Industry, Wiley- VCH, Weinheim, 2006.

One skilled in the art will appreciate that not all nitrogen-containing heterocycles can form N-oxides since the nitrogen requires an available lone pair for oxidation to the oxide; one skilled in the art will recognize those nitrogen-containing heterocycles which can form N-oxides. One skilled in the art will also recognize that tertiary amines can form N-oxides. Synthetic methods for the preparation of N-oxides of heterocycles and tertiary amines are very well known by one skilled in the art including the oxidation of heterocycles and tertiary amines with peroxy acids such as peracetic and m-chloroperbenzoic acid (MCPBA), hydrogen peroxide, alkyl hydroperoxides such as t-butyl hydroperoxide, sodium perborate, and dioxiranes such as dimethyldioxirane. These methods for the preparation of N-oxides have been extensively described and reviewed in the literature, see for example: T. L. Gilchrist in Comprehensive Organic Synthesis, vol. 7, pp 748-750, S. V. Ley, Ed., Pergamon Press; M. Tisler and B. Stanovnik in Comprehensive Heterocyclic Chemistry, vol. 3, pp 18-20, A. J. Boulton and A. McKillop, Eds., Pergamon Press; M. R. Grimmett and B. R. T. Keene in Advances in Heterocyclic Chemistry, vol. 43, pp 149-161, A. R. Katritzky, Ed., Academic Press; M. Tisler and B. Stanovnik in Advances in Heterocyclic Chemistry, vol. 9, pp 285-291, A. R. Katritzky and A. J. Boulton, Eds., Academic Press; and G. W. H. Cheeseman and E. S. G. Werstiuk in Advances in Heterocyclic Chemistry, vol. 22, pp 390-392, A. R. Katritzky and A. J. Boulton, Eds., Academic Press.

One skilled in the art recognizes that because in the environment and under physiological conditions salts of chemical compounds are in equilibrium with their corresponding nonsalt forms, salts share the biological utility of the nonsalt forms. Thus a wide variety of salts of a compound of Formula 1 are useful for control of undesired vegetation (i.e. are agriculturally suitable). The salts of a compound of Formula 1 include acid-addition salts with inorganic or organic acids such as hydrobromic, hydrochloric, nitric, phosphoric, sulfuric, acetic, butyric, fumaric, lactic, maleic, malonic, oxalic, propionic, salicylic, tartaric, 4-toluenesulfonic or valeric acids. When a compound of Formula 1 contains an acidic moiety such as a carboxylic acid or phenol, salts also include those formed with organic or inorganic bases such as pyridine, triethylamine or ammonia, or amides, hydrides, hydroxides or carbonates of sodium, potassium, lithium, calcium, magnesium or barium. Accordingly, the present invention comprises compounds selected from Formula 1, N-oxides and agriculturally suitable salts thereof.

Embodiments of the present invention as described in the Summary of the Invention include (where Formula 1 as used in the following Embodiments includes N-oxides and salts thereof):

Embodiment 1. A com ound of Formula 1 wherein Q is selected from

Q-l Q-2 Q-3 Q-4 Q-5

Q-16 Q-17 Q-18 Q-19 Q-20 wherein r is 0, 1 , 2 or 3; and s is 0 or 1.

Embodiment 2. A compound of Embodiment 1 wherein Q is selected from Q-l

through Q-42.

Embodiment 3. A compound of Embodiment 2 wherein Q is selected from Q-7

through Q-24.

Embodiment 4. A compound of Embodiment 3 wherein Q is selected from Q-16 and Q-18.

Embodiment 5. A compound of Embodiment 4 wherein Q is Q-16.

Embodiment 6. A compound of Embodiment 4 wherein Q is Q-18.

Embodiment 7. A compound of Embodiment 1 wherein Q is selected from Q-43

through Q-55.

Embodiment 8. A compound of Embodiment 7 wherein Q is selected from Q-43, Q-

44, Q-45, Q-48, Q-49 and Q-50.

Embodiment 9. A compound of Embodiment 8 wherein Q is selected from Q-43, Q- 44 and Q-45.

Embodiment 10. A compound of Embodiment 9 wherein Q is Q-43.

Embodiment 1 1. A compound of Embodiment 10 wherein Q is Q-45.

Embodiment 12. A compound of Formula 1 or any one of Embodiments 1 through 1 1 either alone or in combination, wherein Z is O.

Embodiment 13. A compound of Formula 1 or any one of Embodiments 1 through 12 either alone or in combination, wherein each R 1 is independently halogen, cyano,

SF 5 , CHO, C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C 2 -C 4 haloalkenyl, C 2 -C 4 haloalkynyl, C 2 -Cg alkylcarbonyl, C 2 -Cg haloalkylcarbonyl,

C 2 -Cg alkoxycarbonyl, C j -C 4 alkoxy, C3-C 4 alkenyloxy, C3-C 4 alkynyloxy, C - C 4 haloalkoxy, C3-C 4 haloalkenyloxy, C3-C 4 haloalkynyloxy,

alkoxyalkyl, hydroxyalkyl, C 2 -

C 4 alkylthioalkyl or SO n R 1A .

Embodiment 14. A compound of Embodiment 13 wherein each R 1 is independently halogen, cyano, CHO, C j -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C j -C 4 haloalkyl, C 2 -C 4 haloalkenyl, C 2 -C 4 haloalkynyl, C } -C 4 alkoxy, C3-C 4 alkenyloxy, C3-C 4 alkynyloxy, C } -C 4 haloalkoxy, C3-C 4 haloalkenyloxy, C3-C 4 haloalkynyloxy,

hydroxyalkyl, C 2 -C 4 alkylthioalkyl or SO n R 1A .

Embodiment 15. A compound of Embodiment 14 wherein each R 1 is independently halogen, cyano, C j -C 4 alkyl, C j -C 4 haloalkyl, C j -C 4 alkoxy, C j -C 4 haloalkoxy or SO n R 1A .

Embodiment 16. A compound of Embodiment 15 wherein each R 1 is independently halogen, C^-C 4 alkyl, C^-C 4 haloalkyl or C^-C 4 haloalkoxy. Embodiment 17. A compound of Embodiment 16 wherein each R 1 is independently halogen, C 1 -C4 haloalkyl or C1 -C4 haloalkoxy.

Embodiment 18. A compound of Embodiment 17 wherein each R 1 is independently halogen or Ci -C4 haloalkyl.

Embodiment 19. A compound of Embodiment 18 wherein each R 1 is independently F,

CI, Br, CF 3 , CHF 2 or CH 2 F.

Embodiment 20. A compound of Formula 1 or any one of Embodiments 1 through 19 either alone or in combination, wherein r is 0, 1 or 2.

Embodiment 20a. A compound of Embodiment 20 wherein r is 1.

Embodiment 21. A compound of Formula 1 or any one of Embodiments 1 through 19 either alone or in combination, wherein s is 1.

Embodiment 21a. A compound of Formula 1 or any one of Embodiments 1 through

20a either alone or in combination, wherein when Q is Q-16 and r is 1 then R 1 is attached at the 5 position of the Q-16 ring.

Embodiment 21b. A compound of Formula 1 or any one of Embodiments 1 through

20a either alone or in combination, wherein when Q is Q-18 and r is 1 then R 1 is attached at the 3 position of the Q-18 ring.

Embodiment 22. A compound of Formula 1 or any one of Embodiments 1 through

21b either alone or in combination, wherein R 2 is halogen, Ci -C4 alkyl or Ci -C4 haloalkyl.

Embodiment 23. A compound of Embodiment 22 wherein R 2 is halogen or Ci -C4 alkyl.

Embodiment 24. A compound of Embodiment 23 wherein R 2 is halogen or CH3.

Embodiment 25. A compound of Embodiment 24 wherein R 2 is halogen.

Embodiment 26. A compound of Embodiment 25 wherein R 2 is F, CI or Br.

Embodiment 27. A compound of Formula 1 or any one of Embodiments 1 through 26 either alone or in combination, wherein m is 0, 1 or 2.

Embodiment 28. A compound of Embodiment 27 wherein m is 0 or 1.

Embodiment 29. A compound of Embodiment 28 wherein m is 1.

Embodiment 30. A compound of Embodiment 27 wherein m is 0 (i.e. the 3-, 4-, 5- and 6-positions are unsubtituted by R 3 ).

Embodiment 31. A compound of Formula 1 or any one of Embodiments 1 through 30 either alone or in combination, wherein each R 3 is independently halogen, cyano, CHO, C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C 2 -C 4 haloalkenyl, C 2 -C4 haloalkynyl, C 3 -C6 cycloalkyl, C 3 -C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C 2 -Cg alkylcarbonyl, C 2 -Cg haloalkylcarbonyl, C 2 -Cg alkoxycarbonyl, C1 -C4 alkoxy, C 3 -C4 alkenyloxy, C 3 -C4 alkynyloxy, C1 -C4 haloalkoxy, C 3 -C4 haloalkenyloxy, C 3 -C4 haloalkynyloxy, C 3 -C6 cycloalkoxy, C3-C6 halocycloalkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C4 alkylcarbonyloxy, C 2 -C 6 cyanoalkyl, C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, SO n R 3E ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R 3F ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 3F on carbon atom ring members and R 3G on nitrogen atom ring members.

Embodiment 32. A compound of Embodiment 31 wherein each R 3 is independently halogen, cyano, CHO, C 1 -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C 1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-C6 cyanoalkyl, SO n R 3E ; or a 5- or 6-membered

heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 3F on carbon atom ring members and R 3G on nitrogen atom ring members.

Embodiment 33. A compound of Embodiment 32 wherein each R 3 is independently halogen, cyano, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, Ci -C4 haloalkyl, C2-C6 alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C 1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl.

Embodiment 34. A compound of Embodiment 33 wherein each R 3 is independently halogen, cyano, Ci -C4 alkyl or Ci -C4 haloalkyl.

Embodiment 35. A compound of Embodiment 34 wherein each R 3 is independently halogen or cyano.

Embodiment 36. A compound of Embodiment 35 wherein each R 3 is independently halogen.

Embodiment 37. A compound of Formula 1 or any one of Embodiments 1 through 36 either alone or in combination, wherein R 3 is attached to the remainder of Formula 1 at the 3 -position.

Embodiment 38. A compound of Formula 1 or any one of Embodiments 1 through 37 either alone or in combination, wherein each R 1A is independently Ci -C4 alkyl or C 1 -C4 haloalkyl.

Embodiment 39. A compound of Embodiment 38 wherein each R 1A is independently C 1 -C4 haloalkyl. Embodiment 40. A compound of Formula 1 or any one of Embodiments 1 through 39 either alone or in combination, wherein each R 3E is independently Ci -C4 alkyl. Embodiment 41. A compound of Formula 1 or any one of Embodiments 1 through 40 either alone or in combination, wherein each R 3A is independently C i -C4 alkyl. Embodiment 42. A compound of Formula 1 or any one of Embodiments 1 through 41 either alone or in combination, wherein each R 3B is independently H or Ci -C4 alkyl.

Embodiment 43. A compound of Formula 1 or any one of Embodiments 1 through 42 either alone or in combination, wherein each R 3C is independently H or Ci -C4 alkyl.

Embodiment 44. A compound of Formula 1 or any one of Embodiments 1 through 43 either alone or in combination, wherein each R 3D is independently H or C 1-C4 alkyl.

Embodiment 45. A compound of Formula 1 or any one of Embodiments 1 through 44 either alone or in combination, wherein each n is independently 0 or 2.

Embodiment 46. A compound of Embodiment 45 wherein n is 2.

Embodiment 47. A compound of Embodiment 45 wherein n is 0.

Embodiment 48. A compound of Formula 1 or any one of Embodiments 1 through 47 either alone or in combination, provided that i) when Q is 5-chloro-2-pyridinyl; Z is O; and R3 is 4 chloro, then R2 is other than CI or Br; ii) when Q is 4-CF3-2- pyrimidinyl; Z is O; and m is 0, then R2 is other than CI or Br; and iii) when Q is 6-CF3-2-pyridinyl; Z is O; and m is 0, then R2 is other than Br.

Embodiments of the present invention as described in the Summary of the Invention and Embodiment AAA also include the following:

Embodiment IP. A compound of Formula 1 (including all stereoisomers), N-oxides, and salts thereof, agricultural compositions containing them and their use as herbicides as described in the Summary of the Invention.

Embodiment 2P. A compound of Embodiment 1 wherein Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 3 R 1 .

Embodiment 3P. A com ound of Embodiment 2 wherein Q is selected from

Q-1 Q-2 Q-3 Q-4 Q-5

Q-41 Q-43 Q-45

r is 0, 1, 2 or 3; and

s is 0 or 1.

Embodiment 4P. A compound of any one of Embodiments 1 through 3 wherein Q is a

5- membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R 1 , and is selected from Q-1 through Q-41.

Embodiment 5P. A compound of Embodiment 4 wherein Q is selected from Q-7

through Q-24.

Embodiment 6P. A compound of Embodiment 5 wherein Q is selected from Q-9, Q- 11, Q-12, Q-16, Q-18, Q-22, Q-23, Q-24 and Q-25.

Embodiment 7P. A compound of Embodiment 6 wherein Q is selected from Q-11, Q- 18 and Q-22.

Embodiment 8P. A compound of any one of Embodiments 1 through 3 wherein Q is

6- membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R 1 , and is selected from Q-42 through Q-54.

Embodiment 9P. A compound of Embodiment 8 wherein Q is selected from Q-42, Q-

43, Q-44, Q-47, Q-48 and Q-49.

Embodiment 10P. A compound of Embodiment 9 wherein Q is selected from Q-42, Q- 43, Q-47 and Q-48. Embodiment 1 IP. A compound of Embodiment 10 wherein Q is selected from Q-42, Q-47 and Q-48.

Embodiment 12P. A compound of Embodiment 1 1 wherein Q is selected from Q-42. Embodiment 13P. A com ound of Embodiment 12 wherein Q is

Embodiment 14P. A compound of any one of Embodiments 1 through 3 wherein Q is selected from Q-7 through Q-24, Q-42, Q-43, Q-44, Q-47, Q-48 and Q-49.

Embodiment 15P. A compound of Embodiment 14 wherein Q is selected from Q-9, Q-l l , Q-12, Q-16, Q-18, Q-22, Q-23, Q-24, Q-25, Q-42, Q-43, Q-47 and Q-48.

Embodiment 16P. A compound of Embodiment 1 wherein Q is phenyl substituted with 1 to 3 Rl .

Embodiment 17P. A compound of Embodiment 16 whererin Q is phenyl substituted with 1 to 2 R! .

Embodiment 18P. A compound of Embodiment 17 wherein Q is phenyl substituted with 1 R 1 at the 3- or 4-positions (i.e. meta or para to the attachment of phenyl to the remainder of Formula 1).

Embodiment 19P. A compound of Embodiment 1 wherein when Q is phenyl

substituted with 1 to 3 R 1 , m is 1 , 2 or 3.

Embodiment 20P. A compound of Embodiment 1 wherein when Q is phenyl

substituted with 1 to 3 R 1 , m is 1 or 2.

Embodiment 2 IP. A compound of Embodiment 1 wherein Q is other than phenyl

substituted with 1 to 4 R 1 .

Embodiment 22P. A compound of any one of Embodiments 1 through 21 wherein R 1 is halogen, cyano, CHO, -C4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, C1-C4 haloalkyl, C1-C4 haloalkoxy, C2-C4 alkoxyalkyl, C2-C4 alkylthioalkyl or SO n R 1A .

Embodiment 23P. A compound of Embodiment 22 wherein R 1 is halogen, cyano, -C4 alkyl, C1-C4 alkoxy, -C4 haloalkyl, -C4 haloalkoxy, or SCF 3 .

Embodiment 24P. A compound of Embodiment 23 wherein R 1 is halogen, y-C^ alkyl or C1-C4 haloalkyl or y-C^ haloalkoxy.

Embodiment 25P. A compound of Embodiment 24 wherein R 1 is halogen y-C^

haloalkyl or y-C^ haloalkoxy.

Embodiment 26P. A compound of Embodiment 25 wherein R 1 is CI, Br, CF 3 or OCF 3 . Embodiment 27P. A compound of any one of Embodiments 1 through 22 wherein each n is independently 0, 1 or 2.

Embodiment 28P. A compound of Embodiment 27 wherein each n is independently 0. Embodiment 29P. A compound of Embodiment 28 wherein each n is independently 2. Embodiment 30P. A compound of any one of Embodiments 1 through 29 wherein R 2 is halogen, C1 -C4 alkyl or C 1 -C4 haloalkyl.

Embodiment 3 IP. A compound of Embodiment 30 wherein R 2 is halogen or C1 -C4 alkyl.

Embodiment 32P. A compound of Embodiment 31 wherein R 2 is halogen or CH3. Embodiment 33P. A compound of Embodiment 32 wherein R 2 is halogen.

Embodiment 34P. A compound of Embodiment 33 wherein R 2 is F, CI or Br.

Embodiment 35P. A compound of any one of Embodiments 1 through 34 wherein m is 0, 1 or 2.

Embodiment 36P. A compound of Embodiment 35 wherein m is 0 or 1.

Embodiment 37P. A compound of Embodiment 36 wherein m is 1.

Embodiment 38P. A compound of Embodiment 37 wherein m is 0 (i.e. the 3-, 4-, 5- and 6-positions of the benzene ring are unsubtituted by R 3 ).

Embodiment 39P. A compound of any one of Embodiments 1 through 37 wherein each R 3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C 2 -C 4 alkynyl, C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H,

C(=N)(R 3D )H, C r C 4 alkoxy, C 2 -C 4 cyanoalkoxy, C 2 -C 4 alkylcarbonyl, C 2 -C 4 alkoxycarbonyl, C 2 -C4 alkylcarbonyloxy, C 2 -C4 alkoxyalkyl, C 1 -C4 haloalkyl, C r C 4 haloalkoxy, SO n R 3E or C 3 -C 6 cycloalkyl.

Embodiment 40P. A compound of Embodiment 39 wherein each R 3 is independently halogen, cyano, amino, C1 -C4 alkyl, C 2 -C4 alkenyl, C 2 -C4 alkynyl, C 1 -C4 alkoxy, C 2 -C4 alkoxycarbonyl, C 2 -C4 alkylcarbonyloxy, C 2 -C4 alkoxyalkyl or C1 -C4 haloalkyl.

Embodiment 41P. A compound of Embodiment 40 wherein each R 3 is independently halogen, cyano, amino or C 1 -C4 alkyl.

Embodiment 42P. A compound of Embodiment 41 wherein each R 3 is independently cyano.

Embodiment 43P. A compound of any one of Embodiments 1 through 37 or 39

through 42 wherein each R 3 is attached to the remainder of Formula 1 at the 3-, 4- or 6-position.

Embodiment 44P. A compound of Embodiments 43 wherein each R 3 is attached to the remainder of Formula 1 at the 3- or 4-position.

Embodiment 45P. A compound of Embodiment 44 wherein R 3 is attached to the

remainder of Formula 1 at the 3 -position. Embodiment 46P. A compound of any one of Embodiments 1 through 22 or 27 or 29 through 45 wherein R 1A is Ci -C4 alkyl or Ci -C4 haloalkyl.

Embodiment 47P. A compound of Embodiment 46 wherein R 1A is Ci -C4 haloalkyl. Embodiment 48P. A compound of any one of Embodiments 1 through 37 or 39

wherein R 3E is Ci -C4 alkyl.

Embodiment 49P. A compound of any one of Embodiments 1 through 37 or 39

wherein R 3A is C 1 -C4 alkyl.

Embodiment 50P. A compound of any one of Embodiments 1 through 37 or 39

wherein R 3B is H or Ci -C4 alkyl.

Embodiment 5 IP. A compound of any one of Embodiments 1 through 37 or 39

wherein R 3C is H or Ci -C4 alkyl.

Embodiment 52P. A compound of any one of Embodiments 1 through 37 or 39

wherein R 3D is H or Ci -C4 alkyl.

Embodiment 53P. A compound of any one of Embodiments 1 through 52 wherein Z is

O.

Embodiment 54P. A compound of any one of Embodiments 1 through 53 wherein

when m is 1, R 3 is positioned at the 3-, 5- or 6-positions (i.e. the 3-, 5- and 6- positions of the benzene ring).

Embodiment 55P. A compound of any one of Embodiments 1 through 53 wherein

when m is 1, R 3 is other than CI at the 4-position.

Embodiments of this invention, including Embodiments 1-48 and 1P-55P above as well as any other embodiments described herein, can be combined in any manner, and the descriptions of variables in the embodiments pertain not only to the a compound of Formula 1 but also to the starting compounds and intermediate compounds useful for preparing the compounds of Formula 1. In addition, embodiments of this invention, including Embodiments 1-48 and 1P-55P above as well as any other embodiments described herein, and any combination thereof, pertain to the compositions and methods of the present invention.

Embodiment AAA. A compound of Formula 1 wherein

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of

Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R 1 ; or Q is phenyl substituted with 1 to 4 R 1 ;

Z is O or S;

R 1 is halogen, cyano, CHO, C1 -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkyl, Ci -C4 haloalkoxy, C2- C4 alkoxyalkyl, C2-C4 alkylthioalkyl, SO n R 1A , C2-Cg dialkylamino, C1 -C4 cyanoalkyl, C 1 -C4 hydroxyalkyl, CH(=NOH) or C3-C6 cycloalkyl; or unsubstituted phenyl; or unsubstituted pyridyl; R 2 is halogen, cyano, nitro, C1 -C4 alkoxy, C 1 -C4 alkyl, C 2 -Cg alkenyl, C 2 -Cg alkynyl, SO n R 2A or C1-C4 haloalkyl;

each R 3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C 2 -C 4 alkynyl, C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, C(=N)(R 3D )H, C r C 4 alkoxy, C 2 -C 4 cyanoalkoxy, C 2 -C 4 alkylcarbonyl, C 2 -C 4 alkoxycarbonyl, C 2 -C4 alkylcarbonyloxy, C 2 -C4 alkoxyalkyl, C 1 -C4 haloalkyl, Ci -C4 haloalkoxy, SO n R E or C3-C6 cycloalkyl; or phenyl optionally substituted with cyano, halogen or Ci -C4 alkyl;

m is 0, 1, 2 or 3;

each R 1A , R 2A and R 3E is independently C r C 4 alkyl, C r C 4 haloalkyl, C r C 4

alkylamino or dialkylamino;

R 3A is C1-C4 alkyl or C r C 4 haloalkyl;

R 3B is H, C r C 4 alkyl or C r C 4 haloalkyl;

R C is independently H or Ci -C4 alkyl;

R D is independently H or C 1 -C4 alkyl; and

n is 0, 1, or 2;

provided the compound of Formula 1 is other than 5-chloro-2-[(4'-methyl[l,l'- biphenyl]2-yl)oxy]-pyrimidine (CAS # 107492-74-0), 5-chloro-2-[(4'- chloro[l,r-biphenyl]2-yl)oxy]-pyrimidine (CAS # 107492-72-8), 5-chloro-2- [(3 * -chloro[l,r-biphenyl]2-yl)oxy]-pyrimidine (CAS # 107492-76-2) and 5-chloro-2-[[3'-(trifluoromethyl)[ 1 , 1 '-biphenyl]2-yl]oxy]-pyrimidine (CAS # 107492-75-1); and provided i) when Q is 5-chloro-2-pyridinyl; Z is O; and R 3 is 4-chloro, then R 2 is other than CI or Br; ii) when Q is 4-CF3-2-pyrimidinyl; Z is O; and m is 0, then R 2 is other than CI or Br; and iii) when Q is 6-CF3-2- pyridinyl; Z is O; and m is 0, then R 2 is other than Br.

Embodiment AA. A compound of Embodiment AAA or a compound of Formula 1 as described in the Summary of the Invention wherein

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of

Formula 1 through a carbon atom, and optionally substituted with 1 to 4 R 1 ; Z is O or S;

each R 1 is independently halogen, cyano, nitro, SF 5 , CHO, C(=0)NH 2 , C(=S)NH 2 , S0 2 NH 2 , C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C 2 -C 4 haloalkenyl, C 2 -C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C4-C8 cycloalkylalkyl, C 2 -Cg alkylcarbonyl, C 2 -Cg haloalkylcarbonyl, C 2 -Cg alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C 2 -Cg alkylaminocarbonyl, C3-C10 dialkylaminocarbonyl, C1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-Cg

alkoxyhaloalkyl, C2~Cg alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-Cg cyanoalkyl, C2-Cg cyanoalkoxy, Ci -C4 hydroxyalkyl, C2-C4 alkylthioalkyl, SO n R 1A , Si(CH 3 ) 3 or B(-OC(R 1B ) 2 C(R 1B ) 2 0-); or a phenyl ring optionally substituted with up to 5 substituents independently selected from R 1C ; or a 5- or

6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 1C on carbon atom ring members and R 1D on nitrogen atom ring members;

R 2 is halogen, cyano, nitro, C1 -C4 alkoxy, C 1 -C4 alkyl, C2-Cg alkenyl, C2-Cg alkynyl,

SO n R 2A , C1-C4 haloalkyl or C 3 -C 6 cycloalkyl;

each R 3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, C(=0)NH 2 , C(=S)NH 2 , S0 2 NH 2 , C r C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C r C 4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C4-C8 alkylcycloalkyl, C4-C8 cycloalkylalkyl, C2~Cg alkylcarbonyl, C2~Cg haloalkylcarbonyl, C2~Cg alkoxycarbonyl, C3-C7 cycloalkylcarbonyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, C1 -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C3-C6 cycloalkoxy, C3-C6 halocycloalkoxy, C4-C8 cycloalkylalkoxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-Cg alkoxyhaloalkyl, C2~Cg alkoxyalkoxy, C2-C4 alkylcarbonyloxy, C2-Cg cyanoalkyl, C2-Cg cyanoalkoxy, C2-C4 alkylthioalkyl, Si(CH 3 ) 3 , C≡CSi(CH 3 ) 3 , C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, C(=NR 3D )H, SO n R E ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R 3F ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R F on carbon atom ring members and R 3G on nitrogen atom ring members; or pyrimidinyloxy;

m is 0, 1, 2 or 3;

each n is independently 0, 1 or 2;

each R 1A , R 2A and R 3E is independently C r C 4 alkyl, C r C 4 haloalkyl, C r C 4

alkylamino or C2-C6 dialkylamino;

each R 1B is independently H or Ci -C4 alkyl;

each R 1C is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy; each R 1D is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2-

Cg alkylcarbonyl;

each R 3A is independently Ci -C4 alkyl or Ci -C4 haloalkyl;

each R 3B is independently H, Ci -C4 alkyl or Ci -C4 haloalkyl;

each R 3C is independently H or Ci -C4 alkyl;

each R 3D is independently H, amino, Ci -C4 alkyl or Ci -C4 alkylamino;

each R F is independently hydroxy, halogen, cyano, nitro, C^-Cg alkyl, C^-Cg

haloalkyl, C^-Cg alkoxy or C^-Cg haloalkoxy; and

each R G is independently cyano, C^-Cg alkyl, C^-Cg haloalkyl, C^-Cg alkoxy or C2- Cg alkylcarbonyl;

Embodiment A. A compound of Embodiment AA wherein

Q is selected from Q-l through Q-55 wherein r is 0, 1, 2 or 3; and s is 0 or 1;

each R 1 is independently halogen, cyano, SF 5 , CHO, Ci -C4 alkyl, C2-C4 alkenyl,

C2-C4 alkynyl, Ci -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C2~Cg alkylcarbonyl, C2~Cg haloalkylcarbonyl, C2~Cg alkoxycarbonyl, C 1 -C4 alkoxy,

C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-Cg cyanoalkyl, C 1 -C4 hydroxyalkyl, C2-C4 alkylthioalkyl or SO n R 1A ;

R 3 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, i -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-Cg cycloalkyl,

C3-Cg halocycloalkyl, C4-C8 alkylcycloalkyl, C2~Cg alkylcarbonyl, C2~Cg haloalkylcarbonyl, C2~Cg alkoxycarbonyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3- C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4

haloalkynyloxy, C3~Cg cycloalkoxy, C3~Cg halocycloalkoxy, C2-Cg alkoxyalkyl, C2-Cg haloalkoxyalkyl, C2-C4 alkylcarbonyloxy, C2-Cg cyanoalkyl,

C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, SO n R 3E ; or a phenyl ring optionally substituted with up to 5 substituents independently selected from R F ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 3F on carbon atom ring members and R 3G on nitrogen atom ring members;

Z is O; and

m is 0, 1 or 2.

Embodiment B. A compound of Embodiment A wherein

each R 1 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkoxy, C3-C4 haloalkenyloxy, C3-C4 haloalkynyloxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C1 -C4 hydroxyalkyl, C 2 -C 4 alkylthioalkyl or SO n R 1A ;

R 2 is halogen, Ci -C4 alkyl or Ci -C4 haloalkyl;

each R 3 is independently halogen, cyano, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 cycloalkyl, C3-C6 halocycloalkyl, C2-Cg alkylcarbonyl, C2-Cg

haloalkylcarbonyl, C2-C6 alkoxycarbonyl, Ci -C4 alkoxy, Ci -C4 haloalkoxy, C2-C6 alkoxyalkyl, C2-C6 haloalkoxyalkyl, C2-C6 cyanoalkyl, SO n R 3E ; or a 5- or 6-membered heteroaromatic ring containing ring members selected from carbon atoms and up to 4 heteroatoms independently selected from up to 2 O, up to 2 S and up to 4 N atoms, each ring optionally substituted with up to 3 substituents independently selected from R 3F on carbon atom ring members and R 3G on nitrogen atom ring members; and

m is 0 or 1.

Embodiment C 1. A compound of Embodiment B wherein

Q is selected from Q-7 through Q-24;

each R 1 is independently halogen, cyano, Ci -C4 alkyl, Ci -C4 haloalkyl, Ci -C4 alkoxy,

C r C 4 haloalkoxy or SO n R 1A ;

R 2 is halogen or Ci -C4 alkyl;

each R 3 is independently halogen, cyano, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl,

C1 -C4 haloalkyl, C2-Cg alkylcarbonyl, C2-Cg haloalkylcarbonyl, C2-Cg alkoxycarbonyl, C1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl; and

each R 1A is independently Ci -C4 alkyl or Ci -C4 haloalkyl.

Embodiment C2. A compound of Embodiment B wherein

Q is selected from Q-43, Q-44, Q-45, Q-48, Q-49 and Q-50;

each R 1 is independently halogen, cyano, Ci -C4 alkyl, Ci -C4 haloalkyl, Ci -C4 alkoxy,

C r C 4 haloalkoxy or SO n R 1A ;

R 2 is halogen or Ci -C4 alkyl;

each R 3 is independently halogen, cyano, Ci -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl,

C1 -C4 haloalkyl, C2-C6 alkylcarbonyl, C2-C6 haloalkylcarbonyl, C2-C6 alkoxycarbonyl, C1 -C4 alkoxy, C 1 -C4 haloalkoxy, C2-C6 alkoxyalkyl or C2-C6 haloalkoxyalkyl; and

each R 1A is independently Ci -C4 alkyl or Ci -C4 haloalkyl.

Embodiment D 1. A compound of Embodiment C 1 wherein

Q is selected from Q-16 and Q-18;

each R 1 is independently halogen, Ci -C4 alkyl, Ci -C4 haloalkyl or Ci -C4 haloalkoxy; R 2 is halogen or CH 3 ; and each R 3 is independently halogen, cyano, Ci -C4 alkyl or C i -C4 haloalkyl.

Embodiment D2. A compound of Embodiment C2 wherein

Q is selected from Q-43, Q-44 and Q-45;

each R 1 is independently halogen, Ci -C4 alkyl, C i -C4 haloalkyl or Ci -C4 haloalkoxy; R 2 is halogen or CH 3 ; and

each R 3 is independently halogen, cyano, Ci -C4 alkyl or C i -C4 haloalkyl.

Specific embodiments include compounds of Formula 1 selected from the group consisting of:

5-chloro-2-[2-(5-chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 1),

5-chloro-2-[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy]pyrimid ine (Compound 32),

2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine (Compound 12),

5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrim idine (Compound 27),

5-chloro-2-[3-chloro-2-(5-chloro-2-pyridinyl)phenoxy]pyrimid ine (Compound 23),

4- [2-[(5-bromo-2-pyrimidinyl)oxy]phenyl]-2-(trifluoromethyl)py rimidine

(Compound 21),

2- [2-(2-bromo-5 -thiazolyl)phenoxy] -5 -(trifluoromethyl)pyrimidine (Compound 15),

5- chloro-2-[4-methyl-2-[2-(trifluoromethyl)-4-pyridinyl]phenox y]pyrimidine

(Compound 24),

5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrim idine (Compound 35),

5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]pyrim idine (Compound 53),

5 -chloro-2-[2- [5 -(difluoromethyl)-3 -isoxazolyl] -3 -fluorophenoxy]pyrimidine

(Compound 55),

5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimi dine (Compound

62) ,

5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl]phenoxy]pyri midine (Compound

63) ,

5 -chloro-2-[2- [3 -(difluoromethyl)-5 -isoxazolyl] -3 -fluorophenoxy]pyrimidine

(Compound 144),

5 -bromo-2- [2- [3 -(difluoromethyl)-5 -isoxazolyl]-3 -fluorophenoxy]pyrimidine

(Compound 145),

5 -chloro-2-[2-[5 -(trifluoromethyl)-3 -isoxazolyl] -3 -fluorophenoxy]pyrimi dine

(Compound 168) and 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]phenoxy]pyri midine (Compound 200).

Embodiments of the present invention as described in the Summary of the Invention and Embodiment AAA also include the following:

Embodiment Ap. A compound of the Summary of the Invention wherein

Q is a 5- or 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, and optionally substituted with 1 to 3 R 1 ; or

Q is phenyl substituted with 1 to 3 R 1 ;

R 1 is halogen, cyano, CHO, C1 -C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C 1 -C4 alkoxy, C3-C4 alkenyloxy, C3-C4 alkynyloxy, Ci -C4 haloalkyl, Ci -C4 haloalkoxy, C 2 - C 4 alkoxyalkyl, C 2 -C 4 alkylthioalkyl or SO n R 1A ;

each n is independently 0, 1 or 2

R 2 is halogen, Ci -C4 alkyl or Ci -C4 haloalkyl;

m is 0, 1 or 2;

each R 3 is independently halogen, cyano, hydroxy, nitro, amino, CHO, Ci -C4 alkyl, C2-C4 alkenyl, C 2 -C 4 alkynyl, C(=0)N(R 3A )(R 3B ), C(=NOR 3C )H, C(=N)(R 3D )H, C r C 4 alkoxy, C 2 -C 4 cyanoalkoxy, C 2 -C 4 alkylcarbonyl, C 2 -C 4 alkoxycarbonyl, C 2 -C4 alkylcarbonyloxy, C 2 -C4 alkoxyalkyl, C 1 -C4 haloalkyl, C r C 4 haloalkoxy, SO n R 3E or C 3 -C 6 cycloalkyl;

each R 3 is attached to the remainder of Formula 1 at the 3-, 4- or 6-position;

R 1A is C1-C4 alkyl or C r C 4 haloalkyl;

R 3E is C r C 4 alkyl;

R 3A is C1-C4 alkyl;

R 3B is H or C r C 4 alkyl;

R 3C is H or C r C 4 alkyl; and

R 3D is H or C r C 4 alkyl.

Embodiment Bp. A compound of Embodiment A wherein

Q is selected from Q-l through Q-54 (i.e. as described in Embodiment 3);

Z is O;

R 1 is halogen, cyano, C 1 -C4 alkyl, C1 -C4 alkoxy, C 1 -C4 haloalkyl, C1 -C4 haloalkoxy, or SCF 3 ;

R 2 is halogen or Ci -C4 alkyl;

m is 0 or 1 ;

each R 3 is independently halogen, cyano, amino, Ci -C4 alkyl, C 2 -C4 alkenyl, C 2 -C4 alkynyl, C 1 -C4 alkoxy, C 2 -C4 alkoxycarbonyl, C 2 -C4 alkylcarbonyloxy, C 2 -C4 alkoxyalkyl or Ci -C4 haloalkyl; and

each R 3 is attached to the remainder of Formula 1 at the 3- or 4-position.

Embodiment Cp. A compound of Embodiment B wherein Q is a 5-membered aromatic heterocylic ring, bound to the remainder of Formula 1 through a carbon atom, optionally substituted with R 1 , and is selected from Q-l through Q-41;

R 1 is halogen C1-C4 haloalkyl or C1-C4 haloalkoxy;

R 2 is halogen or CH 3 ; and

each R 3 is independently halogen, cyano, amino or C1-C4 alkyl.

Embodiment Dp. A compound of Embodiment C wherein

Q is 6-membered aromatic heterocylic ring, bound to the remainder of Formula 1

through a carbon atom, optionally substituted with R 1 , and is selected from Q-42 through Q-54;

R 1 is halogen C1-C4 haloalkyl or C1-C4 haloalkoxy;

R 2 is halogen or CH 3 ; and

each R 3 is independently halogen, cyano, amino or C1-C4 alkyl.

Embodiment Ep. A compound of Embodiment D wherein

Q is selected from Q-42, Q-43, Q-44, Q-47, Q-48 and Q-49;

R 1 is CI, Br, CF 3 or OCF 3 ;

R 2 is halogen; and

each R 3 is independently cyano.

Specific embodiments include a compound of Formula 1 selected from the group consisting of:

5 -chloro-2- [2-(5 -chloro-2-pyridinyl)phenoxy]pyrimidine (Compound 1 );

5-chloro-2-[2-[5-(fluoromethyl)-3-isoxazolyl]phenoxy]pyrimid ine (Compound 32); 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine (Compound 12);

5 -chloro-2- [[4'-(trifluoromethoxy) [1,1 '-biphenyl] -2-yl]oxy]pyrimidine (Compound 42);

5 -chloro-2- [2- [5 -(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine (Compound 27); 5 -chloro-2- [3 -chloro-2-(5 -chloro-2 -pyridinyl)phenoxy]pyrimidine (Compound 23); 4- [2- [(5 -bromo-2-pyrimidinyl)oxy]phenyl] -2-(trifluoromethyl)pyrimidine (Compound

21);

2-[2-(2-bromo-5-thiazolyl)phenoxy]-5-(trifluoromethyl)pyrimi dine (Compound 15); and

5 -chloro-2- [4-methyl-2- [2-(trifluoromethyl)-4-pyridinyl]phenoxy]pyrimidine

(Compound 24).

This invention also relates to a method for controlling undesired vegetation comprising applying to the locus of the vegetation herbicidally effective amounts of the compounds of the invention (e.g., as a composition described herein). Of note as embodiments relating to methods of use are those involving the compounds of embodiments described above. Compounds of the invention are particularly useful for selective control of weeds in crops such as wheat, barley, maize, soybean, sunflower, cotton, oilseed rape and rice, and specialty crops such as sugarcane, citrus, fruit and nut crops.

Also noteworthy as embodiments are herbicidal compositions of the present invention comprising the compounds of embodiments described above.

This invention also includes a herbicidal mixture comprising (a) a compound selected from Formula 1, N-oxides, and salts thereof, and (b) at least one additional active ingredient selected from (bl) photosystem II inhibitors, (b2) acetohydroxy acid synthase (AHAS) inhibitors, (b3) acetyl-CoA carboxylase (ACCase) inhibitors, (b4) auxin mimics and (b5) 5 -enol-pyruvylshikimate-3 -phosphate (EPSP) synthase inhibitors, (b6) photosystem I electron diverters, (b7) protoporphyrinogen oxidase (PPO) inhibitors, (b8) glutamine synthetase (GS) inhibitors, (b9) very long chain fatty acid (VLCFA) elongase inhibitors, (blO) auxin transport inhibitors, (bl 1) phytoene desaturase (PDS) inhibitors, (bl2) 4-hydroxyphenyl-pyruvate dioxygenase (HPPD) inhibitors, (bl3) homogentisate solenesyltransererase (HST) inhibitors, (bl4) cellulose biosynthesis inhibitors, (bl5) other herbicides including mitotic disruptors, organic arsenicals, asulam, bromobutide, cinmethylin, cumyluron, dazomet, difenzoquat, dymron, etobenzanid, flurenol, fosamine, fosamine-ammonium, metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid and pyributicarb, and (bl6) herbicide safeners; and salts of compounds of (bl) through (bl6).

"Photosystem II inhibitors" (bl) are chemical compounds that bind to the D-l protein at the Qfl-binding niche and thus block electron transport from to QB in the chloroplast thylakoid membranes. The electrons blocked from passing through photosystem II are transferred through a series of reactions to form toxic compounds that disrupt cell membranes and cause chloroplast swelling, membrane leakage, and ultimately cellular destruction. The QB-binding niche has three different binding sites: binding site A binds the triazines such as atrazine, triazinones such as hexazinone, and uracils such as bromacil, binding site B binds the phenylureas such as diuron, and binding site C binds benzothiadiazoles such as bentazon, nitriles such as bromoxynil and phenyl-pyridazines such as pyridate. Examples of photosystem II inhibitors include ametryn, amicarbazone, atrazine, bentazon, bromacil, bromofenoxim, bromoxynil, chlorbromuron, chloridazon, chlorotoluron, chloroxuron, cumyluron, cyanazine, daimuron, desmedipham, desmetryn, dimefuron, dimethametryn, diuron, ethidimuron, fenuron, fluometuron, hexazinone, ioxynil, isoproturon, isouron, lenacil, linuron, metamitron, methabenzthiazuron, metobromuron, metoxuron, metribuzin, monolinuron, neburon, pentanochlor, phenmedipham, prometon, prometryn, propanil, propazine, pyridafol, pyridate, siduron, simazine, simetryn, tebuthiuron, terbacil, terbumeton, terbuthylazine, terbutryn and trietazine.

"AHAS inhibitors" (b2) are chemical compounds that inhibit acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS), and thus kill plants by inhibiting the production of the branched-chain aliphatic amino acids such as valine, leucine and isoleucine, which are required for protein synthesis and cell growth. Examples of AHAS inhibitors include amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, florasulam, flucarbazone-sodium, flumetsulam, flupyrsulfuron-methyl, flupyrsulfuron- sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron-methyl (including sodium salt), iofensulfuron (2-iodo-N-[[(4-methoxy-6-methyl-l ,3,5-triazin-2- yl)amino]carbonyl]benzenesulfonamide), mesosulfuron-methyl, metazosulfuron (3-chloro-4- (5,6-dihydro-5-methyl-l,4,2-dioxazin-3-yl)-N-[[(4,6-dimethox y-2- pyrimidinyl)amino]carbonyl]- 1 -methyl- lH-pyrazole-5-sulfonamide), metosulam, metsulfuron-methyl, nicosulfuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazone-sodium, propyrisulfuron (2-chloro-N-[[(4,6-dimethoxy-2- pyrimidinyl)amino] carbonyl] -6-propylimidazo [ 1 ,2-¾]pyridazine-3 -sulfonamide),

prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, rimsulfuron, sulfometuron-methyl, sulfosulfuron, thiencarbazone, thifensulfuron-methyl, triafamone (N-[2-[(4,6-dimethoxy-l,3,5-triazin-2-yl)carbonyl]-6- fluorophenyl] -1,1 -difluoro-N-methylmethanesulfonamide), triasulfuron, tribenuron-methyl, trifloxysulfuron (including sodium salt), triflusulfuron-methyl and tritosulfuron.

"ACCase inhibitors" (b3) are chemical compounds that inhibit the acetyl-CoA carboxylase enzyme, which is responsible for catalyzing an early step in lipid and fatty acid synthesis in plants. Lipids are essential components of cell membranes, and without them, new cells cannot be produced. The inhibition of acetyl CoA carboxylase and the subsequent lack of lipid production leads to losses in cell membrane integrity, especially in regions of active growth such as meristems. Eventually shoot and rhizome growth ceases, and shoot meristems and rhizome buds begin to die back. Examples of ACCase inhibitors include alloxydim, butroxydim, clethodim, clodinafop, cycloxydim, cyhalofop, diclofop, fenoxaprop, fluazifop, haloxyfop, pinoxaden, profoxydim, propaquizafop, quizalofop, sethoxydim, tepraloxydim and tralkoxydim, including resolved forms such as fenoxaprop-P, fluazifop-P, haloxyfop-P and quizalofop-P and ester forms such as clodinafop-propargyl, cyhalofop-butyl, diclofop-methyl and fenoxaprop-P-ethyl.

Auxin is a plant hormone that regulates growth in many plant tissues. "Auxin mimics" (b4) are chemical compounds mimicking the plant growth hormone auxin, thus causing uncontrolled and disorganized growth leading to plant death in susceptible species. Examples of auxin mimics include aminocyclopyrachlor (6-amino-5-chloro-2-cyclopropyl- 4-pyrimidinecarboxylic acid) and its methyl and ethyl esters and its sodium and potassium salts, aminopyralid, benazolin-ethyl, chloramben, clacyfos, clomeprop, clopyralid, dicamba, 2,4-D, 2,4-DB, dichlorprop, fluroxypyr, halauxifen (4-amino-3-chloro-6-(4-chloro-2-fluoro- 3-methoxyphenyl)-2-pyridinecarboxylic acid), halauxifen-methyl (methyl 4-amino-3-chloro- 6-(4-chloro-2-fluoro-3-methoxyphenyl)-2-pyridinecarboxylate) , MCPA, MCPB, mecoprop, picloram, quinclorac, quinmerac, 2,3,6-TBA, triclopyr, and methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxyl ate.

"EPSP (5 -enol-pyruvylshikimate-3 -phosphate) synthase inhibitors" (b5) are chemical compounds that inhibit the enzyme, 5 -enol-pyruvylshikimate-3 -phosphate synthase, which is involved in the synthesis of aromatic amino acids such as tyrosine, tryptophan and phenylalanine. EPSP inhibitor herbicides are readily absorbed through plant foliage and translocated in the phloem to the growing points. Glyphosate is a relatively nonselective postemergence herbicide that belongs to this group. Glyphosate includes esters and salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate).

"Photosystem I electron diverters" (b6) are chemical compounds that accept electrons from Photosystem I, and after several cycles, generate hydroxyl radicals. These radicals are extremely reactive and readily destroy unsaturated lipids, including membrane fatty acids and chlorophyll. This destroys cell membrane integrity, so that cells and organelles "leak", leading to rapid leaf wilting and desiccation, and eventually to plant death. Examples of this second type of photosynthesis inhibitor include diquat and paraquat.

"PPO inhibitors" (b7) are chemical compounds that inhibit the enzyme protoporphyrinogen oxidase, quickly resulting in formation of highly reactive compounds in plants that rupture cell membranes, causing cell fluids to leak out. Examples of PPO inhibitors include acifluorfen-sodium, azafenidin, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, cinidon-ethyl, fluazolate, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen-ethyl, saflufenacil, sulfentrazone, thidiazimin, tiafenacil (methyl N-[2- [[2-chloro-5-[3 ,6-dihydro-3-methyl-2,6-dioxo-4-(trifluoromethyl)- 1 (2H)-pyrimidinyl]-4- fluorophenyl]thio]-l-oxopropyl]-P-alaninate) and 3-[7-fluoro-3,4-dihydro-3-oxo-4-(2- propyn- 1 -yl)-2H- 1 ,4-benzoxazin-6-yl] dihydro- 1 ,5 -dimethyl-6-thioxo- 1 ,3 ,5 -triazine- 2,4(lH,3H)-dione.

"GS (glutamine synthase) inhibitors" (b8) are chemical compounds that inhibit the activity of the glutamine synthetase enzyme, which plants use to convert ammonia into glutamine. Consequently, ammonia accumulates and glutamine levels decrease. Plant damage probably occurs due to the combined effects of ammonia toxicity and deficiency of amino acids required for other metabolic processes. The GS inhibitors include glufosinate and its esters and salts such as glufosinate-ammonium and other phosphinothricin derivatives, glufosinate-P ((25)-2-amino-4-(hydroxymethylphosphinyl)butanoic acid) and bilanaphos.

"VLCFA (very long chain fatty acid) elongase inhibitors" (b9) are herbicides having a wide variety of chemical structures, which inhibit the elongase. Elongase is one of the enzymes located in or near chloroplasts which are involved in biosynthesis of VLCFAs. In plants, very-long-chain fatty acids are the main constituents of hydrophobic polymers that prevent desiccation at the leaf surface and provide stability to pollen grains. Such herbicides include acetochlor, alachlor, anilofos, butachlor, cafenstrole, dimethachlor, dimethenamid, diphenamid, fenoxasulfone (3-[[(2,5-dichloro-4-ethoxyphenyl)methyl]sulfonyl]-4,5-dihyd ro- 5,5-dimethylisoxazole), fentrazamide, flufenacet, indanofan, mefenacet, metazachlor, metolachlor, naproanilide, napropamide, napropamide-M ((2R)-N,N-diethyl-2-(l- naphthalenyloxy)propanamide), pethoxamid, piperophos, pretilachlor, propachlor, propisochlor, pyroxasulfone, and thenylchlor, including resolved forms such as S-metolachlor and chloroacetamides and oxyacetamides.

"Auxin transport inhibitors" (blO) are chemical substances that inhibit auxin transport in plants, such as by binding with an auxin-carrier protein. Examples of auxin transport inhibitors include diflufenzopyr, naptalam (also known as N-(l-naphthyl)phthalamic acid and 2-[(l-naphthalenylamino)carbonyl]benzoic acid).

"PDS (phytoene desaturase inhibitors) (bl l) are chemical compounds that inhibit carotenoid biosynthesis pathway at the phytoene desaturase step. Examples of PDS inhibitors include beflubutamid, diflufenican, fluridone, flurochloridone, flurtamone norflurzon and picolinafen.

"HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitors" (bl2) are chemical substances that inhibit the biosynthesis of synthesis of 4-hydroxyphenyl-pyruvate dioxygenase. Examples of HPPD inhibitors include benzobicyclon, benzofenap, bicyclopyrone (4-hydroxy-3 -[ [2-[(2-methoxyethoxy)methyl] -6-(trifluoromethyl)-3 - pyridinyl]carbonyl]bicyclo[3.2.1]oct-3-en-2-one), fenquinotrione (2-[[8-chloro-3,4-dihydro- 4-(4-methoxyphenyl)-3-oxo-2-quinoxalinyl]carbonyl]-l,3-cyclo hexanedione),

isoxachlortole, isoxaflutole, mesotrione, pyrasulfotole, pyrazolynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, topramezone, 5-chloro-3-[(2-hydroxy-6-oxo-l- cyclohexen-l-yl)carbonyl]-l-(4-methoxyphenyl)-2(lH)-quinoxal inone, 4-(2,6-diethyl-4- methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone, 4-(4-fluorophenyl)-6-[(2- hydroxy-6-oxo-l-cyclohexen-l-yl)carbonyl]-2-methyl-l,2,4-tri azine-3,5(2H,4H)-dione, 5- [(2-hydroxy-6-oxo-l-cyclohexen-l-yl)carbonyl]-2-(3-methoxyph enyl)-3-(3-methoxypropyl)- 4(3H)-pyrimidinone, 2-methyl-N-(4-methyl- 1 ,2,5-oxadiazol-3-yl)-3-(methylsulfmyl)-4- (trifluoromethyl)benzamide and 2-methyl-3-(methylsulfonyl)-N-(l -methyl- lH-tetrazol-5-yl)- 4-(trifluoromethyl)benzamide. HST (homogentisate solenesyltransererase) inhibitors (bl3) disrupt a plant's ability to convert homogentisate to 2-methyl-6-solanyl-l ,4-benzoquinone, thereby disrupting carotenoid biosynthesis. Examples of HST inhibitors include haloxydine, pyriclor, 3-(2- chloro-3 ,6-difluorophenyl)-4-hydroxy- 1 -methyl- 1 ,5 -naphthyridin-2( lH)-one, 7-(3 ,5 - dichloro-4-pyridinyl)-5-(2,2-difluoroethyl)-8-hydroxypyrido[ 2,3-¾]pyrazin-6(5H)-one and 4- (2,6-diethyl-4-methylphenyl)-5-hydroxy-2,6-dimethyl-3(2H)-py ridazinone.

HST inhibitors also include com ounds of Formulae A and B.

B

wherein R dl is H, CI or CF 3 ; R d2 is H, CI or Br; R d3 is H or CI; R d4 is H, CI or CF 3 ; R d5 is CH 3 , CH 2 CH 3 or CH 2 CHF 2 ; and R d6 is OH, or -OC(=0)-z-Pr; and R el is H, F, CI, CH 3 or CH 2 CH 3 ; R e2 is H or CF 3 ; R e3 is H, CH 3 or CH 2 CH 3 ; R e4 is H, F or Br; R e5 is CI, CH 3 , CF 3 , OCF 3 or CH 2 CH 3 ; R e6 is H, CH 3 , CH 2 CHF 2 or C≡CH; R e7 is

OH, -OC(=0)Et, -OC(=0)-z-Pr or -OC(=0)-t-Bu; and A e8 is N or CH.

Cellulose biosynthesis inhibitors (bl4) inhibit the biosynthesis of cellulose in certain plants. They are most effective when using a pre-aplication or early post-application on young or rapidly growing plants. Examples of cellulose biosynthesis inhibitors include chlorthiamid, dichlobenil, flupoxam, indaziflam (N 2 -[(li?,25)-2,3-dihydro-2,6-dimethyl-lH- inden-l-yl]-6-(l-fluoroethyl)-l ,3,5-triazine-2,4-diamine), isoxaben and triaziflam.

Other herbicides (bl5) include herbicides that act through a variety of different modes of action such as mitotic disruptors (e.g., flamprop-M-methyl and flamprop-M-isopropyl) organic arsenicals (e.g., DSMA, and MSMA), 7,8-dihydropteroate synthase inhibitors, chloroplast isoprenoid synthesis inhibitors and cell-wall biosynthesis inhibitors. Other herbicides include those herbicides having unknown modes of action or do not fall into a specific category listed in (bl) through (bl4) or act through a combination of modes of action listed above. Examples of other herbicides include aclonifen, asulam, amitrole, bromobutide, cinmethylin, clomazone, cumyluron, cyclopyrimorate (6-chloro-3-(2- cyclopropyl-6-methylphenoxy)-4-pyridazinyl 4-morpholinecarboxylate), daimuron, difenzoquat, etobenzanid, fluometuron, flurenol, fosamine, fosamine-ammonium, dazomet, dymron, ipfencarbazone ( 1 -(2,4-dichlorophenyl)-N-(2,4-dif uorophenyl)- 1 ,5-dihydro-N-( 1 - methylethyl)-5-oxo-4H-l ,2,4-triazole-4-carboxamide), metam, methyldymron, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb and 5-[[(2,6-difluorophenyl)methoxy]methyl]- 4,5-dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole.

"Herbicide safeners" (bl6) are substances added to a herbicide formulation to eliminate or reduce phytotoxic effects of the herbicide to certain crops. These compounds protect crops from injury by herbicides but typically do not prevent the herbicide from controlling undesired vegetation. Examples of herbicide safeners include but are not limited to benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfamide, daimuron, dichlormid, dicyclonon, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr-diethyl, mephenate, methoxyphenone, naphthalic anhydride, oxabetrinil, N-(aminocarbonyl)-2-methylbenzenesulfonamide and N- (aminocarbonyl)-2-fluorobenzenesulfonamide, l-bromo-4-[(chloromethyl)sulfonyl]benzene, 2-(dichloromethyl)-2-methyl-l,3-dioxolane (MG 191), 4-(dichloroacetyl)-l-oxa- 4-azospiro[4.5]decane (MON 4660).

The compounds of Formula 1 can be prepared by general methods known in the art of synthetic organic chemistry. One or more of the following methods and variations as described in Schemes 1-9 can be used to prepare the compounds of Formula 1. The definitions of Q, R 1 , R 2 and R 3 in the compounds of Formulae 1-11 below are as defined above in the Summary of the Invention unless otherwise noted. Compounds of Formulae 1A-1C, 2A-2F, 4A and 8A are various subsets of the compounds of Formula 1, 2 4 and 8 and all substituents for Formulae 1A-1C, 2A-2F, 4A and 8A are as defined above for Formula 1 unless otherwise noted.

One or more of the following methods and variations as described in Schemes 1-9 can be used to prepare the compounds of Formula 1. The definitions of Q, R 1 , R 2 and R 3 in the compounds of Formulae 1-11 below are as defined above in the Summary of the Invention unless otherwise noted.

As shown in Scheme 1 a compound of Formula 1 can be prepared by nucleophilic substitution by heating a compound of Formula 2 in a suitable solvent, such as acetonitrile, tetrahydrofuran or N,N-dimethylformamide in the presence of a base such as potassium or cesium carbonate, at temperatures ranging from 50 to 110 °C, with a compound of Formula 3 (where LG is halogen or S02Me). The reaction is typically conducted at temperatures ranging from 50 to 110 °C. Scheme 1

LG is halogen or SO2CH3

Alternatively, as shown in Scheme 2, boron compounds of Formula 5 or tin compounds of Formula 6 can be coupled with intermediates of Formula 4 under Suzuki or Stille conditions to give compounds of Formula 1. Suzuki couplings typically are conducted in the presence of Pd(0) or Pd(II) salts, a suitable ligand, and a base. Suitable bases for this transformation include potassium carbonate or cesium carbonate, while Pd(II) salts such as Pd(OAc) 2 or PdCl 2 can be used in conjunction with ligands such as triphenylphosphine or l,l'-bis(diphenylphosphino)ferrocene (dppf). Conditions for Suzuki couplings are well documented in the literature (see for example Angewandte Chemie International Edition 2006, 45, 3484 and Tetrahedron Letters 2002, 55(14), 2885). Boron intermediates of Formula 5 are commercially available or can be prepared from the corresponding halides or trifluoromethanesulfonates by methods known in the literature (see for example PCT Patent Publication WO 2007/043278, US Pat. No. 8,080,566, Organic Letters 2011, 75(6), 1366 and Organic Letters 2012, 14(2), 600). Stille couplings typically can be conducted in the presence of Pd(0) or a Pd(II) salt, a ligand and a Cu(I) salt such as copper(I) iodide. The reaction can be run in a solvent such as dioxane, 1 ,2-dimethoxyethane or toluene at a temperature ranging from ambient to reflux. For conditions and reagents employed in Stille couplings see Chemical Reviews 2007, 107(1), 133-173.

Scheme 2

,B(OR) 2

palladium catalyst,

R = C , - C 4 alkyl

As shown in Scheme 3, a compound of Formula 2C (i.e. a compound of Formula 2 where Z is O) can be prepared by deprotection of a compound of Formula 2B (i.e. a compound of Formula 2A wherein Z is O; and R^ is CH3 or -C(=0)CH 3 ) with a suitable deprotecting agent. Suitable methoxy (i.e. when R A is CH 3 ) deprotecting reagents such as BBr 3 , AICI3 and HBr in acetic acid can be used in the presence of solvents such as toluene, dichloromethane and dichloroethane at a temperature of from -80 to 120 °C. Suitable acetoxy (i.e. when R A is -C(=0)CH 3 ) deprotecting agents include potassium carbonate in methanol or ammonium acetate in aqueous methanol at room temperature can be used as discussed in Das, et al, Tetrahedron 2003, 59, 1049-1054 and methods cited therein. Alternatively, a compound of Formula 2B can be combined with Amberlyst 15® in methanol (as discussed in Das, et al. Tet. Lett. 2003, 44, 5465-5468) or combined with sodium acetate in ethanol (as discussed in Narender, T., et al. Synthetic Communications 2009, 39(11), 1949-1956) to obtain a compound of Formula 2C. Other useful phenolic protecting groups suitable for use in preparing a compound of Formula 2C can be found in Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley: Hoboken, New Jersey, 1991.

Scheme 3

2B

R A = CH 3 or -C(=0)CH 3 2C An intermediate of Formula 2B can be prepared as shown in Scheme 4 from an intermediate of Formula 7 by a variety of methods known to one skilled in the art. Compounds of Formula 2B can be accessed by coupling precursors of Formula 7 wherein J is Br, CI, I or trifluoromethanesulfonate with boronate or trialkyltin group-containing heterocycles (i.e compounds of Formula 5 or Formula 6 using the Suzuki conditions or the Stille conditions of Scheme 2). Alternatively, compounds of Formula 7 wherein J is a boronate or trialkyltin group may be coupled with halogen-substituted heterocycles Q-X using the methods shown in Scheme 2 to afford compounds of Formula 2B. The skilled chemist will realize that with the prudent choice of groups X and J in reactions involving compounds of Formula 7 and Q-X can synthesize the intermediate 2B utilizing various cross coupling procedures such as Kumada coupling, Hiyama coupling or Negishi coupling described in "Metal-Catalyzed Cross-Coupling Reactions", Eds. A. de Meijere and F. Diederich, Wiley- VCH, Weinheim, 2004, vols 1 and 2.

When J in Formula 7 is an alkene, alkyne, oxime, nitrile or ketone, various heterocycles can be prepared using methods described in Katritsky, Advances in Heterocyclic Chemistry, Vol. 1-104, Elsevier. In cases where regioisomeric mixtures are produced, the desired product can be isolated using routing separation techniques known in the art.

Scheme 4

7 2B

R A is CH 3 or -C(=0)CH 3

As shown in Scheme 5, a compound of Formula 4A can be prepared by coupling of phenols of Formula 9 with a compound of Formula 3 under the nucleophilic substitution conditions described in Scheme 1.

5

4A

or OS0 2 CF 3

As shown in Scheme 6, a compound of Formula IB, (i.e. a compound of Formula 1 where Z is O; and m is 1 at the 3-position) can be prepared by "C-H activation" of a compound of Formula 1A (a compound of Formula 1 wherein Z is O; and m is 0). For example, paladium(II) acetate along with either an N-halosuccinimide, PhI(OAc)2, N-fluoropyridinium tetrafluoroborate, or a lower alkyl boronic acid can be used to introduce the R 3 variable as I, Br, CI, -OAc, F, and lower alkyl substituents respectively. These methods are detailed in reviews of selective activation of C-H bonds in Chemical Reviews 2010, 110, 575-1211 and references cited therein. Methods for "C-H activation" can also be found in Wencel-Delord et al, Nature Chemistry 2013, 5, 369-375 and a series of reviews of "C-H activation" in Accounts of Chemical Research 2012, 45, 777-958 and references cited therein. Iodides and bromides of Formula IB can then be further functionalized by various cross coupling procedures described in "Metal-Catalyzed Cross-Coupling Reactions", Eds A. de Meijere and F. Diederich, Wiley- VCH, Weinheim, 2004, vols 1 and 2.

heme 6

Chemistry based on "C-H activation" can also be used to prepare a compound of Formula 2D (i.e. a compound of Formula 2 wherein Z is O; R is -C(0)CH3; and m is 1 at the 3 -position) as shown in Scheme 7 utilizing palladium(II) acetate and (diacetoxyiodo)benzene as described above for Scheme 6. A compound of Formula 2D can subsequently be converted via methods disclosed in Schemes 1 and 6 to provide a compound of Formula 1.

Scheme 7

Similarly, chemistry based on "C-H activation" can be used to prepare a compound of Formulae 2F (i.e. a compound of Formula 2A wherein Z is S) as shown in Scheme 8. A compound of Formula 8 can first be converted to a compound of Formula 8A (i.e. a compound of Formula 6 wherin the ortho "H" is X; and X is Br or I) by utilizing a stepwise introduction of substituents using "C-H activation". Iodides and bromides of Formula 8A can then be further functionalized by copper mediated cross-coupling with thiourea as described in Qi, Junsheng, Chin. J. Chem. 2010, 28, 1441-1443 to provide the aryl thiol after acidic deprotection. Palladium catalyzed cross-coupling reactions of aryl halides can give protected thiols that can, in turn, be deprotected under either acidic conditions or basic conditions (e.g. cesium fluoride) to provide a compound of Formula 2F. These conditions are discussed in Organ, Michael G., Angew. Chem. Int. Ed. 2012, 51, 3314-3322 and the references cited therein. Also, relevant conditions can be found in Takashiro Itoh, J. Org. Chem. 2006, 71, 2203-2206. A compound of Formula 2F can then be converted via methods disclosed in Schemes 1 and 7 to provide a compound of Formula 1.

Scheme 8

C-H activation

(stepwise when

R J is other than H)

X is Br or I

8 8A 2F

In Scheme 9, the phenol, 2E is reacted with N,N-dimethyl thiocarbamoyl chloride in N,N-dimethylformamide in the presence of a strong tertiary amine base such as l,4-diazabicyclo[2.2.2]octane or N-methylmorpholine for acidic phenols (for less-acidic phenols, prior deprotonation with sodium hydride may be advantageous) to form the O-aryl N,N-dimethylthiocarbamate of Formula 10. Newman-Kwart rearrangement of a compound of Formula 10 at temperatures ranging from 200 to 300 °C provides the intermediate S-aryl dimethylthiocarbamate of Formula 11. A one-pot deprotection of a compound of Formula 11 is readily achieved using 10% aqueous sodium hydroxide or methanolic potassium hydroxide to afford the corresponding aryl thiol. Subsequent reaction with a compound of Formula 3 at or slightly above room temperature provides the product 1C (i.e. a compound of Formula 1 wherein Z is S). Methods for Newman-Kwart rearrangements are found in Lloyd- Jones, Guy C, Synthesis 2008, 661-689. Scheme 9

It is recognized by one skilled in the art that various functional groups can be converted into others to provide different a compound of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C, Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley- VCH, New York, 1999. For example, intermediates for the preparation of a compound of Formula 1 may contain aromatic nitro groups, which can be reduced to amino groups, and then be converted via reactions well known in the art such as the Sandmeyer reaction, to various halides, providing a compound of Formula 1. The above reactions can also in many cases be performed in alternate order

It is recognized that some reagents and reaction conditions described above for preparing a compound of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley: Hoboken, New Jersey, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of a compound of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare a compound of Formula 1.

One skilled in the art will also recognize that a compound of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ^H NMR spectra are reported in ppm downfield from tetramethylsilane in CDCI3; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets, "dt" means doublet of triplets, and "bs" means broad singlet.

It is recognized by one skilled in the art that various functional groups can be converted into others to provide different compounds of Formula 1. For a valuable resource that illustrates the interconversion of functional groups in a simple and straightforward fashion, see Larock, R. C, Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd Ed., Wiley- VCH, New York, 1999. For example, intermediates for the preparation of compounds of Formula 1 may contain aromatic nitro groups, which can be reduced to amino groups, and then be converted via reactions well known in the art such as the Sandmeyer reaction, to various halides, providing compounds of Formula 1. The above reactions can also in many cases be performed in alternate order

It is recognized that some reagents and reaction conditions described above for preparing compounds of Formula 1 may not be compatible with certain functionalities present in the intermediates. In these instances, the incorporation of protection/deprotection sequences or functional group interconversions into the synthesis will aid in obtaining the desired products. The use and choice of the protecting groups will be apparent to one skilled in chemical synthesis (see, for example, Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 2nd ed.; Wiley: New York, 1991). One skilled in the art will recognize that, in some cases, after the introduction of a given reagent as it is depicted in any individual scheme, it may be necessary to perform additional routine synthetic steps not described in detail to complete the synthesis of compounds of Formula 1. One skilled in the art will also recognize that it may be necessary to perform a combination of the steps illustrated in the above schemes in an order other than that implied by the particular presented to prepare the compounds of Formula 1.

One skilled in the art will also recognize that compounds of Formula 1 and the intermediates described herein can be subjected to various electrophilic, nucleophilic, radical, organometallic, oxidation, and reduction reactions to add substituents or modify existing substituents.

Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Steps in the following Examples illustrate a procedure for each step in an overall synthetic transformation, and the starting material for each step may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples or Steps. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. ¾ NMR spectra are reported in ppm downfield from tetramethylsilane at 500 MHz in CDCI3 unless otherwise indicated; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets and "dt" means doublet of triplets.

SYNTHESIS EXAMPLE 1

Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isoxazolemethano l

(Compound 31)

Step A: Synthesis of 5-chloro-2-[2-[5-[[[(l,l- dimethylethyl)diphenylsilyl]oxy]methyl]-3-isoxazolyl]phenoxy ]pyrimidine To a solution of 3-(2-methoxyphenyl)-5-isoxazolemethanol (prepared as described in

Bioorganic Med. Chem. 2004, 12, 3965 (0.500 mg, 0.243 mmol) in tetrahydrofuran (25 mL) was added t-butyldiphenylsilyl chloride (0.804 mg, 2.92 mmol) followed by imidazole (0.199 mg, 2.92 mmol). After 2 h the solvent was removed under vacuum. Purification using chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the intermediate 5-[[[(l,l-dimethylethyl)diphenylsilyl]oxy]methyl]-3-(2- methoxyphenyl)isoxazole and the material was taken on without further purification.

To a solution of 5-[[[(l,l-dimethylethyl)diphenylsilyl]oxy]methyl]-3-(2- methoxyphenyl)isoxazole (3.10 g, 0.699 mmol) in dichloromethane (35 mL) at 0 °C was added a 1.0 M solution of boron tribromide (34.9 mL) and the reaction was stirred at this temperature for 1 h. The reaction was quenched with a saturated solution of sodium bicarbonate. The phases were separated, and the aqueous layer was washed with additional dichloromethane. The combined organic phases were combined, dried with MgS0 4 and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded 2-[5-[[[(l,l- dimethylethyl)diphenylsilyl]oxy]methyl]-3-isoxazolyl]phenol which was taken taken to the next step withot further purification. To a solution of 2-[5-[[[(l,l-dimethylethyl)diphenylsilyl]oxy]methyl]-3- isoxazolyl]phenol (2.78 g, 6.47 mmol) in acetonitrile (60 mL) was added 2,5-dichloropyrimidine (1.15 g, 7.70 mmol) and potassium carbonate (2.24 g, 16.2 mmol) and the reaction was heated to 80 °C for 6 h. The reaction mixture was allowed to warm to room temperature and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title product (2.27 g).

!H NMR δ 8.41 (s, 2H), 8.00-7.97 (m, 1H), 7.67-7.61 (m, 4H), 7.56-7.50 (m, 1H), 7.47- 7.36 (m, 7H), 7.28-7.26 (m, 1H), 6.56 (t, 1H), 1.05 (s, 9H). MS (AP + ) = 542.

Step B: Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isoxazolemethano l

To a solution of 5-chloro-2-[5-[[[(l,l-dimethylethyl)diphenylsilyl]oxy]methyl ]-3- isoxazolyl]phenoxy]pyrimidine (i.e. the product from Step A) (2.27 g, 4.19 mmol) in tetrahydrofuran (15 mL) was added acetic acid (0.50 mL) followed by a solution of 75% tetrabutylammonium fluoride in water (2.9 mL) and the reaction was allowed to stir for 2 h. The reaction was quenched with a saturated solution of sodium bicarbonate and the phases were partitioned and the aqueous phase was further washed with ethyl acetate. The combined organic phases were combined, dried over MgS0 4 and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title product, a compound of the present invention (1.21 g).

!H NMR δ 8.45 (s, 2H), 7.99-7.95 (m, 1H), 7.56-7.52 (m, 1H), 7.42-7.38 (m, 1H), 7.28- 7.25 (m, 1H), 6.64-6.61 (m, 1H), 4.77-4.73 (m, 2H).

SYNTHESIS EXAMPLE 2

Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isoxazolecarboxa ldehyde

(Compound 33)

Step A: Synthesis of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5- isoxazolecarboxaldehyde

Pyridinium chlorochromate (263 mg, 1.22 mmol) and silica gel (200 mg) were combined and mixed as solids. This mixture was then added to a stirring solution of 3-[2- [(5-chloro-2-pyrimidinyl)oxy]phenyl]-5-isoxazolemethanol (i.e. the product obtained in Step A of Example 1) (309 mg, 1.02 mmol) in dichloromethane (5.0 mL) and the reaction was allowed to stir for 18 h. The solution was filtered to remove the silica gel and the organic phase was washed with a 1 M hydrochloric acid solution. The organic phase was dried with MgSC"4 and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afforded the title product, a compound of the present invention (0.307 g) .

!H NMR δ 9.95 (s, 1H), 8.46 (s, 2H), 8.06-8.01 (m, 1H), 7.61-7.56 (m, 1H), 7.47-7.41 (m, 1H), 7.38 (s, 1H), 7.32-7.29 (m, 1H). MS (AP + ) = 302. SYNTHESIS EXAMPLE 3

Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrim idine

(Compound 35)

Step A Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3- isoxazolyl]phenoxy]pyrimidine

To a stirred solution of 3-[2-[(5-chloro-2-pyrimidinyl)oxy]phenyl]-5- isoxazolecarboxaldehyde (i.e. the product from Step A of Example 2) (100 mg, 0.332 mmol) in dichloromethane (3.0 mL) at -78 °C was added Deoxo-Fluor ® (161 mg, 0.729 mmol) and the reaction was allowed to return to ambient temperature. Upon consumption of the starting material as evidenced by thin-layer chromatography, the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afforded the title product, a compound of the present invention (36.3 mg). !H NMR δ 8.46 (s, 2H), 8.01-7.96 (m, 1H), 7.59-7.54 (m, 1H), 7.44-7.38 (m, 1H), 7.31- 7.27 (m, 1H), 6.98-6.96 (s, 1H), 6.83-6.60 (m, 1H). MS (EST ) = 324.

SYNTHESIS EXAMPLE 4

Synthesis of 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine (Compound 12) Step A: Synthesis of 3-bromo-5-(2-methoxyphenyl)isoxazole

To a solution of l-ethynyl-2-methoxybenzene (0.78 g, 5.92 mmol) in dichloromethane (10 mL) was added dibromoformaldoxime (1.00 g, 4.93 mmol). The mixture was cooled to 0 °C and potassium bicarbonate (1.48 g, 14.8 mmol) was added, followed by heating to 40 °C for 18 h. Water was added to the reaction mixture, the phases separated, and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried over MgS0 4 , concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product, a compound of the present invention (1.04 g).

!H NMR δ 7.94 (dd, 1H), 7.47-7.42 (m, 1H), 7.09 (dd, 1H), 7.02 (dd, 1H), 6.85 (s, 1H), 3.97 (s, 3H). MS (AP+) = 254.

Step B: Synthesis of 2-(3-bromo-5-isoxazolyl)phenol

To a solution of 3-bromo-5-(2-methoxyphenyl)isoxazole (i.e. the product from Step A) (0.50 g, 1.97 mmol) in dichloromethane (20mL) was added a 1 M solution of boron tribromide in dichloromethane (9.86 mmol) at -78 °C and the solution was allowed to warm to room temperature and stir for 18 h. Dichloroethane (20 mL) was added, and reaction mixture was concentrated to remove the excess dichloromethane. Boron tribromide in dichloromethane (9.86 mmol) was again added and the reaction was heated to 80 °C until completion as evidenced by thin-layer chromatography. The reaction mixture was allowed to cool to ambient temperature and quenched with a saturated solution of sodium bicarbonate. The phases were separated and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried with MgSC^, concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product (0.395 g).

!H NMR δ 7.76 (dd, 1H), 7.39-7.33 (m, 1H), 7.09-7.02 (m, 1H), 6.96-6.93 (m, 1H), 6.02 (s, 1H). MS (AP -) = 238.

Step C: 2-[2-(3-bromo-5-isoxazolyl)phenoxy]-5-chloropyrimidine

To a solution of 2-(3-bromo-5-isoxazolyl)phenol (i.e. the product from Step B) (100 mg, 0.417 mmol) in acetonitrile (5 mL) was added 2,5-dichloropyrimidine (75.0 mg, 0.503 mmol) and potassium carbonate (288 mg, 2.08mmol) then the solution was stirred at ambient temperature for 18 h. The reaction was then heated at 40 °C for 2 h followed by 80 °C for two hours. The solution was then cooled to ambient temperature, water was added, the phases were separated and the aqueous layer was again washed with dichloromethane. The combined organic phases were dried over MgS0 4 , concentrated under vacuum, and purified by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes to afford the title product, a compound of the present invention (122 mg). !H NMR δ 8.49 (s, 2H), 8.03 (dd, 1H), 7.58-7.53 (m, 1H), 7.43 (dt, 1H), 7.29 (dd, 1H), 6.74 (s, 1H). MS (AP+) = 352.

SYNTHESIS EXAMPLE 5

Synthesis of 5 -chloro-2- [2- [4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine

(Compound 25)

Step A: Synthesis of 2-[4-(trifluoromethyl)-2-pyridinyl]phenol

2-Chloro-4-trifluoromethylpyridine (1.0 g, 5.5 mmol) and 2-(4,4,5,5-tetramethyl- l ,3,2-dioxaborolan-2-yl)phenol (1.57 g, 7.16 mmol) were combined in dimethoxy ethane (18 mL) and water (1.8 mL). To this mixture were added sodium carbonate (2.28 g, 16.5 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.32 g, 0.27 mmol). The reaction was heated at 90 °C for 2.5 h and allowed to stir at 23 °C for 18 h. The mixture was diluted with water (20 mL) and dichloromethane (20 mL) and the layers separated. The aqueous layer was washed with dichloromethane (10 mL). The combined dichloromethane layers were washed with saturated aqueous sodium chloride solution (10 mL) and dried over sodium sulfate. After filtration the organic layer was evaporated and the solid thus obtained was triturated with hexanes (20 mL). The filtrate was concentrated to provide 1.18 g of the title compound as a yellow solid which was used in Step B without further purification.

!H NMR δ 13.61 (s, 1H), 8.72 (d, 1H), 8.12 (s, 1H), 7.83 (d, 1H), 7.47 (m, 1H), 7.36 (s, 1H), 7.06 (d, 1H), 6.96 (t, 1H). Step B Synthesis of 5-chloro-2-[2-[4-(trifluoromethyl)-2- pyridinyl]phenoxy]pyrimidine

2-[4-(Trifiuoromethyl)-2-pyridinyl]phenol (i.e. the product from Step A) (0.20 g, 0.84 mmol) and 2,5-dichloropyrimidine (0.14 g, 0.92 mmol) were dissolved in acetonitrile (2 mL) and treated with powdered potassium carbonate (0.34 g, 2.5 mmol). The mixture was heated to 80 °C for 18 h. After cooling, the reaction mixture was diluted with water (10 mL) and ethyl acetate (10 mL) and the layers separated. The aqueous layer was washed with ethyl acetate (10 mL). The combined ethyl acetate solution was washed with saturated aqueous sodium chloride solution (10 mL) and dried over MgS0 4 . The filtrate was evaporated under reduced pressure and subjected to chromatography through 12 g silica gel eluting with 10 to 20% ethyl acetate in hexanes. Appropriate fractions were pooled and evaporated to provide the title compound, a compound of the present invention (0.2 g) as a clear oil.

!H NMR δ 8.75 (d, 1H), 8.39 (s, 2H), 7.91 (s, 1H), 7.88 (m, 1H), 7.54 (m, 1H), 7.44 (m, 1H), 7.37 (d, 1H), 7.28 (m, 1H).

SYNTHESIS EXAMPLE 6

Synthesis of 5-chloro-2-[4-methyl-2-[6-(trifiuoromethyl)-3-pyridinyl]phen oxy]pyrimidine

(Compound 22)

Step A: Synthesis of 2-(2-bromo-4-methylphenoxy)-5-chloropyrimidine

2-Bromo-4-methylphenol (280 mg, 1.5 mmol) and 2,5-dichloropyrimidine (246 mg, 1.65 mmol) were combined in 6 mL of acetonitrile under a nitrogen atmosphere. Powdered potassium carbonate (455 mg, 3.3 mmol) was added and the resulting mixture was heated at reflux for 6 h. The reaction mixture was cooled and diluted with de-ionized water and ethyl acetate. The aqueous layer was separated and extracted twice with ethyl acetate. The combined organic layers were washed with brine, dried over MgS0 4 , filtered and concentrated under reduced pressure. The resulting residue was purified by medium pressure liquid chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes to yield the title compound (270 mg).

¾ NMR δ 8.48 (s, 2H), 7.47 (d, 1H), 7.18 (m, 1H), 7.11 (m, 1H), 2.37 (s, 3H).

Step B Synthesis of 5-chloro-2-[4-methyl-2-[6-(trifluoromethyl)-3- pyridinyl]phenoxy]pyrimidine

A mixture of 2-(2-bromo-4-methylphenoxy)-5-chloropyrimidine (i.e. the product of Step A; 190 mg, 0.63 mmol), 5-[6-(trifluoromethyl)-3-pyridinyl]-boronic acid (133 mg, 0.70 mmol), sodium carbonate (0.6 mL of 2 M aqueous solution, 1.26 mmol) and tetrakis(triphenylphosphine)palladium(0) (73 mg, 0.06 mmol) in toluene (9 mL) and ethanol (1 mL) was heated at 90 °C for 2 h. The reaction mixture was then concentrated under reduced pressure, and the residue was purified by medium pressure liquid chromatography on silica gel eluted with 0 to 10% ethyl acetate in hexanes to yield the title compound, a compound of the present invention (190 mg).

¾ NMR δ 8.77 (d, 1H), 8.36 (s, 2H), 8.02 (m, 1H), 7.64 (d, 1H), 7.31 (m, 2H), 7.15 (d, 1H), 2.45 (s, 3H).

SYNTHESIS EXAMPLE 7

Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]pyrim idine

(Compound 53)

Step A: Synthesis of 2-(3-difluoromethyl-5-isoxazolyl)phenol

To a solution of 25% sodium methoxide in methanol (5 mL) and tetrahydrofuran (10 mL), acetophenone (1 g, 7.3 mmol) and difluoroacetate (1 g, 8.1 mmol) in tetrahydrofuran (2 mL) was added and heated at 60 °C for 5 h. The reaction was cooled to room temperature and treated with 36% aq hydrochloric acid (4 mL) and stirred at 60 °C for 2 h. The reaction was quenched by adding water (15 mL) and the organic solvent was removed under vacuum. The precipitated product 2-difluoromethyl-4-chromenone (1.4 g) was filtered and dissolved in ethanol (5 mL). To this solution, hydroxylamine acetate (22 mmol) in water (5 mL) was added and the mixture was heated at 60 °C for 3 h. After cooling the reaction to ambient temperature 4,4-difluoro-l-(2-hydroxyphenyl)-butane-l,3-dione 3-oxime was precipitated with the addition of water (20 mL). This product was collected by filtration and suspended in acetic acid (5 mL) and 36% aqueous hydrochloric acid (1.8 mL) at room temperature and stirred at 80 °C for 15 min to obtain the titile compound as a beige solid (800 mg).

!H NMR δ 7.82 (m,l H), 7.36 (s, 1 H), 7.07 (m, 1 H), 6.95 (m, 2H), 6.82 (t, 1H), 6.05 (s, 1H). MS (ESI + ) = 212

Step B: Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]phenoxy]- pyrimidine

To a solution of 2-(3-difluoromethyl-5-isoxazolyl)phenol (i.e. the product from Step

A) (2.1 g, 9.71 mmol) in anhydrous N,N-dimethylformamide (8 mL) was added 2,5- dichloropyrimidine (1.5 g, 10.2 mmol) and potassium carbonate (2.9 g, 21.3 mmol). The reaction was heated at 90 °C for 1 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 10% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (2.2 g).

!H NMR δ 8.49 (s, 2H), 8.06 (m, 1H), 7.57 (m, 1H), 7.44 (m, 1H), 7.31 (m, 1H), 6.88 (s, 1H), 6.74 (t, 1H). MS (ESI + ) = 324 SYNTHESIS EXAMPLE 8

Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophen oxy]pyrimidine

(Compound 144)

Step A: Synthesis of 4,4-difluoro- 1 -(2-fluoro-6-methoxyphenyl)butane- 1 ,3-dione To a solution of l-(2-fluoro-6-methoxyphenyl)ethanone (2.6 g, 15.5 mmol) and difluoroacetic acid ethyl ester (3.9 mL, 31.0 mmol) in anhydrous N,N-dimethylformamide at 0 °C was added sodium hydride (1.2 g, 31.0 mmol). The reaction mixture was heated at 80 °C for 1 h. The reaction was then cooled to 0 °C, diluted with ethyl acetate and acidified with 1 N aqueous hydrochloric acid. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined and dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (2.5 g). !H NMR δ 7.39 (m, 1H), 6.77 (m, 2H), 6.24 (s, 1H), 6.01 (t, 1 H), 3.87 (s, 3 H). MS (ESI + ) = 247

Step B: Synthesis of 3-difluoromethyl-5-(2-fluoro-6-methoxyphenyl)isoxazole

A solution of 4,4-difluoro- l-(2-fluoro-6-methoxyphenyl)butane-l,3-dione (i.e. the product from Step A) (2.5 g, 10 mmol) and hydroxylamine hydrochloride (2.1 g, 30 mmol) in ethanol (25 mL) was stirred at 80 °C. After 1 h the solvent was removed under vacuum.

The resulting residue was diluted with water and extracted with dichloromethane. The organic phase was dried with magnesium sulfate and concentrated under vacuum.

Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (1.5 g).

!H NMR δ 7.41 (m, 1 H), 6.69 - 6.98 (m, 4H), 3.93 (s, 3 H). MS (ESI+) = 244

Step C: Synthesis of 2-(3-difluoromethyl-5-isoxazolyl)-3-fluorophenol

To a solution of 3-difluoromethyl-5-(2-fluoro-6-methoxyphenyl)isoxazole (i.e. the product from Step B) (1.5 g, 6.2 mmol.) in dichloromethane (10 mL) at 0 °C was added a 1.0 M solution of boron tribromide in dichloromethane (31 mL, 31 mmol). The reaction mixture was warmed to ambient temperature and stirred for 6 h. The reaction was cooled to 0 °C and slowly quenched with a saturated aqueous solution of sodium bicarbonate. The biphasic mixture was stirred at room temperature for 1 h. The phases were separated and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried and concentrated under vacuum. The crude residue was purified by chromatography on silica gel, eluting with 0 to 10%> ethyl acetate in hexanes, to afford the title compound (980 mg). !H NMR δ 7.33 (m, 1 H), 6.66 - 6.99 (m, 4 H). MS (ESI+) = 230 Step D: Synthesis of 5-chloro-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3- fluorophenoxy]pyrimidine

To a solution of 2-(3-difluoromethyl-5-isoxazolyl)-3-fluorophenol (i.e. the product from Step C) (120 mg, 0.5 mmol) in anhydrous N,N-dimethylformamide (2 mL) was added 2,5-dichloropyrimidine (85 mg, 0.57 mmol) and potassium carbonate (244 mg, 1.04 mmol). The reaction was heated at 80 °C for 4 h. The mixture was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (110 mg).

!H NMR δ 8.46 (s, 2H), 7.56 (m, 1H), 7.21 (m, 1H), 7.13 (m, 1H), 6.87 (m, 1 H), 6.74 (t, 1 H). MS (ESI + ) = 342

SYNTHESIS EXAMPLE 9

Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophen oxy]pyrimidine

(Compound 55)

Step A: Synthesis of 4,4-difluoro- 1 -(2-fluoro-6-methoxyphenyl)butane- 1 ,3-dione

A solution of 2-fluoro-6-methoxyacetophenone (6.83 g, 40.6 mmol) and ethyl difluoroacetate (7.45g, 60 mmol) in tetrahydrofuran (35 mL) was added dropwise to a solution of tetrahydrofuran (20 mL) and 25% sodium methoxide (10.2g, 47.2 mmol) over 15 minutes. The reaction was complete in 3h as determined by high pressure liquid chromatography. The reaction was partially concentrated under vacuum to remove most of the tetrahydrofuran and methanol, and then diluted with toluene and water. The aqueous phase was acidified with 37% hydrochloric acid (5g), followed by extraction with toluene. The combined organic phases were concentrated under vacuum to provide title compound (7.98 g).

!H NMR δ 7.39 (td, 1 H) 6.72 - 6.81 (m, 2 H) 6.25 (d, 1 H) 5.87 - 6.14 (m, 1 H) 3.88 (s, 3 H).

Step B: Synthesis of 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)-4H-isoxazol- 5-ol

To a solution of 4,4-difluoro- l-(2-fluoro-6-methoxyphenyl)butane-l,3-dione (i.e. the product from Step A) (7.98 g, 32.4 mmol) in 35 mL methanol at room temperature was added a 50% hydroxylamine solution (2.78g, 42.1 mmol) and IN sodium hydroxide solution (1.50 mL, 1.50 mmol) followed by heating to 65 °C for 2h. The reaction was cooled to room temperature and diluted with water and toluene. The phases were separated and the organic phase was concentrated under vacuum to provide the title compound (7.99 g). in NMR δ 7.36 (td, 1 H) 6.73 - 6.82 (m, 2 H) 5.79 - 6.05 (m, 1 H) 3.88 (s, 3 H) 3.67 - 3.73 (m, 1 H) 3.47 - 3.51 (m, 1 H) 3.34 - 3.42 (m, 1 H).

Step C: Synthesis of 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)isoxazole

To toluene (80 mL) was added 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)-4H- isoxazol-5-ol (i.e. the product from Step B) (7.99 g, 30.6 mmol) followed by /?-toluenesulfonic acid monohydrate (0.700 g, 3.68 mmol). The mixture was heated to a vigorous reflux (107 - 111 °C) for two hours at which point high pressure liquid chromatography determined the reaction was complete. The cooled reaction mixture was washed with a saturated sodium bicarbonate solution, followed by water. The organic phase was concentrated under vacuum to provide the title compound (7.44 g).

in NMR δ 7.40 (td, 1 H) 6.69 - 6.94 (m, 4 H) 3.88 (s, 3 H).

Step D: Synthesis of 2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophenol

To a solution of 5-(difluoromethyl)-3-(2-fluoro-6-methoxyphenyl)isoxazole (i.e. the product from Step C) (3.72 g, 15.3 mmol) in dichloromethane (15 mL) at 3 °C was added a 1M solution of boron tribromide in dichloromethane (18.0 mL, 18 mmol) over 5 min. The reaction was then allowed to warm to room temperature. After 90 minutes it was determined the reaction was complete using high pressure liquid chromatography and the reaction was treated with a 10% aqueous solution of potassium bicarbonate (10 mL). The phases were separated and the organic phase was concentrated under vacuum. The resulting brown solid was triturated with a water/methanol solution (~2/l) providing the title compound (3.34 g). !H NMR δ 9.63 - 9.75 (m, 1 H) 7.33 (td, 1 H) 7.21 (ddd, 1 H) 6.71 - 6.96 (m, 3 H).

Step E: Synthesis of 5-chloro-2-[2-[5-(difluoromethyl)-3-isoxazolyl]-3- fluorophenoxy]pyrimidine

To a solution of 2-[5-(difluoromethyl)-3-isoxazolyl]-3-fluorophenol (i.e. the product from Step D) (1.61 g, 7.02 mmol) and 5-methyl-2-methylsulfonylpyrimidine (1.49 g, 7.72 mmol) in N,N-dimethylformamide (9 mL) was added potassium carbonate (4.24 g, 17.5 mmol) and the reaction was allowed to stir at room temperature for 24 h. The reaction was diluted with water and toluene, the phases were separated and the organic solvent was removed under vacuum. To the resulting oil was added 8 mL of methanol and a tan slurry formed, after further dilution with a methanol/water solution (20 mL), the precipitate was filtered providing the title compound, a compound of the present invention (2.24g).

!H NMR δ 8.45 (s, 2 H) 7.54 (td, 1 H) 7.19 (ddd, 1 H) 7.14 (dt, 1 H) 6.88 (dt, 1 H) 6.61 - 6.85 (m, 1 H). SYNTHESIS EXAMPLE 10

Preparation of 5 -chloro-2- [3 -cyano-2- [4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrimidine

(Compound 158)

A solution of 5-chloro-2-[2-[4-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrim idine (i.e. the product of example 5, step B) (0.30 g, 0.853 mmoles) in 4.27 mL of N,N- dimethylformamide under a nitrogen atmosphere was treated with copper(II) bromide (0.19 g, 0.853 mmoles), palladium(II) acetate (9 mg, 0.0426 mmoles) and potassium ferricyanide (0.06 g, 0.17 mmoles). The mixture was heated at 130°C for 18 hours. The mixture was then cooled, diluted with diethyl ether and water, filtered thru a celite pad and rinsed with ethyl acetate and water. The phases were separated and the aqueous phase was extracted twice with diethyl ether. The combined organic phases were washed twice with water and saturated aqueous sodium chloride, dried over magnesium sulfate, and concentrated to provide 0.2 lg crude product. The crude product was purified with a 12 g Teledyne Isco silica gel column eluting with 10 to 30% EtOAc-Hexanes gradient to provide the title compound, a compound of the present invention as a solid (0.23 g).

!H NMR δ 8.86 (d, 1H), 8.40 (s, 2H), 7.78 (d&s, 2H), 7.62 (t, 1H), 7.52 (d, 1H), 7.50 (d, 1H).

SYNTHESIS EXAMPLE 11

Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]pyrim idine (Compound

27)

Step A: Synthesis of 2-[5-(trifluoromethyl)-2-pyridinyl]phenol

2-Chloro-5-(trifluoromethyl)pyridine (1.0 g, 5.50 mmoles) and 2-(4,4,5,5-tetramethyl- l,3,2-dioxaborolan-2-yl)phenol (1.57 g, 7.16 mmoles) were combined in 16 mL of 1,2- dimethoxyethane and 1.8 mL of de-ionized water under a nitrogen atmosphere. Solid sodium carbonate (2.28g, 16.5 mmoles) and then tetrakis(triphenylphosphine) palladium (0) (0.32g, 0.27 mmoles) were added. The reaction was heated at reflux approximately ninety minutes. The reaction was cooled, diluted with dichloromethane and filtered thru a celite pad, rinsing with dichloromethane and then de-ionized water. The phases were separated. The aqueous phase was extracted twice with dichloromethane. The combined organic phases were washed with saturated aqueous sodium chloride, dried over magnesium sulfate, filtered and concentrated to give a solid. A solid was filtered from hexanes to give 34 mg. A second crop was obtained from the filtrate from hexanes to yield 506 mg of a light orange- brown solid of the title compound.

!H NMR δ 8.81 (s, 1H), 8.04 (m, 2H), 7.83 (d, 1H), 7.38 (t, 1H), 7.07 (d, 1H), 6.98 (t, 1H). Step B: Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]- pyrimidine

A mixture of 2-[5-(trifluoromethyl)-2-pyridinyl]phenol (i.e. the product of step A) (0.20 g, 0.836 mmoles) and 2,5-dichloropyrimidine (0.14 g, 0.919 mmoles) in 2.0 mL of Ν,Ν-dimethylformamide was stirred under a nitrogen atmosphere. Powdered potassium carbonate (0.35 g, 2.51 mmoles) was added and the mixture was heated at 80 °C overnight. The reaction was cooled before diluting with de-ionized water and diethyl ether. The phases were separated. The aqueous phase was extracted twice with diethyl ether. The combined organic phases were washed three times with de-ionized water, dried over sodium sulfate, filtered and concentrated to 0.37 g of solid. A solid was filtered from hexanes and some diethyl ether to give 103 mg of the title compound, a compound of the present invention. !H NMR δ 8.84 (s, 1H), 8.40 (s, 2H), 7.92(d, 1H), 7.87 (s&d, 2H), 7.54 (t, 1H), 7.45 (t, 1H), 7.27 (d,lH).

SYNTHESIS EXAMPLE 12

Preparation of 5-chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]-3-chlorophen oxy]pyrimidine

(Compound 160)

5-Chloro-2-[2-[5-(trifluoromethyl)-2-pyridinyl]phenoxy]-pyri midine (i.e. the product of example 11, step B) (0.14 g, 0.398 mmoles) was dissolved in 2 mL of acetic acid. Palladium acetate (0.01 g, 0.039 mmoles) and N-chlorosuccinimide (0.11 g, 0.796 mmoles) were added and the mixture was heated at 100 °C for three hours. The mixture was cooled to room temperature overnight and then diluted with toluene and ethyl acetate. The mixture was filtered thru a celite pad, rinsed with toluene and then ethyl acetate. The filtrate was washed twice with saturated aqueous sodium hydrogencarbonate, saturated aqueous sodium chloride, dried over magnesium sulfate and concentrated to a crude product. The crude product was purified with a 12 g Teledyne Isco silica gel column eluting with 10 to 30% EtOAc-Hexanes gradient to provide the title compound, a compound of the present invention as a solid (40 mg).

!H NMR δ 8.82 (s, 1H), 8.41 (s, 2H), 7.93 (d, 1H), 7.52 (d, 1H), 7.47 (m, 2H), 7.19 (m, 1H).

SYNTHESIS EXAMPLE 13

Synthesis of 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]pyrimi dine

(Compound 62)

Step A: Synthesis of 5-(difluoromethyl)-3-(2-methoxyphenyl)isoxazole

To a solution of acetophenone (3.0 g, 20 mmol) in methanol (15 mL) was added a 30% sodium methoxide in methanol solution (5.0 mL) and the reaction stirred for five minutes. Next ethyl difluoroacetate (2.97 g, 24 mmol) was added and the reaction was heated to reflux for 18 h. The reaction was allowed to cool to room temperature and the solvent was removed under vacuum. To the residue was added 1M hydrochloric acid and ethyl acetate, the phases were separated, the organic phase was dried using magnesium sulfate and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the desired product which was taken on directly. A solution of 4,4-difluoro-l-(2-methoxyphenyl)butane-l,3-dione from the previous step in ethanol (30 mL) was added dropwise to a solution of hydroxylamine hydrochloride (1.4 g, 20 mmol) in 1M sodium hydroxide (21 mL). The reaction was then heated to reflux for 2 h, followed by cooling to room temperature. The product was precipitated from solution by the addition of water and collected via vacuum filtration to afford the desired product which was taken on directly (AP+ 244, 1H NMR δ ppm 7.79 (d, 1 H) 7.38 - 7.46 (m, 1 H) 6.93 - 7.04 (m, 2 H) 5.76 - 6.04 (m, 1 H) 3.88 (s, 3 H) 3.67 - 3.80 (m, 1 H) 3.49 - 3.55 (m, 1 H)). Next, a solution of 5-(difluoromethyl)-3-(2-methoxyphenyl)-4H-isoxazol-5-ol from the previous step was taken up in trifluoroacetic acid (20 mL) and heated to 70 °C for 18 h. The reaction was cooled to room temperature and the solvent was removed under vacuum. The resulting residue was dissolved in dichloromethane and washed with a saturated solution of sodium bicarbonate. The phases were separated, the organic phase was dried using magnesium sulfate and the solvent was removed under vacuum. Purification by chromatography on silica gel eluting with 0 to 100% ethyl acetate in hexanes afforded the title compound (2.0 g, AP+ = 226).

lH NMR δ 7.91 (dd, 1 H) 7.42 - 7.50 (m, 1 H) 6.98 - 7.12 (m, 3 H) 6.66 - 6.93 (m, 1 H) 3.92 (s, 3 H).

Step B: Synthesis of 2-[5-(difluoromethyl)-3-isoxazolyl]phenol

To a solution of 5-(difluoromethyl)-3-(2-methoxyphenyl)isoxazole (i.e. the product of step A) (2.01 g, 8.92 mmol) in dichloromethane (50 mL) at 0 °C was added a 1M solution of boron tribromide in dichloromethane (13.3 mL, 13.3 mmol) and the reaction was allowed to warm to room temperature over three hours. The solvent was removed under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes to afford the title compound (1.66g, AP- = 210).

!H NMR δ 9.14 (s, 1 H) 7.51 (dd, 1 H) 7.39 (ddd, 1 H) 7.11 (dd, 1 H) 6.97 - 7.04 (m, 2 H) 6.70 - 6.95 (m, 1 H).

Step C: Synthesis of 5-bromo-2-[2-[5-(difluoromethyl)-3-isoxazolyl]phenoxy]- pyrimidine

To a solution of 2-[5-(difluoromethyl)-3-isoxazolyl]phenol (i.e. the product of step B) (427 mg, 2.01 mmol) and 5-bromo-2-chloro-pyrimidine (468 mg, 2.42 mmol) in acetonitrile (10 mL) was added potassium carbonate (695 mg, 5.03 mmol) and the reaction was heated to 80 °C for 18 h. The solvent was removed under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes to afford the title compound, a compound of the present invention, as a solid (555 mg, mp = 88.9-92.8 °C). i n NMR δ 8.53 (s, 2 H) 7.98 (dd, 1 H) 7.53 - 7.60 (m, 1 H) 7.41 (td, 1 H) 7.28 (dd, 1 H) 6.97 (t, 1 H) 6.59 - 6.84 (m, 1 H).

SYNTHESIS EXAMPLE 14

Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3-fluorophe noxy]pyrimidine

(Compound 168)

Step A: Synthesis of 5-(difluoromethyl)-3-(2-methoxyphenyl)-4H-isoxazol-5-ol

To a solution of 2-fluoro-6-methoxyacetophenone (1.0 g, 5.9 mmol) in tetrahydrofuran (2 mL) was added a 30% sodium methoxide in methanol solution (1.4 mL). To this mixture was added dropwise a solution of ethyl trifluoroacetate (0.805 g, 6.49 mmol) in tetrahydrofuran (1 mL) and the reaction stirred at room temperature for 2 h. To the reaction was added 1M hydrochloric acid solution and ethyl acetate, the phases were separated and the aqueous phase was again washed with ethyl acetate. The combined organic phases were dried with magnesium sulfate and concentrated under vacuum to provide the desired product (AP- = 263) which was taken onto the next step directly. Next, to a solution of 4,4,4- trifluoro-l-(2-fluoro-6-methoxyphenyl)butane-l,3-dione (from the previous step) in ethanol (14 mL) was added 1M sodium hydroxide solution (7 mL) followed by hydroxylamine hydrochloride (410 mg, 5.9 mmol) and the reaction stirred overnight at room temperature. The solvent was removed under vacuum and the residue was purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes and 0 to 20% methanol in dichlromethane to afford the product (AP+ = 280, 1Η NMR δ ppm 7.37 (td, 1 Η) 6.74 - 6.83 (m, 2 Η) 3.89 (s, 3 Η) 3.79 (d, 1 Η) 3.50 (dd, 1 Η)) which was taken onto the next step directly To a solution of 3-(2-fluoro-6-methoxy-phenyl)-5-(trifluoromethyl)-4H-isoxazo l-5- ol (from the previous step) in dichloromethane (20 mL) at 0 °C was added a 1M solution of boron tribromide in dichloromethane (11.8 mL, 11.8 mmol) and the reaction was allowed to warm to room temperature over 2 h. The solvent was removed under vacuum. The residue was dissolved in dichloromethane and washed with a saturated solution of sodium bicarbonate, the aqueous phase was washed with dichloromethane. The combined organic phases were dried with magnesium sulfate, concentrated under vacuum and purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate in hexanes, providing the title compound (606 mg, AP- = 264).

in NMR δ 9.86 (s, 1 H) 7.32 (td, 1 H) 6.84 - 6.90 (m, 1 H) 6.68 (ddd, 1 H) 3.86 - 3.94 (m, 1 H) 3.75 (dd, 1 H) 3.56 (s, 1 H).

Step B: Synthesis of 5-chloro-2-[2-[5-(trifluoromethyl)-3-isoxazolyl]-3- fluorophenoxy]pyrimidine

To a solution of 3-(2-fluoro-6-hydroxyphenyl)-5-(trifluoromethyl)-4H-isoxazol -5-ol

(i.e. the product of step A) (606 mg, 2.29 mmol) in dimethylsulfoxide (15 mL) was added 5- chloro-2-methylsulfonyl-pyrimidine (527mg, 2.74mmol) followed by cesium carbonate (l . lg, 3.43mmol) and the reaction stirred for 18 h. The reaction was partitioned between water and ethyl acetate, the phases were separated and the aqueous layer was again washed with ethyl acetate. The combined organic phases were dried with magnesium sulfate and concentrated under vacuum. The residue was purified by chromatography on silica gel, eluting with 0 to 100% ethyl acetate, to afford the title compound, a compound of the present invention, (198mg, AP+ = 360).

!H NMR δ 8.46 (s, 2 H) 7.56 (td, 1 H) 7.21 (ddd, 1 H) 7.15 (dt, 1 H) 7.02 (dd, 1 H).

SYNTHESIS EXAMPLE 15

Synthesis of 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl)phenoxy]pyri midine

(Compound 63)

Step A: Synthesis of 2-(trifluoromethyl)-4H- 1 -benzopyran-4-one

2-Hydroxyacetophenone (10 g, 66.7 mmol) was dissolved in trifluoroacetic anhydride (19 ml, 133.3 mmol) and pyridine (10.8 mL, 133.3 mmol). The reaction mixture was heated at 70 °C and stirred for 12 h. After cooling the reaction mixture was diluted with 1 M hydrochloric acid and methylene chloride and washed with water. The organic phase was dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 5% ethyl acetate in hexanes afforded the title compound (10.5 g) as a pale yellow solid.

!H NMR δ 8.21 (m, 1 H), 7.76 (m, 1H), 7.77 (d, 1H), 7.46 (m, 1H), 6.73 (s, 1H). MS (ESI + ) = 215

Step B: Synthesis of 2-[3-(trifluoromethyl)-5-isoxazolyl]phenol

To a solution of 2-(trifluoromethyl)-4H-l-benzopyran-4-one (i.e. the product of step A) (10.5 g, 48.8 mmol) in ethanol (50 mL), hydroxylamine acetate (146 mmol) in water (50 mL) was added. The mixture was heated at 60 °C for 4 h. After cooling the reaction to ambient temperature 4,4,4-trifluoro-l-(2-hydroxyphenyl)-butane-l,3-dione 3-oxime was precipitated with the addition of water (200 mL).

in NMR δ 9.30 (s, 1H), 7.37 (m, 1H), 7.19 (m, 1H), 7.06 (m, 1H), 6.94 (m, 1H), 3.87 (d, 1H), 3.69 (d, 1H).

This product was collected by filtration and suspended in acetic acid (30 mL) and 36 % aqueous hydrochloric acid (10.8 mL) at room temperature. The mixture was stirred at 80 °C for 30 min to afford the title compound as a white solid (4.6 g).

!H NMR δ 7.88 (m, 1H), 7.37 (m, 1H), 7.08 (m, 1H), 7.01 (s, 1H), 6.95 (m, 1H). MS (ESI + ) = 230

Step C: Synthesis of 5-chloro-2-[2-[3-(trifluoromethyl)-5-isoxazolyl)phenoxy]- pyrimidine

To a solution of 2-[3-(trifluoromethyl)-5-isoxazolyl]phenol (i.e. the product of step B) (2.2 g, 9.4 mmol) in anhydrous N,N-dimethylformamide (10 mL) was added 2,5- dichloropyrimidine (1.5 g, 10.3 mmol) and potassium carbonate (2.9 g, 20.6 mmol). The reaction was heated at 80 °C for 2 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 5% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (2.1 g).

!H NMR δ 8.49 (s, 2H), 8.08 (m, 1H), 7.58 (m, 1H), 7.45 (m, 1H), 7.32 (m, 1H), 6.91 (s, 1H). MS (ESI + ) = 342. Melting Point: 114-115 °C

SYNTHESIS EXAMPLE 16

Synthesis of 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluoropheno xy]pyrimidine

(Compound 145)

Step A: Synthesis of 4,4-difluoro- 1 -(2-fluoro-6-methoxyphenyl)butane- 1 ,3-dione

To a solution of l-(2-fluoro-6-methoxyphenyl)ethanone (2.6 g, 15.5 mmol) and difluoroacetic acid ethyl ester (3.9 mL, 31.0 mmol) in anhydrous N,N-dimethylformamide at 0 °C was added sodium hydride (1.2 g, 31.0 mmol). The reaction mixture was heated at 80 °C for 1 h. The reaction was then cooled down to 0 °C, diluted with ethyl acetate and acidified with 1 N aqueous hydrochloric acid. The phases were separated and the aqueous phase was washed with additional ethyl acetate. The organic phases were combined and dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (2.5 g).

!H NMR δ 7.39 (m, 1H), 6.77 (m, 2H), 6.24 (s, 1H), 6.01 (t, 1 H), 3.87 (s, 3 H). MS (ESI + ) = 247

Step B: Synthesis of 3-(difluoromethyl)-5-(2-fluoro-6-methoxyphenyl)isoxazole

A solution of 4,4-difluoro- l-(2-fluoro-6-methoxyphenyl)butane-l,3-dione (i.e. the product of step A) (2.5 g, 10 mmol) and hydroxylamine hydrochloride (2.1 g, 30 mmol) in ethanol (25 mL) was stirred at 80 °C. After 1 h the solvent was removed under vacuum.

The resulting residue was diluted with water and extracted with dichloromethane. The organic phase was dried with magnesium sulfate and concentrated under vacuum.

Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound (1.5 g).

!H NMR δ 7.41 (m, 1 H), 6.69 - 6.98 (m, 4H), 3.93 (s, 3 H). MS (ESI+) = 244

Step C: Synthesis of 2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenol

To a solution of 3-(difluoromethyl)-5-(2-fluoro-6-methoxyphenyl)isoxazole (i.e. the product of step B) (1.5 g, 6.2 mmol.) in dichloromethane (10 mL) at 0 °C was added a 1.0 M solution of boron tribromide in dichloromethane (31 mL, 31 mmol). The reaction mixture was warmed to ambient temperature and stirred for 6 h. The reaction was cooled to 0 °C and slowly treated with a saturated aqueous solution of sodium bicarbonate. The biphasic mixture was stirred at room temperature for 1 h. The phases were separated and the aqueous phase was extracted with dichloromethane. The combined organic phases were dried and concentrated under vacuum. The crude residue was purified by chromatography on silica gel, eluting with 0 to 10% ethyl acetate in hexanes, to afford the title compound (980 mg). !H NMR δ 7.33 (m, 1 H), 6.66 - 6.99 (m, 4 H). MS (ESI+) = 230

Step D: Synthesis of 5-bromo-2-[2-[3-(difluoromethyl)-5-isoxazolyl]-3- fluorophenoxy]pyrimidine

To a solution of 2-[3-(difluoromethyl)-5-isoxazolyl]-3-fluorophenol (i.e. the product of step C) (229 mg, 1 mmol) in anhydrous N,N-dimethylformamide (2.5 mL) was added 5- bromo-2-chloropyrimidine (212 mg, 1.1 mmol) and potassium carbonate (304 mg, 2.2 mmol). The reaction was heated at 80 °C for 1 h. The solution was cooled to ambient temperature and diluted with water. The phases were separated and the aqueous layer was washed with additional ethyl acetate. The organic phases were combined, dried with magnesium sulfate and concentrated under vacuum. Purification by chromatography on silica gel eluting with 0 to 15% ethyl acetate in hexanes afforded the title compound, a compound of the present invention, as a solid (320 mg).

!H NMR δ 8.54 (s, 2H), 7.54 (m, 1H), 7.20 (m, 1H), 7.13 (m, 1H), 6.86 (m, 1 H), 6.75 (t, 1 H). MS (ESI + ) = 387

By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 1584 can be prepared. The following abbreviations are used in the Tables which follow: t means tertiary, s means secondary, n means normal, i means iso, c means cyclo, Me means methyl, Et means ethyl, Pr means propyl, Bu means butyl, z ' -Pr means isopropyl, Bu means butyl, c-Pr cyclopropyl, c-Bu means cyclobutyl, Ph means phenyl, OMe means methoxy, OEt means ethoxy, SMe means methylthio, SEt means ethylthio, NHMe methylamino, -CN means cyano, Py means pyridinyl, -NO2 means nitro, tzl meand triazol, pzl means pyrazol, izl means imidazole, odzl means oxadiazol, tdzl means thiadiazol and SC^Me means methylsulfonyl.

Table 1

R 2 = CI; Z = O; and R 3

and is:

4-I-isothiazol-5-yl 4 -Me - isothiazol- 5 -y 1 4-Et-isothiazol-5-yl 4-CF3-isothiazol-5-yl 4-CHF 2 -isothiazol-5-yl 4-CHO-isothiazol-5-yl 4-CN-isothiazol-5-yl 4-OMe-isothiazol-5-yl

4- OCF 3 -isothiazol-5-yl

4 - Ph- isothiazol- 5 -yl Isothiazol-3-yl

5- F-isothiazol-3-yl 5-Cl-isothiazol-3-yl 5-Br-isothiazol-3-yl

5-I-isothiazol-3-yl 5 -Me - isothiazol- 3 -yl 5-Et-isothiazol-3-yl 5 -CF 3 -isothiazol- 3 -yl 5 -CHF2 -isothiazol-3 -yl

5- CHO-isothiazol-3-yl 5-CN-isothiazol-3-yl

5-CH 2 CN-isothiazol-3-yl 5-OMe-isothiazol-3-yl 5-OCF3-isothiazol-3-yl 5 -Ph-isothiazol-3 -yl 4-F-isothiazol-3-yl 4-Cl-isothiazol-3-yl 4-Br- isothiazol-3 -yl 4-I-isothiazol-3-yl 4-Me-isothiazol-3-yl 4-Et-isothiazol-3-yl 4-CF3 -isothiazol-3 -yl 4-CHF 2 -isothiazol-3-yl 4-CHO-isothiazol-3-yl 4-CN-isothiazol-3 -yl 4-OMe-isothiazol-3-yl -OCF3 -isothiazol-3 -yl 4-Et-oxazol-2-yl

4- Ph-isothiazol-3-yl 4-CF 3 -oxazol-2-yl

Isoxazol-4-yl 4-CHF 2 -oxazol-2-yl 3-F-isoxazol-4-yl 4-CHO-oxazol-2-yl 3 -Cl-isoxazol-4-yl 4-CN-oxazol-2-yl 3-Br-isoxazol-4-yl 4-OMe-oxazol-2-yl 3-I-isoxazol-4-yl 4- OCF 3 -oxazol-2-yl 3-Me-isoxazol-4-yl 4- Ph-oxazol-2-yl 3 -Et-isoxazol-4-yl Thiazol-2-yl 3 -CF3 -isoxazol-4-yl 5- F-thiazol-2-yl -CHF2-isoxazol-4-yl 5-Cl-thiazol-2-yl 3-CHO-isoxazol-4-yl 5-Br-thiazol-2-yl 3 -CN-isoxazol-4-yl 5-I-thiazol-2-yl 3-OMe-isoxazol-4-yl 5-Me-thiazol-2-yl -OCF3 -isoxazol-4-yl 5-Et-thiazol-2-yl 3 -Ph-isoxazol-4-yl 5-CF 3 -thiazol-2-yl 5-F-isoxazol-4-yl 5- CHF 2 -thiazol-2-yl 5-Cl-isoxazol-4-yl 5-CHO-thiazol-2-yl 5-Br-isoxazol-4-yl 5-CN-thiazol-2-yl 5-I-isoxazol-4-yl 5-CH 2 CN-thiazol-2-yl

5- Me-isoxazol-4-yl 5-OMe-thiazol-2-yl 5-Et-isoxazol-4-yl 5-OCF 3 -thiazol-2-yl

5-CF3-isoxazol-4-yl 5-Ph-thiazol-2-yl 5-CHF2-isoxazol-4-yl 4-F-thiazol-2-yl 5-CHO-isoxazol-4-yl 4-Cl-thiazol-2-yl 5-CN-isoxazol-4-yl 4-Br-thiazol-2-yl 5-OMe-isoxazol-4-yl 4-I-thiazol-2-yl 5-OCF3-isoxazol-4-yl 4-Me-thiazol-2-yl 5-Ph-isoxazol-4-yl 4-Et-thiazol-2-yl

Isothiazol-4-yl 4-CF 3 -thiazol-2-yl 3 -F-isothiazol-4-yl 4-CHF 2 -thiazol-2-yl 3-Cl-isothiazol-4-yl 4-CHO-thiazol-2-yl 3 -Br-isothiazol-4-yl 4-CN-t azol-2-yl 3 -I-isothiazol-4-yl 4-OMe-thiazol-2-yl 3 -Me-isothiazol-4-yl 4-OCF 3 -thiazol-2-yl 3-Et-isothiazol-4-yl 4-Ph-thiazol-2-yl 3 -CF3 -isothiazol-4-yl Oxazol-5-yl -CHF 2 -isothiazol-4-yl 2-F-oxazol-5-yl 2-Cl-oxazol-5-yl

2-Br-oxazol-5-yl

2-Me-oxazol-5-yl

-CF 3 -oxazol-5-yl

-CHF 2 -oxazol-5-yl 2-CN-oxazol-5-yl

-OMe-oxazol-5-yl-OCF 3 -oxazol-5-yl 2-Ph-oxazol-5-yl

4-F-oxazol-5-yl

4-Cl-oxazol-5-yl

4-Br-oxazol-5-yl

4-Me-oxazol-5-yl

-CF 3 -oxazol-5-yl

-CHF 2 -oxazol-5-yl 4-CN-oxazol-5-yl

-OMe-oxazol-5-yl-OCF 3 -oxazol-5-yl 4-Ph-oxazol-5-yl

Thiazol-5-yl

2-F-thiazol-5-yl

2-Cl-thiazol-5-yl

2-Br-thiazol-5-yl

2-Me-thiazol-5-yl

2-CF 3 -thiazol-5-yl-CHF 2 -thiazol-5-yl 2-CN-thiazol-5-yl

-OMe-thiazol-5-yl-OCF 3 -thiazol-5-yl 2-Ph-thiazol-5-yl

4-F-thiazol-5-yl

4-Cl-thiazol-5-yl

4-Br-thiazol-5-yl

4-Me-thiazol-5-yl

4-CF 3 -thiazol-5-yl-CHF 2 -thiazol-5-yl 4-CN-thiazol-5-yl -OMe-thiazol-5-yl -OCF 3 -l-Me-l#-izl-4-yl 5-OCF 3 -l-Me-l -pzl-4-yl 2-Ph-l-Me-l#-izl-4-yl 5-Ph-l-Me-l /-pzl-4-yl 5-F-l-Me-l#-izl-4-yl l /-pzl-5-yl 5-Cl-l-Me-l//-izl-4-yl l-Me-l /-pzl-5-yl 5-Br-l-Me-li/-izl-4-yl 3-F-l-Me-ltf-pzl-5-yl l,5-di-Me-l//-izl-4-yl 3-Cl-l-Me-l /-pzl-5-yl 5-CF 3 -l-Me-l /-izl-4-yl 3-Br-l-Me-l /-pzl-5-yl-CHF 2 -l-Me-l /-izl-4-yl 1.3- di-Me-l /-pzl-5-yl 5-CN-l-Me-l#-izl-4-yl 3-CF 3 -l-Me-l#-pzl-5-yl -OMe-l-Me-l//-izl-4-yl 3 -CHF 2 - 1 -Me- l /-pzl-5-yl-OCF3 - 1 -Me- l/f-izl-4-yl 3-CN-l-Me-l /-pzl-5-yl 5-Ph-l-Me-l/-izl-4-yl 3- OMe-l-Me-l /-pzl-5-yl l /-izl-5-yl 3 -OCF 3 - 1 -Me- l#-pzl-5-yl l-Me-l /-izl-5-yl 3- Ph-l-Me-l//-pzl-5-yl 2-F-l-Me-l /-izl-5-yl 4- F-l-Me-l /-pzl-5-yl 2-Cl-l-Me-l/-izl-5-yl 4-Cl-l-Me-l /-pzl-5-yl 2-Br-l-Me-l#-izl-5-yl 4-Br-l-Me-l /-pzl-5-yl l,2-di-Me-l /-izl-5-yl 1.4- di-Me-l /-pzl-5-yl 2-CF 3 -l-Me-l -izl-5-yl 4- CF 3 -l-Me-l /-pzl-5-yl-CHF 2 -l-Me-l /-izl-5-yl 4-CHF 2 - 1 -Me- ltf-pzl-5-yl 2-CN-l-Me-l -izl-5-yl 4-CN-l-Me-l /-pzl-5-yl -OMe-l-Me-li-izl-5-yl 4-OMe-l-Me-l//-pzl-5-yl-OCF 3 -l-Me-l//-izl-5-yl 4-OCF 3 - 1 -Me- l /-pzl-5-yl 2-Ph-l-Me-l/-izl-5-yl 4-Ph-l-Me-l#-pzl-5-yl 4-F-l-Me-li-izl-5-yl Thiophene-2-yl 4-Cl-l-Me-l /-izl-5-yl Thiophene-3-yl 4-Br-l-Me-l/-izl-5-yl Furan-2-yl l,4-di-Me-l/-izl-5-yl Furan-3-yl 4-CF 3 -l-Me-l /-izl-5-yl l /-pyrrol-2-yl-CHF 2 -l-Me-ltf-izl-5-yl l-Me-l /-pyrrol-2-yl 4-CN-l-Me-l/-izl-5-yl l /-pyrrol-3-yl -OMe-l-Me-l /-izl-5-yl 1- Me-l /-pyrrol-3-yl-OCF 3 -l-Me-l//-izl-5-yl [l,3,4]odzl-2-yl 4-Ph-l-Me-l /-izl-5-yl 2- F-[l,3,4]odzl-5-yl l /-pzl-3-yl 2-Cl-[l,3,4]odzl-5-yl l-Me-li -pzl-3-yl 2-Br-[l,3,4]odzl-5-yl 4-F-l-Me-l /-pzl-3-yl 2-Me-[l,3,4]odzl-5-yl 4-Cl-l-Me-l#-pzl-3-yl 2-CF 3 -[l,3,4]odzl-5-yl 2-CHF 2 -[l,3,4]odzl-5-yl 5-Br-[l,2,4]odzl-3-yl 2-CN-[l,3,4]odzl-5-yl 5-Me-[l,2,4]odzl-3-yl 2-OMe-[l,3,4]odzl-5-yl 5-CF 3 -[l,2,4]odzl-3-yl 2-OCF 3 -[l,3,4]odzl-5-yl 5-CHF 2 -[l,2,4]odzl-3-yl [l,3,4]tdzl-2-yl 5-CN-[l,2,4]odzl-3-yl 2-F-[l,3,4]tdzl-5-yl 5-OMe-[l,2,4]odzl-3-yl 2-Cl-[l,3,4]tdzl-5-yl 5-OCF 3 -[l,2,4]odzl-3-yl 2-Br-[l,3,4]tdzl-5-yl 5-Ph-[l,2,4]odzl-3-yl 2-Me-[l,3,4]tdzl-5-yl [l,2,4]tdzl-5-yl 2-CF 3 -[l,3,4]tdzl-5-yl 3-F-[l,2,4]tdzl-5-yl 2-CHF 2 -[l ,3,4]tdzl-5-yl 3-Cl-[l,2,4]tdzl-5-yl 2-CN-[l,3,4]tdzl-5-yl 3-Br-[l,2,4]tdzl-5-yl 2-OMe-[l,3,4]tdzl-5-yl 3-Me-[l,2,4]tdzl-5-yl 2-OCF 3 -[l,3,4]tdzl-5-yl 3-CF 3 -[l,2,4]tdzl-5-yl

4//-[l,2,4]tzl-3-yl 3-CHF 2 -[l,2,4]tdzl-5-yl 4-Me-4#-[l,2,4]tzl-3-yl 3-CN-[l,2,4]tdzl-5-yl 3-F-4-Me-4#-[l,2,4]tzl-5-yl 3- OMe-[l,2,4]tdzl-5-yl -Cl-4-Me-4tf-[l,2,4]tzl-5-yl 3- OCF 3 -[l,2,4]tdzl-5-yl -Br-4-Me-4#-[l,2,4]tzl-5-yl 3- Ph-[l,2,4]tdzl-5-yl

3.4- di-Me-4#-[l,2,4]tzl-5-yl [l,2,4]tdzl-3-yl -CF 3 -4-Me-4#-[l,2,4]tzl-5- 5-F-[l,2,4]tdzl-3-yl yi 5-Cl-[l ,2,4]tdzl-3-yl-CHF 2 -4-Me-4#-[l ,2,4]tzl-5- 5-Br-[l,2,4]tdzl-3-yl yi 5-Me-[l,2,4]tdzl-3-yl-CN-4-Me-4#-[ l,2,4]tzl-5-yl 5-CF 3 -[l,2,4]tdzl-3-yl-OMe-4-Me-4i/-[l ,2,4]tzl-5- 5-CHF 2 -[l,2,4]tdzl-3-yl yi 5-CN-[l,2,4]tdzl-3-yl-OCF 3 -4-Me-4#-[ l,2,4]tzl-5- 5-OMe-[l,2,4]tdzl-3-yl yi 5-OCF 3 -[l,2,4]tdzl-3-yl -Ph-4-Me-4#-[l,2,4]tzl-5-yl 5-Ph-[l,2,4]tdzl-3-yl l#-[l,2,4]tzl-3-yl [l,2,3]odzl-5-yl l-Me-l#-[l,2,4]tzl-3-yl 4- F-[l,2,3]odzl-5-yl 5-F-l -Me-l#-[l ,2,4]tzl-3-yl 4-Cl-[l,2,3]odzl-5-yl 5-Cl-l-Me-l /-[l,2,4]tzl-3-yl 4-Br-[l,2,3]odzl-5-yl 5-Br-l-Me-l /-[l,2,4]tzl-3-yl 4-Me-[l,2,3]odzl-5-yl

1.5- di-Me-l#-[ l,2,4]tzl-3-yl 4- CF 3 -[l,2,3]odzl-5-yl 5-CF 3 - 1 -Me- lH-[ 1 ,2,4]tzl-3- 4- CHF 2 -[l,2,3]odzl-5-yl yi 4-CN-[l,2,3]odzl-5-yl -OMe-[l,2,3]odzl-5-yl 4-CN-l#-[l,2,3]tzl-5-yl- OCF 3 -[l,2,3]odzl-5-yl 4-OMe-li/-[l,2,3]tzl-5-yl

4- Ph-[l,2,3]odzl-5-yl 4-OCF 3 -l#-[l,2,3]tzl-5-yl

[l,2,3]odzl-4-yl 4-Ph-l#-[l,2,3]tzl-5-yl

5- F-[l,2,3]odzl-4-yl 5-F-pyridin-2-yl 5-Cl-[l,2,3]odzl-4-yl 5-Cl-pyridin-2-yl 5-Br-[l,2,3]odzl-4-yl 5-Br-pyridin-2-yl 5-Me-[l,2,3]odzl-4-yl 5-I-pyridin-2-yl 5-CF 3 -[l,2,3]odzl-4-yl 5-Me-pyridin-2-yl- CHF 2 -[l,2,3]odzl-4-yl 5-Et-pyridin-2-yl 5-CN-[l,2,3]odzl-4-yl 5-CF 3 -pyridin-2-yl -OMe-[l,2,3]odzl-4-yl 5-CHF 2 -pyridin-2-yl-OCF 3 -[l,2,3]odzl-4-yl 5-CHO-pyridin-2-yl 5-Ph-[l,2,3]odzl-4-yl 5-CN-pyridin-2-yl

[l,2,3]tdzl-5-yl 5-OMe-pyridin-2-yl 4-F-[l,2,3]tdzl-5-yl 5- OCF 3 -pyridin-2-yl 4-Cl-[l,2,3]tdzl-5-yl 5 -N(Me) 2 -pyridin-2-yl 4-Br-[l,2,3]tdzl-5-yl 5- Ph-pyridin-2-yl 4-Me-[l,2,3]tdzl-5-yl 3,5-di-Cl-pyridin-2-yl 4-CF 3 -[l,2,3]tdzl-5-yl 3-Me-5-Cl-pyridin-2-yl -CHF 2 -[l,2,3]tdzl-5-yl 3-CN-5-Cl-pyridin-2-yl 4-CN-[l,2,3]tdzl-5-yl 6- F-pyridin-2-yl 4-OMe-[l,2,3]tdzl-5-yl 6-Cl-pyridin-2-yl - OCF 3 -[l,2,3]tdzl-5-yl 6-Br-pyridin-2-yl

4- Ph-[l,2,3]tdzl-5-yl 6-I-pyridin-2-yl [l,2,3]tdzl-4-yl 6-Me-pyridin-2-yl

5- F-[l,2,3]tdzl-4-yl 6-Et-pyridin-2-yl 5-Cl-[l,2,3]tdzl-4-yl 6-CF 3 -pyridin-2-yl 5-Br-[l,2,3]tdzl-4-yl 6- CHF2-pyridin-2-yl 5-Me-[l,2,3]tdzl-4-yl 6-CHO-pyridin-2-yl 5-CF 3 -[l,2,3]tdzl-4-yl 6-CN-pyridin-2-yl - CHF 2 -[l,2,3]tdzl-4-yl 6-OMe-pyridin-2-yl 5-CN-[l,2,3]tdzl-4-yl 6-OCF 3 -pyridin-2-yl

5-OMe-[l,2,3]tdzl-4-yl 6-N(Me) 2 -pyridin-2-yl 5-OCF 3 -[l,2,3]tdzl-4-yl 6-Ph-pyridin-2-yl 5-Ph-[l,2,3]tdzl-4-yl 3-F-pyridin-2-yl

3 -[l,2,4]tzl-3-yl 3-Cl-pyridin-2-yl 5-F-3//-[l,2,4]tzl-3-yl 3-Br-pyridin-2-yl 3-I-pyridin-2-yl 5 -F-pyridazin-2 -yl 3 -Me-pyridin-2 -yl 5-Cl-pyridazin-2-yl 3 -Et-pyridin-2-yl 5-Br-pyridazin-2-yl 3-CF3-pyridin-2-yl 5-I-pyridazin-2-yl -CHF2-pyridin-2-yl 5-Me-pyridazin-2-yl 3-CHO-pyridin-2-yl 5 -Et-pyridazin-2-yl 3-CN-pyridin-2-yl 5 -CF3 -pyridazin-2 -yl 3-OMe-pyridin-2-yl 5 -CHF2-pyridazin-2 -yl 3 -OCF3 -pyridin-2 -yl 5-CHO-pyridazin-2-yl -N(Me)2-pyridin-2-yl 5 -CN-pyridazin- 2 -yl

3-Ph-pyridin-2-yl 5-OMe-pyridazin-2-yl,6-di-Cl-pyridin-2-yl 5-OCF3-pyridazin-2-yl 6-F-pyridin-3-yl 5-N(Me)2-pyridazin-2-yl 6-Cl-pyridin-3-yl 5 -Ph-pyridazin- 2 -yl 6-Br-pyridin-3-yl 5-F-pyrimidin-4-yl 6-I-pyridin-3-yl 5-Cl-pyrimidin-4-yl 6-Me-pyridin-3 -yl 5-Br-pyrimidin-4-yl 6-Et-pyridin-3-yl 5-I-pyrimidin-4-yl 6-CF3 -pyridin-3 -yl 5-Me-pyrimidin-4-yl 6-CHF2-pyridin-3 -yl 5-Et-pyrimidin-4-yl 6-CHO-pyridin-3-yl 5-CF3-pyrimidin-4-yl 6-C -pyridin-3 -yl 5-CHF2-pyrimidin-4-yl 6-OMe -pyridin-3 -yl 5 -CHO-pyrimidin-4-yl 6-OCF3 -pyridin-3 -yl 5-CN-pyrimidin-4-yl-N(Me)2-pyridin-3-yl 5-OMe-pyrimidin-4-yl

6-Ph-pyridin-3 -yl 5-OCF3-pyrimidin-4-yl ,6-di-Cl-pyridin-3-yl 5-N(Me)2-pyrimidin-4-yl-CN-6-Cl-pyridin-3-yl 5-Ph-pyrimidin-4-yl 3-F-pyridin-4-yl 2-F-pyrimidin-5-yl 3-Cl-pyridin-4-yl 2-Cl-pyrimidin-5-yl 3 -Br-pyridin-4-yl 2-Br-pyrimidin-5-yl 3-I-pyridin-4-yl 2 -I-pyrimidin-5 -yl 3 -Me-pyridin-4-yl 2 -Me-pyrimidin-5 -yl 3-Et-pyridin-4-yl 2-Et-pyrimidin-5-yl 3 -CF3 -pyridin-4-yl 2 -CF3 -pyrimidin-5 -yl 3-CHF 2 -pyridin-4-yl 2-CHF2-pyrimidin-5-yl 3-CHO-pyridin-4-yl 2-CHO-pyrimidin-5-yl 3 -CN-pyridin-4-yl 2 -CN-pyrimidin- 5 -yl 2 -OMe -pyrimidin- 5 -yl 6-CN-[l,2,4]triazin-3-yl

2- OCF3-pyrimidin-5-yl 4-Cl-[l,3,5]triazin-2-yl 2-N(Me)2-pyrimidin-5-yl 4-CF 3 -phenyl

2 -Ph-pyrimidin- 5 -yl 4-OCF3 -phenyl 3 -Cl-pyrazin-2-yl 3 -OCF3 -phenyl 3 -CN-pyrazin-2-yl 3,5-di-OCF 3 -phenyl

3 -OMe-pyrazin-2-yl 3,5-di-Cl-phenyl

3- Cl-[l,2,4]triazin-6-yl

3-CN-[l,2,4]triazin-6-yl

The present disclosure also includes Tables 2 through 1584. Each Table is constructed in the the same manner as Table 1 above, except that the row heading in Table 1 (i.e. "R 2 = CI; Z = O; and R 3 = H (m = 0)") is replaced with the respective row heading shown below. For example, the first entry in Table 2 is a compound of Formula 1 wherein R 1 is H, R 2 is CI, Z is O, R 3 is H (m = 0), and Q is isoxazol-5-yl (i.e. unsubstituted isoxazole attached to the remainder of Formula 1 at the 5 -position). The remainder of Table 2 is constructed in the same way, and hence the remainder of Tables through 1584 is constructed the same way.

Table Header Row Table Header Row

2 R 2 = F, Z = O, R 3 = H (m = 0) 23 R 2 = F, Z = 0, R 3 = 3-Ph

3 R 2 = F, Z = O, R 3 = 3-F 24 R 2 = F, Z = S, R 3 = 3-F

4 R 2 = F, Z = O, R 3 = 3-Cl 25 R 2 = F, Z = S, R 3 = 3 -CI

5 R 2 = F, Z = O, R 3 = 3-Br 26 R 2 = F, Z = S, R 3 = 3-Br

6 R 2 = F, Z = 0, R 3 = 3-I 27 R 2 = F, Z = S, R 3 = 3-1

7 R 2 = F, Z = 0, R 3 = 3-CN 28 R 2 = F, Z = S, R 3 = 3-CN

8 R 2 = F, Z = O, R 3 = 3-N0 2 29 R 2 = F, Z = S, R 3 = 3-N0 2

9 R 2 = F, Z = O, R 3 = 3-OMe 30 R 2 = F, Z = S, R 3 = 3-OMe

10 R 2 = F, Z = 0, R 3 = 3-OCF 3 31 R 2 = F, Z = S, R 3 = 3-OCF3

11 R 2 = F, Z = O, R 3 = 3-CF3 32 R 2 = F, Z = S, R 3 = 3-CF3

12 R 2 = F, Z = 0, R 3 = 3-CHF 2 33 R 2 = F, Z = S, R 3 = 3-CHF 2

13 R 2 = F, Z = 0, R 3 = 3-CH 2 F 34 R 2 = F, Z = S, R 3 = 3-CH 2 F

14 R 2 = F, Z = 0, R 3 = 3-CHO 35 R 2 = F, Z = S, R 3 = 3-CHO

15 R 2 = F, Z = O, R 3 = 3-Me 36 R 2 = F, Z = S, R 3 = 3-Me

16 R 2 = F, Z = O, R 3 = 3-Et 37 R 2 = F, Z = S, R 3 = 3-Et

17 R 2 = F, Z = O, R 3 = 3-Ethynyl 38 R 2 = F, Z = S, R 3 = 3-Ethynyl

18 R 2 = F, Z = O, R 3 = 3-Ethenyl 39 R 2 = F, Z = S, R 3 = 3-Ethenyl

19 R 2 = F, Z = O, R 3 = 3-S0 2 Me 40 R 2 = F, Z = S, R 3 = 3-S0 2 Me

20 R 2 = F, Z = O, R 3 = 3-OAc 41 R 2 = F, Z = S, R 3 = 3-OAc

21 R 2 = F, Z = O, R 3 = 3-c-Pr 42 R 2 = F, Z = S, R 3 = 3-c-Pr

22 R 2 = F, Z = O, R 3 = 3-z-Pr 43 R 2 = F, Z = S, R 3 = 3-z-Pr

Table Header Row Table Header Row

44 R 2 = F, Z = S, R 3 = 3-Ph 81 R 2 = F, Z = O, R 3 = 5-Ethenyl

45 R 2 = F, Z = O, R 3 = 4-F 82 R 2 = F, Z = O, R 3 = 5-S0 2 Me

46 R 2 = F, Z = O, R 3 = 4-Cl 83 R 2 = F, Z = O, R 3 = 5-OAc

47 R 2 = F, Z = O, R 3 = 4-Br 84 R 2 = F, Z = O, R 3 = 5-c-Pr

48 R 2 = F, Z = O, R 3 = 4-1 85 R 2 = F, Z = O, R 3 = 5- -Pr

49 R 2 = F, Z = O, R 3 = 4-CN 86 R 2 = F, Z = O, R 3 = 5-Ph

50 R 2 = F, Z = O, R 3 = 4-N0 2 87 R 2 = F, Z = O, R 3 = 6-F

51 R 2 = F, Z = O, R 3 = 4-OMe 88 R 2 = F, Z = O, R 3 = 6-Cl

52 R 2 = F, Z = O, R 3 = 4-OCF 3 89 R 2 = F, Z = O, R 3 = 6-Br

53 R 2 = F, Z = O, R 3 = 4-CF3 90 R 2 = F, Z = O, R 3 = 6-1

54 R 2 = F, Z = O, R 3 = 4-CHF 2 91 R 2 = F, Z = O, R 3 = 6-CN

55 R 2 = F, Z = O, R 3 = 4-CH 2 F 92 R 2 = F, Z = O, R 3 = 6-N0 2

56 R 2 = F, Z = O, R 3 = 4-CHO 93 R 2 = F, Z = O, R 3 = 6-OMe

57 R 2 = F, Z = O, R 3 = 4-Me 94 R 2 = F, Z = O, R 3 = 6-OCF3

58 R 2 = F, Z = O, R 3 = 4-Et 95 R 2 = F, Z = O, R 3 = 6-CF3

59 R 2 = F, Z = O, R 3 = 4-Ethynyl 96 R 2 = F, Z = O, R 3 = 6-CHF 2

60 R 2 = F, Z = O, R 3 = 4-Ethenyl 97 R 2 = F, Z = O, R 3 = 6-CH 2 F

61 R 2 = F, Z = O, R 3 = 4-S0 2 Me 98 R 2 = F, Z = O, R 3 = 6-CHO

62 R 2 = F, Z = O, R 3 = 4-OAc 99 R 2 = F, Z = O, R 3 = 6-Me

63 R 2 = F, Z = O, R 3 = 4-c-Pr 100 R 2 = F, Z = O, R 3 = 6-Et

64 R 2 = F, Z = O, R 3 = 4-z-Pr 101 R 2 = F, Z = O, R 3 = 6-Ethynyl

65 R 2 = F, Z = O, R 3 = 4-Ph 102 R 2 = F, Z = O, R 3 = 6-Ethenyl

66 R 2 = F, Z = O, R 3 = 5-F 103 R 2 = F, Z = O, R 3 = 6-S0 2 Me

67 R 2 = F, Z = O, R 3 = 5-Cl 104 R 2 = F, Z = O, R 3 = 6-OAc

68 R 2 = F, Z = O, R 3 = 5-Br 105 R 2 = F, Z = O, R 3 = 6-c-Pr

69 R 2 = F, Z = O, R 3 = 5-1 106 R 2 = F, Z = O, R 3 = 6-z-Pr

70 R 2 = F, Z = O, R 3 = 5-CN 107 R 2 = F, Z = O, R 3 = 6-Ph

71 R 2 = F, Z = O, R 3 = 5-N0 2 108 R 2 = F, Z = O, R 3 = 3,4-di-F

72 R 2 = F, Z = O, R 3 = 5-OMe 109 R 2 = F, Z = O, R 3 = 3,5-di-F

73 R 2 = F, Z = O, R 3 = 5-OCF3 110 R 2 = F, Z = O, R 3 = 3,6-di-F

74 R 2 = F, Z = O, R 3 = 5-CF3 111 R 2 = F, Z = O, R 3 = 4,5-di-F

75 R 2 = F, Z = O, R 3 = 5-CHF 2 112 R 2 = F, Z = O, R 3 = 3,4-di-Cl

76 R 2 = F, Z = O, R 3 = 5-CH 2 F 113 R 2 = F, Z = O, R 3 = 3,5-di-Cl

77 R 2 = F, Z = O, R 3 = 5-CHO 114 R 2 = F, Z = O, R 3 = 3,6-di-Cl

78 R 2 = F, Z = O, R 3 =5-Me 115 R 2 = F, Z = O, R 3 = 4,5-di-Cl

79 R 2 = F, Z = O, R 3 = 5-Et 1 16 R 2 = F, Z = O, R 3 = 3,4-di-Br

80 R 2 = F, Z = O, R 3 = 5-Ethynyl 1 17 R 2 = F, Z = O, R 3 = 3,5-di-Br Table Header Row Table Header Row

118 R 2 = F, Z = O, R 3 = 3,6-di-Br 155 R 2 = Br, Z = O, R 3 = 3-CF 3

119 R 2 = F, Z = O, R 3 = 4,5-di-Br 156 R 2 = Br, Z = O, R 3 = 3-CHF 2

120 R 2 = F, Z = O, R 3 = 3,4-di-CN 157 R 2 = Br, Z = O, R 3 = 3-CH 2 F

121 R 2 = F, Z = O, R 3 = 3,5-di-CN 158 R 2 = Br, Z = O, R 3 = 3-CHO

122 R 2 = F, Z = O, R 3 = 3,6-di-CN 159 R 2 = Br, Z = O, R 3 = 3-Me

123 R 2 = F, Z = O, R 3 = 4,5-di-CN 160 R 2 = Br, Z = O, R 3 = 3-Et

124 R 2 = F, Z = O, R 3 = 3,4-di-Me 161 R 2 = Br, Z = O, R 3 = 3-Ethynyl

125 R 2 = F, Z = O, R 3 = 3,5-di-Me 162 R 2 = Br, Z = O, R 3 = 3-Ethenyl

126 R 2 = F, Z = O, R 3 = 3,6-di-Me 163 R 2 = Br, Z = O, R 3 = 3-S0 2 Me

127 R 2 = F, Z = O, R 3 = 4,5-di-Me 164 R 2 = Br, Z = O, R 3 = 3-OAc

128 R 2 = F, Z = O, R 3 = 3,4-di-OMe 165 R 2 = Br, Z = O, R 3 = 3-c-Pr

129 R 2 = F, Z = O, R 3 = 3,5-di-OMe 166 R 2 = Br, Z = O, R 3 = 3-z-Pr

130 R 2 = F, Z = O, R 3 = 3,6-di-OMe 167 R 2 = Br, Z = O, R 3 = 3-Ph

131 R 2 = F, Z = O, R 3 = 4,5-di-OMe 168 R 2 = Br, Z = S, R 3 = 3-F

132 R 2 = F, Z = O, R 3 = 3,4-di-CF 3 169 R 2 = Br, Z = S, R 3 = 3 -CI

133 R 2 = F, Z = O, R 3 = 3,5-di-CF 3 170 R 2 = Br, Z = S, R 3 = 3-Br

134 R 2 = F, Z = O, R 3 = 3,6-di-CF 3 171 R 2 = Br, Z = S, R 3 = 3-1

135 R 2 = F, Z = O, R 3 = 4,5-di-CF 3 172 R 2 = Br, Z = S, R 3 = 3-CN

136 R 2 = F, Z = O, R 3 = 3-CN, 4-Me 173 R 2 = Br, Z = S, R 3 = 3-N0 2

137 R 2 = F, Z = O, R 3 = 3-CN, 4-F 174 R 2 = Br, Z = S, R 3 = 3-OMe

138 R 2 = F, Z = O, R 3 = 3-CN, 4-Br 175 R 2 = Br, Z = S, R 3 = 3-OCF 3

139 R 2 = F, Z = O, R 3 = 3-CN, 4-OMe 176 R 2 = Br, Z = S, R 3 = 3-CF 3

140 R 2 = F, Z = O, R 3 = 3-CN, 4-CF 3 177 R 2 = Br, Z = S, R 3 = 3-CHF 2

141 R 2 = F, Z = O, R 3 = 3-CN, 6-Me 178 R 2 = Br, Z = S, R 3 = 3-CH 2 F

142 R 2 = F, Z = O, R 3 = 3-CN, 6-F 179 R 2 = Br, Z = S, R 3 = 3-CHO

143 R 2 = F, Z = O, R 3 = 3-CN, 6-Br 180 R 2 = Br, Z = S, R 3 = 3-Me

144 R 2 = F, Z = O, R 3 = 3-CN, 6-OMe 181 R 2 = Br, Z = S, R 3 = 3-Et

145 R 2 = F, Z = O, R 3 = 3-CN, 6-CF 3 182 R 2 = Br, Z = S, R 3 = 3-Ethynyl

146 R 2 = Br, Z = O, R 3 = H (m = 0) 183 R 2 = Br, Z = S, R 3 = 3-Ethenyl

147 R 2 = Br, Z = O, R 3 = 3-F 184 R 2 = Br, Z = S, R 3 = 3-S0 2 Me

148 R 2 = Br, Z = O, R 3 = 3 -CI 185 R 2 = Br, Z = S, R 3 = 3-OAc

149 R 2 = Br, Z = O, R 3 = 3-Br 186 R 2 = Br, Z = S, R 3 = 3-c-Pr

150 R 2 = Br, Z = O, R 3 = 3-1 187 R 2 = Br, Z = S, R 3 = 3-z-Pr

151 R 2 = Br, Z = O, R 3 = 3-CN 188 R 2 = Br, Z = S, R 3 = 3-Ph

152 R 2 = Br, Z = O, R 3 = 3-N0 2 189 R 2 = Br, Z = O, R 3 = 4-F

153 R 2 = Br, Z = O, R 3 = 3-OMe 190 R 2 = Br, Z = O, R 3 = 4-Cl

154 R 2 = Br, Z = O, R 3 = 3-OCF 3 191 R 2 = Br, Z = O, R 3 = 4-Br Table Header Row Table Header Row

192 R 2 = Br, Z = O, R 3 = 4-1 229 R 2 = Br, Z = O, R 3 = 5-z-Pr

193 R 2 = Br, Z = O, R 3 = 4-CN 230 R 2 = Br, Z = O, R 3 = 5-Ph

194 R 2 = Br, Z = O, R 3 = 4-N0 2 231 R 2 = Br, Z = O, R 3 = 6-F

195 R 2 = Br, Z = O, R 3 = 4-OMe 232 R 2 = Br, Z = O, R 3 = 6-Cl

196 R 2 = Br, Z = O, R 3 = 4-OCF 3 233 R 2 = Br, Z = O, R 3 = 6-Br

197 R 2 = Br, Z = O, R 3 = 4-CF3 234 R 2 = Br, Z = O, R 3 = 6-1

198 R 2 = Br, Z = O, R 3 = 4-CHF 2 235 R 2 = Br, Z = O, R 3 = 6-CN

199 R 2 = Br, Z = O, R 3 = 4-CH 2 F 236 R 2 = Br, Z = O, R 3 = 6-N0 2

200 R 2 = Br, Z = O, R 3 = 4-CHO 237 R 2 = Br, Z = O, R 3 = 6-OMe

201 R 2 = Br, Z = O, R 3 = 4-Me 238 R 2 = Br, Z = O, R 3 = 6-OCF3

202 R 2 = Br, Z = O, R 3 = 4-Et 239 R 2 = Br, Z = O, R 3 = 6-CF3

203 R 2 = Br, Z = O, R 3 = 4-Ethynyl 240 R 2 = Br, Z = O, R 3 = 6-CHF 2

204 R 2 = Br, Z = O, R 3 = 4-Ethenyl 241 R 2 = Br, Z = O, R 3 = 6-CH 2 F

205 R 2 = Br, Z = O, R 3 = 4-S0 2 Me 242 R 2 = Br, Z = O, R 3 = 6-CHO

206 R 2 = Br, Z = O, R 3 = 4-OAc 243 R 2 = Br, Z = O, R 3 = 6-Me

207 R 2 = Br, Z = O, R 3 = 4-c-Pr 244 R 2 = Br, Z = O, R 3 = 6-Et

208 R 2 = Br, Z = O, R 3 = 4-z-Pr 245 R 2 = Br, Z = O, R 3 = 6-Ethynyl

209 R 2 = Br, Z = O, R 3 = 4-Ph 246 R 2 = Br, Z = O, R 3 = 6-Ethenyl

210 R 2 = Br, Z = O, R 3 = 5-F 247 R 2 = Br, Z = O, R 3 = 6-S0 2 Me

211 R 2 = Br, Z = O, R 3 = 5-Cl 248 R 2 = Br, Z = O, R 3 = 6-OAc

212 R 2 = Br, Z = O, R 3 = 5-Br 249 R 2 = Br, Z = O, R 3 = 6-c-Pr

213 R 2 = Br, Z = O, R 3 = 5-1 250 R 2 = Br, Z = O, R 3 = 6-z-Pr

214 R 2 = Br, Z = O, R 3 = 5-CN 251 R 2 = Br, Z = O, R 3 = 6-Ph

215 R 2 = Br, Z = O, R 3 = 5-N0 2 252 R 2 = Br, Z = O, R 3 = 3,4-di-F

216 R 2 = Br, Z = O, R 3 = 5-OMe 253 R 2 = Br, Z = O, R 3 = 3,5-di-F

217 R 2 = Br, Z = O, R 3 = 5-OCF3 254 R 2 = Br, Z = O, R 3 = 3,6-di-F

218 R 2 = Br, Z = O, R 3 = 5-CF3 255 R 2 = Br, Z = O, R 3 = 4,5-di-F

219 R 2 = Br, Z = O, R 3 = 5-CHF 2 256 R 2 = Br, Z = O, R 3 = 3,4-di-Cl

220 R 2 = Br, Z = O, R 3 = 5-CH 2 F 257 R 2 = Br, Z = O, R 3 = 3,5-di-Cl

221 R 2 = Br, Z = O, R 3 = 5-CHO 258 R 2 = Br, Z = O, R 3 = 3,6-di-Cl

222 R 2 = Br, Z = O, R 3 =5-Me 259 R 2 = Br, Z = O, R 3 = 4,5-di-Cl

223 R 2 = Br, Z = O, R 3 = 5-Et 260 R 2 = Br, Z = O, R 3 = 3,4-di-Br

224 R 2 = Br, Z = O, R 3 = 5-Ethynyl 261 R 2 = Br, Z = O, R 3 = 3,5-di-Br

225 R 2 = Br, Z = O, R 3 = 5-Ethenyl 262 R 2 = Br, Z = O, R 3 = 3,6-di-Br

226 R 2 = Br, Z = O, R 3 = 5-S0 2 Me 263 R 2 = Br, Z = O, R 3 = 4,5-di-Br

227 R 2 = Br, Z = O, R 3 = 5-OAc 264 R 2 = Br, Z = O, R 3 = 3,4-di-CN

228 R 2 = Br, Z = O, R 3 = 5-c-Pr 265 R 2 = Br, Z = O, R 3 = 3,5-di-CN Table Header Row Table Header Row

266 R 2 = Br, Z = O, R 3 = 3,6-di-CN 303 R 2 = CI, Z = O, R 3 = 3-Me

267 R 2 = Br, Z = O, R 3 = 4,5-di-CN 304 R 2 = CI, Z = O, R 3 = 3-Et

268 R 2 = Br, Z = O, R 3 = 3,4-di-Me 305 R 2 = CI, Z = O, R 3 = 3-Ethynyl

269 R 2 = Br, Z = O, R 3 = 3,5-di-Me 306 R 2 = CI, Z = O, R 3 = 3-Ethenyl

270 R 2 = Br, Z = O, R 3 = 3,6-di-Me 307 R 2 = CI, Z = O, R 3 = 3-S0 2 Me

271 R 2 = Br, Z = O, R 3 = 4,5-di-Me 308 R 2 = CI, Z = O, R 3 = 3-OAc

272 R 2 = Br, Z = O, R 3 = 3,4-di-OMe 309 R 2 = CI, Z = O, R 3 = 3-c-Pr

273 R 2 = Br, Z = O, R 3 = 3,5-di-OMe 310 R 2 = C1, Z = 0, R 3 = 3-z-Pr

274 R 2 = Br, Z = O, R 3 = 3,6-di-OMe 311 R 2 = CI, Z = O, R 3 = 3-Ph

275 R 2 = Br, Z = O, R 3 = 4,5-di-OMe 312 R 2 = CI, Z = S, R 3 = 3-F

276 R 2 = Br, Z = O, R 3 = 3,4-di-CF 3 313 R 2 = CI, Z = S, R 3 = 3 -CI

277 R 2 = Br, Z = O, R 3 = 3,5-di-CF 3 314 R 2 = CI, Z = S, R 3 = 3-Br

278 R 2 = Br, Z = O, R 3 = 3,6-di-CF 3 315 R 2 = CI, Z = S, R 3 = 3-1

279 R 2 = Br, Z = O, R 3 = 4,5-di-CF 3 316 R 2 = CI, Z = S, R 3 = 3-CN

280 R 2 = Br, Z = O, R 3 = 3-CN, 4-Me 317 R 2 = CI, Z = S, R 3 = 3-N0 2

281 R 2 = Br, Z = O, R 3 = 3-CN, 4-F 318 R 2 = CI, Z = S, R 3 = 3-OMe

282 R 2 = Br, Z = O, R 3 = 3-CN, 4-Br 319 R 2 = CI, Z = S, R 3 = 3-OCF 3

283 R 2 = Br, Z = O, R 3 = 3-CN, 4-OMe 320 R 2 = CI, Z = S, R 3 = 3-CF 3

284 R 2 = Br, Z = O, R 3 = 3-CN, 4-CF 3 321 R 2 = CI, Z = S, R 3 = 3-CHF 2

285 R 2 = Br, Z = O, R 3 = 3-CN, 6-Me 322 R 2 = CI, Z = S, R 3 = 3-CH 2 F

286 R 2 = Br, Z = O, R 3 = 3-CN, 6-F 323 R 2 = CI, Z = S, R 3 = 3-CHO

287 R 2 = Br, Z = O, R 3 = 3-CN, 6-Br 324 R 2 = CI, Z = S, R 3 = 3-Me

288 R 2 = Br, Z = O, R 3 = 3-CN, 6-OMe 325 R 2 = CI, Z = S, R 3 = 3-Et

289 R 2 = Br, Z = O, R 3 = 3-CN, 6-CF 3 326 R 2 = CI, Z = S, R 3 = 3-Ethynyl

290 R 2 = CI, Z = O, R 3 = H (m = 0) 327 R 2 = CI, Z = S, R 3 = 3-Ethenyl

291 R 2 = CI, Z = O, R 3 = 3-F 328 R 2 = CI, Z = S, R 3 = 3-S0 2 Me

292 R 2 = CI, Z = O, R 3 = 3-Cl 329 R 2 = CI, Z = S, R 3 = 3-OAc

293 R 2 = CI, Z = O, R 3 = 3-Br 330 R 2 = CI, Z = S, R 3 = 3-c-Pr

294 R 2 = CI, Z = O, R 3 = 3-1 331 R 2 = CI, Z = S, R 3 = 3-z-Pr

295 R 2 = CI, Z = O, R 3 = 3-CN 332 R 2 = CI, Z = S, R 3 = 3-Ph

296 R 2 = CI, Z = O, R 3 = 3-N0 2 333 R 2 = CI, Z = O, R 3 = 4-F

297 R 2 = CI, Z = O, R 3 = 3-OMe 334 R 2 = CI, Z = O, R 3 = 4-Cl

298 R 2 = CI, Z = O, R 3 = 3-OCF 3 335 R 2 = CI, Z = O, R 3 = 4-Br

299 R 2 = CI, Z = O, R 3 = 3-CF 3 336 R 2 = CI, Z = O, R 3 = 4-1

300 R 2 = CI, Z = O, R 3 = 3-CHF 2 337 R 2 = CI, Z = O, R 3 = 4-CN

301 R 2 = CI, Z = O, R 3 = 3-CH 2 F 338 R 2 = CI, Z = O, R 3 = 4-N0 2

302 R 2 = CI, Z = O, R 3 = 3-CHO 339 R 2 = CI, Z = O, R 3 = 4-OMe Table Header Row Table Header Row

340 R 2 = CI, Z = O, R 3 = 4-OCF 3 377 R 2 = CI, Z = O, R 3 = 6-Br

341 R 2 = CI, Z = O, R 3 = 4-CF3 378 R 2 = CI, Z = O, R 3 = 6-1

342 R 2 = CI, Z = O, R 3 = 4-CHF 2 379 R 2 = CI, Z = O, R 3 = 6-CN

343 R 2 = CI, Z = O, R 3 = 4-CH 2 F 380 R 2 = CI, Z = O, R 3 = 6-N0 2

344 R 2 = CI, Z = O, R 3 = 4-CHO 381 R 2 = CI, Z = O, R 3 = 6-OMe

345 R 2 = CI, Z = O, R 3 = 4-Me 382 R 2 = CI, Z = O, R 3 = 6-OCF3

346 R 2 = CI, Z = O, R 3 = 4-Et 383 R 2 = CI, Z = O, R 3 = 6-CF3

347 R 2 = CI, Z = O, R 3 = 4-Ethynyl 384 R 2 = CI, Z = O, R 3 = 6-CHF 2

348 R 2 = CI, Z = O, R 3 = 4-Ethenyl 385 R 2 = CI, Z = O, R 3 = 6-CH 2 F

349 R 2 = CI, Z = O, R 3 = 4-S0 2 Me 386 R 2 = CI, Z = O, R 3 = 6-CHO

350 R 2 = CI, Z = O, R 3 = 4-OAc 387 R 2 = CI, Z = O, R 3 = 6-Me

351 R 2 = CI, Z = O, R 3 = 4-c-Pr 388 R 2 = CI, Z = O, R 3 = 6-Et

352 R 2 = CI, Z = O, R 3 = 4-z-Pr 389 R 2 = CI, Z = O, R 3 = 6-Ethynyl

353 R 2 = CI, Z = O, R 3 = 4-Ph 390 R 2 = CI, Z = O, R 3 = 6-Ethenyl

354 R 2 = CI, Z = O, R 3 = 5-F 391 R 2 = CI, Z = O, R 3 = 6-S0 2 Me

355 R 2 = CI, Z = O, R 3 = 5-Cl 392 R 2 = CI, Z = O, R 3 = 6-OAc

356 R 2 = CI, Z = O, R 3 = 5-Br 393 R 2 = CI, Z = O, R 3 = 6-c-Pr

357 R 2 = CI, Z = O, R 3 = 5-1 394 R 2 = CI, Z = O, R 3 = 6-z-Pr

358 R 2 = CI, Z = O, R 3 = 5-CN 395 R 2 = CI, Z = O, R 3 = 6-Ph

359 R 2 = CI, Z = O, R 3 = 5-N0 2 396 R 2 = CI, Z = O, R 3 = 3,4-di-F

360 R 2 = CI, Z = O, R 3 = 5-OMe 397 R 2 = CI, Z = O, R 3 = 3,5-di-F

361 R 2 = CI, Z = O, R 3 = 5-OCF3 398 R 2 = CI, Z = O, R 3 = 3,6-di-F

362 R 2 = CI, Z = O, R 3 = 5-CF3 399 R 2 = CI, Z = O, R 3 = 4,5-di-F

363 R 2 = CI, Z = O, R 3 = 5-CHF 2 400 R 2 = CI, Z = O, R 3 = 3,4-di-Cl

364 R 2 = CI, Z = O, R 3 = 5-CH 2 F 401 R 2 = CI, Z = O, R 3 = 3,5-di-Cl

365 R 2 = CI, Z = O, R 3 = 5-CHO 402 R 2 = CI, Z = O, R 3 = 3,6-di-Cl

366 R 2 = CI, Z = O, R 3 =5-Me 403 R 2 = CI, Z = O, R 3 = 4,5-di-Cl

367 R 2 = CI, Z = O, R 3 = 5-Et 404 R 2 = CI, Z = O, R 3 = 3,4-di-Br

368 R 2 = CI, Z = O, R 3 = 5-Ethynyl 405 R 2 = CI, Z = O, R 3 = 3,5-di-Br

369 R 2 = CI, Z = O, R 3 = 5-Ethenyl 406 R 2 = CI, Z = O, R 3 = 3,6-di-Br

370 R 2 = CI, Z = O, R 3 = 5-S0 2 Me 407 R 2 = CI, Z = O, R 3 = 4,5-di-Br

371 R 2 = CI, Z = O, R 3 = 5-OAc 408 R 2 = CI, Z = O, R 3 = 3,4-di-CN

372 R 2 = CI, Z = O, R 3 = 5-c-Pr 409 R 2 = CI, Z = O, R 3 = 3,5-di-CN

373 R 2 = CI, Z = O, R 3 = 5-z-Pr 410 R 2 = CI, Z = O, R 3 = 3,6-di-CN

374 R 2 = CI, Z = O, R 3 = 5-Ph 411 R 2 = CI, Z = O, R 3 = 4,5-di-CN

375 R 2 = CI, Z = O, R 3 = 6-F 412 R 2 = CI, Z = O, R 3 = 3,4-di-Me

376 R 2 = CI, Z = O, R 3 = 6-Cl 413

R 2 = CI, Z = O, R 3 = 3,5-di-Me Table Header Row Table Header Row

414 R 2 = CI, Z = O, R 3 = 3,6-di-Me 451 R 2 = I, Z = O, R 3 = 3-S0 2 Me

415 R 2 = CI, Z = O, R 3 = 4,5-di-Me 452 R 2 = I, Z = 0, R 3 = 3-OAc

416 R 2 = CI, Z = O, R 3 = 3,4-di-OMe 453 R 2 = I, Z = O, R 3 = 3-c-Pr

417 R 2 = CI, Z = O, R 3 = 3,5-di-OMe 454 R 2 = I, Z = 0, R 3 = 3-z-Pr

418 R 2 = CI, Z = O, R 3 = 3,6-di-OMe 455 R 2 = I, Z = O, R 3 = 3-Ph

419 R 2 = CI, Z = O, R 3 = 4,5-di-OMe 456 R 2 = I, Z = S, R 3 = 3-F

420 R 2 = CI, Z = O, R 3 = 3,4-di-CF 3 457 R 2 = I, Z = S, R 3 = 3-Cl

421 R 2 = CI, Z = O, R 3 = 3,5-di-CF 3 458 R 2 = I, Z = S, R 3 = 3-Br

422 R 2 = CI, Z = O, R 3 = 3,6-di-CF 3 459 R 2 = I, Z = S, R 3 = 3-1

423 R 2 = CI, Z = O, R 3 = 4,5-di-CF 3 460 R 2 = I, Z = S, R 3 = 3-CN

424 R 2 = CI, Z = O, R 3 = 3-CN, 4-Me 461 R 2 = I, Z = S, R 3 = 3-N0 2

425 R 2 = CI, Z = O, R 3 = 3-CN, 4-F 462 R 2 = I, Z = S, R 3 = 3-OMe

426 R 2 = CI, Z = O, R 3 = 3-CN, 4-Br 463 R 2 = I, Z = S, R 3 = 3-OCF 3

427 R 2 = CI, Z = O, R 3 = 3-CN, 4-OMe 464 R 2 = I, Z = S, R 3 = 3-CF 3

428 R 2 = CI, Z = O, R 3 = 3-CN, 4-CF 3 465 R 2 = I, Z = S, R 3 = 3-CHF 2

429 R 2 = CI, Z = O, R 3 = 3-CN, 6-Me 466 R 2 = I, Z = S, R 3 = 3-CH 2 F

430 R 2 = CI, Z = O, R 3 = 3-CN, 6-F 467 R 2 = I, Z = S, R 3 = 3-CHO

431 R 2 = CI, Z = O, R 3 = 3-CN, 6-Br 468 R 2 = I, Z = S, R 3 = 3-Me

432 R 2 = CI, Z = O, R 3 = 3-CN, 6-OMe 469 R 2 = I, Z = S, R 3 = 3-Et

433 R 2 = CI, Z = O, R 3 = 3-CN, 6-CF 3 470 R 2 = I, Z = S, R 3 = 3-Ethynyl

434 R 2 = I, Z = O, R 3 = H (m = 0) 471 R 2 = I, Z = S, R 3 = 3-Ethenyl

435 R 2 = I, Z = O, R 3 = 3-F 472 R 2 = I, Z = S, R 3 = 3-S0 2 Me

436 R 2 = I, Z = O, R 3 = 3 -CI 473 R 2 = I, Z = S, R 3 = 3-OAc

437 R 2 = I, Z = O, R 3 = 3-Br 474 R 2 = I, Z = S, R 3 = 3-c-Pr

438 R 2 = I, Z = O, R 3 = 3-1 475 R 2 = I, Z = S, R 3 = 3-z-Pr

439 R 2 = I, Z = 0, R 3 = 3-CN 476 R 2 = I, Z = S, R 3 = 3-Ph

440 R 2 = I, Z = O, R 3 = 3-N0 2 477 R 2 = I, Z = O, R 3 = 4-F

441 R 2 = I, Z = O, R 3 = 3-OMe 478 R 2 = I, Z = O, R 3 = 4-Cl

442 R 2 = I, Z = O, R 3 = 3-OCF 3 479 R 2 = I, Z = O, R 3 = 4-Br

443 R 2 = I, Z = O, R 3 = 3-CF 3 480 R 2 = I, Z = O, R 3 = 4-1

444 R 2 = I, Z = O, R 3 = 3-CHF 2 481 R 2 = I, Z = O, R 3 = 4-CN

445 R 2 = I, Z = O, R 3 = 3-CH 2 F 482 R 2 = I, Z = O, R 3 = 4-N0 2

446 R 2 = I, Z = O, R 3 = 3-CHO 483 R 2 = I, Z = O, R 3 = 4-OMe

447 R 2 = I, Z = O, R 3 = 3-Me 484 R 2 = I, Z = O, R 3 = 4-OCF 3

448 R 2 = I, Z = O, R 3 = 3-Et 485 R 2 = I, Z = O, R 3 = 4-CF 3

449 R 2 = I, Z = O, R 3 = 3-Ethynyl 486 R 2 = I, Z = O, R 3 = 4-CHF 2

450 R 2 = I, Z = O, R 3 = 3-Ethenyl 487 R 2 = I, Z = O, R 3 = 4-CH 2 F Table Header Row Table Header Row

488 R 2 = I, Z = O, R 3 = 4-CHO 525 R 2 = I, Z = O, R 3 = 6-OMe

489 R 2 = I, Z = O, R 3 = 4-Me 526 R 2 = I, Z = O, R 3 = 6-OCF3

490 R 2 = I, Z = O, R 3 = 4-Et 527 R 2 = I, Z = O, R 3 = 6-CF3

491 R 2 = I, Z = O, R 3 = 4-Ethynyl 528 R 2 = I, Z = O, R 3 = 6-CHF 2

492 R 2 = I, Z = O, R 3 = 4-Ethenyl 529 R 2 = I, Z = O, R 3 = 6-CH 2 F

493 R 2 = I, Z = O, R 3 = 4-S0 2 Me 530 R 2 = I, Z = O, R 3 = 6-CHO

494 R 2 = I, Z = O, R 3 = 4-OAc 531 R 2 = I, Z = O, R 3 = 6-Me

495 R 2 = I, Z = O, R 3 = 4-c-Pr 532 R 2 = I, Z = O, R 3 = 6-Et

496 R 2 = I, Z = O, R 3 = 4-z-Pr 533 R 2 = I, Z = O, R 3 = 6-Ethynyl

497 R 2 = I, Z = O, R 3 = 4-Ph 534 R 2 = I, Z = O, R 3 = 6-Ethenyl

498 R 2 = I, Z = O, R 3 = 5-F 535 R 2 = I, Z = O, R 3 = 6-S0 2 Me

499 R 2 = I, Z = O, R 3 = 5-Cl 536 R 2 = I, Z = O, R 3 = 6-OAc

500 R 2 = I, Z = O, R 3 = 5-Br 537 R 2 = I, Z = O, R 3 = 6-c-Pr

501 R 2 = I, Z = O, R 3 = 5-1 538 R 2 = I, Z = O, R 3 = 6-z-Pr

502 R 2 = I, Z = O, R 3 = 5-CN 539 R 2 = I, Z = O, R 3 = 6-Ph

503 R 2 = I, Z = O, R 3 = 5-N0 2 540 R 2 = I, Z = 0, R 3 = 3,4-di-F

504 R 2 = I, Z = O, R 3 = 5-OMe 541 R 2 = I, Z = 0, R 3 = 3,5-di-F

505 R 2 = I, Z = O, R 3 = 5-OCF 3 542 R 2 = I, Z = 0, R 3 = 3,6-di-F

506 R 2 = I, Z = O, R 3 = 5-CF3 543 R 2 = I, Z = O, R 3 = 4,5-di-F

507 R 2 = I, Z = O, R 3 = 5-CHF 2 544 R 2 = I, Z = O, R 3 = 3,4-di-Cl

508 R 2 = I, Z = O, R 3 = 5-CH 2 F 545 R 2 = I, Z = O, R 3 = 3,5-di-Cl

509 R 2 = I, Z = O, R 3 = 5-CHO 546 R 2 = I, Z = O, R 3 = 3,6-di-Cl

510 R 2 = I, Z = O, R 3 =5-Me 547 R 2 = I, Z = O, R 3 = 4,5-di-Cl

51 1 R 2 = I, Z = O, R 3 = 5-Et 548 R 2 = I, Z = O, R 3 = 3,4-di-Br

512 R 2 = I, Z = O, R 3 = 5-Ethynyl 549 R 2 = I, Z = O, R 3 = 3,5-di-Br

513 R 2 = I, Z = O, R 3 = 5-Ethenyl 550 R 2 = I, Z = O, R 3 = 3,6-di-Br

514 R 2 = I, Z = O, R 3 = 5-S0 2 Me 551 R 2 = I, Z = O, R 3 = 4,5-di-Br

515 R 2 = I, Z = O, R 3 = 5-OAc 552 R 2 = I, Z = O, R 3 = 3,4-di-CN

516 R 2 = I, Z = O, R 3 = 5-c-Pr 553 R 2 = I, Z = O, R 3 = 3,5-di-CN

517 R 2 = I, Z = O, R 3 = 5-z-Pr 554 R 2 = I, Z = O, R 3 = 3,6-di-CN

518 R 2 = I, Z = O, R 3 = 5-Ph 555 R 2 = I, Z = O, R 3 = 4,5-di-CN

519 R 2 = I, Z = O, R 3 = 6-F 556 R 2 = I, Z = O, R 3 = 3,4-di-Me

520 R 2 = I, Z = O, R 3 = 6-Cl 557 R 2 = I, Z = O, R 3 = 3,5-di-Me

521 R 2 = I, Z = O, R 3 = 6-Br 558 R 2 = I, Z = O, R 3 = 3,6-di-Me

522 R 2 = I, Z = O, R 3 = 6-1 559 R 2 = I, Z = O, R 3 = 4,5-di-Me

523 R 2 = I, Z = O, R 3 = 6-CN 560 R 2 = I, Z = O, R 3 = 3,4-di-OMe

524 R 2 = I, Z = O, R 3 = 6-N0 2 561 R 2 = I, Z = O, R 3 = 3,5-di-OMe Table Header Row Table Header Row

562 R 2 = I, Z = O, R 3 = 3,6-di-OMe 599 R 2 = Me, Z = O, R 3 = 3-Ph

563 R 2 = I, Z = O, R 3 = 4,5-di-OMe 600 R 2 = Me, Z = S, R 3 = 3-F

564 R 2 = I, Z = O, R 3 = 3,4-di-CF 3 601 R 2 = Me, Z = S, R 3 = 3 -CI

565 R 2 = I, Z = O, R 3 = 3,5-di-CF 3 602 R 2 = Me, Z = S, R 3 = 3-Br

566 R 2 = I, Z = O, R 3 = 3,6-di-CF 3 603 R 2 = Me, Z = S, R 3 = 3-1

567 R 2 = I, Z = O, R 3 = 4,5-di-CF 3 604 R 2 = Me, Z = S, R 3 = 3-CN

568 R 2 = I, Z = O, R 3 = 3-CN, 4-Me 605 R 2 = Me, Z = S, R 3 = 3-N0 2

569 R 2 = I, Z = O, R 3 = 3-CN, 4-F 606 R 2 = Me, Z = S, R 3 = 3-OMe

570 R 2 = I, Z = O, R 3 = 3-CN, 4-Br 607 R 2 = Me, Z = S, R 3 = 3-OCF 3

571 R 2 = I, Z = O, R 3 = 3-CN, 4-OMe 608 R 2 = Me, Z = S, R 3 = 3-CF 3

572 R 2 = I, Z = O, R 3 = 3-CN, 4-CF 3 609 R 2 = Me, Z = S, R 3 = 3-CHF 2

573 R 2 = I, Z = O, R 3 = 3-CN, 6-Me 610 R 2 = Me, Z = S, R 3 = 3-CH 2 F

574 R 2 = I, Z = O, R 3 = 3-CN, 6-F 611 R 2 = Me, Z = S, R 3 = 3-CHO

575 R 2 = I, Z = O, R 3 = 3-CN, 6-Br 612 R 2 = Me, Z = S, R 3 = 3-Me

576 R 2 = I, Z = O, R 3 = 3-CN, 6-OMe 613 R 2 = Me, Z = S, R 3 = 3-Et

577 R 2 = I, Z = O, R 3 = 3-CN, 6-CF 3 614 R 2 = Me, Z = S, R 3 = 3-Ethynyl

578 R 2 = Me, Z = O, R 3 = H (m = 0) 615 R 2 = Me, Z = S, R 3 = 3-Ethenyl

579 R 2 = Me, Z = O, R 3 = 3-F 616 R 2 = Me, Z = S, R 3 = 3-S0 2 Me

580 R 2 = Me, Z = O, R 3 = 3 -CI 617 R 2 = Me, Z = S, R 3 = 3-OAc

581 R 2 = Me, Z = O, R 3 = 3-Br 618 R 2 = Me, Z = S, R 3 = 3-c-Pr

582 R 2 = Me, Z = O, R 3 = 3-1 619 R 2 = Me, Z = S, R 3 = 3-z-Pr

583 R 2 = Me, Z = O, R 3 = 3-CN 620 R 2 = Me, Z = S, R 3 = 3-Ph

584 R 2 = Me, Z = O, R 3 = 3-N0 2 621 R 2 = Me, Z = O, R 3 = 4-F

585 R 2 = Me, Z = O, R 3 = 3-OMe 622 R 2 = Me, Z = O, R 3 = 4-Cl

586 R 2 = Me, Z = O, R 3 = 3-OCF 3 623 R 2 = Me, Z = O, R 3 = 4-Br

587 R 2 = Me, Z = O, R 3 = 3-CF 3 624 R 2 = Me, Z = O, R 3 = 4-1

588 R 2 = Me, Z = O, R 3 = 3-CHF 2 625 R 2 = Me, Z = O, R 3 = 4-CN

589 R 2 = Me, Z = O, R 3 = 3-CH 2 F 626 R 2 = Me, Z = O, R 3 = 4-N0 2

590 R 2 = Me, Z = O, R 3 = 3-CHO 627 R 2 = Me, Z = O, R 3 = 4-OMe

591 R 2 = Me, Z = O, R 3 = 3-Me 628 R 2 = Me, Z = O, R 3 = 4-OCF 3

592 R 2 = Me, Z = O, R 3 = 3-Et 629 R 2 = Me, Z = O, R 3 = 4-CF 3

593 R 2 = Me, Z = O, R 3 = 3-Ethynyl 630 R 2 = Me, Z = O, R 3 = 4-CHF 2

594 R 2 = Me, Z = O, R 3 = 3-Ethenyl 631 R 2 = Me, Z = O, R 3 = 4-CH 2 F

595 R 2 = Me, Z = O, R 3 = 3-S0 2 Me 632 R 2 = Me, Z = O, R 3 = 4-CHO

596 R 2 = Me, Z = O, R 3 = 3-OAc 633 R 2 = Me, Z = O, R 3 = 4-Me

597 R 2 = Me, Z = O, R 3 = 3-c-Pr 634 R 2 = Me, Z = O, R 3 = 4-Et

598 R 2 = Me, Z = O, R 3 = 3-z-Pr 635 R 2 = Me, Z = O, R 3 = 4-Ethynyl Table Header Row Table Header Row

636 R 2 = Me, Z = O, R 3 = 4-Ethenyl 673 R 2 = Me, Z = O, R 3 = 6-CH 2 F

637 R 2 = Me, Z = O, R 3 = 4-S0 2 Me 674 R 2 = Me, Z = O, R 3 = 6-CHO

638 R 2 = Me, Z = O, R 3 = 4-OAc 675 R 2 = Me, Z = O, R 3 = 6-Me

639 R 2 = Me, Z = O, R 3 = 4-c-Pr 676 R 2 = Me, Z = O, R 3 = 6-Et

640 R 2 = Me, Z = O, R 3 = 4-z-Pr 677 R 2 = Me, Z = O, R 3 = 6-Ethynyl

641 R 2 = Me, Z = O, R 3 = 4-Ph 678 R 2 = Me, Z = O, R 3 = 6-Ethenyl

642 R 2 = Me, Z = O, R 3 = 5-F 679 R 2 = Me, Z = O, R 3 = 6-S0 2 Me

643 R 2 = Me, Z = O, R 3 = 5-Cl 680 R 2 = Me, Z = O, R 3 = 6-OAc

644 R 2 = Me, Z = O, R 3 = 5-Br 681 R 2 = Me, Z = O, R 3 = 6-c-Pr

645 R 2 = Me, Z = O, R 3 = 5-1 682 R 2 = Me, Z = O, R 3 = 6-z-Pr

646 R 2 = Me, Z = O, R 3 = 5-CN 683 R 2 = Me, Z = O, R 3 = 6-Ph

647 R 2 = Me, Z = O, R 3 = 5-N0 2 684 R 2 = Me, Z = O, R 3 = 3,4-di-F

648 R 2 = Me, Z = O, R 3 = 5-OMe 685 R 2 = Me, Z = O, R 3 = 3,5-di-F

649 R 2 = Me, Z = O, R 3 = 5-OCF 3 686 R 2 = Me, Z = O, R 3 = 3,6-di-F

650 R 2 = Me, Z = O, R 3 = 5-CF3 687 R 2 = Me, Z = O, R 3 = 4,5-di-F

651 R 2 = Me, Z = O, R 3 = 5-CHF 2 688 R 2 = Me, Z = O, R 3 = 3,4-di-Cl

652 R 2 = Me, Z = O, R 3 = 5-CH 2 F 689 R 2 = Me, Z = O, R 3 = 3,5-di-Cl

653 R 2 = Me, Z = O, R 3 = 5-CHO 690 R 2 = Me, Z = O, R 3 = 3,6-di-Cl

654 R 2 = Me, Z = O, R 3 =5-Me 691 R 2 = Me, Z = O, R 3 = 4,5-di-Cl

655 R 2 = Me, Z = O, R 3 = 5-Et 692 R 2 = Me, Z = O, R 3 = 3,4-di-Br

656 R 2 = Me, Z = O, R 3 = 5-Ethynyl 693 R 2 = Me, Z = O, R 3 = 3,5-di-Br

657 R 2 = Me, Z = O, R 3 = 5-Ethenyl 694 R 2 = Me, Z = O, R 3 = 3,6-di-Br

658 R 2 = Me, Z = O, R 3 = 5-S0 2 Me 695 R 2 = Me, Z = O, R 3 = 4,5-di-Br

659 R 2 = Me, Z = O, R 3 = 5-OAc 696 R 2 = Me, Z = O, R 3 = 3,4-di-CN

660 R 2 = Me, Z = O, R 3 = 5-c-Pr 697 R 2 = Me, Z = O, R 3 = 3,5-di-CN

661 R 2 = Me, Z = O, R 3 = 5-z-Pr 698 R 2 = Me, Z = O, R 3 = 3,6-di-CN

662 R 2 = Me, Z = O, R 3 = 5-Ph 699 R 2 = Me, Z = O, R 3 = 4,5-di-CN

663 R 2 = Me, Z = O, R 3 = 6-F 700 R 2 = Me, Z = O, R 3 = 3,4-di-Me

664 R 2 = Me, Z = O, R 3 = 6-Cl 701 R 2 = Me, Z = O, R 3 = 3,5-di-Me

665 R 2 = Me, Z = O, R 3 = 6-Br 702 R 2 = Me, Z = O, R 3 = 3,6-di-Me

666 R 2 = Me, Z = O, R 3 = 6-1 703 R 2 = Me, Z = O, R 3 = 4,5-di-Me

667 R 2 = Me, Z = O, R 3 = 6-CN 704 R 2 = Me, Z = O, R 3 = 3,4-di-OMe

668 R 2 = Me, Z = O, R 3 = 6-N0 2 705 R 2 = Me, Z = O, R 3 = 3,5-di-OMe

669 R 2 = Me, Z = O, R 3 = 6-OMe 706 R 2 = Me, Z = O, R 3 = 3,6-di-OMe

670 R 2 = Me, Z = O, R 3 = 6-OCF3 707 R 2 = Me, Z = O, R 3 = 4,5-di-OMe

671 R 2 = Me, Z = O, R 3 = 6-CF3 708 R 2 = Me, Z = O, R 3 = 3,4-di-CF 3

672 R 2 = Me, Z = O, R 3 = 6-CHF 2 709 R 2 = Me, Z = O, R 3 = 3,5-di-CF 3 Table Header Row Table Header Row

710 R 2 = Me, Z = O, R 3 = 3,6-di-CF 3 747 R 2 = CN, Z = S, R 3 = 3-1

711 R 2 = Me, Z = O, R 3 = 4,5-di-CF 3 748 R 2 = CN, Z = S, R 3 = 3-CN

712 R 2 = Me, Z = O, R 3 = 3-CN, 4-Me 749 R 2 = CN, Z = S, R 3 = 3-N0 2

713 R 2 = Me, Z = O, R 3 = 3-CN, 4-F 750 R 2 = CN, Z = S, R 3 = 3-OMe

714 R 2 = Me, Z = O, R 3 = 3-CN, 4-Br 751 R 2 = CN, Z = S, R 3 = 3-OCF3

715 R 2 = Me, Z = O, R 3 = 3-CN, 4-OMe 752 R 2 = CN, Z = S, R 3 = 3-CF3

716 R 2 = Me, Z = O, R 3 = 3-CN, 4-CF 3 753 R 2 = CN, Z = S, R 3 = 3-CHF 2

717 R 2 = Me, Z = O, R 3 = 3-CN, 6-Me 754 R 2 = CN, Z = S, R 3 = 3-CH 2 F

718 R 2 = Me, Z = O, R 3 = 3-CN, 6-F 755 R 2 = CN, Z = S, R 3 = 3-CHO

719 R 2 = Me, Z = O, R 3 = 3-CN, 6-Br 756 R 2 = CN, Z = S, R 3 = 3-Me

720 R 2 = Me, Z = O, R 3 = 3-CN, 6-OMe 757 R 2 = CN, Z = S, R 3 = 3-Et

721 R 2 = Me, Z = O, R 3 = 3-CN, 6-CF3 758 R 2 = CN, Z = S, R 3 = 3-Ethynyl

722 R 2 = CN, Z = O, R 3 = H (m = 0) 759 R 2 = CN, Z = S, R 3 = 3-Ethenyl

723 R 2 = CN, Z = O, R 3 = 3-F 760 R 2 = CN, Z = S, R 3 = 3-S0 2 Me

724 R 2 = CN, Z = O, R 3 = 3 -CI 761 R 2 = CN, Z = S, R 3 = 3-OAc

725 R 2 = CN, Z = O, R 3 = 3-Br 762 R 2 = CN, Z = S, R 3 = 3-c-Pr

726 R 2 = CN, Z = O, R 3 = 3-1 763 R 2 = CN, Z = S, R 3 = 3-z-Pr

727 R 2 = CN, Z = O, R 3 = 3-CN 764 R 2 = CN, Z = S, R 3 = 3-Ph

728 R 2 = CN, Z = O, R 3 = 3-N0 2 765 R 2 = CN, Z = O, R 3 = 4-F

729 R 2 = CN, Z = O, R 3 = 3-OMe 766 R 2 = CN, Z = O, R 3 = 4-Cl

730 R 2 = CN, Z = O, R 3 = 3-OCF3 767 R 2 = CN, Z = O, R 3 = 4-Br

731 R 2 = CN, Z = O, R 3 = 3-CF3 768 R 2 = CN, Z = O, R 3 = 4-1

732 R 2 = CN, Z = O, R 3 = 3-CHF 2 769 R 2 = CN, Z = O, R 3 = 4-CN

733 R 2 = CN, Z = O, R 3 = 3-CH 2 F 770 R 2 = CN, Z = O, R 3 = 4-N0 2

734 R 2 = CN, Z = O, R 3 = 3-CHO 771 R 2 = CN, Z = O, R 3 = 4-OMe

735 R 2 = CN, Z = O, R 3 = 3-Me 772 R 2 = CN, Z = O, R 3 = 4-OCF3

736 R 2 = CN, Z = O, R 3 = 3-Et 773 R 2 = CN, Z = O, R 3 = 4-CF3

737 R 2 = CN, Z = O, R 3 = 3-Ethynyl 774 R 2 = CN, Z = O, R 3 = 4-CHF 2

738 R 2 = CN, Z = O, R 3 = 3-Ethenyl 775 R 2 = CN, Z = O, R 3 = 4-CH 2 F

739 R 2 = CN, Z = O, R 3 = 3-S0 2 Me 776 R 2 = CN, Z = O, R 3 = 4-CHO

740 R 2 = CN, Z = 0, R 3 = 3-OAc 777 R 2 = CN, Z = O, R 3 = 4-Me

741 R 2 = CN, Z = O, R 3 = 3-c-Pr 778 R 2 = CN, Z = O, R 3 = 4-Et

742 R 2 = CN, Z = O, R 3 = 3-z-Pr 779 R 2 = CN, Z = O, R 3 = 4-Ethynyl

743 R 2 = CN, Z = O, R 3 = 3-Ph 780 R 2 = CN, Z = O, R 3 = 4-Ethenyl

744 R 2 = CN, Z = S, R 3 = 3-F 781 R 2 = CN, Z = O, R 3 = 4-S0 2 Me

745 R 2 = CN, Z = S, R 3 = 3-Cl 782 R 2 = CN, Z = O, R 3 = 4-OAc

746 R 2 = CN, Z = S, R 3 = 3-Br 783 R 2 = CN, Z = O, R 3 = 4-c-Pr Table Header Row Table Header Row

784 R 2 = CN, Z = O, R 3 = 4-z-Pr 821 R 2 = CN, Z = O, R 3 = 6-Ethynyl

785 R 2 = CN, Z = O, R 3 = 4-Ph 822 R 2 = CN, Z = O, R 3 = 6-Ethenyl

786 R 2 = CN, Z = O, R 3 = 5-F 823 R 2 = CN, Z = O, R 3 = 6-S0 2 Me

787 R 2 = CN, Z = O, R 3 = 5-Cl 824 R 2 = CN, Z = O, R 3 = 6-OAc

788 R 2 = CN, Z = O, R 3 = 5-Br 825 R 2 = CN, Z = O, R 3 = 6-c-Pr

789 R 2 = CN, Z = O, R 3 = 5-1 826 R 2 = CN, Z = O, R 3 = 6-z-Pr

790 R 2 = CN, Z = O, R 3 = 5-CN 827 R 2 = CN, Z = O, R 3 = 6-Ph

791 R 2 = CN, Z = O, R 3 = 5-N0 2 828 R 2 = CN, Z = O, R 3 = 3,4-di-F

792 R 2 = CN, Z = O, R 3 = 5-OMe 829 R 2 = CN, Z = O, R 3 = 3,5-di-F

793 R 2 = CN, Z = O, R 3 = 5-OCF 3 830 R 2 = CN, Z = O, R 3 = 3,6-di-F

794 R 2 = CN, Z = O, R 3 = 5-CF3 831 R 2 = CN, Z = O, R 3 = 4,5-di-F

795 R 2 = CN, Z = O, R 3 = 5-CHF 2 832 R 2 = CN, Z = O, R 3 = 3,4-di-Cl

796 R 2 = CN, Z = O, R 3 = 5-CH 2 F 833 R 2 = CN, Z = O, R 3 = 3,5-di-Cl

797 R 2 = CN, Z = O, R 3 = 5-CHO 834 R 2 = CN, Z = O, R 3 = 3,6-di-Cl

798 R 2 = CN, Z = O, R 3 =5-Me 835 R 2 = CN, Z = O, R 3 = 4,5-di-Cl

799 R 2 = CN, Z = O, R 3 = 5-Et 836 R 2 = CN, Z = O, R 3 = 3,4-di-Br

800 R 2 = CN, Z = O, R 3 = 5-Ethynyl 837 R 2 = CN, Z = O, R 3 = 3,5-di-Br

801 R 2 = CN, Z = O, R 3 = 5-Ethenyl 838 R 2 = CN, Z = O, R 3 = 3,6-di-Br

802 R 2 = CN, Z = O, R 3 = 5-S0 2 Me 839 R 2 = CN, Z = O, R 3 = 4,5-di-Br

803 R 2 = CN, Z = O, R 3 = 5-OAc 840 R 2 = CN, Z = O, R 3 = 3,4-di-CN

804 R 2 = CN, Z = O, R 3 = 5-c-Pr 841 R 2 = CN, Z = O, R 3 = 3,5-di-CN

805 R 2 = CN, Z = O, R 3 = 5-z-Pr 842 R 2 = CN, Z = O, R 3 = 3,6-di-CN

806 R 2 = CN, Z = O, R 3 = 5-Ph 843 R 2 = CN, Z = O, R 3 = 4,5-di-CN

807 R 2 = CN, Z = O, R 3 = 6-F 844 R 2 = CN, Z = O, R 3 = 3,4-di-Me

808 R 2 = CN, Z = O, R 3 = 6-Cl 845 R 2 = CN, Z = O, R 3 = 3,5-di-Me

809 R 2 = CN, Z = O, R 3 = 6-Br 846 R 2 = CN, Z = O, R 3 = 3,6-di-Me

810 R 2 = CN, Z = O, R 3 = 6-1 847 R 2 = CN, Z = O, R 3 = 4,5-di-Me

811 R 2 = CN, Z = O, R 3 = 6-CN 848 R 2 = CN, Z = O, R 3 = 3,4-di-OMe

812 R 2 = CN, Z = O, R 3 = 6-N0 2 849 R 2 = CN, Z = O, R 3 = 3,5-di-OMe

813 R 2 = CN, Z = O, R 3 = 6-OMe 850 R 2 = CN, Z = O, R 3 = 3,6-di-OMe

814 R 2 = CN, Z = O, R 3 = 6-OCF3 851 R 2 = CN, Z = O, R 3 = 4,5-di-OMe

815 R 2 = CN, Z = O, R 3 = 6-CF3 852 R 2 = CN, Z = O, R 3 = 3,4-di-CF 3

816 R 2 = CN, Z = O, R 3 = 6-CHF 2 853 R 2 = CN, Z = O, R 3 = 3,5-di-CF 3

817 R 2 = CN, Z = O, R 3 = 6-CH 2 F 854 R 2 = CN, Z = O, R 3 = 3,6-di-CF 3

818 R 2 = CN, Z = O, R 3 = 6-CHO 855 R 2 = CN, Z = O, R 3 = 4,5-di-CF 3

819 R 2 = CN, Z = O, R 3 = 6-Me 856 R 2 = CN, Z = O, R 3 = 3-CN, 4-Me

820 R 2 = CN, Z = O, R 3 = 6-Et 857 R 2 = CN, Z = O, R 3 = 3-CN, 4-F Table Header Row Table Header Row

858 R 2 = CN, Z = O, R 3 = 3-CN, 4-Br 895 R 2 = N0 2 , Z = S, R 3 = 3-OCF3

859 R 2 = CN, Z = 0, R 3 = 3-CN, 4-OMe 896 R 2 = N0 2 , Z = S, R 3 = 3-CF 3

860 R 2 = CN, Z = 0, R 3 = 3-CN, 4-CF 3 897 R 2 = NOo, Z = S, R 3 = 3-CHF 2

861 R 2 = CN, Z = O, R 3 = 3-CN, 6-Me 898 R 2 = NOo, Z = S, R 3 = 3-CH 2 F

862 R 2 = CN, Z = O, R 3 = 3-CN, 6-F 899 R 2 = N0 2 , Z = S, R 3 = 3-CHO

863 R 2 = CN, Z = O, R 3 = 3-CN, 6-Br 900 R 2 = N0 2 , Z = S, R 3 = 3-Me

864 R 2 = CN, Z = O, R 3 = 3-CN, 6-OMe 901 R 2 = N0 2 , Z = S, R 3 = 3-Et

865 R 2 = CN, Z = O, R 3 = 3-CN, 6-CF3 902 R 2 = N0 2 , Z = S, R 3 = 3-Ethynyl

866 R 2 = N0 2 , Z = O, R 3 = H (m = 0) 903 R 2 = N0 2 , Z = S, R 3 = 3-Ethenyl

867 R 2 = N0 2 , Z = 0, R 3 = 3-F 904 R 2 = N0 2 , Z = S, R 3 = 3-S0 2 Me

868 R 2 = N0 2 , Z = O, R 3 = 3-Cl 905 R 2 = N0 2 , Z = S, R 3 = 3-OAc

869 R 2 = N0 2 , Z = 0, R 3 = 3-Br 906 R 2 = N0 2 , Z = S, R 3 = 3-c-Pr

870 R 2 = N0 2 , Z = 0, R 3 = 3-I 907 R 2 = N0 2 , Z = S, R 3 = 3-z-Pr

871 R 2 = N0 2 , Z = 0, R 3 = 3-CN 908 R 2 = N0 2 , Z = S, R 3 = 3-Ph

872 R 2 = N0 2 , Z = O, R 3 = 3-N0 2 909 R 2 = N0 2 , Z = O, R 3 = 4-F

873 R 2 = N0 2 , Z = O, R 3 = 3-OMe 910 R 2 = NOo, Z = O, R 3 = 4-Cl

874 R 2 = N0 2 , Z = O, R 3 = 3-OCF3 911 R 2 = NOo, Z = O, R 3 = 4-Br

875 R 2 = N0 2 , Z = O, R 3 = 3-CF3 912 R 2 = N0 2 , Z = 0, R 3 = 4-I

876 R 2 = N0 2 , Z = O, R 3 = 3-CHF 2 913 R 2 = N0 2 , Z = 0, R 3 = 4-CN

877 R 2 = N0 2 , Z = O, R 3 = 3-CH 2 F 914 R 2 = N0 2 , Z = O, R 3 = 4-N0 2

878 R 2 = N0 2 , Z = O, R 3 = 3-CHO 915 R 2 = N0 2 , Z = O, R 3 = 4-OMe

879 R 2 = N0 2 , Z = O, R 3 = 3-Me 916 R 2 = NOo, Z = O, R 3 = 4-OCF3

880 R 2 = N0 2 , Z = O, R 3 = 3-Et 917 R 2 = NOo, Z = O, R 3 = 4-CF3

881 R 2 = N0 2 , Z = O, R 3 = 3-Ethynyl 918 R 2 = N0 2 , Z = O, R 3 = 4-CHF 2

882 R 2 = N0 2 , Z = O, R 3 = 3-Ethenyl 919 R 2 = N0 2 , Z = O, R 3 = 4-CH 2 F

883 R 2 = N0 2 , Z = O, R 3 = 3-S0 2 Me 920 R 2 = N0 2 , Z = O, R 3 = 4-CHO

884 R 2 = N0 2 , Z = O, R 3 = 3-0 Ac 921 R 2 = N0 2 , Z = 0, R 3 = 4-Me

885 R 2 = N0 2 , Z = O, R 3 = 3-c-Pr 922 R 2 = NOo, Z = O, R 3 = 4-Et

886 R 2 = N0 2 , Z = O, R 3 = 3-z-Pr 923 R 2 = N0 2 , Z = O, R 3 = 4-Ethynyl

887 R 2 = N0 2 , Z = 0, R 3 = 3-Ph 924 R 2 = N0 2 , Z = O, R 3 = 4-Ethenyl

888 R 2 = N0 2 , Z = S, R 3 = 3-F 925 R 2 = N0 2 , Z = O, R 3 = 4-S0 2 Me

889 R 2 = N0 2 , Z = S, R 3 = 3-C1 926 R 2 = N0 2 , Z = O, R 3 = 4-0 Ac

890 R 2 = N0 2 , Z = S, R 3 = 3-Br 927 R 2 = N0 2 , Z = O, R 3 = 4-c-Pr

891 R 2 = N0 2 , Z = S, R 3 = 3-1 928 R 2 = NOo, Z = O, R 3 = 4-z-Pr

892 R 2 = N0 2 , Z = S, R 3 = 3-CN 929 R 2 = NOo, Z = O, R 3 = 4-Ph

893 R 2 = N0 2 , Z = S, R 3 = 3-N0 2 930 R 2 = N0 2 , Z = O, R 3 = 5-F

894 R 2 = N0 2 , Z = S, R 3 = 3-OMe 931 R 2 = N0 2 , Z = O, R 3 = 5-Cl Table Header Row Table Header Row

932 R 2 = N0 2 , Z = O, R 3 = 5-Br 969 R 2 = N0 2 , Z = O, R 3 = 6-c-Pr

933 R 2 = N0 2 , Z = 0, R 3 = 5-I 970 R 2 = N0 2 , Z = O, R 3 = 6-z-Pr

934 R 2 = N0 2 , Z = 0, R 3 = 5-CN 971 R 2 = N0 2 , Z = O, R 3 = 6-Ph

935 R 2 = N0 2 , Z = O, R 3 = 5-N0 2 972 R 2 = N0 2 , Z = O, R 3 = 3,4-di-F

936 R 2 = N0 2 , Z = O, R 3 = 5-OMe 973 R 2 = N0 2 , Z = O, R 3 = 3,5-di-F

937 R 2 = N0 2 , Z = O, R 3 = 5-OCF 3 974 R 2 = N0 2 , Z = O, R 3 = 3,6-di-F

938 R 2 = N0 2 , Z = O, R 3 = 5-CF3 975 R 2 = N0 2 , Z = O, R 3 = 4,5-di-F

939 R 2 = N0 2 , Z = O, R 3 = 5-CHF 2 976 R 2 = N0 2 , Z = O, R 3 = 3,4-di-Cl

940 R 2 = N0 2 , Z = O, R 3 = 5-CH 2 F 977 R 2 = N0 2 , Z = O, R 3 = 3,5-di-Cl

941 R 2 = N0 2 , Z = O, R 3 = 5-CHO 978 R 2 = N0 2 , Z = O, R 3 = 3,6-di-Cl

942 R 2 = N0 2 , Z = O, R 3 =5-Me 979 R 2 = N0 2 , Z = O, R 3 = 4,5-di-Cl

943 R 2 = N0 2 , Z = O, R 3 = 5-Et 980 R 2 = N0 2 , Z = O, R 3 = 3,4-di-Br

944 R 2 = N0 2 , Z = O, R 3 = 5-Ethynyl 981 R 2 = N0 2 , Z = O, R 3 = 3,5-di-Br

945 R 2 = N0 2 , Z = O, R 3 = 5-Ethenyl 982 R 2 = N0 2 , Z = O, R 3 = 3,6-di-Br

946 R 2 = N0 2 , Z = O, R 3 = 5-S0 2 Me 983 R 2 = N0 2 , Z = O, R 3 = 4,5-di-Br

947 R 2 = N0 2 , Z = O, R 3 = 5-0 Ac 984 R 2 = N0 2 , Z = O, R 3 = 3,4-di-CN

948 R 2 = N0 2 , Z = O, R 3 = 5-c-Pr 985 R 2 = N0 2 , Z = O, R 3 = 3,5-di-CN

949 R 2 = N0 2 , Z = O, R 3 = 5-z-Pr 986 R 2 = N0 2 , Z = O, R 3 = 3,6-di-CN

950 R 2 = N0 2 , Z = O, R 3 = 5-Ph 987 R 2 = N0 2 , Z = O, R 3 = 4,5-di-CN

951 R 2 = N0 2 , Z = O, R 3 = 6-F 988 R 2 = N0 2 , Z = O, R 3 = 3,4-di-Me

952 R 2 = N0 2 , Z = O, R 3 = 6-Cl 989 R 2 = N0 2 , Z = O, R 3 = 3,5-di-Me

953 R 2 = N0 2 , Z = O, R 3 = 6-Br 990 R 2 = N0 2 , Z = O, R 3 = 3,6-di-Me

954 R 2 = N0 2 , Z = 0, R 3 = 6-I 991 R 2 = N0 2 , Z = O, R 3 = 4,5-di-Me

955 R 2 = N0 2 , Z = 0, R 3 = 6-CN 992 R 2 = N0 2 , Z = O, R 3 = 3,4-di-OMe

956 R 2 = N0 2 , Z = O, R 3 = 6-N0 2 993 R 2 = N0 2 , Z = O, R 3 = 3,5-di-OMe

957 R 2 = N0 2 , Z = O, R 3 = 6-OMe 994 R 2 = N0 2 , Z = O, R 3 = 3,6-di-OMe

958 R 2 = N0 2 , Z = O, R 3 = 6-OCF3 995 R 2 = N0 2 , Z = O, R 3 = 4,5-di-OMe

959 R 2 = N0 2 , Z = O, R 3 = 6-CF3 996 R 2 = N0 2 , Z = O, R 3 = 3,4-di-CF 3

960 R 2 = N0 2 , Z = O, R 3 = 6-CHF 2 997 R 2 = N0 2 , Z = O, R 3 = 3,5-di-CF 3

961 R 2 = N0 2 , Z = O, R 3 = 6-CH 2 F 998 R 2 = N0 2 , Z = O, R 3 = 3,6-di-CF 3

962 R 2 = N0 2 , Z = O, R 3 = 6-CHO 999 R 2 = N0 2 , Z = O, R 3 = 4,5-di-CF 3

963 R 2 = N0 2 , Z = O, R 3 = 6-Me 1000 R 2 = N0 2 , Z = O, R 3 = 3-CN, 4-Me

964 R 2 = N0 2 , Z = O, R 3 = 6-Et 1001 R 2 = N0 2 , Z = O, R 3 = 3-CN, 4-F

965 R 2 = N0 2 , Z = O, R 3 = 6-Ethynyl 1002 R 2 = N0 2 , Z = O, R 3 = 3-CN, 4-Br

966 R 2 = N0 2 , Z = O, R 3 = 6-Ethenyl 1003 R 2 = N0 2 , Z = O, R 3 = 3-CN, 4-OMe

967 R 2 = N0 2 , Z = O, R 3 = 6-S0 2 Me 1004 R 2 = N0 2 , Z = O, R 3 = 3-CN, 4-CF3

968 R 2 = N0 2 , Z = O, R 3 = 6-0 Ac 1005

R 2 = N0 2 , Z = O, R 3 = 3-CN, 6-Me Table Header Row Table Header Row

1006 R 2 = N0 2 , Z = O, R 3 = 3-CN, 6-F 1043 R 2 = OMe, Z = S, R 3 = 3-CHO

1007 R 2 = N0 2 , Z = O, R 3 = 3-CN, 6-Br 1044 R 2 = OMe, Z = S, R 3 = 3-Me

1008 R 2 = N0 2 , Z = O, R 3 = 3-CN, 6-OMe 1045 R 2 = OMe, Z = S, R 3 = 3-Et

1009 R 2 = N0 2 , Z = O, R 3 = 3-CN, 6-CF3 1046 R 2 = OMe, Z = S, R 3 = 3-Ethynyl

1010 R 2 = OMe, Z = O, R 3 = H (m = 0) 1047 R 2 = OMe, Z = S, R 3 = 3-Ethenyl

1011 R 2 = OMe, Z = O, R 3 = 3-F 1048 R 2 = OMe, Z = S, R 3 = 3-S0 2 Me

1012 R 2 = OMe, Z = O, R 3 = 3 -CI 1049 R 2 = OMe, Z = S, R 3 = 3-OAc

1013 R 2 = OMe, Z = O, R 3 = 3-Br 1050 R 2 = OMe, Z = S, R 3 = 3-c-Pr

1014 R 2 = OMe, Z = O, R 3 = 3-1 1051 R 2 = OMe, Z = S, R 3 = 3-z-Pr

1015 R 2 = OMe, Z = O, R 3 = 3-CN 1052 R 2 = OMe, Z = S, R 3 = 3-Ph

1016 R 2 = OMe, Z = O, R 3 = 3-N0 2 1053 R 2 = OMe, Z = O, R 3 = 4-F

1017 R 2 = OMe, Z = O, R 3 = 3 -OMe 1054 R 2 = OMe, Z = O, R 3 = 4-Cl

1018 R 2 = OMe, Z = O, R 3 = 3-OCF3 1055 R 2 = OMe, Z = O, R 3 = 4-Br

1019 R 2 = OMe, Z = O, R 3 = 3-CF3 1056 R 2 = OMe, Z = O, R 3 = 4-1

1020 R 2 = OMe, Z = O, R 3 = 3-CHF 2 1057 R 2 = OMe, Z = O, R 3 = 4-CN

1021 R 2 = OMe, Z = O, R 3 = 3-CH 2 F 1058 R 2 = OMe, Z = O, R 3 = 4-N0 2

1022 R 2 = OMe, Z = O, R 3 = 3-CHO 1059 R 2 = OMe, Z = O, R 3 = 4-OMe

1023 R 2 = OMe, Z = O, R 3 = 3-Me 1060 R 2 = OMe, Z = O, R 3 = 4-OCF3

1024 R 2 = OMe, Z = O, R 3 = 3-Et 1061 R 2 = OMe, Z = O, R 3 = 4-CF3

1025 R 2 = OMe, Z = O, R 3 = 3-Ethynyl 1062 R 2 = OMe, Z = O, R 3 = 4-CHF 2

1026 R 2 = OMe, Z = O, R 3 = 3-Ethenyl 1063 R 2 = OMe, Z = O, R 3 = 4-CH 2 F

1027 R 2 = OMe, Z = O, R 3 = 3-S0 2 Me 1064 R 2 = OMe, Z = O, R 3 = 4-CHO

1028 R 2 = OMe, Z = O, R 3 = 3-OAc 1065 R 2 = OMe, Z = O, R 3 = 4-Me

1029 R 2 = OMe, Z = O, R 3 = 3-c-Pr 1066 R 2 = OMe, Z = O, R 3 = 4-Et

1030 R 2 = OMe, Z = O, R 3 = 3-z-Pr 1067 R 2 = OMe, Z = O, R 3 = 4-Ethynyl

1031 R 2 = OMe, Z = 0, R 3 = 3-Ph 1068 R 2 = OMe, Z = O, R 3 = 4-Ethenyl

1032 R 2 = OMe, Z = S, R 3 = 3-F 1069 R 2 = OMe, Z = O, R 3 = 4-S0 2 Me

1033 R 2 = OMe, Z = S, R 3 = 3 -CI 1070 R 2 = OMe, Z = O, R 3 = 4-OAc

1034 R 2 = OMe, Z = S, R 3 = 3-Br 1071 R 2 = OMe, Z = O, R 3 = 4-c-Pr

1035 R 2 = OMe, Z = S, R 3 = 3-1 1072 R 2 = OMe, Z = O, R 3 = 4-z-Pr

1036 R 2 = OMe, Z = S, R 3 = 3-CN 1073 R 2 = OMe, Z = O, R 3 = 4-Ph

1037 R 2 = OMe, Z = S, R 3 = 3-N0 2 1074 R 2 = OMe, Z = O, R 3 = 5-F

1038 R 2 = OMe, Z = S, R 3 = 3 -OMe 1075 R 2 = OMe, Z = O, R 3 = 5-Cl

1039 R 2 = OMe, Z = S, R 3 = 3-OCF 3 1076 R 2 = OMe, Z = O, R 3 = 5-Br

1040 R 2 = OMe, Z = S, R 3 = 3-CF 3 1077 R 2 = OMe, Z = O, R 3 = 5-1

1041 R 2 = OMe, Z = S, R 3 = 3-CHF 2 1078 R 2 = OMe, Z = O, R 3 = 5-CN

1042 R 2 = OMe, Z = S, R 3 = 3-CH 2 F 1079 R 2 = OMe, Z = O, R 3 = 5-N0 2 Table Header Row

1080 R 2 = OMe, Z = O, R 3 = 5-OMe

1081 R 2 = OMe, Z = O, R 3 = 5-OCF 3

1082 R 2 = OMe, Z = O, R 3 = 5-CF 3

1083 R 2 = OMe, Z = O, R 3 = 5-CHF 2

1084 R 2 = OMe, Z = O, R 3 = 5-CH 2 F

1085 R 2 = OMe, Z = O, R 3 = 5-CHO

1086 R 2 = OMe, Z = O, R 3 =5-Me

1087 R 2 = OMe, Z = O, R 3 = 5-Et

1088 R 2 = OMe, Z = O, R 3 = 5-Ethynyl

1089 R 2 = OMe, Z = O, R 3 = 5-Ethenyl

1090 R 2 = OMe, Z = O, R 3 = 5-S0 2 Me

1091 R 2 = OMe, Z = O, R 3 = 5-OAc

1092 R 2 = OMe, Z = O, R 3 = 5-c-Pr

1093 R 2 = OMe, Z = O, R 3 = 5-z-Pr

1094 R 2 = OMe, Z = O, R 3 = 5-Ph

1095 R 2 = OMe, Z = O, R 3 = 6-F

1096 R 2 = OMe, Z = O, R 3 = 6-Cl

1097 R 2 = OMe, Z = O, R 3 = 6-Br

1098 R 2 = OMe, Z = O, R 3 = 6-1

1099 R 2 = OMe, Z = O, R 3 = 6-CN

1100 R 2 = OMe, Z = O, R 3 = 6-N0 2

1101 R 2 = OMe, Z = O, R 3 = 6-OMe

1102 R 2 = OMe, Z = O, R 3 = 6-OCF3

1103 R 2 = OMe, Z = O, R 3 = 6-CF3

1104 R 2 = OMe, Z = O, R 3 = 6-CHF 2

1105 R 2 = OMe, Z = O, R 3 = 6-CH 2 F

1106 R 2 = OMe, Z = O, R 3 = 6-CHO

1107 R 2 = OMe, Z = O, R 3 = 6-Me

1108 R 2 = OMe, Z = O, R 3 = 6-Et

1109 R 2 = OMe, Z = O, R 3 = 6-Ethynyl

1110 R 2 = OMe, Z = O, R 3 = 6-Ethenyl

1111 R 2 = OMe, Z = O, R 3 = 6-S0 2 Me

1112 R 2 = OMe, Z = O, R 3 = 6-OAc

1113 R 2 = OMe, Z = O, R 3 = 6-c-Pr

1114 R 2 = OMe, Z = O, R 3 = 6-z-Pr

1115 R 2 = OMe, Z = O, R 3 = 6-Ph

1116 R 2 = OMe, Z = O, R 3 = 3,4-di-F Table Header Row Table Header Row

1154 R 2 = CF 3 , Z = O, R 3 = H (m = 0) 1191 R 2 = CF 3 , Z = S, R 3 = 3-Ethenyl

1155 R 2 = CF 3 , Z = O, R 3 = 3-F 1192 R 2 = CF 3 , Z = S, R 3 = 3-S0 2 Me

1156 R 2 = CF 3 , Z = O, R 3 = 3 -CI 1193 R 2 = CF 3 , Z = S, R 3 = 3-OAc

1157 R 2 = CF 3 , Z = O, R 3 = 3-Br 1194 R 2 = CF 3 , Z = S, R 3 = 3-c-Pr

1158 R 2 = CF 3 , Z = 0, R 3 = 3-1 1195 R 2 = CF 3 , Z = S, R 3 = 3-z-Pr

1159 R 2 = CF 3 , Z = O, R 3 = 3-CN 1196 R 2 = CF 3 , Z = S, R 3 = 3-Ph

1160 R 2 = CF 3 , Z = O, R 3 = 3-N0 2 1197 R 2 = CF 3 , Z = O, R 3 = 4-F

1161 R 2 = CF 3 , Z = O, R 3 = 3-OMe 1198 R 2 = CF 3 , Z = O, R 3 = 4-Cl

1162 R 2 = CF 3 , Z = O, R 3 = 3-OCF 3 1199 R 2 = CF 3 , Z = O, R 3 = 4-Br

1163 R 2 = CF 3 , Z = O, R 3 = 3-CF 3 1200 R 2 = CF 3 , Z = 0, R 3 = 4-1

1164 R 2 = CF 3 , Z = O, R 3 = 3-CHF 2 1201 R 2 = CF 3 , Z = O, R 3 = 4-CN

1165 R 2 = CF 3 , Z = O, R 3 = 3-CH 2 F 1202 R 2 = CF 3 , Z = O, R 3 = 4-N0 2

1166 R 2 = CF 3 , Z = O, R 3 = 3-CHO 1203 R 2 = CF 3 , Z = O, R 3 = 4-OMe

1167 R 2 = CF 3 , Z = O, R 3 = 3-Me 1204 R 2 = CF 3 , Z = O, R 3 = 4-OCF 3

1168 R 2 = CF 3 , Z = O, R 3 = 3-Et 1205 R 2 = CF 3 , Z = O, R 3 = 4-CF 3

1169 R 2 = CF 3 , Z = O, R 3 = 3-Ethynyl 1206 R 2 = CF 3 , Z = O, R 3 = 4-CHF 2

1170 R 2 = CF 3 , Z = O, R 3 = 3-Ethenyl 1207 R 2 = CF 3 , Z = O, R 3 = 4-CH 2 F

1171 R 2 = CF 3 , Z = O, R 3 = 3-S0 2 Me 1208 R 2 = CF 3 , Z = O, R 3 = 4-CHO

1172 R 2 = CF 3 , Z = 0, R 3 = 3-OAc 1209 R 2 = CF 3 , Z = O, R 3 = 4-Me

1173 R 2 = CF 3 , Z = O, R 3 = 3-c-Pr 1210 R 2 = CF 3 , Z = O, R 3 = 4-Et

1174 R 2 = CF 3 , Z = 0, R 3 = 3-z-Pr 1211 R 2 = CF 3 , Z = O, R 3 = 4-Ethynyl

1175 R 2 = CF 3 , Z = O, R 3 = 3-Ph 1212 R 2 = CF 3 , Z = O, R 3 = 4-Ethenyl

1176 R 2 = CF 3 , Z = S, R 3 = 3-F 1213 R 2 = CF 3 , Z = O, R 3 = 4-S0 2 Me

1177 R 2 = CF 3 , Z = S, R 3 = 3 -CI 1214 R 2 = CF 3 , Z = O, R 3 = 4-OAc

1178 R 2 = CF 3 , Z = S, R 3 = 3-Br 1215 R 2 = CF 3 , Z = O, R 3 = 4-c-Pr

1179 R 2 = CF 3 , Z = S, R 3 = 3-1 1216 R 2 = CF 3 , Z = 0, R 3 = 4-z-Pr

1180 R 2 = CF 3 , Z = S, R 3 = 3-CN 1217 R 2 = CF 3 , Z = O, R 3 = 4-Ph

1181 R 2 = CF 3 , Z = S, R 3 = 3-N0 2 1218 R 2 = CF 3 , Z = O, R 3 = 5-F

1182 R 2 = CF 3 , Z = S, R 3 = 3-OMe 1219 R 2 = CF 3 , Z = O, R 3 = 5-Cl

1183 R 2 = CF 3 , Z = S, R 3 = 3-OCF 3 1220 R 2 = CF 3 , Z = O, R 3 = 5-Br

1184 R 2 = CF 3 , Z = S, R 3 = 3-CF 3 1221 R 2 = CF 3 , Z = 0, R 3 = 5-1

1185 R 2 = CF 3 , Z = S, R 3 = 3-CHF 2 1222 R 2 = CF 3 , Z = O, R 3 = 5-CN

1186 R 2 = CF 3 , Z = S, R 3 = 3-CH 2 F 1223 R 2 = CF 3 , Z = O, R 3 = 5-N0 2

1187 R 2 = CF 3 , Z = S, R 3 = 3-CHO 1224 R 2 = CF 3 , Z = O, R 3 = 5-OMe

1188 R 2 = CF 3 , Z = S, R 3 = 3-Me 1225 R 2 = CF 3 , Z = O, R 3 = 5-OCF 3

1189 R 2 = CF 3 , Z = S, R 3 = 3-Et 1226 R 2 = CF 3 , Z = O, R 3 = 5-CF 3

1190 R 2 = CF 3 , Z = S, R 3 = 3-Ethynyl 1227 R 2 = CF 3 , Z = O, R 3 = 5-CHF 2 Table Header Row Table Header Row

1228 R 2 = CF 3 , Z = O, R 3 = 5-CH 2 F 1265 R 2 = CF 3 , Z = O, R 3 = 3,5-di-Cl

1229 R 2 = CF 3 , Z = O, R 3 = 5-CHO 1266 R 2 = CF 3 , Z = O, R 3 = 3,6-di-Cl

1230 R 2 = CF 3 , Z = O, R 3 =5-Me 1267 R 2 = CF 3 , Z = O, R 3 = 4,5-di-Cl

1231 R 2 = CF 3 , Z = O, R 3 = 5-Et 1268 R 2 = CF 3 , Z = O, R 3 = 3,4-di-Br

1232 R 2 = CF 3 , Z = O, R 3 = 5-Ethynyl 1269 R 2 = CF 3 , Z = O, R 3 = 3,5-di-Br

1233 R 2 = CF 3 , Z = O, R 3 = 5-Ethenyl 1270 R 2 = CF 3 , Z = O, R 3 = 3,6-di-Br

1234 R 2 = CF 3 , Z = O, R 3 = 5-S0 2 Me 1271 R 2 = CF 3 , Z = O, R 3 = 4,5-di-Br

1235 R 2 = CF 3 , Z = 0, R 3 = 5-OAc 1272 R 2 = CF 3 , Z = O, R 3 = 3,4-di-CN

1236 R 2 = CF 3 , Z = O, R 3 = 5-c-Pr 1273 R 2 = CF 3 , Z = O, R 3 = 3,5-di-CN

1237 R 2 = CF 3 , Z = 0, R 3 = 5-z-Pr 1274 R 2 = CF 3 , Z = O, R 3 = 3,6-di-CN

1238 R 2 = CF 3 , Z = O, R 3 = 5-Ph 1275 R 2 = CF 3 , Z = O, R 3 = 4,5-di-CN

1239 R 2 = CF 3 , Z = O, R 3 = 6-F 1276 R 2 = CF 3 , Z = O, R 3 = 3,4-di-Me

1240 R 2 = CF 3 , Z = O, R 3 = 6-Cl 1277 R 2 = CF 3 , Z = O, R 3 = 3,5-di-Me

1241 R 2 = CF 3 , Z = O, R 3 = 6-Br 1278 R 2 = CF 3 , Z = O, R 3 = 3,6-di-Me

1242 R 2 = CF 3 , Z = 0, R 3 = 6-1 1279 R 2 = CF 3 , Z = O, R 3 = 4,5-di-Me

1243 R 2 = CF 3 , Z = O, R 3 = 6-CN 1280 R 2 = CF 3 , Z = O, R 3 = 3,4-di-OMe

1244 R 2 = CF 3 , Z = O, R 3 = 6-N0 2 1281 R 2 = CF 3 , Z = O, R 3 = 3,5-di-OMe

1245 R 2 = CF 3 , Z = O, R 3 = 6-OMe 1282 R 2 = CF 3 , Z = O, R 3 = 3,6-di-OMe

1246 R 2 = CF 3 , Z = O, R 3 = 6-OCF 3 1283 R 2 = CF 3 , Z = O, R 3 = 4,5-di-OMe

1247 R 2 = CF 3 , Z = O, R 3 = 6-CF 3 1284 R 2 = CF 3 , Z = O, R 3 = 3,4-di-CF 3

1248 R 2 = CF 3 , Z = O, R 3 = 6-CHF 2 1285 R 2 = CF 3 , Z = O, R 3 = 3,5-di-CF 3

1249 R 2 = CF 3 , Z = O, R 3 = 6-CH 2 F 1286 R 2 = CF 3 , Z = O, R 3 = 3,6-di-CF 3

1250 R 2 = CF 3 , Z = O, R 3 = 6-CHO 1287 R 2 = CF 3 , Z = O, R 3 = 4,5-di-CF 3

1251 R 2 = CF 3 , Z = O, R 3 = 6-Me 1288 R 2 = CF 3 , Z = O, R 3 = 3-CN, 4-Me

1252 R 2 = CF 3 , Z = O, R 3 = 6-Et 1289 R 2 = CF 3 , Z = O, R 3 = 3-CN, 4-F

1253 R 2 = CF 3 , Z = O, R 3 = 6-Ethynyl 1290 R 2 = CF 3 , Z = O, R 3 = 3-CN, 4-Br

1254 R 2 = CF 3 , Z = O, R 3 = 6-Ethenyl 1291 R 2 = CF 3 , Z = O, R 3 = 3-CN, 4-OMe

1255 R 2 = CF 3 , Z = O, R 3 = 6-S0 2 Me 1292 R 2 = CF 3 , Z = O, R 3 = 3-CN, 4-CF 3

1256 R 2 = CF 3 , Z = O, R 3 = 6-OAc 1293 R 2 = CF 3 , Z = O, R 3 = 3-CN, 6-Me

1257 R 2 = CF 3 , Z = O, R 3 = 6-c-Pr 1294 R 2 = CF 3 , Z = O, R 3 = 3-CN, 6-F

1258 R 2 = CF 3 , Z = 0, R 3 = 6-z-Pr 1295 R 2 = CF 3 , Z = O, R 3 = 3-CN, 6-Br

1259 R 2 = CF 3 , Z = O, R 3 = 6-Ph 1296 R 2 = CF 3 , Z = O, R 3 = 3-CN, 6-OMe

1260 R 2 = CF 3 , Z = O, R 3 = 3,4-di-F 1297 R 2 = CF 3 , Z = O, R 3 = 3-CN, 6-CF 3

1261 R 2 = CF 3 , Z = O, R 3 = 3,5-di-F 1298 R 2 = CHF 2 , Z = O, R 3 = H (m = 0)

1262 R 2 = CF 3 , Z = O, R 3 = 3,6-di-F 1299 R 2 = CHF 2 , Z = O, R 3 = 3-F

1263 R 2 = CF 3 , Z = O, R 3 = 4,5-di-F 1300 R 2 = CHF 2 , Z = O, R 3 = 3 -CI

1264 R 2 = CF 3 , Z = O, R 3 = 3,4-di-Cl 1301 R 2 = CHF 2 , Z = O, R 3 = 3-Br Table Header Row Table Header Row

1302 R 2 = CHF 2 , Z = O, R 3 = 3-1 1339 R 2 = CHF 2 , Z = S, R 3 = 3-Ph

1303 R 2 = CHF 2 , Z = O, R 3 = 3-CN 1340 R 2 = CHF 2 , Z = O, R 3 = 4-F

1304 R 2 = CHF 2 , Z = O, R 3 = 3-N0 2 1341 R 2 = CHF 2 , Z = O, R 3 = 4-Cl

1305 R 2 = CHF 2 , Z = O, R 3 = 3-OMe 1342 R 2 = CHF 2 , Z = O, R 3 = 4-Br

1306 R 2 = CHF 2 , Z = O, R 3 = 3-OCF 3 1343 R 2 = CHF 2 , Z = O, R 3 = 4-1

1307 R 2 = CHF 2 , Z = O, R 3 = 3-CF3 1344 R 2 = CHF 2 , Z = O, R 3 = 4-CN

1308 R 2 = CHF 2 , Z = O, R 3 = 3-CHF 2 1345 R 2 = CHF 2 , Z = O, R 3 = 4-N0 2

1309 R 2 = CHF 2 , Z = O, R 3 = 3-CH 2 F 1346 R 2 = CHF 2 , Z = O, R 3 = 4-OMe

1310 R 2 = CHF 2 , Z = O, R 3 = 3-CHO 1347 R 2 = CHF 2 , Z = O, R 3 = 4-OCF3

1311 R 2 = CHF 2 , Z = O, R 3 = 3 -Me 1348 R 2 = CHF 2 , Z = O, R 3 = 4-CF3

1312 R 2 = CHF 2 , Z = O, R 3 = 3-Et 1349 R 2 = CHF 2 , Z = O, R 3 = 4-CHF 2

1313 R 2 = CHF 2 , Z = O, R 3 = 3-Ethynyl 1350 R 2 = CHF 2 , Z = O, R 3 = 4-CH 2 F

1314 R 2 = CHF 2 , Z = O, R 3 = 3-Ethenyl 1351 R 2 = CHF 2 , Z = O, R 3 = 4-CHO

1315 R 2 = CHF 2 , Z = O, R 3 = 3-S0 2 Me 1352 R 2 = CHF 2 , Z = O, R 3 = 4-Me

1316 R 2 = CHF 2 , Z = O, R 3 = 3-OAc 1353 R 2 = CHF 2 , Z = O, R 3 = 4-Et

1317 R 2 = CHF 2 , Z = O, R 3 = 3-c-Pr 1354 R 2 = CHF 2 , Z = O, R 3 = 4-Ethynyl

1318 R 2 = CHF 2 , Z = O, R 3 = 3-z-Pr 1355 R 2 = CHF 2 , Z = O, R 3 = 4-Ethenyl

1319 R 2 = CHF 2 , Z = O, R 3 = 3-Ph 1356 R 2 = CHF 2 , Z = O, R 3 = 4-S0 2 Me

1320 R 2 = CHF 2 , Z = S, R 3 = 3-F 1357 R 2 = CHF 2 , Z = O, R 3 = 4-OAc

1321 R 2 = CHF 2 , Z = S, R 3 = 3-Cl 1358 R 2 = CHF 2 , Z = O, R 3 = 4-c-Pr

1322 R 2 = CHF 2 , Z = S, R 3 = 3-Br 1359 R 2 = CHF 2 , Z = O, R 3 = 4-z-Pr

1323 R 2 = CHF 2 , Z = S, R 3 = 3-1 1360 R 2 = CHF 2 , Z = O, R 3 = 4-Ph

1324 R 2 = CHF 2 , Z = S, R 3 = 3-CN 1361 R 2 = CHF 2 , Z = O, R 3 = 5-F

1325 R 2 = CHF 2 , Z = S, R 3 = 3-N0 2 1362 R 2 = CHF 2 , Z = O, R 3 = 5-Cl

1326 R 2 = CHF 2 , Z = S, R 3 = 3-OMe 1363 R 2 = CHF 2 , Z = O, R 3 = 5-Br

1327 R 2 = CHF 2 , Z = S, R 3 = 3-OCF3 1364 R 2 = CHF 2 , Z = O, R 3 = 5-1

1328 R 2 = CHF 2 , Z = S, R 3 = 3-CHF 2 1365 R 2 = CHF 2 , Z = O, R 3 = 5-CN

1329 R 2 = CHF 2 , Z = S, R 3 = 3-CH 2 F 1366 R 2 = CHF 2 , Z = O, R 3 = 5-N0 2

1330 R 2 = CHF 2 , Z = S, R 3 = 3-CHO 1367 R 2 = CHF 2 , Z = O, R 3 = 5-OMe

1331 R 2 = CHF 2 , Z = S, R 3 = 3 -Me 1368 R 2 = CHF 2 , Z = O, R 3 = 5-OCF3

1332 R 2 = CHF 2 , Z = S, R 3 = 3-Et 1369 R 2 = CHF 2 , Z = O, R 3 = 5-CF3

1333 R 2 = CHF 2 , Z = S, R 3 = 3-Ethynyl 1370 R 2 = CHF 2 , Z = O, R 3 = 5-CHF 2

1334 R 2 = CHF 2 , Z = S, R 3 = 3-Ethenyl 1371 R 2 = CHF 2 , Z = O, R 3 = 5-CH 2 F

1335 R 2 = CHF 2 , Z = S, R 3 = 3-S0 2 Me 1372 R 2 = CHF 2 , Z = O, R 3 = 5-CHO

1336 R 2 = CHF 2 , Z = S, R 3 = 3-OAc 1373 R 2 = CHF 2 , Z = O, R 3 =5-Me

1337 R 2 = CHF 2 , Z = S, R 3 = 3-c-Pr 1374 R 2 = CHF 2 , Z = O, R 3 = 5-Et

1338 R 2 = CHF 2 , Z = S, R 3 = 3-z-Pr 1375 R 2 = CHF 2 , Z = O, R 3 = 5-Ethynyl Table Header Row Table Header Row

1376 R 2 = CHF 2 , Z = O, R 3 = 5-Ethenyl 1413 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-Br

1377 R 2 = CHF 2 , Z = O, R 3 = 5-S0 2 Me 1414 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-Br

1378 R 2 = CHF 2 , Z = O, R 3 = 5-OAc 1415 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-CN

1379 R 2 = CHF 2 , Z = O, R 3 = 5-c-Pr 1416 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-CN

1380 R 2 = CHF 2 , Z = O, R 3 = 5-z-Pr 1417 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-CN

1381 R 2 = CHF 2 , Z = O, R 3 = 5-Ph 1418 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-CN

1382 R 2 = CHF 2 , Z = O, R 3 = 6-F 1419 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-Me

1383 R 2 = CHF 2 , Z = O, R 3 = 6-Cl 1420 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-Me

1384 R 2 = CHF 2 , Z = O, R 3 = 6-Br 1421 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-Me

1385 R 2 = CHF 2 , Z = O, R 3 = 6-1 1422 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-Me

1386 R 2 = CHF 2 , Z = O, R 3 = 6-CN 1423 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-OMe

1387 R 2 = CHF 2 , Z = O, R 3 = 6-N0 2 1424 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-OMe

1388 R 2 = CHF 2 , Z = O, R 3 = 6-OMe 1425 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-OMe

1389 R 2 = CHF 2 , Z = O, R 3 = 6-OCF3 1426 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-OMe

1390 R 2 = CHF 2 , Z = O, R 3 = 6-CF3 1427 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-CF 3

1391 R 2 = CHF 2 , Z = O, R 3 = 6-CHF 2 1428 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-CF 3

1392 R 2 = CHF 2 , Z = O, R 3 = 6-CH 2 F 1429 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-CF 3

1393 R 2 = CHF 2 , Z = O, R 3 = 6-CHO 1430 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-CF 3

1394 R 2 = CHF 2 , Z = O, R 3 = 6-Me 1431 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 4-Me

1395 R 2 = CHF 2 , Z = O, R 3 = 6-Et 1432 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 4-F

1396 R 2 = CHF 2 , Z = O, R 3 = 6-Ethynyl 1433 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 4-Br

1397 R 2 = CHF 2 , Z = O, R 3 = 6-Ethenyl 1434 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 4-OMe

1398 R 2 = CHF 2 , Z = O, R 3 = 6-S0 2 Me 1435 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 4-CF 3

1399 R 2 = CHF 2 , Z = O, R 3 = 6-OAc 1436 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 6-Me

1400 R 2 = CHF 2 , Z = O, R 3 = 6-c-Pr 1437 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 6-F

1401 R 2 = CHF 2 , Z = O, R 3 = 6-i-Pr 1438 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 6-Br

1402 R 2 = CHF 2 , Z = O, R 3 = 6-Ph 1439 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 6-OMe

1403 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-F 1440 R 2 = CHF 2 , Z = O, R 3 = 3-CN, 6-CF 3

1404 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-F 1441 R 2 = S0 2 Me, Z = O, R 3 = H (m = 0)

1405 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-F 1442 R 2 = S0 2 Me, Z = O, R 3 = 3-F

1406 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-F 1443 R 2 = S0 2 Me, Z = O, R 3 = 3 -CI

1407 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-Cl 1444 R 2 = SOoMe, Z = O, R 3 = 3 -Br

1408 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-Cl 1445 R 2 = S0 2 Me, Z = O, R 3 = 3-1

1409 R 2 = CHF 2 , Z = O, R 3 = 3,6-di-Cl 1446 R 2 = S0 2 Me, Z = O, R 3 = 3-CN

1410 R 2 = CHF 2 , Z = O, R 3 = 4,5-di-Cl 1447 R 2 = S0 2 Me, Z = O, R 3 = 3-N0 2

1411 R 2 = CHF 2 , Z = O, R 3 = 3,4-di-Br 1448 R 2 = S0 2 Me, Z = O, R 3 = 3-OMe

1412 R 2 = CHF 2 , Z = O, R 3 = 3,5-di-Br 1449 R 2 = S0 2 Me, Z = O, R 3 = 3-OCF 3 Table Header Row Table Header Row

1450 R 2 = S0 2 Me, Z = O, R 3 = 3-CF 3 1487 R 2 = S0 2 Me, Z = O, R 3 = 4-1

1451 R 2 = S0 2 Me, Z = O, R 3 = 3-CHF 2 1488 R 2 = S0 2 Me, Z = O, R 3 = 4-CN

1452 R 2 = S0 2 Me, Z = O, R 3 = 3-CH 2 F 1489 R 2 = S0 2 Me, Z = O, R 3 = 4-N0 2

1453 R 2 = S0 2 Me, Z = O, R 3 = 3-CHO 1490 R 2 = S0 2 Me, Z = O, R 3 = 4-OMe

1454 R 2 = S0 2 Me, Z = O, R 3 = 3 -Me 1491 R 2 = S0 2 Me, Z = O, R 3 = 4-OCF 3

1455 R 2 = S0 2 Me, Z = O, R 3 = 3-Et 1492 R 2 = S0 2 Me, Z = O, R 3 = 4-CF 3

1456 R 2 = S0 2 Me, Z = O, R 3 = 3-Ethynyl 1493 R 2 = S0 2 Me, Z = O, R 3 = 4-CHF 2

1457 R 2 = S0 2 Me, Z = O, R 3 = 3-Ethenyl 1494 R 2 = S0 2 Me, Z = O, R 3 = 4-CH 2 F

1458 R 2 = S0 2 Me, Z = O, R 3 = 3-S0 2 Me 1495 R 2 = S0 2 Me, Z = O, R 3 = 4-CHO

1459 R 2 = S0 2 Me, Z = O, R 3 = 3-OAc 1496 R 2 = S0 2 Me, Z = O, R 3 = 4-Me

1460 R 2 = S0 2 Me, Z = O, R 3 = 3-c-Pr 1497 R 2 = S0 2 Me, Z = O, R 3 = 4-Et

1461 R 2 = S0 2 Me, Z = O, R 3 = 3-z-Pr 1498 R 2 = S0 2 Me, Z = O, R 3 = 4-Ethynyl

1462 R 2 = S0 2 Me, Z = O, R 3 = 3-Ph 1499 R 2 = S0 2 Me, Z = O, R 3 = 4-Ethenyl

1463 R 2 = S0 2 Me, Z = S, R 3 = 3-F 1500 R 2 = S0 2 Me, Z = O, R 3 = 4-S0 2 Me

1464 R 2 = S0 2 Me, Z = S, R 3 = 3 -CI 1501 R 2 = S0 2 Me, Z = O, R 3 = 4-OAc

1465 R 2 = S0 2 Me, Z = S, R 3 = 3 -Br 1502 R 2 = S0 2 Me, Z = O, R 3 = 4-c-Pr

1466 R 2 = S0 2 Me, Z = S, R 3 = 3-1 1503 R 2 = S0 2 Me, Z = O, R 3 = 4-z-Pr

1467 R 2 = S0 2 Me, Z = S, R 3 = 3-CN 1504 R 2 = S0 2 Me, Z = O, R 3 = 4-Ph

1468 R 2 = S0 2 Me, Z = S, R 3 = 3-N0 2 1505 R 2 = S0 2 Me, Z = O, R 3 = 5-F

1469 R 2 = S0 2 Me, Z = S, R 3 = 3-OMe 1506 R 2 = S0 2 Me, Z = O, R 3 = 5-Cl

1470 R 2 = S0 2 Me, Z = S, R 3 = 3-OCF 3 1507 R 2 = S0 2 Me, Z = O, R 3 = 5-Br

1471 R 2 = S0 2 Me, Z = S, R 3 = 3-CF 3 1508 R 2 = S0 2 Me, Z = O, R 3 = 5-1

1472 R 2 = S0 2 Me, Z = S, R 3 = 3-CHF 2 1509 R 2 = S0 2 Me, Z = O, R 3 = 5-CN

1473 R 2 = S0 2 Me, Z = S, R 3 = 3-CH 2 F 1510 R 2 = S0 2 Me, Z = O, R 3 = 5-N0 2

1474 R 2 = S0 2 Me, Z = S, R 3 = 3-CHO 1511 R 2 = S0 2 Me, Z = O, R 3 = 5-OMe

1475 R 2 = S0 2 Me, Z = S, R 3 = 3 -Me 1512 R 2 = S0 2 Me, Z = O, R 3 = 5-OCF 3

1476 R 2 = S0 2 Me, Z = S, R 3 = 3-Et 1513 R 2 = S0 2 Me, Z = O, R 3 = 5-CF 3

1477 R 2 = S0 2 Me, Z = S, R 3 = 3-Ethynyl 1514 R 2 = S0 2 Me, Z = O, R 3 = 5-CHF 2

1478 R 2 = S0 2 Me, Z = S, R 3 = 3-Ethenyl 1515 R 2 = S0 2 Me, Z = O, R 3 = 5-CH 2 F

1479 R 2 = S0 2 Me, Z = S, R 3 = 3-S0 2 Me 1516 R 2 = S0 2 Me, Z = O, R 3 = 5-CHO

1480 R 2 = S0 2 Me, Z = S, R 3 = 3-OAc 1517 R 2 = S0 2 Me, Z = O, R 3 =5-Me

1481 R 2 = S0 2 Me, Z = S, R 3 = 3-c-Pr 1518 R 2 = S0 2 Me, Z = O, R 3 = 5-Et

1482 R 2 = S0 2 Me, Z = S, R 3 = 3-z-Pr 1519 R 2 = S0 2 Me, Z = O, R 3 = 5-Ethynyl

1483 R 2 = S0 2 Me, Z = S, R 3 = 3-Ph 1520 R 2 = S0 2 Me, Z = O, R 3 = 5-Ethenyl

1484 R 2 = S0 2 Me, Z = O, R 3 = 4-F 1521 R 2 = S0 2 Me, Z = O, R 3 = 5-S0 2 Me

1485 R 2 = S0 2 Me, Z = O, R 3 = 4-Cl 1522 R 2 = S0 2 Me, Z = O, R 3 = 5-OAc

1486 R 2 = S0 2 Me, Z = O, R 3 = 4-Br 1523

R 2 = S0 2 Me, Z = O, R 3 = 5-c-Pr Table Header Row

1524 R 2 = S0 2 Me, Z = O, R 3 = 5-z-Pr

1525 R 2 = S0 2 Me, Z = O, R 3 = 5-Ph

1526 R 2 = S0 2 Me, Z = O, R : ! = 6-F

1527 R 2 = S0 2 Me, Z = O, R 3 = 6-Cl

1528 R 2 = S0 2 Me, Z = O, R 3 = 6-Br

1529 R 2 = S0 2 Me, Z = O, R 5 = 6-1

1530 R 2 = S0 2 Me, Z = O, R 3 = 6-CN

1531 R 2 = S0 2 Me, Z = O, R 3 = = 6-N0 2

1532 R 2 = S0 2 Me, Z = O, R 3 = = 6-OMe

1533 R 2 = S0 2 Me, Z = O, R 3 = 6-OCF3

1534 R 2 = S0 2 Me, Z = O, R 3 = 6-CF3

1535 R 2 = S0 2 Me, Z = O, R 3 = 6-CHF 2

1536 R 2 = S0 2 Me, Z = O, R 3 = 6-CH 2 F

1537 R 2 = S0 2 Me, Z = O, R 3 = = 6-CHO

1538 R 2 = S0 2 Me, Z = O, R 3 = 6-Me

1539 R 2 = S0 2 Me, Z = O, R 3 = 6-Et

1540 R 2 = S0 2 Me, Z = O, R 3 = 6-Ethynyl

1541 R 2 = S0 2 Me, Z = O, R 3 = 6-Ethenyl

1542 R 2 = S0 2 Me, Z = O, R 3 = 6-S0 2 Me

1543 R 2 = S0 2 Me, Z = O, R 3 = = 6-OAc

1544 R 2 = S0 2 Me, Z = O, R 3 = 6-c-Pr

1545 R 2 = S0 2 Me, Z = O, R 3 = 6-z-Pr

1546 R 2 = S0 2 Me, Z = O, R 3 = 6-Ph

1547 R 2 = S0 2 Me, Z = O, R 3 = 3,4-di-F

1548 R 2 = S0 2 Me, Z = O, R 3 = 3,5-di-F

1549 R 2 = S0 2 Me, Z = O, R 3 = 3,6-di-F

1550 R 2 = S0 2 Me, Z = O, R 3 = 4,5-di-F

1551 R 2 = S0 2 Me, Z = O, R 3 = 3,4-di-Cl

1552 R 2 = S0 2 Me, Z = O, R 3 = 3,5-di-Cl

1553 R 2 = S0 2 Me, Z = O, R 3 = 3,6-di-Cl

1554 R 2 = S0 2 Me, Z = O, R 3 = 4,5-di-Cl

A compound of this invention will generally be used as a herbicidal active ingredient in a composition, i.e. formulation, with at least one additional component selected from the group consisting of surfactants, solid diluents and liquid diluents, which serves as a carrier. The formulation or composition ingredients are selected to be consistent with the physical properties of the active ingredient, mode of application and environmental factors such as soil type, moisture and temperature. Useful formulations include both liquid and solid compositions. Liquid compositions include solutions (including emulsifiable concentrates), suspensions, emulsions (including microemulsions, oil-in -water emulsions, flowable concentrates and/or suspoemulsions) and the like, which optionally can be thickened into gels. The general types of aqueous liquid compositions are soluble concentrate, suspension concentrate, capsule suspension, concentrated emulsion, microemulsion, oil-in-water emulsion, flowable concentrate and suspo-emulsion. The general types of nonaqueous liquid compositions are emulsifiable concentrate, microemulsifiable concentrate, dispersible concentrate and oil dispersion.

The general types of solid compositions are dusts, powders, granules, pellets, prills, pastilles, tablets, filled films (including seed coatings) and the like, which can be water-dispersible ("wettable") or water-soluble. Films and coatings formed from film- forming solutions or flowable suspensions are particularly useful for seed treatment. Active ingredient can be (micro)encapsulated and further formed into a suspension or solid formulation; alternatively the entire formulation of active ingredient can be encapsulated (or "overcoated"). Encapsulation can control or delay release of the active ingredient. An emulsifiable granule combines the advantages of both an emulsifiable concentrate formulation and a dry granular formulation. High-strength compositions are primarily used as intermediates for further formulation.

Sprayable formulations are typically extended in a suitable medium before spraying. Such liquid and solid formulations are formulated to be readily diluted in the spray medium, usually water, but occasionally another suitable medium like an aromatic or paraffmic hydrocarbon or vegetable oil. Spray volumes can range from about from about one to several thousand liters per hectare, but more typically are in the range from about ten to several hundred liters per hectare. Sprayable formulations can be tank mixed with water or another suitable medium for foliar treatment by aerial or ground application, or for application to the growing medium of the plant. Liquid and dry formulations can be metered directly into drip irrigation systems or metered into the furrow during planting.

The formulations will typically contain effective amounts of active ingredient, diluent and surfactant within the following approximate ranges which add up to 100 percent by weight. Weight Percent

Active

Ingredient Diluent Surfactant

Water-Dispersible and Water-soluble 0.001-90 0-99.999 0-15

Granules, Tablets and Powders

Oil Dispersions, Suspensions, 1-50 40-99 0-50

Emulsions, Solutions (including

Emulsifiable Concentrates)

Dusts 1-25 70 -99 0- -5

Granules and Pellets 0.001-99 5- 99.999 0- -15

High Strength Compositions 90-99 0- 10 0- -2

Solid diluents include, for example, clays such as bentonite, montmorillonite, attapulgite and kaolin, gypsum, cellulose, titanium dioxide, zinc oxide, starch, dextrin, sugars (e.g., lactose, sucrose), silica, talc, mica, diatomaceous earth, urea, calcium carbonate, sodium carbonate and bicarbonate, and sodium sulfate. Typical solid diluents are described in Watkins et al., Handbook of Insecticide Dust Diluents and Carriers, 2nd Ed., Dorland Books, Caldwell, New Jersey.

Liquid diluents include, for example, water, N,N-dimethylalkanamides (e.g., N,N-dimethylformamide), limonene, dimethyl sulfoxide, N-alkylpyrrolidones (e.g., N-methylpyrrolidinone), alkyl phosphates (e.g., triethyl phosphate), ethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, polypropylene glycol, propylene carbonate, butylene carbonate, paraffins (e.g., white mineral oils, normal paraffins, isoparaffins), alkylbenzenes, alkylnaphthalenes, glycerine, glycerol triacetate, sorbitol, aromatic hydrocarbons, dearomatized aliphatics, alkylbenzenes, alkylnaphthalenes, ketones such as cyclohexanone, 2-heptanone, isophorone and 4-hydroxy-4-methyl-2-pentanone, acetates such as isoamyl acetate, hexyl acetate, heptyl acetate, octyl acetate, nonyl acetate, tridecyl acetate and isobornyl acetate, other esters such as alkylated lactate esters, dibasic esters, alkyl and aryl benzoates and γ-butyrolactone, and alcohols, which can be linear, branched, saturated or unsaturated, such as methanol, ethanol, n-propanol, isopropyl alcohol, n-butanol, isobutyl alcohol, n-hexanol, 2-ethylhexanol, n-octanol, decanol, isodecyl alcohol, isooctadecanol, cetyl alcohol, lauryl alcohol, tridecyl alcohol, oleyl alcohol, cyclohexanol, tetrahydrofurfuryl alcohol, diacetone alcohol, cresol and benzyl alcohol. Liquid diluents also include glycerol esters of saturated and unsaturated fatty acids (typically C 6 -C 2 2), such as plant seed and fruit oils (e.g., oils of olive, castor, linseed, sesame, corn (maize), peanut, sunflower, grapeseed, safflower, cottonseed, soybean, rapeseed, coconut and palm kernel), animal-sourced fats (e.g., beef tallow, pork tallow, lard, cod liver oil, fish oil), and mixtures thereof. Liquid diluents also include alkylated fatty acids (e.g., methylated, ethylated, butylated) wherein the fatty acids may be obtained by hydrolysis of glycerol esters from plant and animal sources, and can be purified by distillation. Typical liquid diluents are described in Marsden, Solvents Guide, 2nd Ed., Interscience, New York, 1950.

The solid and liquid compositions of the present invention often include one or more surfactants. When added to a liquid, surfactants (also known as "surface-active agents") generally modify, most often reduce, the surface tension of the liquid. Depending on the nature of the hydrophilic and lipophilic groups in a surfactant molecule, surfactants can be useful as wetting agents, dispersants, emulsifiers or defoaming agents.

Surfactants can be classified as nonionic, anionic or cationic. Nonionic surfactants useful for the present compositions include, but are not limited to: alcohol alkoxylates such as alcohol alkoxylates based on natural and synthetic alcohols (which may be branched or linear) and prepared from the alcohols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; amine ethoxylates, alkanolamides and ethoxylated alkanolamides; alkoxylated triglycerides such as ethoxylated soybean, castor and rapeseed oils; alkylphenol alkoxylates such as octylphenol ethoxylates, nonylphenol ethoxylates, dinonyl phenol ethoxylates and dodecyl phenol ethoxylates (prepared from the phenols and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); block polymers prepared from ethylene oxide or propylene oxide and reverse block polymers where the terminal blocks are prepared from propylene oxide; ethoxylated fatty acids; ethoxylated fatty esters and oils; ethoxylated methyl esters; ethoxylated tristyrylphenol (including those prepared from ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); fatty acid esters, glycerol esters, lanolin-based derivatives, polyethoxylate esters such as polyethoxylated sorbitan fatty acid esters, polyethoxylated sorbitol fatty acid esters and polyethoxylated glycerol fatty acid esters; other sorbitan derivatives such as sorbitan esters; polymeric surfactants such as random copolymers, block copolymers, alkyd peg (polyethylene glycol) resins, graft or comb polymers and star polymers; polyethylene glycols (pegs); polyethylene glycol fatty acid esters; silicone-based surfactants; and sugar-derivatives such as sucrose esters, alkyl polyglycosides and alkyl polysaccharides.

Useful anionic surfactants include, but are not limited to: alkylaryl sulfonic acids and their salts; carboxylated alcohol or alkylphenol ethoxylates; diphenyl sulfonate derivatives; lignin and lignin derivatives such as lignosulfonates; maleic or succinic acids or their anhydrides; olefin sulfonates; phosphate esters such as phosphate esters of alcohol alkoxylates, phosphate esters of alkylphenol alkoxylates and phosphate esters of styryl phenol ethoxylates; protein-based surfactants; sarcosine derivatives; styryl phenol ether sulfate; sulfates and sulfonates of oils and fatty acids; sulfates and sulfonates of ethoxylated alkylphenols; sulfates of alcohols; sulfates of ethoxylated alcohols; sulfonates of amines and amides such as N,N-alkyltaurates; sulfonates of benzene, cumene, toluene, xylene, and dodecyl and tridecylbenzenes; sulfonates of condensed naphthalenes; sulfonates of naphthalene and alkyl naphthalene; sulfonates of fractionated petroleum; sulfosuccinamates; and sulfosuccinates and their derivatives such as dialkyl sulfosuccinate salts.

Useful cationic surfactants include, but are not limited to: amides and ethoxylated amides; amines such as N-alkyl propanediamines, tripropylenetriamines and dipropylenetetramines, and ethoxylated amines, ethoxylated diamines and propoxylated amines (prepared from the amines and ethylene oxide, propylene oxide, butylene oxide or mixtures thereof); amine salts such as amine acetates and diamine salts; quaternary ammonium salts such as quaternary salts, ethoxylated quaternary salts and diquaternary salts; and amine oxides such as alkyldimethylamine oxides and bis-(2-hydroxyethyl)-alkylamine oxides.

Also useful for the present compositions are mixtures of nonionic and anionic surfactants or mixtures of nonionic and cationic surfactants. Nonionic, anionic and cationic surfactants and their recommended uses are disclosed in a variety of published references including McCutcheon 's Emulsifiers and Detergents, annual American and International Editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; Sisely and Wood, Encyclopedia of Surface Active Agents, Chemical Publ. Co., Inc., New York, 1964; and A. S. Davidson and B. Milwidsky, Synthetic Detergents, Seventh Edition, John Wiley and Sons, New York, 1987.

Compositions of this invention may also contain formulation auxiliaries and additives, known to those skilled in the art as formulation aids (some of which may be considered to also function as solid diluents, liquid diluents or surfactants). Such formulation auxiliaries and additives may control: pH (buffers), foaming during processing (antifoams such polyorganosiloxanes), sedimentation of active ingredients (suspending agents), viscosity (thixotropic thickeners), in-container microbial growth (antimicrobials), product freezing (antifreezes), color (dyes/pigment dispersions), wash-off (film formers or stickers), evaporation (evaporation retardants), and other formulation attributes. Film formers include, for example, polyvinyl acetates, polyvinyl acetate copolymers, polyvinylpyrrolidone-vinyl acetate copolymer, polyvinyl alcohols, polyvinyl alcohol copolymers and waxes. Examples of formulation auxiliaries and additives include those listed in McCutcheon 's Volume 2: Functional Materials, annual International and North American editions published by McCutcheon's Division, The Manufacturing Confectioner Publishing Co.; and PCT Publication WO 03/024222.

The compound of Formula 1 and any other active ingredients are typically incorporated into the present compositions by dissolving the active ingredient in a solvent or by grinding in a liquid or dry diluent. Solutions, including emulsifiable concentrates, can be prepared by simply mixing the ingredients. If the solvent of a liquid composition intended for use as an emulsifiable concentrate is water-immiscible, an emulsifier is typically added to emulsify the active-containing solvent upon dilution with water. Active ingredient slurries, with particle diameters of up to 2,000 μιη can be wet milled using media mills to obtain particles with average diameters below 3 μιη. Aqueous slurries can be made into finished suspension concentrates (see, for example, U.S. 3,060,084) or further processed by spray drying to form water-dispersible granules. Dry formulations usually require dry milling processes, which produce average particle diameters in the 2 to 10 μιη range. Dusts and powders can be prepared by blending and usually grinding (such as with a hammer mill or fluid-energy mill). Granules and pellets can be prepared by spraying the active material upon preformed granular carriers or by agglomeration techniques. See Browning, "Agglomeration", Chemical Engineering, December 4, 1967, pp 147-48, Perry 's Chemical Engineer's Handbook, 4th Ed., McGraw-Hill, New York, 1963, pages 8-57 and following, and WO 91/13546. Pellets can be prepared as described in U.S. 4,172,714. Water-dispersible and water-soluble granules can be prepared as taught in U.S. 4,144,050, U.S. 3,920,442 and DE 3,246,493. Tablets can be prepared as taught in U.S. 5,180,587, U.S. 5,232,701 and U.S. 5,208,030. Films can be prepared as taught in GB 2,095,558 and U.S. 3,299,566.

For further information regarding the art of formulation, see T. S. Woods, "The Formulator's Toolbox - Product Forms for Modern Agriculture" in Pesticide Chemistry and Bioscience, The Food-Environment Challenge, T. Brooks and T. R. Roberts, Eds., Proceedings of the 9th International Congress on Pesticide Chemistry, The Royal Society of Chemistry, Cambridge, 1999, pp. 120-133. See also U.S. 3,235,361, Col. 6, line 16 through Col. 7, line 19 and Examples 10-41; U.S. 3,309,192, Col. 5, line 43 through Col. 7, line 62 and Examples 8, 12, 15, 39, 41, 52, 53, 58, 132, 138-140, 162-164, 166, 167 and 169-182; U.S. 2,891,855, Col. 3, line 66 through Col. 5, line 17 and Examples 1-4; Klingman, Weed Control as a Science, John Wiley and Sons, Inc., New York, 1961, pp 81-96; Hance et al, Weed Control Handbook, 8th Ed., Blackwell Scientific Publications, Oxford, 1989; and Developments in formulation technology, PJB Publications, Richmond, UK, 2000.

In the following Examples, all percentages are by weight and all formulations are prepared in conventional ways. Compound numbers refer to compounds in Index Table A. Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. Percentages are by weight except where otherwise indicated. Example A

High Strength Concentrate

Compound 1 98.5% silica aerogel 0.5% synthetic amorphous fine silica 1.0%

Example B

Wettable Powder

Compound 12 65.0% dodecylphenol polyethylene glycol ether 2.0%> sodium ligninsulfonate 4.0% sodium silicoaluminate 6.0% montmorillonite (calcined) 23.0%

Example C

Granule

Compound 15 10.0% attapulgite granules (low volatile matter, 0.71/0.30 mm; 90.0% U.S.S. No. 25-50 sieves)

Example D

Extruded Pellet

Compound 21 25.0% anhydrous sodium sulfate 10.0% crude calcium ligninsulfonate 5.0%> sodium alkylnaphthalenesulfonate 1.0% calcium/magnesium bentonite 59.0%

Example E

Emulsifiable Concentrate

Compound 23 10.0% polyoxyethylene sorbitol hexoleate 20.0%

C^-Cio fatty acid methyl ester 70.0%>

Example F

Microemulsion

Compound 24 5.0% polyvinylpyrrolidone -vinyl acetate copolymer 30.0% alkylpolyglycoside 30.0%> glyceryl monooleate 15.0% water 20.0% Example G

Suspension Concentrate

Compound 27 35% butyl polyoxyethylene/polypropylene block copolymer 4.0% stearic acid/polyethylene glycol copolymer 1.0%> styrene acrylic polymer 1.0% xanthan gum 0.1% propylene glycol 5.0% silicone based defoamer 0.1 % l,2-benzisothiazolin-3-one 0.1% water 53.7%

Example H

Emulsion in Water

Compound 32 10.0% butyl polyoxyethylene/polypropylene block copolymer 4.0% stearic acid/polyethylene glycol copolymer 1.0%) styrene acrylic polymer 1.0% xanthan gum 0.1% propylene glycol 5.0%> silicone based defoamer 0.1 % l,2-benzisothiazolin-3-one 0.1% aromatic petroleum based hydrocarbon 20.0 water 58.7%

Example I

Oil Dispersion

Compound 42 25% polyoxy ethylene sorbitol hexaoleate 15% organically modified bentonite clay 2.5% fatty acid methyl ester 57.5%

Example J

Suspoemulsion

Compound 1 10.0% imidacloprid 5.0%> butyl polyoxyethylene/polypropylene block copolymer 4.0%> stearic acid/polyethylene glycol copolymer 1.0%) styrene acrylic polymer 1.0% xanthan gum 0.1% propylene glycol 5.0%> silicone based defoamer 0.1% l,2-benzisothiazolin-3-one 0.1% aromatic petroleum based hydrocarbon 20.0% water 53.7%

Test results indicate that the compounds of the present invention are highly active preemergent and/or postemergent herbicides and/or plant growth regulants. The compounds of the mention generally show highest activity for postemergence weed control (i.e. applied after weed seedlings emerge from the soil) and preemergence weed control (i.e. applied before weed seedlings emerge from the soil). Many of them have utility for broad-spectrum pre- and/or postemergence weed control in areas where complete control of all vegetation is desired such as around fuel storage tanks, industrial storage areas, parking lots, drive-in theaters, air fields, river banks, irrigation and other waterways, around billboards and highway and railroad structures. Many of the compounds of this invention, by virtue of selective metabolism in crops versus weeds, or by selective activity at the locus of physiological inhibition in crops and weeds, or by selective placement on or within the environment of a mixture of crops and weeds, are useful for the selective control of grass and broadleaf weeds within a crop/weed mixture. One skilled in the art will recognize that the preferred combination of these selectivity factors within a compound or group of compounds can readily be determined by performing routine biological and/or biochemical assays. Compounds of this invention may show tolerance to important agronomic crops including, but is not limited to, alfalfa, barley, cotton, wheat, rape, sugar beets, corn (maize), sorghum, soybeans, rice, oats, peanuts, vegetables, tomato, potato, perennial plantation crops including coffee, cocoa, oil palm, rubber, sugarcane, citrus, grapes, fruit trees, nut trees, banana, plantain, pineapple, hops, tea and forests such as eucalyptus and conifers (e.g., loblolly pine), and turf species (e.g., Kentucky bluegrass, St. Augustine grass, Kentucky fescue and Bermuda grass). Compounds of this invention can be used in crops genetically transformed or bred to incorporate resistance to herbicides, express proteins toxic to invertebrate pests (such as Bacillus thuringiensis toxin), and/or express other useful traits. Those skilled in the art will appreciate that not all compounds are equally effective against all weeds. Alternatively, the subject compounds are useful to modify plant growth.

As the compounds of the invention have both preemergent and postemergent herbicidal activity, to control undesired vegetation by killing or injuring the vegetation or reducing its growth, the compounds can be usefully applied by a variety of methods involving contacting a herbicidally effective amount of a compound of the invention, or a composition comprising said compound and at least one of a surfactant, a solid diluent or a liquid diluent, to the foliage or other part of the undesired vegetation or to the environment of the undesired vegetation such as the soil or water in which the undesired vegetation is growing or which surrounds the seed or other propagule of the undesired vegetation.

A herbicidally effective amount of the compounds of this invention is determined by a number of factors. These factors include: formulation selected, method of application, amount and type of vegetation present, growing conditions, etc. In general, a herbicidally effective amount of compounds of this invention is about 0.001 to 20 kg/ha with a preferred range of about 0.004 to 1 kg/ha. One skilled in the art can easily determine the herbicidally effective amount necessary for the desired level of weed control.

Compounds of the invention are useful in treating all plants and plant parts. Plant varieties and cultivars can be obtained by conventional propagation and breeding methods or by genetic engineering methods. Genetically modified plants (transgenic plants) are those in which a heterologous gene (transgene) has been stably integrated into the plant's genome. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event.

Genetically modified plant cultivars which can be treated according to the invention include those that are resistant against one or more biotic stresses (pests such as nematodes, insects, mites, fungi, etc.) or abiotic stresses (drought, cold temperature, soil salinity, etc.), or that contain other desirable characteristics. Plants can be genetically modified to exhibit traits of, for example, herbicide tolerance, insect-resistance, modified oil profiles or drought tolerance. Useful genetically modified plants containing single gene transformation events or combinations of transformation events are listed in Exhibit C. Additional information for the genetic modifications listed in Exhibit C can be obtained from publicly available databases maintained, for example, by the U.S. Department of Agriculture.

The following abbreviations, 1 through 37, are used in Exhibit C for traits. A "-" means the entry is not available.

Trait Description Trait Description Trait Description

1 Glyphosate tolerance 15 Cold tolerance 27 High tryptophan

2 High lauric acid oil 16 Imidazolinone herb. tol. 28 Erect leaves semidwarf

3 Glufosinate tolerance 17 Modified alpha-amylase 29 Semidwarf

4 Phytate breakdown 18 Pollination control 30 Low iron tolerance

5 Oxynil tolerance 19 2,4-D tolerance 31 Modified oil/fatty acid

6 Disease resistance 20 Increased lysine 32 HPPD tolerance

7 Insect resistance 21 Drought tolerance 33 High oil

9 Modified flower color 22 Delayed ripening/senescence 34 Aryloxyalkanoate tol.

11 ALS Herbicide Tol. 23 Modified product quality 35 Mesotrione tolerance

12 Dicamba Tolerance 24 High cellulose 36 Reduced nicotine

13 Anti- allergy 25 Modified starch/carbohydrate 37 Modified product

14 Salt tolerance 26 Insect & disease resist.

Exhibit C Crop Trait(s) Gene(s)

Alfalfa 1 cp4 epsps (aroA:CP4)

Alfalfa 1 cp4 epsps (aroA:CP4)

Canola* 2 te

Canola* 2 te

Canola* 1 gat4621

Canola* 1 gat4621

Canola* 1 cp4 epsps (aroA:CP4); goxv247

Canola* 1 cp4 epsps (aroA:CP4); goxv247

Canola* 3 bar

Canola* 3 pat (syn)

Canola* 3 bar

Canola* 1 cp4 epsps (aroA:CP4)

Canola* 4 phyA

Canola* 4 phyA

Canola* 4 phyA

Canola* 4 phyA

Canola* 4 phyA

Canola* 3 bar

Canola* 3 bar

Canola* 5 bxn

Canola* 3 bar

Canola* 3 bar

Canola* 3 bar

Canola* 3 bar

Canola* 3 bar

Canola* 3 bar

Canola* 3 bar

Bean 6 acl (sense and antisense)

Brinjal # 7 cry 1 Ac

Cotton 11 S4-HrA

Cotton 3,7 pat (syn); cry IF

Cotton 3,7 pat (syn); cry 1 Ac

Cotton 5,7 bxn; crylAc

Cotton 5,7 bxn; crylAc

Cotton 5,7 bxn; crylAc

Cotton 5,7 bxn; crylAc

Cotton 5,7 bxn; crylAc

Cotton 7 crylAc

Cotton 5 bxn; crylAc

Cotton 5 bxn; crylAc Cotton bxn; crylAc

Cotton bxn; crylAc

Cotton vip3A(a)

Cotton crylAb

Cotton vip3A

Cotton crylAc

Cotton crylAb-Ac

Cotton cry2Ae

Cotton 2mepsps

Cotton crylAb-Ac

Cotton bar

Cotton crylC

Cotton crylAc

Cotton cp4 epsps (aroA:CP4)

Cotton crylAc; cry2Ab2

Cotton cp4 epsps (aroA:CP4)

Cotton crylAc

Cotton crylAc

Cotton cp4 epsps (aroA:CP4)

Cotton

Cotton crylA; CpTI

Cotton crylAb; bar

Cotton crylAb; bar

Cotton crylAb

Cotton crylAb

Cotton crylAb

Cotton crylAb

Cotton crylAb

Cotton crylAb

Cotton cp4 epsps (aroA:CP4)

Cotton mepsps

Cotton crylAb

Cotton Modified dmo; bar

Cotton Modified Cryj

Flax als

Lentil als

Maize amy797E

Maize ecry3.1Ab

Maize cry34Abl ; cry35Abl ; pat

Maize pat; dam

Maize pat; dam

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Maize

Melon Rice

Rice

Rice

Rice

Rice

Rice

Rose

Rose

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Soybean

Squash

Squash

Sugar Beet

Sugar Beet

Sugar Beet

Sugar Beet

Sugarcane Sunflower X81359 16 als Pepper PK-SP01 6 cmv cp

Tobacco C/F/93/08-02 5 bxn

Tobacco Vector 21-41 36 NtQPTl (antisense) Wheat MON71800 MON-71800-3 1 cp4 epsps (aroA:CP4) * Argentine (Brassica napus), ** Polish (B. rapa), # Eggplant

Treatment of genetically modified plants with compounds of the invention may result in super-additive or synergistic effects. For example, reduction in application rates, broadening of the activity spectrum, increased tolerance to biotic/abiotic stresses or enhanced storage stability may be greater than expected from just simple additive effects of the application of compounds of the invention on genetically modified plants.

Compounds of this invention can also be mixed with one or more other biologically active compounds or agents including herbicides, herbicide safeners, fungicides, insecticides, nematocides, bactericides, acaricides, growth regulators such as insect molting inhibitors and rooting stimulants, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, plant nutrients, other biologically active compounds or entomopathogenic bacteria, virus or fungi to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Mixtures of the compounds of the invention with other herbicides can broaden the spectrum of activity against additional weed species, and suppress the proliferation of any resistant biotypes. Thus the present invention also pertains to a composition comprising a compound of Formula 1 (in a herbicidally effective amount) and at least one additional biologically active compound or agent (in a biologically effective amount) and can further comprise at least one of a surfactant, a solid diluent or a liquid diluent. The other biologically active compounds or agents can be formulated in compositions comprising at least one of a surfactant, solid or liquid diluent. For mixtures of the present invention, one or more other biologically active compounds or agents can be formulated together with a compound of Formula 1, to form a premix, or one or more other biologically active compounds or agents can be formulated separately from the compound of Formula 1, and the formulations combined together before application (e.g., in a spray tank) or, alternatively, applied in succession.

A mixture of one or more of the following herbicides with a compound of this invention may be particularly useful for weed control: acetochlor, acifluorfen and its sodium salt, aclonifen, acrolein (2-propenal), alachlor, alloxydim, ametryn, amicarbazone, amidosulfuron, aminocyclopyrachlor and its esters (e.g., methyl, ethyl) and salts (e.g., sodium, potassium), aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atrazine, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, bencarbazone, benfluralin, benfuresate, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyrone, bifenox, bilanafos, bispyribac and its sodium salt, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil octanoate, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone-ethyl, catechin, chlomethoxyfen, chloramben, chlorbromuron, chlorflurenol-methyl, chloridazon, chlorimuron-ethyl, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal-dimethyl, chlorthiamid, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clefoxydim, clethodim, clodinafop-propargyl, clomazone, clomeprop, clopyralid, clopyralid-olamine, cloransulam- methyl, cumyluron, cyanazine, cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop-butyl, 2,4-D and its butotyl, butyl, isoctyl and isopropyl esters and its dimethylammonium, diolamine and trolamine salts, daimuron, dalapon, dalapon-sodium, dazomet, 2,4-DB and its dimethylammonium, potassium and sodium salts, desmedipham, desmetryn, dicamba and its diglycolammonium, dimethylammonium, potassium and sodium salts, dichlobenil, dichlorprop, diclofop-methyl, diclosulam, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid and its sodium salt, dinitramine, dinoterb, diphenamid, diquat dibromide, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, fenuron, fenuron-TCA, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, fluazifop-butyl, fluazifop-P-butyl, fluazolate, flucarbazone, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen-ethyl, flupoxam, flupyrsulfuron-methyl and its sodium salt, flurenol, flurenol-butyl, fluridone, flurochloridone, fluroxypyr, flurtamone, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine-ammonium, glufosinate, glufosinate-ammonium, glufosinate-P, glyphosate and its salts such as ammonium, isopropylammonium, potassium, sodium (including sesquisodium) and trimesium (alternatively named sulfosate), halauxifen, halauxifen-methyl, halosulfuron-methyl, haloxyfop-etotyl, haloxyfop-methyl, hexazinone, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazosulfuron, indanofan, indaziflam, iofensulfuron, iodosulfuron-methyl, ioxynil, ioxynil octanoate, ioxynil-sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, isoxachlortole, lactofen, lenacil, linuron, maleic hydrazide, MCPA and its salts (e.g., MCPA-dimethylammonium, MCPA-potassium and MCPA-sodium, esters (e.g., MCPA-2-ethylhexyl, MCPA-butotyl) and thioesters (e.g., MCPA-thioethyl), MCPB and its salts (e.g., MCPB-sodium) and esters (e.g., MCPB-ethyl), mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron-methyl, mesotrione, metam-sodium, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methylarsonic acid and its calcium, monoammonium, monosodium and disodium salts, methyldymron, metobenzuron, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron-methyl, molinate, monolinuron, naproanilide, napropamide, napropamide-M, naptalam, neburon, nicosulfuron, norflurazon, orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfiuorfen, paraquat dichloride, pebulate, pelargonic acid, pendimethalin, penoxsulam, pentanochlor, pentoxazone, perfluidone, pethoxamid, pethoxyamid, phenmedipham, picloram, picloram-potassium, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyrafiufen-ethyl, pyrasulfotole, pyrazogyl, pyrazolynate, pyrazoxyfen, pyrazosulfuron-ethyl, pyribenzoxim, pyributicarb, pyridate, pyriftalid, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop-ethyl, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, safiufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrione, sulfentrazone, sulfometuron-methyl, sulfosulfuron, 2,3,6- TBA, TCA, TCA-sodium, tebutam, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thifensulfuron-methyl, thiobencarb, tiafenacil, tiocarbazil, topramezone, tralkoxydim, tri-allate, triafamone, triasulfuron, triaziflam, tribenuron-methyl, triclopyr, triclopyr-butotyl, triclopyr-triethylammonium, tridiphane, trietazine, trifloxysulfuron, trifluralin, triflusulfuron-methyl, tritosulfuron, vernolate, 3-(2-chloro-3,6-difluorophenyl)-4-hydroxy-l- methyl- 1 ,5-naphthyridin-2(lH)-one, 5-chloro-3-[(2-hydroxy-6-oxo- 1 -cyclohexen- 1 - yl)carbonyl]- 1 -(4-methoxyphenyl)-2( lH)-quinoxalinone, 2-chloro-N-( 1 -methyl- lH-tetrazol- 5-yl)-6-(trifluoromethyl)-3-pyridinecarboxamide, 7-(3,5-dichloro-4-pyridinyl)-5-(2,2- difluoroethyl)-8-hydroxypyrido[2,3-¾]pyrazin-6(5H)-one), 4-(2,6-diethyl-4-methylphenyl)- 5-hydroxy-2,6-dimethyl-3(2H)-pyridazinone), 5-[[(2,6-difluorophenyl)methoxy]methyl]-4,5- dihydro-5-methyl-3-(3-methyl-2-thienyl)isoxazole (previously methioxolin), 3-[7-fluoro-3,4- dihydro-3-oxo-4-(2-propyn- 1 -yl)-2H- 1 ,4-benzoxazin-6-yl]dihydro- 1 ,5-dimethyl-6-thioxo- 1 ,3,5-triazine-2,4(lH,3H)-dione, 4-(4-fluorophenyl)-6-[(2-hydroxy-6-oxo- 1 -cyclohexen- 1 - yl)carbonyl] -2 -methyl- 1 ,2,4-triazine-3,5(2H,4H)-dione, methyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-methoxyphenyl)-5-fluoro-2-pyridinecarboxyl ate, 2-methyl-3- (methylsulfonyl)-N-(l -methyl- lH-tetrazol-5-yl)-4-(trifluoromethyl)benzamide and 2-methyl- N-(4-methyl-l,2,5-oxadiazol-3-yl)-3-(methylsulfinyl)-4-(trif luoromethyl)benzamide. Other herbicides also include bioherbicides such as Alternaria destruens Simmons, CoUetotrichum gloeosporiodes (Penz.) Penz. & Sacc, Drechsiera monoceras (MTB-951), Myrothecium verrucaria (Albertini & Schweinitz) Ditmar: Fries, Phytophthora palmivora (Butl.) Butl. and Puccinia thlaspeos Schub.

Compounds of this invention can also be used in combination with plant growth regulators such as aviglycine, N-(phenylmethyl)-lH-purin-6-amine, epocholeone, gibberellic acid, gibberellin A 4 and A 7 , harpin protein, mepiquat chloride, prohexadione calcium, prohydrojasmon, sodium nitrophenolate and trinexapac-methyl, and plant growth modifying organisms such as Bacillus cereus strain BP01.

General references for agricultural protectants (i.e. herbicides, herbicide safeners, insecticides, fungicides, nematocides, acaricides and biological agents) include The Pesticide Manual, 13th Edition, C. D. S. Tomlin, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2003 and The BioPesticide Manual, 2nd Edition, L. G. Copping, Ed., British Crop Protection Council, Farnham, Surrey, U.K., 2001.

For embodiments where one or more of these various mixing partners are used, the weight ratio of these various mixing partners (in total) to the compound of Formula 1 is typically between about 1 :3000 and about 3000: 1. Of note are weight ratios between about 1 :300 and about 300: 1 (for example ratios between about 1 :30 and about 30: 1). One skilled in the art can easily determine through simple experimentation the biologically effective amounts of active ingredients necessary for the desired spectrum of biological activity. It will be evident that including these additional components may expand the spectrum of weeds controlled beyond the spectrum controlled by the compound of Formula 1 alone.

In certain instances, combinations of a compound of this invention with other biologically active (particularly herbicidal) compounds or agents (i.e. active ingredients) can result in a greater-than-additive (i.e. synergistic) effect on weeds and/or a less-than-additive effect (i.e. safening) on crops or other desirable plants. Reducing the quantity of active ingredients released in the environment while ensuring effective pest control is always desirable. Ability to use greater amounts of active ingredients to provide more effective weed control without excessive crop injury is also desirable. When synergism of herbicidal active ingredients occurs on weeds at application rates giving agronomically satisfactory levels of weed control, such combinations can be advantageous for reducing crop production cost and decreasing environmental load. When safening of herbicidal active ingredients occurs on crops, such combinations can be advantageous for increasing crop protection by reducing weed competition.

Of note is a combination of a compound of the invention with at least one other herbicidal active ingredient. Of particular note is such a combination where the other herbicidal active ingredient has different site of action from the compound of the invention. In certain instances, a combination with at least one other herbicidal active ingredient having a similar spectrum of control but a different site of action will be particularly advantageous for resistance management. Thus, a composition of the present invention can further comprise (in a herbicidally effective amount) at least one additional herbicidal active ingredient having a similar spectrum of control but a different site of action.

Compounds of this invention can also be used in combination with herbicide safeners such as allidochlor, benoxacor, cloquintocet-mexyl, cumyluron, cyometrinil, cyprosulfonamide, daimuron, dichlormid, dicyclonon, dietholate, dimepiperate, fenchlorazole-ethyl, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen-ethyl, mefenpyr- diethyl, mephenate, methoxyphenone naphthalic anhydride (1,8-naphthalic anhydride), oxabetrinil, N-(aminocarbonyl)-2-methylbenzenesulfonamide, N-(aminocarbonyl)- 2-fluorobenzenesulfonamide, l-bromo-4-[(chloromethyl)sulfonyl]benzene (BCS), 4- (dichloroacetyl)-l-oxa-4-azospiro[4.5]decane (MON 4660), 2-(dichloromethyl)-2-methyl- 1,3-dioxolane (MG 191), ethyl l,6-dihydro-l-(2-methoxyphenyl)-6-oxo-2-phenyl-5- pyrimidinecarboxylate, 2-hydroxy-N,N-dimethyl-6-(trifluoromethyl)pyridine-3- carboxamide, and 3-oxo-l-cyclohexen-l-yl l-(3,4-dimethylphenyl)-l,6-dihydro-6-oxo-2- phenyl-5-pyrimidinecarboxylate to increase safety to certain crops. Antidotally effective amounts of the herbicide safeners can be applied at the same time as the compounds of this invention, or applied as seed treatments. Therefore an aspect of the present invention relates to a herbicidal mixture comprising a compound of this invention and an antidotally effective amount of a herbicide safener. Seed treatment is particularly useful for selective weed control, because it physically restricts antidoting to the crop plants. Therefore a particularly useful embodiment of the present invention is a method for selectively controlling the growth of undesired vegetation in a crop comprising contacting the locus of the crop with a herbicidally effective amount of a compound of this invention wherein seed from which the crop is grown is treated with an antidotally effective amount of safener. Antidotally effective amounts of safeners can be easily determined by one skilled in the art through simple experimentation.

Of note is a composition comprising a compound of the invention (in a herbicidally effective amount), at least one additional active ingredient selected from the group consisting of other herbicides and herbicide safeners (in an effective amount), and at least one component selected from the group consisting of surfactants, solid diluents and liquid diluents.

Table Al lists specific combinations of a Component (a) with Component (b) illustrative of the mixtures, compositions and methods of the present invention. Compound 1 in the Component (a) column is identified in Index Table A. The second column of Table Al lists the specific Component (b) compound (e.g., "2,4-D" in the first line). The third, fourth and fifth columns of Table Al lists ranges of weight ratios for rates at which the Component (a) compound is typically applied to a field-grown crop relative to Component (b) (i.e. (a):(b)). Thus, for example, the first line of Table Al specifically discloses the combination of Component (a) (i.e. Compound 1 in Index Table A) with 2,4-D is typically applied in a weight ratio between 1 : 168 - 6: 1. The remaining lines of Table Al are to be construed similarly. TABLE Al

Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 2,4-D 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Acetochlor 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Acifluorfen 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Aclonifen 1:750 to 2:1 1:250 to 1:3 1:75 to 1:9

1 Alachlor 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Ametryn 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Amicarbazone 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Amidosulfuron 1:6 to 150:1 1:2 to 50:1 1:1 to 15:1

1 Aminocyclopyrachlor 1:42 to 22:1 1:14 to 8:1 1:4 to 3:1

1 Aminopyralid 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Amitrole 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Anilofos 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Asulam 1:840 to 2:1 1:280 to 1:3 1:84 to 1:10

1 Atrazine 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Azimsulfuron 1:6 to 150:1 1:2 to 50:1 1:1 to 15:1

1 Beflubutamid 1:300 to 3:1 1:100 to 1:1 1:30 to 1:4

1 Benfuresate 1:540 to 2:1 1:180 to 1:2 1:54 to 1:6

1 Bensulfuron-methyl 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Bentazon 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Benzobicyclon 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1

1 Benzofenap 1:225 to 4:1 1:75 to 2:1 1:22 to 1:3

1 Bicyclopyrone 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Bifenox 1:225 to 4:1 1:75 to 2:1 1:22 to 1:3

1 Bispyribac-sodium 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Bromacil 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Bromobutide 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Bromoxynil 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Butachlor 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Butafenacil 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Butylate 1:1350 to 1:2 1:450 to 1:5 1:135 to 1:15

1 Carfenstrole 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Carfentrazone-ethyl 1:112 to 8:1 1:37 to 3:1 1:11 to 1:2

1 Chlorimuron-ethyl 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Chlorotoluron 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Chlorsulfuron 1:6 to 150:1 1:2 to 50:1 1:1 to 15:1

1 Cincosulfuron 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Cinidon-ethyl 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Cinmethylin 1:30 to 30:1 l:10to 10:1 1:3 to 3:1

1 Clacyfos 1:84 to 6:1 1:28 to 2:1 1:16 to 1:2

1 Clethodim 1:42 to 22:1 1:14 to 8:1 1:4 to 3:1

1 Clodinafop-propargyl 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Clomazone 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Clomeprop 1:150 to 6:1 1:50 to 2:1 1:15 to 1:2

1 Clopyralid 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Cloransulam-methyl 1:10 to 86:1 1:3 to 29:1 1:1 to 9:1

1 Cumyluron 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Cyanazine 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Cyclopyrimorate 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Cyclosulfamuron 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Cycloxydim 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Cyhalofop 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Daimuron 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Desmedipham 1:282 to 4:1 1:94 to 2:1 1:28 to 1:4

1 Dicamba 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Dichlobenil 1:1200 to 1:2 1:400 to 1:4 1:120 to 1:14

1 Dichlorprop 1:810 to 2:1 1:270 to 1:3 1:81 to 1:9

1 Diclofop-methyl 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Diclosulam 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Difenzoquat 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Diflufenican 1:750 to 2:1 1:250 to 1:3 1:75 to 1:9

1 Diflufenzopyr 1:10 to 86:1 1:3 to 29:1 1:1 to 9:1

1 Dimethachlor 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Dimethametryn 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Dimethenamid-p 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Dithiopyr 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Diuron 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 EPTC 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Esprocarb 1:1200 to 1:2 1:400 to 1:4 1:120 to 1:14

1 Ethalfluralin 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Ethametsulfuron-methyl 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Ethoxyfen 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Ethoxysulfuron 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Etobenzanid 1:225 to 4:1 1:75 to 2:1 1:22 to 1:3

1 Fenoxaprop-ethyl 1:105 to 9:1 1:35 to 3:1 1:10 to 1:2

1 Fenoxasulfone 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1

1 Fenquinotrione 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Fentrazamide 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Flazasulfuron 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Florasulam 1:2 to 375:1 1:1 to 125:1 4:1 to 38:1

1 Fluazifop-butyl 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Flucarbazone 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Flucetosulfuron 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Flufenacet 1:225 to 4:1 1:75 to 2:1 1:22 to 1:3

1 Flumetsulam 1:21 to 43:1 1:7 to 15:1 1:2 to 5:1

1 Flumiclorac-pentyl 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Flumioxazin 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Fluometuron 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Flupyrsulfuron-methyl 1:3 to 300:1 1:1 to 100:1 3:1 to 30:1

1 Fluridone 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Fluroxypyr-meptyl 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Flurtamone 1:750 to 2:1 1:250 to 1:3 1:75 to 1:9

1 Fluthiacet-methyl 1:42 to 38:1 1:14 to 13:1 1:2 to 5:1

1 Fomesafen 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Foramsulfuron 1:12 to 75:1 1:4 to 25:1 1:1 to 8:1

1 Glufosinate 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Glyphosate 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Halauxifen 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Halauxifen-methyl 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Halosulfuron-methyl 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Haloxyfop-methyl 1:30 to 30:1 l:10to 10:1 1:3 to 3:1

1 Hexazinone 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Imazamox 1:12 to 75:1 1:4 to 25:1 1:1 to 8:1

1 Imazapic 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Imazapyr 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Imazaquin 1:30 to 30:1 1:10 to 10:1 1:3 to 3:1

1 Imazethabenz-methyl 1:150 to 6:1 1:50 to 2:1 1:15 to 1:2

1 Imazethapyr 1:21 to 43:1 1:7 to 15:1 1:2 to 5:1

1 Imazosulfuron 1:24 to 38:1 1:8 to 13:1 1:2 to 4:1

1 Indanofan 1:300 to 3:1 1:100 to 1:1 1:30 to 1:4

1 Indaziflam 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 lodosulfuron-methyl 1:3 to 300:1 1:1 to 100:1 3:1 to 30:1

1 Ioxynil 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Ipfencarbazone 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1

1 Isoproturon 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Isoxaben 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Isoxaflutole 1:52 to 18:1 1:17 to 6:1 1:5 to 2:1

1 Lactofen 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Lenacil 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Linuron 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 MCPA 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 MCPB 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Mecoprop 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Mefenacet 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Mefluidide 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Mesosulfuron-methyl 1:4 to 200:1 1:1 to 67:1 2:1 to 20:1

1 Mesotrione 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Metamifop 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Metazachlor 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Metazosulfuron 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Methabenzthiazuron 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Metolachlor 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Metosulam 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Metribuzin 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Metsulfuron-methyl 1:1 to 500:1 1:1 to 167:1 5:1 to 50:1

1 Molinate 1:900 to 1:1 1:300 to 1:3 1:90 to 1:10

1 Napropamide 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Napropamide-M 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Naptalam 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Nicosulfuron 1:10 to 86:1 1:3 to 29:1 1:1 to 9:1 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Norflurazon 1:1008 to 1:2 1:336 to 1:4 1:100 to 1:12

1 Orbencarb 1:1200 to 1:2 1:400 to 1:4 1:120 to 1:14

1 Orthosulfamuron 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Oryzalin 1:450 to 2:1 1:150 to 1:2 1:45 to 1:5

1 Oxadiargyl 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Oxadiazon 1:480 to 2:1 1:160 to 1:2 1:48 to 1:6

1 Oxasulfuron 1:24 to 38:1 1:8 to 13:1 1:2 to 4:1

1 Oxaziclomefone 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Oxyfluorfen 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Paraquat 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Pendimethalin 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Penoxsulam 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Penthoxamid 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Pentoxazone 1:90 to 10:1 1:30 to 4:1 1:9 to 1:1

1 Phenmedipham 1:90 to 10:1 1:30 to 4:1 1:9 to 1:1

1 Picloram 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Picolinafen 1:30 to 30:1 l:10to 10:1 1:3 to 3:1

1 Pinoxaden 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Pretilachlor 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Primisulfuron-methyl 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Prodiamine 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Profoxydim 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Prometryn 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Propachlor 1:1008 to 1:2 1:336 to 1:4 1:100 to 1:12

1 Propanil 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Propaquizafop 1:42 to 22:1 1:14 to 8:1 1:4 to 3:1

1 Propoxycarbazone 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Propyrisulfuron 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Propyzamide 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Prosulfocarb 1:1050 to 1:2 1:350 to 1:4 1:105 to 1:12

1 Prosulfuron 1:6 to 150:1 1:2 to 50:1 1:1 to 15:1

1 Pyraclonil 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Pyraflufen-ethyl 1:4 to 200:1 1:1 to 67:1 2:1 to 20:1

1 Pyrasulfotole 1:12 to 75:1 1:4 to 25:1 1:1 to 8:1

1 Pyrazolynate 1:750 to 2:1 1:250 to 1:3 1:75 to 1:9 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Pyrazosulfuron-ethyl 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Pyrazoxyfen 1:4 to 200:1 1:1 to 67:1 2:1 to 20:1

1 Pyribenzoxim 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Pyributicarb 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Pyridate 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Pyriftalid 1:9 to 100:1 1:3 to 34:1 1:1 to 10:1

1 Pyriminobac -methyl 1:18 to 50:1 1:6 to 17:1 1:1 to 5:1

1 Pyrimisulfan 1:15 to 60:1 1:5 to 20:1 1:1 to 6:1

1 Pyrithiobac 1:21 to 43:1 1:7 to 15:1 1:2 to 5:1

1 Pyroxasulfone 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1

1 Pyroxsulam 1:4 to 200:1 1:1 to 67:1 2:1 to 20:1

1 Quinclorac 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Quizalofop-ethyl 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Rimsulfuron 1:12 to 75:1 1:4 to 25:1 1:1 to 8:1

1 Saflufenacil 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Sethoxydim 1:84 to 11:1 1:28 to 4:1 1:8 to 2:1

1 Simazine 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Sulcotrione 1:105 to 9:1 1:35 to 3:1 1:10 to 1:2

1 Sulfentrazone 1:129 to 7:1 1:43 to 3:1 1:12 to 1:2

1 Sulfometuron-methyl 1:30 to 30:1 1:10 to 10:1 1:3 to 3:1

1 Sulfosulfuron 1:7 to 120:1 1:2 to 40:1 1:1 to 12:1

1 Tebuthiuron 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Tefuryltrione 1:37 to 24:1 1:12 to 8:1 1:3 to 3:1

1 Tembotrione 1:27 to 33:1 1:9 to 11:1 1:2 to 4:1

1 Tepraloxydim 1:22 to 40:1 1:7 to 14:1 1:2 to 4:1

1 Terbacil 1:252 to 4:1 1:84 to 2:1 1:25 to 1:3

1 Terbuthylatrazine 1:750 to 2:1 1:250 to 1:3 1:75 to 1:9

1 Terbutryn 1:168 to 6:1 1:56 to 2:1 1:16 to 1:2

1 Thenylchlor 1:75 to 12:1 1:25 to 4:1 1:7 to 2:1

1 Thiazopyr 1:336 to 3:1 1:112 to 1:2 1:33 to 1:4

1 Thiencarbazone 1:3 to 300:1 1:1 to 100:1 3:1 to 30:1

1 Thifensulfuron-methyl 1:4 to 200:1 1:1 to 67:1 2:1 to 20:1

1 Thiobencarb 1:672 to 2:1 1:224 to 1:3 1:67 to 1:8

1 Topramazone 1:6 to 150:1 1:2 to 50:1 1:1 to 15:1

1 Tralkoxydim 1:60 to 15:1 1:20 to 5:1 1:6 to 2:1 Component (a) Typical More Typical Most Typical (Compound #) Component (b) Weight Ratio Weight Ratio Weight Ratio

1 Triafamone 1:3 to 38:1 1:1 to 13:1 1: 1 to 8:1

1 Triallate 1:672 to 2: 1 1:224 to 1:3 1:67 to 1:8

1 Triasulfuron 1:4 to 200: 1 1:1 to 67:1 2:1 to 20:1

1 Triaziflam 1:150 to 6: 1 1:50 to 2:1 1: 15 to 1:2

1 Tribenuron-methyl 1:3 to 300: 1 1: 1 to 100: 1 3:1 to 30: 1

1 Triclopyr 1:168 to 6: 1 1:56 to 2:1 1:16 to 1:2

1 Trifloxysulfuron 1:2 to 375: 1 1: 1 to 125: 1 4:1 to 38: 1

1 Trifluralin 1:252 to 4: 1 1:84 to 2: 1 1:25 to 1:3

1 Triflusulfuron-methyl 1: 15 to 60: 1 1:5 to 20:1 1: 1 to 6:1

1 Tritosulfuron 1: 12 to 75: 1 1:4 to 25:1 1: 1 to 8:1

Table A2 is constructed the same as Table Al above except that entries below the "Component (a)" column heading are replaced with the respective Component (a) Column Entry shown below. Compound 1 in the Component (a) column is identified in Index Table A. Thus, for example, in Table A2 the entries below the "Component (a)" column heading all recite "Compound 12" (i.e. Compound 12 identified in Index Table A), and the first line below the column headings in Table A2 specifically discloses a mixture of Compound 12 with 2,4-D. Tables A3 through A9 are constructed similarly.

Table Number Component (a) Column Entries Table Number Component (a) Column Entries

A2 Compound 12 Al l Compound 53

A3 Compound 15 A12 Compound 55

A4 Compound 21 A13 Compound 62

A5 Compound 23 A14 Compound 63

A6 Compound 24 A15 Compound 144

A7 Compound 27 A16 Compound 145

A8 Compound 32 A17 Compound 168

A9 Compound 42 A18 Compound 200

A10 Compound 35

Preferred for better control of undesired vegetation (e.g., lower use rate such as from synergism, broader spectrum of weeds controlled, or enhanced crop safety) or for preventing the development of resistant weeds are mixtures of a compound of this invention with a herbicide selected from the group consisting of chlorimuron-ethyl, nicosulfuron, diuron, hexazinoe, thifensulfuron-methyl and S-metolachlor.

The compounds of the present invention are useful for the control of weed species that are resistant to herbicides with the AHAS-inhibitor or (b2) [chemical compound that inhibits acetohydroxy acid synthase (AHAS), also known as acetolactate synthase (ALS)] mode of action.

The following Tests demonstrate the control efficacy of the compounds of this invention against specific weeds. The weed control afforded by the compounds is not limited, however, to these species. See Index Table A for compound descriptions. Mass spectra are reported as the molecular weight of the highest isotopic abundance parent ion (M+1) formed by addition of H + (molecular weight of 1) to the molecule, observed by mass spectrometry using atmospheric pressure chemical ionization (AP + ) or electrospray ionization (ESI). The following abbreviations are used in the Index Table A which follow: Ph is phenyl, pyridyl is pyridinyl, OEt is ethoxy, CN is cyano, , CHO is formyl, t-Bu is tertiary-butyl, z ' -Pr is z ' so-propyl, c-Pr is cyclopropyl, Me is methyl, Et is ethyl and C(=0)CH3 is acyl. The abbreviation "Ex." stands for "Example" and is followed by a number indicating in which example the compound is prepared.

INDEX TABLE A

M.S.(AP+)

No. Q (R 3 ) m or m.p.

1 5-Cl-2-pyridyl CI m = 0

2 6-N(CH 3 ) 2 -3 -pyridyl CI m = 0 327 a

3 5-Cl-2-pyrimidinyl CI m = 0 320 a

4 3 -pyridyl CI m = 0 285 a

5 l,3,4-oxadiazol-2-yl Br m = 0 319

6 l,3,4-oxadiazol-2-yl CI m = 0 275

7 5-oxazolyl CI m = 0 274 a

8 4- thiazolyl CI m = 0 290

9 5- thiazolyl CI m = 0 290

10 l-CH 3 -l#-pyrazol-3-yl CI m = 0

11 l-CH 3 -l#-pyrazol-4-yl CI m = 0

12 3 -Br-5 -isoxazolyl CI m = 0 352

13 5-thiazolyl CF 3 m = 0 324

14 4-thiazolyl CF 3 m = 0 324

15 2-Br-5-thiazolyl CF 3 m = 0 402 M.S.(AP+)

No. Q R2 (R 3 )m or m.p.

16 6-Cl-2-pyridyl CI m = 0 319a *

17 6-Cl-2-pyridyl Br m = 0 363 a *

18 4-Cl-2-pyrimidinyl CI m = 0 320 a *

19 6-CF3-2-pyridyl CI m = 0 352 a *

20 2-CF3 -4-pyrmidinyl CI m = 0 353 a *

21 2-CF3 -4-pyrmidinyl Br m = 0 398 a *

22 6-CF3-3-pyridyl CI 4-CH3 366 a

23 5-Cl-2-pyidyl CI 3 -CI *

24 2-CF 3 -4-pyridyl CI 4-CH3 366

25 4-CF 3 -2-pyridyl CI m = 0 352

26 4-CF 3 -2-pyridyl Br m = 0 397

27 5-CF3-2-pyridyl CI m = 0 352

28 5-CF3-2-pyridyl Br m = 0 397

29 l-CH 3 -3-CF 3 -l /-pyrazol-5-yl CI m = 0 355

30 1 -CH 3 -3 -CF 3 - l#-pyrazol-5-yl Br m = 0 399

31 5-CH 2 OH-3-isoxazolyl CI m = 0 304

32 5-CH2F-3-isoxazolyl CI m = 0 306

33 5 -CHO-3 -isoxazolyl CI m = 0 302

34 5-CH2Cl-3-isoxazolyl CI m = 0 322

35 5-CF2H-3-isoxazolyl CI m = 0 324

36 5-CH 2 CN-3-isoxazolyl CI m = 0 31 1 b

37 5-CH=NOH-3-isoxazolyl CI m = 0 317

38 5-CN-3-isoxazolyl CI m = 0 299 a

39 3-CF3-PI1 CI 4-CH3 365

40 3-OCF3-PI1 CI m = 0 367 a *

41 3,5-di-Cl-Ph CI m = 0 352 a

42 4-OCF3-PI1 CI m = 0 367 a

44 3-OCF3-PI1 CI 4-CH3 381 a *

45 3-OCF3-PI1 CI 6-OCF3 397a

46 3-OCF3-PI1 CI 3-F 385 a *

47 1 -methyl- l /-tetrazol-5-yl CI m = 0 289

48 2-methyl-2 /-tetrazol-5-yl CI m = 0 289

49 1 -methyl- l /-tetrazol-5-yl Br m = 0 334

50 2-methyl-2 /-tetrazol-5-yl Br m = 0 334

51 1 -methyl- IH- 1 ,2,3 -triazol-4-yl CI m = 0 288 M.S.(AP+)

No. Q R2 (R 3 )m or m.p.

52 1 -methyl- \H- l,2,3-triazol-5-yl CI m = 0 288

53 3-CHF2-5-isoxazolyl CI m = 0 324

54 6-CF3 -4-pyrimidinyl CI m = 0 *

55 5 -CHF2 -3 -isoxazolyl CI 3-F 96-98

56 5-CHO-3-isoxazolyl CI 3-F 137-139

57 5-CH2F-3-isoxazolyl CI 3-F 324

58 3 -CH3 -5 - isoxazolyl CI m = 0 288

59 5 - ( /-Bu) - 3 -i sox azolyl CI m = 0 330

60 5 -CH 3 -3 -isoxazolyl CI m = 0 288

61 2-oxazolyl CI m = 0 274

62 5-CHF2-3-isoxazolyl Br m = 0 89-93

63 3-CF3-5-isoxazolyl CI m = 0 342

64 3 -CF3 -5-isoxazolyl Br m = 0 388

65 3-CHF2-5-isoxazolyl CI 5-F 342

66 3-CHF2-5-isoxazolyl Br 5-F 387

67 3-CClF2-5-isoxazolyl CI m = 0 359

68 3-CHF2-5-isoxazolyl CI 6-F 342

69 3-CHF2-5-isoxazolyl Br 6-F 387

70 2-CH3-4-oxazolyl CI m = 0 288

71 2-CF3-4-pyridinyl CI m = 0 352

72 2-CF3 -4-pyridinyl Br m = 0 396

73 1 -(z-Pr)- IH- 1 ,2,4-triazol-3 -yl CI m = 0 316

74 3-(c-Pr)-5-isoxazolyl CI m = 0 314

75 3-CHF2-5-isoxazolyl CI 4-F 342

76 3-CHF2-5-isoxazolyl Br 4-F 387

77 3,5-di-Me-4-isoxazolyl CI 3-F 320

78 3 , 5 -di-Me-4-isoxazolyl CI m = 0 302

79 2-CH 2 CF 3 -2//-l,2,4-triazol-3-yl CI m = 0 102-106

80 2-CF3 -4-pyridinyl F m = 0 336

81 2-CF3 -4-pyridinyl CI 3-F 370

82 2-CF3-4-pyridinyl Br 3-F 414

83 2-CF3 -4-pyridinyl CH 3 3-F 350

84 3-CF3-5-isoxazolyl CI 4-F 360

85 3 -CF3 -5 -isoxazolyl Br 4-F 405

86 5-(C≡CH)-3-isoxazolyl CI m = 0 156-160

87 2-CF3 -4-pyridinyl F 3-F 354 M.S.(AP+) o. Q R2 (R 3 )m or m.p.

88 5-(OCH 2 CF 2 H)-3-isoxazolyl CI m = 0 352

89 1 -Et-3-CF 3 - l#-pyrazol-5-yl CI 3-CN 394

90 l-(/-Pr)-3-CF 3 -l//-pyrazol-5-yl CI 3-CN 408

91 5-(CH=CF 2 )-3-isoxazolyl CI 3-F 354

92 3-(c-Pr)-5-isoxazolyl Br m = 0 359

93 1 -CH 2 CF 3 - IH- 1 ,2,4-triazol-3 -yl CI m = 0 155-158

94 5-(OCH 2 CF 3 )-3-isoxazolyl CI m = 0 85-89

95 3-CHF 2 -5-isoxazolyl CF 3 3-F 376

96 5-CHF 2 -3-isoxazolyl CI 3-Cl, 4-F 376

97 5-CHCl 2 -3-isoxazolyl CI m = 0 88-91

98 3-CHF 2 -5-isoxazolyl CF 3 m = 0 358

99 5-(C≡CCF 3 )-3-isoxazolyl CI m = 0 63-65

100 3 -CHF 2 - 1 ,2,4-oxadiazol-5-yl CI m = 0 107-109

101 3-CHF 2 -5-isoxazolyl CI 3-CH 3 338

102 3-CHF 2 -5-isoxazolyl Br 3-CH 3 383

103 3-CHF 2 -5-isoxazolyl CI 3-OMe 354

104 3 -CF 3 -5-isoxazolyl CI 3-OMe 372

105 5 -CF 3 -3 -isoxazolyl CI 3-OMe 372

106 5-CH 3 -l,3,4-oxadiazol-2-yl CI m = 0 289

107 3-CHF 2 -5-isoxazolyl CI 3,5-di-F 358

108 3-CH(OEt) 2 -5-isoxazolyl CI m = 0 398 c

109 5-CHF 2 -3-isoxazolyl CI 3-OMe 354

1 10 3-CH 3 -5-isoxazolyl CI 3-OMe 318

1 1 1 3-CH 3 -5-isoxazolyl F 3-OMe 302

1 12 3-thienyl CI 3-CN 103-105

1 13 5-CHF 2 -3-isoxazolyl CI 3,4-di-F 102-105

1 14 5-CHF 2 -3-isoxazolyl CI 3 -Br, 4-F 420

1 15 l-CH 3 -l#-l,2,4-triazol-3-yl CI m = 0 1 19-122

1 16 5-CHClF-3-isoxazolyl CI m = 0 108-1 12

1 17 1 -CH 3 - IH- 1 ,2,4-triazol-5-yl CI m = 0 134-138

1 18 5-CHF 2 -3-isoxazolyl Br 3-F 386

1 19 3 -Br-5 -isoxazolyl Br m = 0 398

120 3-CHF 2 -5-isoxazolyl CI 3-Cl 359

121 3-CHF 2 -5-isoxazolyl Br 3-Cl 403

122 5-(c-Pr)- 1 ,3 ,4-oxadiazol-2-yl CI m = 0 315

123 1 -(z ' -Pr)- IH- 1 ,2,4-triazol-5-yl CI m = 0 316 M.S.(AP+) o. Q 2 (R 3 )m or m.p.

124 3-CF3-5-isoxazolyl CI 5-F 360

125 3-CF3-5-isoxazolyl Br 5-F 405

126 3 -CF3 -5 -isoxazolyl CI 3 -CI 377

127 3 -CF3 -5 -isoxazolyl Br 3 -CI 421

128 3 -(CH 2 OCH 2 CF 3 )-5-isoxazolyl CI m = 0 386

129 3-(CH 2 OCH 2 CF 3 )-5-isoxazolyl Br m = 0 430 a

130 5-(c-Pr)-3-isoxazolyl CI 3-F 332

131 5 -CHF 2 -3 -isoxazolyl CI 3-OCHF 2 390

132 3-CHF 2 -5-isoxazolyl CI 3-OCHF 2 390

133 5-CHFCF 3 -3-isoxazolyl CI m = 0 374

134 3,5-di-Me-4-isoxazolyl CI 3-CN *

135 5-Cl-2-pyridinyl CI 3 -Br *

136 2-Me-5-CF 3 -2 /-pyrazol-3-yl CI 3-CN 380

137 4-CF 3 -2-thiazolyl CI m = 0 358

138 4-CF 3 -2-thiazolyl I m = 0 450

139 4-CF 3 -2-thiazolyl Br m = 0 403

140 5-CHO-3-furanyl CI m = 0 *

141 5-CHF 2 -3-furanyl CI m = 0 *

142 5-CF 2 CF3 -3 -isoxazolyl CI m = 0 392

143 5-CF 2 Cl-3-isoxazolyl CI m = 0 358

144 3-CHF 2 -5-isoxazolyl CI 3-F 342

145 3-CHF 2 -5-isoxazolyl Br 3-F 387

146 l-Me-5-CF 3 -l#-pyrazol-3-yl CI 3-CN 380

147 1 -Me-5-CF 3 - l /-pyrazol-3 -yl CI 3 -Br 434

148 5-C0 2 Et-3-isoxazolyl CI m = 0 346

149 5-CF 2 CH3-3-isoxazolyl Br m = 0 *

150 5-C(=0)CH 3 -3-isoxazolyl Br m = 0 360

151 1 -Me- l//-imidazol-2-yl CI m = 0 287

152 1 -Me- li/-imidazol-2-yl Br m = 0 332

153 5-CH3-3-isoxazolyl CI m = 0 288

154 5-isoxazolyl CI m = 0 274

155 5-isoxazolyl Br m = 0 319

156 5-CF3-3-isoxazolyl CI 3-1 *

157 5-CF3-3-isoxazolyl CI 3-CN 367

158 4-CF3 -2-pyridinyl CI 3-CN 377

159 4-CF3-2-pyridinyl CI 3 -CI 386 M.S.(AP+) o. Q R2 (R 3 )m or m.p.

160 5-CF3-2-pyridinyl CI 3 -CI 386

161 1 -CH 2 CF 3 - l#-imidazol-4-yl CI m = 0 *

162 5-CBrF2-3-isoxazolyl CI m = 0 402

163 2-pyrazinyl CI m = 0 79-82

164 2-pyrazinyl F m = 0 95-97

165 2-pyrazinyl CI 3-F 303

166 2-pyrazinyl F 3-F 287

167 4-Me-5-CF3-3-isoxazolyl CI m = 0 356

168 5 -CF3 -3 -isoxazolyl CI 3-F 360

169 5 -CF3 -3 -isoxazolyl CI 3 -CI 376

170 5 -CF3 -3 -isoxazolyl CI 3 -Br 420

171 3 -CH3 -5-isothiazolyl CI m = 0 304

172 1 ,2,4-thiadiazol-5-yl CI m = 0 132-135

173 5 -CF2CH3 -3 -isoxazolyl CH 3 m = 0 *

174 4-Cl-2-pyridinyl CI m = 0 319

175 4-F-2-pyridinyl CI m = 0 302

176 3-(OCH 2 CF 3 )-5-isoxazolyl CI m = 0 372

177 3-Et-5-isoxazolyl CI m = 0 318

178 3 -CF2CH3 -5 -isoxazolyl CI m = 0 338

179 5-CHF2-3-isoxazolyl CI 3 -CI 358

180 5-CHF2-3-isoxazolyl CI 3-CN 349

181 5-Br-2-thienyl CI m = 0 368

182 2-thienyl CI m = 0 290

183 5-(c-Pr)-3-isoxazolyl CI m = 0 314

184 6-CHF2-4-pyrimidinyl CI m = 0 334

185 3 -isoxazolyl CI m = 0 274

186 6-C1-3 -pyridazinyl CI m = 0 319

187 4-Me-2-pyridinyl CI m = 0 298

188 4-CN-2-pyridinyl CI m = 0 309

189 5-Cl-3-pyridazinyl CI m = 0 320

190 6-Cl-4-pyrimidinyl CI m = 0 320

191 5 -CH2F-3 -isoxazolyl CI 3 -Br 384

192 5-Cl-3-isothiazolyl CI m = 0 86-88

193 5-Cl-3-isothiazolyl F m = 0 100-102

194 5-Cl-3-isothiazolyl CH 3 m = 0 78-82

195 5-CHO-3-isoxazolyl CI 3 -Br 379 M.S.(AP+)

No. Q R2 (R 3 )m or m.p.

196 3-C(CH3)=CH 2 -5-isoxazolyl CI m = 0 314

197 3-C(CH3)=CH 2 -5-isoxazolyl Br m = 0 359

198 5-CFCl2-3-isoxazolyl CI m = 0 374

199 2-thiazolyl CI m = 0 290

200 5 -CF3 -3 -isoxazolyl CI m = 0 342

201 3-N0 2 ,5-Cl-2-pyridinyl CI m = 0 363 a

202 5-Cl-2-pyridinyl CI 3-CN 344

203 5-Cl-2-pyridinyl CI 5-Br 398

204 5-Cl-2-pyridinyl Br 3-CN 388

205 5-Cl-2-pyridinyl CI 3-1 445

206 5-CF3-3-isoxazolyl F m = 0 326

207 5-Cl-2-pyridinyl F 3-CN 327

208 5-Cl-2-pyridinyl CI 3-& 464

209 4-Br- l /-pyrazol- 1 -yl CI 6-CN 377

210 3-CHF2-5-isoxazolyl F m = 0 308

21 1 3-CHF2-5-isoxazolyl CH 3 m = 0 304

212 3-CHF2-5-isoxazolyl Br m = 0 369

213 3 -CHF2-5-isoxazolyl OMe m = 0 320

214 4-oxazolyl CI m = 0 274

215 5-C(=0)CH 3 -3 -isoxazolyl CI m = 0 316

216 4-CH 3 -2-thienyl CI m = 0 303

217 1 -CH 2 CF 3 - l^-imidazol-4-yl CI 3-F 373

218 3 -C(=0)CH 3 -5-isoxazolyl CI m = 0 316

219 4-OMe-2-pyridinyl CI m = 0 314

220 5 -CF2CH3 -3 -isoxazolyl CI m = 0 338

221 5-CFCl2-3-isoxazolyl CI 4-F 129-132

222 5-CN-3-isoxazolyl CI 3-F 317

223 3-CN-5-isoxazolyl CI m = 0 297

224 3 -CH2F -5 -isoxazolyl CI m = 0 306

225 3-C02Et-5-isoxazolyl CI m = 0 346

226 5-CFH2-3-isoxazolyl CI m = 0 320

227 6-OCH 2 CF 3 -4-pyrimidinyl CI m = 0 383

228 3 -CF3 -5 -isoxazolyl CI 3-F 360

229 3 -CH3 -5 -isoxazolyl CI 3-F 306

230 3 -CH3 -5-isoxazolyl Br 3-F 351

231 3-thienyl CI m = 0 289 M.S.(AP+)

No. Q R2 (R 3 )m or m.p.

232 3-thienyl Br m = 0 334

233 5-isothiazolyl CI m = 0 290

234 5-isothiazolyl Br m = 0 335

235 5-C02 e-3-isoxazolyl CI m = 0 332

236 5-CF(CH 3 ) 2 -3-isoxazolyl CI m = 0 334

237 1 -Me-5-CF 3 - l#-pyrazol-3 -yl CI m = 0 355

a ES+ b AP-, C M+Na.

* See Index Table B for l R NMR data.

& 4-Br-l /-pyrazol-l-yl

INDEX TABLE B

Cmpd ^H NMR (CDCI3 solution unless indicated otherwise) 2

I 8.54 (d, IH), 8.39 (s, 2H), 7.87 (d, IH), 7.69 (d, IH), 7.60 (m, IH), 7.50 (m, IH), 7.42 (m, IH), 7.24 (d, IH)

10 8.43 (s, 2H), 8.03 (m, 2H), 7.36 (m, 2H), 7.26 (m, IH), 7.19 (m, IH), 6.56 (s, IH), 3.85 (s, 3H)

I I 8.45 (s, 2H), 7.77 (s, IH), 7.72 (s, IH), 7.62 (m, IH), 7.32 (m, 2H), 7.18 (m, IH), 3.86 (s, 3H)

16 8.41 (s, 2H), 7.88 (m, IH), 7.64 (m, IH), 7.59 (m, IH), 7.50 (m, IH), 7.40 (m, IH), 7.24 (m, IH), 7.18 (m, IH)

17 8.49 (s, 2H), 7.88 (m, IH), 7.64 (m, IH), 7.58 (m, IH), 7.50 (m, IH), 7.41 (m, IH), 7.25 (m, IH), 7.17 (m, IH)

18 8.55 (m, IH), 8.43 (s, 2H), 8.05 (m, IH), 7.75 (m, IH), 7.58 (m, IH), 7.45 (m, IH), 7.26 (m, IH)

19 8.41 (s, 2H), 7.89 (m, 2H), 7.82 (m, IH), 7.54 (m, 2H), 7.43 (m, lH), 7.26 (m, IH)

20 8.82 (m, IH), 8.52 (s, 2H), 8.06 (m, IH), 7.96 (m, IH), 7.61 (m, IH), 7.48 (m, IH), 7.30 (m, IH)

21 8.83 (d, IH), 8.52 (s, 2H), 8.08 (m, IH), 7.97 (d, IH), 7.62 (m,lH), 7.47 (m, IH), 7.30 (m, IH) 23 8.52 (m, IH), 8.40 (s, 2H), 7.66 (m, IH), 7.43 (m, 2H), 7.33 (m, IH), 7.18 (m, IH)

40 8.26 (s, 2H), 7.39 (m, 2H), 7.32 (m, 2H), 7.27 (m, IH), 7.24 (s, IH), 7.17 (m, IH), 7.02 (d, IH)

44 8.33 (s, 2H), 7.39 (s, IH), 7.28-7.34 (m, 2H), 7.25 (m, 2H), 7.12 (d, IH), 7.07 (m, IH), 2.43 (s, 3H)

46 (300 MHz) 8.33 (S, 2H), 7.43 (m, IH), 7.34 (m, 2H), 7.22 (s, IH), 7.10 (m, 3H)

54 9.42 (s, lH), 8.43 (s,2H), 8.12 (s,lH), 8.05 (d, lH), 7.72 (m,lH), 7.53 (m, lH), 7.32 (m,lH)

134 8.36 (s, 2 H), 7.74 (m, 1 H), 7.62 (m, 1 H), 7.48 - 7.56 (m, 1 H), 2.33 (s, 3 H), 2.22 (s, 3 H)

135 7.22 (m, IH), 7.31 (m, IH), 7.36 (m, IH), 7.65 (m, 2H), 8.40 (s, 2H), 8.52 (m, IH)

140 9.60 (s, lH), 8.44 (s,2H), 8.05 (s,lH), 7.59 (d, lH), 7.54 (s,lH), 7.43 (t,lH), 7.37 (t,lH), 7.23 (d,lH)

141 8.43 (s,2H), 7.86 (s,lH), 7.57 (d,lH), 7.37 (t,lH), 7.34 (t,lH), 7.22 (d,lH), 6.98 (s, lH), 6.57 (t,lH) 149 8.54 (2, 2H), 7.96 (dd, 1H), 7.49-7.63 (m, 1H), 7.42 (t, 1H), 7.26-7.29 (m, 1H), 6.86 (t, 1H), 2.00 (t, 3H)

156 7.06 - 7.08 (m, 1 H) 7.18 (s, 1 H) 7.93 (s, 1 H) 8.01 - 8.06 (m, 1 H) 8.46 (s, 2 H)

161 8.34 (s,2H), 6.59 (s,lH), 6.56 (t,lH), 6.40-6.48 (m,2H), 7.28 (d, lH), 6.92 (s,lH), 6.55 (q,2H)

173 8.34 (s, 2H), 7.99 (dd, 1H), 7.51-7.59 (m, 1H), 7.38 (dt, 1H), 7.26-7.31 (m, 1H), 6.90 (t, 1H), 2.25 (s, 3H), 1.99 (t, 3H)

z NMR data are in ppm downfield from tetramethylsilane at 500 MHz unless otherwise indicated.

Couplings are designated by (s)-singlet, (d)-doublet and (m)-multiplet.

BIOLOGICAL EXAMPLES OF THE INVENTION

TEST A

Seeds of plant species selected from downy bromegrass (Bromus tectorum), cocklebur (common cocklebur, Xanthium strumarium), wild oat (Avena fatua), barnyardgrass (Echinochloa crus-galli), large (Lg) crabgrass {Digitaria sanguinalis), giant foxtail {Setaria faberii), morningglory {Ipomoea spp.), velvetleaf {Abutilon theophrasti), and sorghum {Sorghum vulgare) were planted into a sandy loam soil and treated preemergence by soil drench using test a chemical formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time these species were also treated postemergence sprayed to runoff using a test chemical formulated in the same manner.

Plants ranged in height from 2 to 18 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 11 days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table A, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table A Compound Table A Compo "

1000 g ai/ha 39 2000 g ai/ha 39

Post Sprayed to Runoff Pre Soil Drench

Barnyardgrass 50 Barnyardgrass 90

Bromegrass, Downy 20 Bromegrass, Downy 70

Cocklebur 40 Cocklebur 0

Crabgrass, Large 50 Crabgrass, Large 90

Foxtail, Giant 30 Foxtail, Giant 100

Morningglory 30 Morningglory 0

Oat, Wild 20 Oat, Wild 90

Sorghum 30 Sorghum 50

Velvetleaf 60 Velvetleaf 70 TEST B

Seeds of plant species selected from barnyardgrass {Echinochloa crus-galli), kochia (Kochia scoparia), ragweed (common ragweed, Ambrosia elatior), Italian ryegrass (Lolium multiflorum), large (Lg) crabgrass (Digitaria sanguinalis), giant foxtail (Setaria faberii), morningglory (Ipomoea spp.), pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), wheat (Triticum aestivum), and corn (Zea mays) were planted into a blend of loam soil and sand and treated preemergence with a directed soil spray using test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also blackgrass (Alopecurus myosuroides), and galium (catchweed bedstraw, Galium aparine) were planted in pots containing the same blend of loam soil and sand and treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 10 cm and were in the one- to two-leaf stage for the postemergence treatment. Treated plants and untreated controls were maintained in a greenhouse for approximately 10 days, after which time all treated plants were compared to untreated controls and visually evaluated for injury. Plant response ratings, summarized in Table B, are based on a 0 to 100 scale where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table B Compounds

1000 g ai/ha 1 2 3 5 6 7 8 9 10 12 23 31 33 34

Postemergence

Barnyardgrass 70 0 50 20 0 10 0 10 10 40 50 10 0 0

Blackgrass

Corn 10 0 10 0 0 10 0 10 0 0 20 0 0 0

Crabgrass, Large 70 0 10 0 20 20 10 50 10 30 60 50 10 10

Foxtail, Giant 80 0 20 0 0 20 0 20 10 40 70 30 10 0

Galium

Kochia

Morningglory 60 40 60 20 20 40 10 50 10 30 70 30 10 0

Pigweed 100 70 70 70 70 20 70 60 50 100 100 30 10 40

Ragweed

Ryegrass, Italian

Velvetleaf 100 50 100 30 30 10 30 40 20 90 70 30 0 20

Wheat 0 0 10 0 0 10 0 10 0 10 0 0 0 0

Table B Compounds

1000 g ai/ha 35 36 40 46 55 57 61 148 171 172 186 191 192 193

Postemergence Barnyardgrass 100 90 30 90 100 100 10 10 30 10 0 100 100 90

Blackgrass - - - - 100 90 10 80 0 20 100 90 90

Corn 90 50 20 20 100 90 0 10 10 0 60 30 10

Crabgrass, Large 100 80 50 100

Foxtail, Giant 90 90 50 100 100 100 10 100 10 30 100 90 90

Galium - - - - 100 90 0 100 10 20 100 100 100

Kochia - - - - 100 90 0 100 30 30 100 100 100

Morningglory 100 20 100 70

Pigweed 100 90 100 100 100 100 0 100 80 20 100 100

Ragweed - - - - 100 100 0 30 10 50 90 60

Ryegrass, Italian - - - - 100 80 0 10 0 0 100 50 30

Velvetleaf 100 100 100 100

Wheat 80 50 10 20 100 90 0 30 0 0 30 30 20

Table B Compounds Table B Compounds

1000 g ai/ha 194 195 235 1000 g ai/ha 194 195 235

Postemergence Postemergence

Barnyardgrass 100 10 0 Morningglory

Blackgrass 90 0 0 Pigweed 90 50 0

Corn 60 10 0 Ragweed 80 10 0

Crabgrass, Large - - - Ryegrass, Itali 50 10 0

Foxtail, Giant 90 10 0 Velvetleaf

Galium 100 10 0 Wheat 20 0 0

Kochia 100 10 0

Table B Compounds

500 g ai/ha 4 10 11 13 14 16 17 18 19 20 21 22 23 24 Postemergence

Barnyardgrass 10 0 10 0 0 0 0 0 0 0 60 0 50 60

Blackgrass

Corn - 0 0 10 30 0 0 0 0 0 40 0 20 40

Crabgrass, Large 50 0 10 10 10 0 0 0 0 20 30 10 50 90

Foxtail, Giant 30 0 0 0 10 0 0 0 0 20 60 0 70 90

Galium

Kochia

Morningglory 30 30 20 10 0 - - 0 0 50 90 10 40 100

Pigweed 100 20 20 40 50 30 10 0 0 90 100 0 100 40

Ragweed

Ryegrass, Italian Velvetleaf 60 20 20 60 30 20 20 0 0 30 40 60 70 70

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

500 g ai/ha 25 26 27 28 29 30 32 37 41 42 43 44 45 47

Postemergence

Barnyardgrass 30 20 50 50 0 0 90 0 20 30 20 20 20 0

Blackgrass - - - - - - - 0 - - - - - 0

Corn 30 20 30 20 0 0 50 0 10 20 10 20 10 0

Crabgrass, Large 50 30 90 40 10 10 90 - 20 50 20 20 40 -

Foxtail, Giant 60 30 70 40 0 10 90 10 20 30 20 10 20 50

Galium - - - - - - - 0 - - - - - 60

Kochia - - - - - - - 0 - - - - - 80

Morningglory 70 50 50 30 0 10 90 - 10 60 20 30 30 -

Pigweed 90 80 100 100 10 10 100 20 70 80 70 50 60 70

Ragweed - - - - - - - 0 - - - - - 30

Ryegrass, Italian - - - - - - - 0 - - - - - 0

Velvetleaf 80 80 100 100 0 30 100 - 30 100 70 70 60 -

Wheat 10 10 0 0 0 0 60 0 0 0 0 0 0 10

Table B Compounds

500 g ai/ha 48 49 50 51 52 53 54 58 59 60 62 63 64 123

Postemergence

Barnyardgrass 0 10 0 0 10 100 100 90 10 100 100 100 100 0

Blackgrass 60 10 60 50 10 100 80 90 40 100 - - - 0

Corn 10 10 0 0 10 70 0 50 10 90 50 20 30 0

Crabgrass, Large 90 90 90 -

Foxtail, Giant 40 10 10 50 0 100 100 90 50 100 90 80 80 0

Galium 100 60 100 90 50 100 100 100 90 100 - - - 0

Kochia 100 30 80 100 50 100 100 100 20 100 - - - 0

Morningglory 100 100 100 -

Pigweed 100 30 100 80 60 100 100 100 50 100 100 100 100 0

Ragweed 70 30 60 60 20 90 60 100 0 90 - - - 0

Ryegrass, Italian 0 0 50 0 0 100 60 80 0 80 - - - 0

Velvetleaf 100 100 100 -

Wheat 0 20 20 10 20 80 0 50 10 90 30 50 10 0

Table B Compounds

500 g ai/ha 134 135 136 137 138 139 151 152 153 156 157 158 159 160

Postemergence Barnyardgrass 90 40 90 10 0 0 0 0 70 20 60 100 20 80

Blackgrass - - - 0 0 0 0 0 90 40 90 90 30 90

Corn 80 30 70 20 0 0 0 0 40 40 40 90 30 90

Crabgrass, Large 100 50 90

Foxtail, Giant 90 60 80 20 0 0 0 0 90 90 80 100 70 100

Galium - - - 20 0 0 0 0 100 100 100 100 100 100

Kochia - - - 60 0 0 0 0 90 90 100 90 80 90

Morningglory 90 50 90

Pigweed 100 100 100 90 0 0 0 0 100 100 100 100 100 100

Ragweed - - - 0 0 0 0 0 100 40 50 30 0 30

Ryegrass, Italian - - - 0 0 0 0 0 60 70 100 70 0 90

Velvetleaf 90 80 100

Wheat 30 10 40 0 0 0 0 0 50 30 70 70 20 80

Table B Compounds

500 g ai/ha 161 167 168 169 170 179 180 181 182 183 184 185 190 199

Postemergence

Barnyardgrass 0 10 100 30 20 80 90 20 10 70 50 40 0 0

Blackgrass 0 10 90 90 60 100 90 10 10 90 60 50 0 -

Corn 0 20 100 20 20 40 70 10 20 30 20 10 0 0

Crabgrass, Large 10

Foxtail, Giant 0 10 100 60 50 80 100 20 50 80 70 70 0 0

Galium 0 60 100 100 100 100 100 50 50 100 100 70 10 -

Kochia 0 60 90 90 100 100 100 50 80 100 100 100 0 -

Morningglory 10

Pigweed 0 70 100 100 100 100 100 90 80 100 100 100 20 30

Ragweed 0 0 90 30 50 30 70 10 10 30 40 100 10 -

Ryegrass, Italian 0 0 90 50 20 100 100 0 0 70 20 0 0 -

Velvetleaf 10

Wheat 0 20 100 0 30 90 90 0 0 60 10 0 0 0

Table B Compounds

500 g ai/ha 200 201 202 203 204 205 206 207 208 209 215 217

Postemergence

Barnyardgrass 100 0 40 0 10 10 10 70 20 0 90 0

Blackgrass 40 0

Corn 90 0 30 0 0 10 0 0 0 0 40 0

Crabgrass, Large 100 0 70 0 40 20 20 30 0 30 - -

Foxtail, Giant 100 0 80 0 30 20 20 30 0 30 80 0 Galium 70 30

Kochia 10 30

Morningglory 100 0 40 0 10 10 30 30 0 30 - -

Pigweed 100 0 100 0 90 90 70 100 60 100 100 60

Ragweed 20 30

Ryegrass, Italian 50 0

Velvetleaf 100 0 30 0 10 10 60 60 30 30 - -

Wheat 100 0 0 0 0 0 0 0 0 0 20 0

Table B Compounds

125 g ai/ha 4 10 11 13 14 15 16 17 18 19 20 21 22 23

Postemergence

Barnyardgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Blackgrass

Corn - 0 0 0 0 0 0 0 0 0 0 0 0 10

Crabgrass, Large 20 0 10 0 0 10 0 0 0 0 0 0 0 10

Foxtail, Giant 0 0 0 0 0 0 0 0 0 0 0 0 0 10

Galium

Kochia

Morningglory 0 20 10 0 0 10 - - 0 0 0 20 0 20

Pigweed 30 0 10 0 0 70 0 0 0 0 40 80 0 70

Ragweed

Ryegrass, Italian

Velvetleaf 30 0 10 30 20 0 0 0 0 0 0 20 50 40

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

125 g ai/ha 24 25 26 27 28 29 30 32 38 41 42 43 44 45

Postemergence

Barnyardgrass 0 0 0 20 0 0 0 70 0 0 20 0 10 0

Blackgrass - - - - - - - - 0 - - - - -

Corn 0 10 10 0 0 0 0 10 0 0 20 0 0 0

Crabgrass, Large 80 10 10 20 20 0 0 60 - 10 30 0 10 10

Foxtail, Giant 30 0 0 20 20 0 0 70 0 10 10 0 0 10

Galium - - - - - - - - 30 - - - - -

Kochia - - - - - - - - 30 - - - - -

Morningglory 50 10 10 10 0 0 0 70 - 0 20 0 20 30

Pigweed 20 30 30 50 30 0 0 100 20 40 60 30 20 10

Ragweed - - - - - - - - 0 - - - - - Ryegrass, Italian - - - - - - - - 0 - - - - -

Velvetleaf 40 20 10 70 40 0 10 90 - 10 100 20 30 50

Wheat 0 0 0 0 0 0 0 30 0 0 0 0 0 0

Table B Compounds

125 g ai/ha 47 48 49 50 51 52 53 54 58 59 60 62 63 64

Postemergence

Barnyardgrass 0 0 0 0 0 0 100 20 70 10 50 90 80 90

Blackgrass 0 40 0 40 0 0 100 70 70 0 50 - - -

Corn 0 0 0 0 0 0 10 0 0 0 30 10 20 20

Crabgrass, Large 70 80 60

Foxtail, Giant 0 0 0 0 10 0 100 80 70 10 50 80 70 60

Galium 30 70 20 90 60 40 100 100 100 40 100 - - -

Kochia 60 50 30 60 70 20 100 100 100 0 90 - - -

Morningglory 90 100 70

Pigweed 50 70 10 70 70 30 100 100 100 40 100 100 100 100

Ragweed 20 50 30 20 20 20 60 50 100 0 60 - - -

Ryegrass, Italian 0 0 0 0 0 0 80 30 20 0 0 - - -

Velvetleaf 100 100 100

Wheat 0 0 10 0 0 0 40 0 0 0 30 0 0 0

Table B Compounds

125 g ai/ha 70 73 89 90 91 96 97 103 104 105 106 107 108 109

Postemergence

Barnyardgrass 0 0 30 0 0 30 20 40 60 70 0 0 0 90

Blackgrass 0 0 20 0 0 70 0 90 100 100 0 0 0 90

Corn 0 0 30 0 0 20 20 30 30 20 0 0 10 60

Crabgrass, Large

Foxtail, Giant 0 0 40 0 0 50 30 70 80 80 0 0 0 90

Galium 0 10 50 30 0 100 50 100 100 100 0 0 50 100

Kochia 0 0 70 10 0 100 90 30 80 70 0 0 0 30

Morningglory

Pigweed 20 10 90 10 0 100 90 80 90 100 0 0 0 100

Ragweed 0 0 10 0 0 60 50 60 10 30 0 0 0 90

Ryegrass, Italian 0 0 0 0 0 60 0 10 30 10 0 0 0 50

Velvetleaf

Wheat 0 0 0 0 0 0 0 0 10 10 0 0 0 10

Table B Compounds

125 g ai/ha 110 111 112 113 114 115 116 117 118 119 120 121 122 123 Postemergence

Barnyardgrass 50 10 30 90 20 0 30 0 100 0 90 90 0 0

Blackgrass 40 40 20 90 40 0 30 0 100 0 90 80 0 0

Corn 10 10 20 30 50 0 40 0 100 0 40 40 0 0

Crabgrass, Large

Foxtail, Giant 70 60 60 90 60 0 90 0 100 10 90 90 0 0

Galium 70 20 50 100 100 0 70 0 100 60 100 100 20 0

Kochia 50 30 70 100 90 0 90 0 100 30 90 90 20 0

Morningglory

Pigweed 30 20 30 100 100 0 100 0 100 80 100 100 20 0

Ragweed 40 20 30 80 20 0 40 0 50 10 70 60 10 0

Ryegrass, Italian 0 0 0 70 60 0 30 0 80 0 90 70 0 0

Velvetleaf

Wheat 0 0 0 10 20 0 20 0 60 0 40 30 20 0

Table B Compounds

125 g ai/ha 124 125 126 127 128 129 130 131 132 133 134 135 137 138

Postemergence

Barnyardgrass 20 30 100 100 10 10 100 90 50 60 20 10 0 0

Blackgrass 30 30 90 90 20 0 80 80 50 70 - - 0 0

Corn 10 10 70 50 10 10 40 40 30 30 10 10 0 0

Crabgrass, Large 10 10 - -

Foxtail, Giant 20 20 90 90 10 10 80 90 70 50 10 10 0 0

Galium 100 100 100 100 30 10 90 90 90 100 - - 0 0

Kochia 80 80 90 90 50 10 90 70 60 90 - - 0 0

Morningglory 10 20 - -

Pigweed 90 90 100 100 60 30 100 100 100 100 60 100 30 0

Ragweed 20 20 40 50 10 0 60 70 30 30 - - 0 0

Ryegrass, Italian 0 10 100 90 0 0 60 70 40 30 - - 0 0

Velvetleaf 40 40 - -

Wheat 0 0 40 20 0 0 40 30 10 10 10 0 0 0

Table B Compounds

125 g ai/ha 139 140 141 142 143 144 145 146 147 149 150 151 152 153

Postemergence

Barnyardgrass 0 0 0 0 90 100 100 20 0 40 20 0 0 0

Blackgrass 0 0 0 0 60 90 90 30 0 60 10 0 0 40

Corn 0 0 30 20 30 90 70 0 0 20 10 0 0 30

Crabgrass, Large Foxtail, Giant 0 0 0 0 80 100 90 20 0 60 10 0 0 20

Galium 0 0 0 10 100 100 100 50 0 90 10 0 0 90

Kochia 0 0 0 20 100 100 100 60 0 100 0 0 0 90

Morningglory

Pigweed 0 0 20 20 100 100 100 60 0 100 20 0 0 100

Ragweed 0 0 0 0 20 60 50 0 0 20 0 0 0 20

Ryegrass, Italian 0 0 0 0 50 100 80 0 0 20 0 0 0 30

Velvetleaf

Wheat 0 0 0 0 30 90 70 0 0 10 0 0 0 30

Table B Compounds

125 g ai/ha 154 155 156 157 158 159 160 161 162 163 164 165 166 167

Postemergence

Barnyardgrass 0 0 0 20 60 0 0 0 90 0 0 20 0 0

Blackgrass 0 0 20 70 30 0 50 0 30 20 0 30 0 0

Corn 0 0 20 0 30 20 30 0 40 10 0 0 10 0

Crabgrass, Large

Foxtail, Giant 0 0 20 70 50 0 30 0 90 10 0 20 0 0

Galium 0 0 90 100 30 70 70 0 90 30 30 40 30 10

Kochia 0 0 90 90 70 20 40 0 100 50 0 40 0 10

Morningglory

Pigweed 0 0 90 100 80 90 90 0 100 30 30 50 30 10

Ragweed 0 0 20 10 0 0 0 0 40 30 30 60 30 0

Ryegrass, Italian 0 0 30 90 0 0 0 0 50 0 0 0 0 0

Velvetleaf

Wheat 0 0 20 50 20 20 20 0 30 0 0 0 0 10

Table B Compounds

125 g ai/ha 168 169 170 173 174 175 176 177 178 179 180 181 182 183

Postemergence

Barnyardgrass 100 10 0 70 10 10 30 30 40 10 50 10 0 40

Blackgrass 90 50 50 70 50 0 30 30 40 80 90 0 0 80

Corn 100 10 20 40 0 0 30 10 20 10 20 10 10 10

Crabgrass, Large

Foxtail, Giant 100 30 30 90 0 0 50 40 60 40 80 0 0 60

Galium 100 100 80 90 70 40 90 100 100 100 100 10 30 100

Kochia 90 90 70 100 70 30 100 70 100 90 100 30 30 100

Morningglory

Pigweed 100 100 100 80 50 60 100 100 100 100 100 50 40 100 Ragweed 90 20 10 60 30 30 20 20 10 10 50 10 0 20

Ryegrass, Italian 90 20 0 20 0 0 10 0 30 90 100 0 0 40

Velvetleaf

Wheat 100 0 0 0 0 0 0 0 10 40 60 0 0 10

Table B Compounds

125 g ai/ha 184 185 187 188 189 190 196 197 198 199 200 201 202 203

Postemergence

Barnyardgrass 0 10 0 20 0 0 10 0 50 0 90 0 10 0

Blackgrass 10 0 0 20 0 0 0 0 40 - - - - -

Corn 10 0 0 30 0 0 0 0 20 0 50 0 0 0

Crabgrass, Large 0 100 0 10 0

Foxtail, Giant 10 10 0 20 0 0 10 0 90 0 100 0 30 0

Galium 70 40 0 50 0 0 100 50 100 - - - - -

Kochia 70 90 0 90 0 0 40 0 80 - - - - -

Morningglory 0 90 0 10 0

Pigweed 90 90 0 60 0 0 60 10 100 10 100 0 90 0

Ragweed 20 70 0 20 0 10 20 0 20 - - - - -

Ryegrass, Italian 0 0 0 0 0 0 0 0 50 - - - - -

Velvetleaf 0 100 0 10 0

Wheat 0 0 0 20 0 0 0 0 10 0 60 0 0 0

Table B Compounds

125 g ai/ha 204 205 206 207 208 209 210 211 212 213 214 215 216 217

Postemergence

Barnyardgrass 0 0 0 0 0 0 0 10 30 0 0 20 10 0

Blackgrass - - - - - - 30 50 50 10 0 0 10 0

Corn 0 0 0 0 0 0 10 10 20 10 0 20 10 0

Crabgrass, Large 10 10 10 0 0 10

Foxtail, Giant 0 0 0 0 0 0 40 50 70 20 0 20 0 0

Galium - - - - - - 90 100 100 80 10 20 50 10

Kochia - - - - - - 80 90 100 100 0 0 20 10

Morningglory 0 0 20 10 0 30

Pigweed 50 60 40 70 20 90 80 50 100 80 10 20 30 10

Ragweed - - - - - - 30 30 60 60 0 0 0 10

Ryegrass, Italian - - - - - - 0 0 20 0 0 0 0 0

Velvetleaf 0 0 30 10 20 30

Wheat 0 0 0 0 0 0 20 0 10 10 0 0 0 0 Table B Compounds

125 g ai/ha 218 219 220 221 222 223 224 225 226 227 228 229 230 231

Postemergence

Barnyardgrass 0 0 40 90 0 10 50 0 70 60 70 70 60 10

Blackgrass 0 0 90 60 10 0 70 0 70 70 100 80 70 0

Corn 0 0 20 50 30 0 20 0 30 20 30 30 10 0

Crabgrass, Large

Foxtail, Giant 0 0 80 90 0 10 50 0 70 60 90 80 70 10

Galium 10 30 100 100 90 50 100 0 100 80 100 100 100 20

Kochia 0 0 100 100 30 10 100 0 100 80 100 100 100 40

Morningglory

Pigweed 40 10 100 90 100 60 100 0 100 90 100 100 90 40

Ragweed 0 30 10 50 20 10 100 0 40 30 40 100 100 0

Ryegrass, Italian 0 0 40 40 0 0 0 0 50 30 90 20 0 0

Velvetleaf

Wheat 0 0 50 30 20 0 0 0 50 20 50 40 10 0

Table B Compounds

125 g ai/ha 232 233 234 236 237 238 239

Postemergence

Barnyardgrass 0 10 0 30 0 30 0

Blackgrass 0 10 10 40 0 0 0

Corn 0 10 10 30 0 20 20

Crabgrass, Large - - - - - - -

Foxtail, Giant 0 0 0 30 0 10 0

Galium 0 0 0 100 0 40 0

Kochia 0 0 0 90 0 80 0

Morningglory - - - - - - -

Pigweed 40 20 20 70 0 20 20

Ragweed 0 0 10 20 0 0 0

Ryegrass, Italian 0 0 0 20 0 0 0

Velvetleaf - - - - - - -

Wheat 0 0 0 20 0 0 0

Table B Compounds

31 g ai/ha 15 38 70 73 89 90 91 96 97 103 104 105 106 107

Postemergence

Barnyardgrass 0 0 0 0 10 0 0 10 0 0 10 10 0 0

Blackgrass - 0 0 0 10 0 0 10 0 30 70 70 0 0 Corn 0 0 0 0 10 0 0 0 0 0 10 10 0 0

Crabgrass, Large 0

Foxtail, Giant 0 0 0 0 10 0 0 0 0 40 20 40 0 0

Galium - 20 0 0 10 0 0 100 10 90 90 70 0 0

Kochia - 0 0 0 50 0 0 70 60 0 50 30 0 0

Morningglory 0

Pigweed 60 0 10 0 60 0 0 100 60 30 90 90 0 0

Ragweed - 0 0 0 10 0 0 50 20 20 10 10 0 0

Ryegrass, Italian - 0 0 0 0 0 0 30 0 0 0 0 0 0

Velvetleaf 0

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

31 g ai/ha 108 109 110 111 112 113 114 115 116 117 118 119 120 121

Postemergence

Barnyardgrass 0 60 0 0 10 60 10 0 10 0 70 0 50 50

Blackgrass 0 50 0 0 0 60 10 0 20 0 60 0 70 50

Corn 0 10 0 0 10 10 30 0 20 0 50 0 30 20

Crabgrass, Large

Foxtail, Giant 0 60 0 0 10 60 20 0 20 0 90 0 40 70

Galium 30 50 20 10 30 90 70 0 60 0 100 30 100 100

Kochia 0 0 10 20 60 100 70 0 90 0 100 0 90 90

Morningglory

Pigweed 0 80 10 0 30 100 100 0 100 0 100 40 100 100

Ragweed 0 60 30 10 20 50 0 0 20 0 30 10 40 50

Ryegrass, Italian 0 10 0 0 0 20 10 0 0 0 20 0 30 50

Velvetleaf

Wheat 0 0 0 0 0 0 10 0 10 0 20 0 0 0

Table B Compounds

31 g ai/ha 122 124 125 126 127 128 129 130 131 132 133 140 141 142

Postemergence

Barnyardgrass 0 0 10 80 30 0 0 40 50 20 20 0 0 0

Blackgrass 0 0 10 60 30 0 0 50 50 20 30 0 0 0

Corn 0 0 0 20 20 0 0 20 20 10 10 0 0 0

Crabgrass, Large

Foxtail, Giant 0 0 0 60 50 0 0 50 50 30 20 0 0 0

Galium 10 60 50 90 80 10 10 80 80 80 70 0 0 0

Kochia 10 40 60 90 90 20 0 90 60 30 90 0 0 0 Morningglory

Pigweed 20 70 70 100 100 20 10 90 100 70 90 0 0 10

Ragweed 0 10 0 30 20 0 0 40 40 20 20 0 0 0

Ryegrass, Italian 0 0 0 40 30 0 0 30 40 10 10 0 0 0

Velvetleaf

Wheat 0 0 0 10 10 0 0 30 0 0 0 0 0 0

Table B Compounds

31 g ai/ha 143 144 145 146 147 149 150 154 155 162 163 164 165 166

Postemergence

Barnyardgrass 10 30 40 0 0 10 0 0 0 10 0 0 0 0

Blackgrass 30 80 70 0 0 10 0 0 0 30 20 0 20 0

Corn 40 30 30 0 0 10 0 0 0 20 0 0 0 0

Crabgrass, Large

Foxtail, Giant 10 80 70 0 0 10 0 0 0 10 0 0 10 0

Galium 50 100 100 30 0 90 0 0 0 90 20 10 20 20

Kochia 100 100 100 50 0 90 0 0 0 90 10 0 20 0

Morningglory

Pigweed 90 100 100 30 0 90 10 0 0 100 20 0 30 20

Ragweed 0 20 20 0 0 10 0 0 0 0 30 20 30 10

Ryegrass, Italian 0 20 20 0 0 0 0 0 0 0 0 0 0 0

Velvetleaf

Wheat 20 30 20 0 0 0 0 0 0 20 0 0 0 0

Table B Compounds

31 g ai/ha 173 174 175 176 177 178 187 188 189 196 197 198 210 211

Postemergence

Barnyardgrass 30 0 0 10 10 0 0 0 0 0 0 10 0 0

Blackgrass 30 40 0 0 0 10 0 0 0 0 0 10 10 10

Corn 10 0 0 10 0 0 0 0 0 0 0 10 0 0

Crabgrass, Large

Foxtail, Giant 30 0 0 20 10 10 0 0 0 0 0 30 0 10

Galium 50 60 20 30 50 80 0 0 0 60 10 100 50 60

Kochia 70 60 0 30 30 80 0 0 0 0 0 80 50 40

Morningglory

Pigweed 60 50 50 90 50 100 0 0 0 20 10 100 50 20

Ragweed 40 20 20 10 10 10 0 0 0 10 0 10 10 0

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 0 10 0 0 Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

31 g ai/ha 212 213 214 216 218 219 220 221 222 223 224 225 226 227

Postemergence

Barnyardgrass 0 0 0 10 0 0 10 10 0 0 30 0 10 10

Blackgrass 10 0 0 0 0 0 60 30 0 0 40 0 10 10

Corn 10 0 0 0 0 0 10 20 0 0 0 0 20 10

Crabgrass, Large

Foxtail, Giant 10 0 0 0 0 0 30 10 0 0 20 0 10 10

Galium 60 50 0 20 0 20 90 90 30 30 80 0 60 70

Kochia 90 60 0 10 0 0 90 80 20 0 70 0 100 40

Morningglory

Pigweed 90 30 0 10 0 10 100 90 30 20 70 0 50 60

Ragweed 20 10 0 0 0 20 0 10 0 0 50 0 10 10

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 0 0 10 0

Velvetleaf

Wheat 0 0 0 0 0 0 10 20 0 0 0 0 0 0

Table B Compounds

31 g ai/ha 228 229 230 231 232 233 234 236 237 238 239

Postemergence

Barnyardgrass 30 20 0 0 0 0 0 0 0 0 0

Blackgrass 60 30 20 0 0 0 0 20 0 0 0

Corn 20 0 0 0 0 0 0 0 0 0 0

Crabgrass, Large

Foxtail, Giant 40 50 0 0 0 0 0 0 0 0 0

Galium 100 80 80 0 0 0 0 30 0 0 0

Kochia 100 90 80 20 0 0 0 20 0 20 0

Morningglory

Pigweed 100 70 60 20 10 0 0 30 0 10 0

Ragweed 30 100 70 0 0 0 0 0 0 0 0

Ryegrass, Italian 20 0 0 0 0 0 0 0 0 0 0

Velvetleaf

Wheat 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

1000 g ai/ha 1 2 3 5 6 7 8 9 10 12 23 31 33 34

Preemergence

Barnyardgrass 80 0 60 0 0 10 30 20 0 20 40 0 0 0 Corn 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crabgrass, Large 100 10 40 0 0 40 80 70 10 80 100 80 80 10

Foxtail, Giant 100 10 70 0 0 20 60 60 0 90 100 30 10 10

Kochia

Morningglory 20 0 0 0 0 0 0 0 0 0 0 0 0 0

Pigweed 100 100 50 90 70 40 100 90 10 90 100 0 40 100

Ragweed

Ryegrass, Italian

Velvetleaf 80 20 90 20 20 10 30 10 0 70 80 0 0 10

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

1000 g ai/ha 35 36 40 46 55 57 61 148 171 172 186 191 192 193

Preemergence

Barnyardgrass 100 30 50 80 100 100 20 0 70 0 20 100 100 100

Corn 30 0 0 0 - - 0 - - - - - - -

Crabgrass, Large 100 100 70 100 - - 50 - - - - - - -

Foxtail, Giant 100 90 100 100 100 100 40 0 100 30 100 100 100 100

Kochia - - - - 100 100 - 0 90 20 100 100 100 100

Morningglory 90 10 0 10 - - 0 - - - - - - -

Pigweed 10 100 100 100 100 90 90 0 100 90 100 100 100 100

Ragweed - - - - 100 90 - - 0 0 70 90 20 80

Ryegrass, Italian - - - - 100 80 - 0 10 0 0 90 50 0

Velvetleaf 100 - 90 20 - - 50 - - - - - - -

Wheat 60 0 0 10 - - 0 - - - - - - -

Table B Compounds Table B Compounds

1000 g ai/ha 194 195 235 1000 g ai/ha 194 195 235 Preemergence Preemergence

Barnyardgrass 100 40 0 Pigweed 100 60 0 Corn Ragweed 30 10 0

Crabgrass, Large Ryegrass, Italian 50 0 0 Foxtail, Giant 100 30 Velvetleaf

Kochia 100 0 Wheat

Morningglory

Table B Compounds

500 g ai/ha 10 11 13 14 16 17 18 19 20 21 22 23 24 Preemergence

Barnyardgrass 0 0 0 0 0 0 0 50 0 30 80 Corn 0 0 0 0 0 0 0 0 0 0 0 0 0 40

Crabgrass, Large 80 0 0 10 20 10 10 20 50 70 100 0 80 100

Foxtail, Giant 50 0 0 10 30 10 0 10 70 60 100 0 70 90

Kochia

Morningglory 0 0 - 0 0 - - 0 0 0 0 0 0 0

Pigweed 70 30 30 80 100 20 0 30 20 20 90 0 90 40

Ragweed

Ryegrass, Italian

Velvetleaf 30 0 10 10 20 20 10 0 0 20 20 0 50 0

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

500 g ai/ha 25 26 27 28 29 30 32 37 41 42 43 44 45 47

Preemergence

Barnyardgrass 70 30 80 60 0 0 90 0 0 70 20 10 0 0

Corn 0 0 0 0 0 0 0 - 0 0 0 0 0 -

Crabgrass, Large 100 100 100 100 30 20 100 - 10 90 30 70 20 -

Foxtail, Giant 90 90 90 90 10 10 100 0 20 100 70 10 20 30

Kochia - - - - - - - 0 - - - - - 70

Morningglory 10 0 0 0 0 0 30 - 0 0 10 0 0 -

Pigweed 100 100 100 80 50 30 100 40 0 90 0 10 0 60

Ragweed - - - - - - - 0 - - - - - 60

Ryegrass, Italian - - - - - - - 0 - - - - - 0

Velvetleaf 100 80 60 60 0 0 100 - 0 70 10 20 0 -

Wheat 0 0 0 0 0 0 10 - 0 0 0 0 0 -

Table B Compounds

500 g ai/ha 48 49 50 51 52 53 54 58 59 60 62 63 64 123

Preemergence

Barnyardgrass 40 0 10 10 0 100 100 100 10 100 100 100 100 0

Corn 20 30 20 -

Crabgrass, Large 100 100 100 -

Foxtail, Giant 50 20 50 60 0 100 100 100 60 100 100 100 100 0

Kochia 80 70 60 70 30 100 100 100 0 100 - - - 0

Morningglory 90 60 60 -

Pigweed 100 30 100 100 50 100 100 100 30 100 100 100 100 0

Ragweed 60 0 50 50 0 50 70 80 0 50 - - - 0

Ryegrass, Italian 50 0 50 0 0 40 60 20 0 30 - - - 0

Velvetleaf 100 90 90 - Wheat 30 40 30 -

Table B Compounds

500 g ai/ha 134 135 136 137 138 139 151 152 153 156 157 158 159 160

Preemergence

Barnyardgrass 90 60 100 10 0 0 0 0 100 20 80 100 60 80

Corn 60 0 40

Crabgrass, Large 100 100 100

Foxtail, Giant 100 100 100 0 0 0 0 0 100 80 100 100 90 100

Kochia - - - 10 0 0 0 0 100 40 100 100 30 90

Morningglory 80 10 90

Pigweed 100 100 100 20 0 0 0 0 100 100 100 100 100 100

Ragweed - - - 0 0 0 0 0 40 0 70 20 0 0

Ryegrass, Italian - - - 0 0 0 0 0 20 0 90 20 0 0

Velvetleaf 100 60 100

Wheat 20 0 30

Table B Compounds

500 g ai/ha 161 167 168 169 170 179 180 181 182 183 184 185 190 199

Preemergence

Barnyardgrass 0 10 100 30 20 90 80 10 20 80 90 70 0 0

Corn 0

Crabgrass, Large 10

Foxtail, Giant 0 30 100 90 90 100 100 40 40 90 90 90 10 0

Kochia 0 30 100 90 80 100 100 0 30 100 100 100 0 -

Morningglory 0

Pigweed 0 20 100 100 100 100 100 80 40 100 100 100 10 30

Ragweed 0 10 80 20 60 40 70 0 10 60 50 90 0 -

Ryegrass, Italian 0 0 100 20 20 40 70 0 10 40 10 0 0 -

Velvetleaf 10

Wheat 0

Table B Compounds

500 g ai/ha 200 201 202 203 204 205 206 207 208 209 215 217

Preemergence

Barnyardgrass 100 0 80 0 30 10 30 90 0 10 90 10

Corn 100 0 0 0 0 0 0 0 0 0 - -

Crabgrass, Large 100 0 100 0 100 70 60 100 0 100 - -

Foxtail, Giant 100 0 100 0 100 70 60 100 0 100 90 30 Morningglory 100 0 20 0 10 0 0 30 0 0 - -

Pigweed 100 0 100 0 100 90 80 100 90 100 90 70

Ragweed 0 0

Ryegrass, Italian 0 10

Velvetleaf 90 0 60 0 60 0 40 30 10 0 - -

Wheat 90 0 20 0 0 0 0 0 0 0 - -

Table B Compounds

125 g ai/ha 4 10 11 13 14 15 16 17 18 19 20 21 22 23

Preeraergence

Barnyardgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Corn 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Crabgrass, Large 10 0 0 0 0 0 0 0 0 0 10 60 0 40

Foxtail, Giant 10 0 0 0 0 0 0 0 0 0 10 70 0 20

Kochia

Morningglory 0 0 0 0 0 0 - - 0 0 0 0 0 0

Pigweed 30 0 0 0 0 0 0 0 0 0 0 30 0 50

Ragweed

Ryegrass, Italian

Velvetleaf 0 0 10 0 0 0 0 0 0 0 0 0 0 10

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table B Compounds

125 g ai/ha 24 25 26 27 28 29 30 32 38 41 42 43 44 45

Preeraergence

Barnyardgrass 10 10 0 10 0 0 0 90 0 0 20 0 0 0

Corn 0 0 0 0 0 0 0 0 - 0 0 0 0 0

Crabgrass, Large 100 50 10 80 40 10 0 100 - 0 50 0 10 0

Foxtail, Giant 20 40 0 60 30 0 0 90 0 0 70 0 0 0

Kochia - - - - - - - - 0 - - - - -

Morningglory 0 0 0 0 0 0 0 0 - 0 0 0 0 0

Pigweed 0 60 0 80 40 20 0 100 40 0 50 0 0 0

Ragweed - - - - - - - - 0 - - - - -

Ryegrass, Italian - - - - - - - - 0 - - - - -

Velvetleaf 0 10 10 20 0 0 0 90 - 0 50 0 0 0

Wheat 0 0 0 0 0 0 0 0 - 0 0 0 0 0

Table B Compounds

125 g ai/ha 47 48 49 50 51 52 53 54 58 59 60 62 63 64

Preemergence Barnyardgrass 0 0 0 0 0 0 90 60 60 0 80 80 90 60

Corn 0 10 0

Crabgrass, Large 100 100 100

Foxtail, Giant 10 10 0 0 10 0 90 100 90 10 80 100 100 90

Kochia 60 60 0 10 10 0 100 80 80 0 90 - - -

Morningglory 60 30 0

Pigweed 30 80 20 60 50 40 100 100 100 0 100 100 100 100

Ragweed 10 50 0 0 50 0 10 60 70 0 20 - - -

Ryegrass, Italian 0 40 0 20 0 0 10 30 0 0 0 - - -

Velvetleaf 90 70 80

Wheat 20 20 0

Table B Compounds

125 g ai/ha 70 73 89 90 91 96 97 103 104 105 106 107 108 109

Preemergence

Barnyardgrass 0 0 70 0 0 20 0 50 80 90 0 0 0 100

Corn

Crabgrass, Large

Foxtail, Giant 0 0 90 0 0 40 30 90 100 100 0 0 0 100

Kochia 0 0 0 0 0 70 30 10 10 10 0 0 0 30

Morningglory

Pigweed 0 0 100 20 0 100 50 100 100 100 0 0 0 100

Ragweed 0 0 0 0 0 0 0 10 0 0 0 0 0 70

Ryegrass, Italian 0 0 0 0 0 0 0 0 10 20 0 0 0 10

Velvetleaf

Wheat

Table B Compounds

125 g ai/ha 110 111 112 113 114 115 116 117 118 119 120 121 122 123

Preemergence

Barnyardgrass 40 20 30 100 20 0 30 0 100 0 100 90 0 0

Corn

Crabgrass, Large

Foxtail, Giant 70 50 70 100 30 0 90 0 100 50 100 100 0 0

Kochia 0 10 50 100 20 0 60 0 100 10 90 100 10 0

Morningglory

Pigweed 70 80 70 100 80 0 100 0 100 50 100 100 50 0

Ragweed 0 10 0 70 20 0 20 0 30 0 30 20 0 0

Ryegrass, Italian 0 0 10 60 20 0 20 0 80 0 90 80 0 0 Compounds

125 g ai/ha 124 125 126 127 128 129 130 131 132 133 134 135 137 138

Preemergence

Barnyardgrass 30 50 100 90 0 0 90 100 60 70 70 10 0 0

Corn 20 0 - -

Crabgrass, Large 100 80 - -

Foxtail, Giant 100 90 100 100 10 0 100 100 90 90 90 60 0 0

Kochia 60 40 90 90 0 0 70 10 0 90 - - 0 0

Morningglory 10 0 - -

Pigweed 100 80 100 100 40 0 100 100 100 100 100 90 0 0

Ragweed 10 0 10 30 0 0 20 60 40 10 - - 0 0

Ryegrass, Italian 10 10 100 90 0 0 50 90 30 50 - - 0 0

Velvetleaf 40 20 - -

Wheat 20 0 - -

Table B Compounds

125 g ai/ha 139 140 141 142 143 144 145 146 147 149 150 151 152 153

Preemergence

Barnyardgrass 0 0 0 0 90 100 100 30 0 70 20 0 0 0

Corn

Crabgrass, Large

Foxtail, Giant 0 0 0 20 100 100 100 20 0 100 20 0 0 30

Kochia 0 0 0 0 90 100 100 0 0 80 0 0 0 20

Morningglory

Pigweed 0 0 0 0 100 100 100 70 0 100 20 0 0 100

Ragweed 0 0 0 0 30 50 20 0 0 0 0 0 0 0

Ryegrass, Italian 0 0 0 0 60 90 40 0 0 10 0 0 0 0

Velvetleaf

Wheat

Table B Compounds

125 g ai/ha 154 155 156 157 158 159 160 161 162 163 164 165 166 167

Preemergence

Barnyardgrass 0 0 0 20 90 0 0 0 100 0 0 10 0 0

Corn

Crabgrass, Large

Foxtail, Giant 0 0 20 80 90 20 50 0 100 0 0 10 0 0 Kochia 0 0 20 100 100 0 30 0 70 0 0 60 0 0

Morningglory

Pigweed 0 0 80 100 90 40 90 0 100 30 30 80 60 0

Ragweed 0 0 0 20 0 0 0 0 20 40 0 50 20 0

Ryegrass, Italian 0 0 0 20 0 0 0 0 40 0 0 0 0 0

Velvetleaf

Wheat

Table B Compounds

125 g ai/ha 168 169 170 173 174 175 176 177 178 179 180 181 182 183 Preemergence

Barnyardgrass 100 20 0 90 0 0 50 50 70 10 20 0 0 30 Corn

Crabgrass, Large

Foxtail, Giant 100 50 60 100 40 0 90 70 90 80 90 0 0 80 Kochia 100 70 30 100 0 0 20 20 20 100 100 0 0 80

Morningglory

Pigweed 100 100 100 100 80 70 90 90 100 100 100 10 0 90

Ragweed 70 10 20 70 0 0 0 0 0 10 50 0 0 0

Ryegrass, Italian 80 0 0 20 0 0 10 0 10 20 20 0 0 20

Velvetleaf

Wheat

Table B Compounds

125 g ai/ha 184 185 187 188 189 190 196 197 198 199 200 201 202 203 Preemergence

Barnyardgrass 10 20 0 20 0 0 10 0 40 0 100 0 10 0 Corn - - - - - - - - - 0 20 0 0 0

Crabgrass, Large - - - - - - - - - 0 100 0 90 0 Foxtail, Giant 20 30 0 40 0 0 20 0 90 0 100 0 70 0 Kochia 20 40 0 30 0 0 0 0 30 - - - - -

Morningglory - - - - - - - - - 0 20 0 0 0

Pigweed 80 90 0 100 0 0 10 0 100 0 100 0 100 0

Ragweed 0 10 0 0 0 0 0 0 10 - - - - -

Ryegrass, Italian 0 0 0 0 0 0 0 0 20 - - - - -

Velvetleaf - - - - - - - - - 0 80 0 0 0

Wheat - - - - - - - - 0 20 0 0 0

Table B Compounds

125 g ai/ha 204 205 206 207 208 209 210 211 212 213 214 215 216 217 Preemergence

Barnyardgrass 0 0 0 10 0 0 80 50 60 40 0 40 10 0

Corn 0 0 0 0 0 0

Crabgrass, Large 90 30 10 100 0 70

Foxtail, Giant 60 20 10 70 0 30 90 100 100 80 0 20 0 0

Kochia - - - - - - 90 80 90 50 0 0 0 0

Morningglory 0 0 0 0 0 0

Pigweed 100 10 50 90 0 90 100 100 100 100 0 20 0 10

Ragweed - - - - - - 20 30 40 0 0 0 0 0

Ryegrass, Italian - - - - - - 10 0 40 0 0 0 0 0

Velvetleaf 0 0 30 0 0 0

Wheat 0 0 0 0 0 0

Table B Compounds

125 g ai/ha 218 219 220 221 222 223 224 225 226 227 228 229 230 231

Preemergence

Barnyardgrass 50 0 100 90 0 0 50 0 100 50 100 90 70 10

Corn

Crabgrass, Large

Foxtail, Giant 60 0 100 90 0 0 90 0 100 90 100 90 90 10

Kochia 0 0 90 70 0 0 90 0 90 50 100 100 100 0

Morningglory

Pigweed 90 0 100 100 90 10 100 0 100 80 100 100 100 20

Ragweed 0 0 10 0 0 0 - 0 20 0 30 90 80 0

Ryegrass, Italian 0 0 30 40 0 0 0 0 20 10 70 30 0 0

Velvetleaf

Wheat

Table B Compounds

125 g ai/ha 232 233 234 236 237 238 239

Preemergence

Barnyardgrass 20 0 0 80 0 40 0

Corn - - - - - - -

Crabgrass, Large - - - - - - -

Foxtail, Giant 10 0 0 90 0 20 0

Kochia 0 0 0 100 0 0 0

Morningglory - - - - - - -

Pigweed 30 0 0 100 0 10 0

Ragweed 0 0 - 0 0 0 0 Ryegrass, Italian 0 0 0 30 0 0 0

Velvetleaf - - - - - - -

Wheat - - - - - - -

Table B Compounds

31 g ai/ha 15 38 70 73 89 90 91 96 97 103 104 105 106 107

Preemergence

Barnyardgrass 0 0 0 0 10 0 0 0 0 0 20 20 0 0

Corn 0

Crabgrass, Large 0

Foxtail, Giant 0 0 0 0 40 0 0 10 10 50 40 70 0 0

Kochia - 0 0 0 0 0 0 50 0 0 0 0 0 0

Morningglory 0

Pigweed 0 0 0 0 100 0 0 90 20 100 80 100 0 0

Ragweed - 0 0 0 0 0 0 0 0 0 0 0 0 0

Ryegrass, Italian - 0 0 0 0 0 0 0 0 0 0 0 0 0

Velvetleaf 0

Wheat 0

Table B Compounds

31 g ai/ha 108 109 110 111 112 113 114 115 116 117 118 119 120 121

Preemergence

Barnyardgrass 0 40 0 0 10 70 0 0 0 0 70 0 90 70

Corn

Crabgrass, Large

Foxtail, Giant 0 80 0 0 10 90 10 0 40 0 100 0 100 100

Kochia 0 0 0 0 0 100 20 0 60 0 80 0 80 60

Morningglory

Pigweed 0 90 10 10 30 100 70 0 70 0 100 0 100 100

Ragweed 0 20 0 0 0 30 0 0 0 0 20 0 10 10

Ryegrass, Italian 0 0 0 0 0 10 0 0 0 0 20 0 40 30

Velvetleaf

Wheat

Table B Compounds

31 g ai/ha 122 124 125 126 127 128 129 130 131 132 133 140 141 142

Preemergence

Barnyardgrass 0 0 0 90 70 0 0 50 80 20 30 0 0 0 Foxtail, Giant 0 20 10 100 100 0 0 90 100 60 70 0 0 0

Kochia 0 10 0 80 80 0 0 50 0 0 50 0 0 0

Morningglory

Pigweed 10 40 0 100 100 0 0 100 100 90 90 0 0 0

Ragweed 0 0 0 10 10 0 0 10 20 0 0 0 0 0

Ryegrass, Italian 0 0 0 40 30 0 0 20 20 0 0 0 0 0

Velvetleaf

Wheat

Table B Compounds

31 g ai/ha 143 144 145 146 147 149 150 154 155 162 163 164 165 166 Preemergence

Barnyardgrass 20 80 70 0 0 10 0 0 0 20 0 0 0 0

Corn

Crabgrass, Large

Foxtail, Giant 70 100 90 0 0 70 0 0 0 90 0 0 0 0

Kochia 30 90 90 0 0 20 0 0 0 70 0 0 0 0

Morningglory

Pigweed 90 100 100 0 0 80 0 0 0 80 0 0 30 40

Ragweed 0 0 0 0 0 0 0 0 0 0 0 0 20 0

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Velvetleaf

Wheat

Table B Compounds

31 g ai/ha 173 174 175 176 177 178 187 188 189 196 197 198 210 211

Preemergence

Barnyardgrass 60 0 0 10 0 20 0 0 0 0 0 10 10 10

Corn

Crabgrass, Large

Foxtail, Giant 50 0 0 60 10 60 0 0 0 0 0 70 40 10

Kochia 70 - 0 0 0 10 0 0 0 0 0 0 50 20

Morningglory

Pigweed 80 60 0 30 50 90 0 0 0 0 0 30 100 100

Ragweed 10 0 0 0 0 0 0 0 0 0 0 0 0 0

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Velvetleaf

Wheat Table B Compounds

31 g ai/ha 212 213 214 216 218 219 220 221 222 223 224 225 226 227

Preemergence

Barnyardgrass 10 0 0 0 0 0 10 20 0 0 10 0 30 10

Corn

Crabgrass, Large

Foxtail, Giant 60 0 0 0 0 0 70 50 0 0 40 0 60 40

Kochia 40 10 0 0 0 0 50 50 0 0 60 0 70 0

Morningglory

Pigweed 100 80 0 0 0 0 100 100 20 0 90 0 100 40

Ragweed 0 0 0 0 0 0 0 0 0 0 - 0 0 0

Ryegrass, Italian 0 0 0 0 0 0 0 20 0 0 0 0 0 0

Velvetleaf

Wheat

Table B Compounds

31 g ai/ha 228 229 230 231 232 233 234 236 237 238 239

Preemergence

Barnyardgrass 50 50 10 0 0 0 0 10 0 0 0

Corn

Crabgrass, Large

Foxtail, Giant 90 90 60 0 0 0 0 10 0 0 0

Kochia 70 80 60 0 0 0 0 30 0 0 0

Morningglory

Pigweed 100 100 90 0 20 0 0 60 0 0 0

Ragweed 0 70 20 0 0 0 0 0 0 0 0

Ryegrass, Italian 30 0 0 0 0 0 0 0 0 0 0

Velvetleaf

Wheat TEST C

Plant species in the flooded paddy test selected from rice {Oryza sativa), small-flower umbrella sedge (Cyperus difformis), ducksalad {Heter anther a limosa), and barnyardgrass {Echinochloa crus-galli) were grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table C, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table C Compounds

250 g ai/ha 4 10 11 12 13 14 16 17 18 19 20 21 22 23

Flood

Barnyardgrass 0 0 0 10 0 0 0 0 0 0 0 0 0 0

Ducksalad 0 0 0 40 40 40 0 0 0 0 0 0 0 60

Rice 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedge, Umbrella 0 0 0 0 0 0 0 0 0 0 0 0 0 40

Table C Compounds

250 g ai/ha 24 25 26 27 28 29 30 32 35 38 41 42 43 44

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 65 0 0 0 0 0

Ducksalad 0 30 0 30 0 0 0 90 100 60 0 0 0 0

Rice 0 0 0 0 0 0 0 20 80 0 0 0 0 0

Sedge, Umbrella 40 20 0 40 0 0 0 85 100 30 0 0 0 0

Table C Compounds

250 g ai/ha 45 46 47 48 49 50 51 52 53 54 55 57 58 59

Flood

Barnyardgrass 0 20 0 0 0 0 0 0 20 0 25 0 0 0

Ducksalad 0 60 0 0 0 30 30 0 80 60 100 90 80 0

Rice 0 35 0 0 0 0 0 0 20 0 25 0 0 0

Sedge, Umbrella 0 50 0 0 0 0 0 0 75 0 90 75 40 0

Table C Compounds

250 g ai/ha 60 62 63 64 70 73 89 90 96 97 103 104 105 106

Flood

Barnyardgrass 20 35 60 35 0 0 0 0 15 0 60 20 45 0

Ducksalad 80 100 100 95 0 0 30 0 90 0 40 75 40 0

Rice 30 40 25 0 0 0 0 0 30 0 30 0 35 0

Sedge, Umbrella 50 90 85 80 0 0 80 0 100 50 80 80 70 0

Table C Compounds

250 g ai/ha 107 108 109 110 111 112 113 114 115 116 117 118 119 120

Flood

Barnyardgrass 0 0 30 0 0 0 0 0 0 0 0 50 0 90 Ducksalad 0 0 85 30 0 30 95 75 0 95 0 100 40 100

Rice 0 0 35 0 0 0 15 15 0 30 0 45 0 90

Sedge, Umbrella 0 0 80 60 0 95 95 75 0 90 0 100 40 95

Table C Compounds

250 g ai/ha 121 122 123 124 125 126 127 128 129 130 131 132 133 134

Flood

Barnyardgrass 60 0 0 0 0 95 50 0 0 65 75 30 40 0

Ducksalad 90 0 0 80 80 100 100 0 0 90 95 40 80 40

Rice 45 0 0 0 0 75 60 0 0 30 60 20 40 0

Sedge, Umbrella 90 0 30 85 90 100 100 0 0 90 95 75 80 75

Table C Compounds

250 g ai/ha 135 136 137 138 139 140 141 142 143 144 145 146 147 149

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 30 98 45 0 0 0

Ducksalad 0 40 20 20 30 0 30 0 85 90 90 0 0 80

Rice 0 0 0 0 20 0 0 0 35 40 35 0 0 0

Sedge, Umbrella 0 40 0 0 0 0 0 0 100 85 95 0 0 65

Table C Compounds

250 g ai/ha 150 151 152 153 154 155 156 157 158 159 160 161 162 163

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Ducksalad 0 0 0 0 0 0 0 40 50 0 0 0 0 0

Rice 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedge, Umbrella 0 0 0 0 0 0 0 40 0 0 0 0 0 0

Table C Compounds

250 g ai/ha 164 165 166 167 168 169 170 171 173 174 175 176 177 178

Flood

Barnyardgrass 0 0 0 0 90 0 0 0 0 0 0 0 0 40

Ducksalad 0 0 0 0 90 0 0 0 80 0 0 75 60 90

Rice 0 0 0 0 40 0 0 0 0 0 0 0 20 0

Sedge, Umbrella 0 0 0 0 90 0 0 0 60 0 0 30 40 85

Table C Compounds

250 g ai/ha 179 180 181 182 183 184 185 186 187 188 189 190 191 192

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 0 0 0 0 20 0

Ducksalad 80 90 0 0 85 0 0 0 50 30 0 0 80 60 Rice 40 0 0 0 0 0 0 0 0 0 0 0 0 0

Sedge, Umbrella 80 80 0 0 75 0 0 0 0 0 0 0 85 40

Table C Compounds

250 g ai/ha 193 194 196 197 198 199 200 201 202 203 204 205 206 207

Flood

Barnyardgrass 0 0 30 20 40 0 90 0 0 0 0 0 0 0

Ducksalad 65 80 55 0 85 0 100 0 80 0 0 0 70 30

Rice 0 0 0 0 25 0 35 0 0 0 0 0 0 0

Sedge, Umbrella 0 0 70 0 100 80 100 0 80 0 0 0 70 30

Table C Compounds

250 g ai/ha 208 209 210 211 212 213 214 215 216 217 218 219 220 221

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 0 20 0 0 20 0

Ducksalad 0 0 85 70 75 75 0 0 0 40 0 0 80 100

Rice 0 0 0 0 20 0 0 0 0 0 0 0 0 0

Sedge, Umbrella 0 0 40 20 75 0 0 0 0 0 0 0 75 95

Table C Compounds

250 g ai/ha 222 223 224 225 226 227 228 229 230 231 232 233 234 236

Flood

Barnyardgrass 0 0 0 0 20 0 40 55 40 0 0 0 0 0

Ducksalad 30 65 70 0 85 98 85 90 85 65 0 0 0 75

Rice 0 0 0 0 20 0 0 15 20 0 0 0 0 0

Sedge, Umbrella 0 70 65 0 65 85 90 90 85 70 0 0 0 40

Table C Compounds

250 g ai/ha 237 238 239

Flood

Barnyardgrass 0 20 0

Ducksalad 0 45 0

Rice 0 15 0

Sedge, Umbrella 0 65 0

TEST D

Seeds of plant species selected from blackgrass (Alopecurus myos roides), Italian ryegrass (Lolium multiflorum), winter wheat {Triticum aestivum), galium (catchweed bedstraw, Galium aparine), corn {Zea mays), large (Lg) crabgrass {Digitaria sanguinalis). giant foxtail (Setaria faberii), johnsongrass (Sorghum halepense), lambsquarters (Chenopodium album), morningglory (Ipomoea coccinea), yellow nutsedge (Cyperus esculentus), pigweed (Amaranthus retroflexus), ragweed (common ragweed, Ambrosia elatior), soybean (Glycine max), barnyardgrass (Echinochloa crus-galli), oilseed rape (Brassica napus), waterhemp (common waterhemp, Amaranthus rudis), and velvetleaf (Abutilon theophrasti) were planted into a blend of loam soil and sand and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants selected from these crop and weed species and also kochia (Kochia scoparia), wild oat (Avena fatud), and chickweed (common chickweed, Stellaria media) were planted in pots containing Redi-Earth ® planting medium (Scotts Company, 14111 Scottslawn Road, Marysville, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage) for postemergence treatments.

Plant species in the flooded paddy test consisted of rice (Oryza sativa), small-flower umbrella sedge (Cyperus difformis), ducksalad (Heteranthera limosa), and barnyardgrass (Echinochloa crus-galli) grown to the 2-leaf stage for testing. At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test.

Treated plants and controls were maintained in a greenhouse for 13 to 15 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table D, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table D Compound Table D Compound

250 g ai/ha 62 250 g ai/ha 62

Postemergence Postemergence

Barnyardgrass 95 Nutsedge, Yellow 10

Blackgrass 60 Oat, Wild 60

Chickweed 100 Oilseed Rape 100

Corn 10 Pigweed 100

Crabgrass, Large 65 Ragweed 85

Foxtail, Giant 55 Ryegrass, Italian 40

Galium 100 Soybean 98

Johnsongrass 85 Velvetleaf 85

Kochia 100 Waterhemp 100 Lambsquarters 100 Wheat 40

Morningglory 98

Table D Compounds

125 g ai/ha 50 53 54 55 57 58 60 62 63 96 113 116 118 120

Postemergence

Barnyardgrass 0 35 10 15 10 5 10 30 10 5 25 30 30 40

Blackgrass 0 30 5 50 15 5 20 40 25 20 40 35 35 55

Chickweed 5 90 5 100 75 30 75 98 100 98 95 90 98 100

Corn 5 0 5 20 10 5 5 15 10 5 25 10 15 15

Crabgrass, Large 5 30 5 15 10 5 5 50 35 10 25 40 20 65

Foxtail, Giant 35 30 50 75 20 30 10 20 20 10 10 60 20 25

Galium 60 90 75 90 95 55 65 100 70 98 90 90 98 100

Johnsongrass 0 5 5 15 5 5 5 75 45 10 10 - 45 85

Kochia 15 100 80 100 .00 80 90 100 100 100 100 100 100 100

Lambsquarters 5 100 70 98 80 90 75 100 90 95 90 100 95 100

Morningglory 20 55 85 85 65 65 40 95 70 30 80 30 80 100

Nutsedge, Yellow - - - 5 5 0 5 5 5 5 15 25 10 15

Oat, Wild 0 20 5 40 15 0 5 50 35 20 25 15 50 60

Oilseed Rape 30 85 60 100 90 75 90 98 100 65 90 70 95 95

Pigweed 30 100 60 100 75 75 70 100 95 98 100 90 98 100

Ragweed 15 55 35 90 98 60 70 65 55 40 90 75 85 85

Ryegrass, Italian 0 5 0 15 0 0 0 30 30 10 5 10 5 50

Soybean 40 98 80 95 90 75 95 98 98 35 75 95 90 95

Velvetleaf 40 100 40 85 80 85 80 75 40 35 70 75 85 100

Waterhemp 40 100 75 100 98 75 70 98 98 100 90 100 98 100

Wheat 5 0 5 35 20 10 20 10 5 10 5 5 5 0

Table D Compounds

125 g ai/ha 121 130 131 143 .44 145 149 153 162 168 169 170 178 179

Postemergence

Barnyardgrass 45 25 20 65 15 30 10 5 15 75 5 5 20 5

Blackgrass 50 30 30 30 75 80 30 0 45 20 25 5 15 20

Chickweed 100 95 100 80 95 100 60 25 85 100 80 100 80 95

Corn 25 10 25 10 5 10 5 5 5 20 10 5 10 15

Crabgrass, Large 55 25 20 35 20 20 15 10 20 40 10 10 15 5

Foxtail, Giant 40 25 15 50 25 20 30 5 20 60 55 40 25 30

Galium 95 100 95 100 95 90 95 80 80 100 75 80 85 75

Johnsongrass 60 10 45 30 50 40 10 10 20 20 5 5 10 5 Kochia 100 100 100 100 100 100 100 60 100 100 95 100 100 100

Lambsquarters 100 100 100 100 95 95 85 50 95 90 80 80 90 100

Morningglory 98 85 95 100 - 80 80 25 75 85 65 98 90 90

Nutsedge, Yellow 20 25 10 5 5 10 5 5 10 15 5 10 5 5

Oat, Wild 70 60 35 5 10 15 5 0 10 30 10 10 5 20

Oilseed Rape 95 95 85 65 - - 85 85 - 100 60 25 95 100

Pigweed 100 98 100 100 100 98 90 70 100 98 98 98 90 98

Ragweed 98 40 75 30 75 65 45 55 50 55 35 10 35 60

Ryegrass, Italian 55 15 25 15 10 10 0 0 5 15 15 5 5 20

Soybean 95 95 65 60 - 75 65 90 50 90 25 35 45 70

Velvetleaf 85 100 85 65 98 80 65 50 - 90 30 25 75 70

Waterhemp 100 98 98 100 100 100 100 65 100 98 90 85 90 98

Wheat 0 35 0 5 10 10 10 10 5 35 10 15 10 35

Table D Compounds

125 g ai/ha 180 183 185 191 192 198 200 212 221 224 228 229 230

Postemergence

Barnyardgrass 5 5 5 10 5 35 15 25 10 15 35 10 5

Blackgrass 5 20 0 5 5 15 90 10 40 0 35 10 10

Chickweed 95 70 5 90 55 95 100 80 100 80 100 85 80

Corn 15 20 5 10 10 15 15 15 10 5 10 5 15

Crabgrass, Large 5 10 10 20 10 30 35 15 30 10 45 5 10

Foxtail, Giant 45 5 5 5 15 25 15 10 35 40 40 15 10

Galium 100 95 5 85 50 98 100 80 100 60 100 80 95

Johnsongrass 5 10 5 5 5 35 40 20 15 5 60 25 5

Kochia 100 100 30 90 95 100 100 100 100 100 100 98 100

Lambsquarters 98 75 20 85 75 75 98 98 98 85 95 85 70

Morningglory 90 90 65 85 45 85 98 98 85 80 75 35 70

Nutsedge, Yellow 15 5 30 10 5 10 15 5 10 5 10 10 5

Oat, Wild 30 25 5 5 5 10 55 10 35 0 55 10 10

Oilseed Rape 90 100 0 90 50 90 100 35 90 98 98 80 75

Pigweed 98 95 50 60 55 100 98 100 100 90 98 80 85

Ragweed 65 65 25 65 45 60 40 60 75 70 60 60 55

Ryegrass, Italian 20 10 0 5 0 10 35 5 10 0 25 5 5

Soybean 85 90 45 95 85 60 98 90 90 75 80 70 85

Velvetleaf 55 55 25 50 55 55 75 90 100 60 80 70 65

Waterhemp 98 98 30 65 70 98 100 100 100 85 100 85 80

Wheat 30 30 0 0 5 5 20 15 0 15 10 10 15 Table D Compounds

62 g ai/ha 35 50 53 54 55 57 58 60 62 63 96 113 116 118

Postemergence

Barnyardgrass 20 0 25 5 15 5 0 10 35 10 5 20 20 20

Blackgrass 60 0 20 5 30 0 0 5 25 20 10 10 5 15

Chickweed 100 5 80 5 98 55 15 60 95 98 90 90 30 90

Corn 20 0 0 5 10 5 5 5 10 5 5 20 5 15

Crabgrass, Large 10 0 15 5 10 10 5 5 35 10 5 25 25 15

Foxtail, Giant 15 5 25 10 40 20 15 5 25 10 10 10 10 10

Galium 85 5 95 55 90 65 60 50 85 70 80 90 70 90

Johnsongrass 35 0 5 5 10 5 0 0 25 25 5 5 20 10

Kochia 100 5 100 80 100 95 60 55 100 98 85 100 100 95

Lambsquarters 95 50 100 5 98 70 60 55 98 85 90 95 80 90

Morningglory 98 10 85 75 80 45 45 25 95 98 40 85 10 85

Nutsedge, Yellow 5 - - - 5 5 0 0 5 5 5 5 10 10

Oat, Wild 45 0 30 5 40 5 0 0 40 25 20 10 10 15

Oilseed Rape 98 10 95 50 100 75 60 65 90 98 65 90 55 60

Pigweed 95 5 90 80 98 55 40 55 100 90 98 95 90 95

Ragweed 75 5 55 5 65 60 65 40 60 55 10 90 60 55

Ryegrass, Italian 20 0 5 0 10 0 0 0 5 5 10 5 5 5

Soybean 95 20 95 50 90 85 60 95 95 55 55 65 30 60

Velvetleaf 65 0 70 40 75 70 60 65 70 40 35 70 70 70

Waterhemp 98 0 90 80 98 75 55 50 98 98 98 85 90 95

Wheat 10 5 0 0 30 15 10 5 20 5 0 5 5 0

Table D Compounds

62 g ai/ha 120 121 130 131 143 144 145 149 153 156 162 168 169 170

Postemergence

Barnyardgrass 25 25 10 10 10 10 10 5 5 5 15 10 5 5

Blackgrass 60 30 20 5 20 15 25 0 0 5 30 15 0 5

Chickweed 100 100 80 98 60 95 95 30 20 70 60 100 70 90

Corn 10 20 10 10 5 10 5 5 5 5 5 10 10 5

Crabgrass, Large 35 40 20 10 15 15 10 10 5 10 10 15 10 5

Foxtail, Giant 15 15 10 15 10 25 20 10 5 35 10 40 25 40

Galium 100 100 95 95 70 90 80 70 70 70 60 95 70 65

Johnsongrass 40 60 5 25 30 10 5 15 5 10 10 5 0 0

Kochia 100 100 100 95 100 100 100 100 40 45 100 100 90 85

Lambsquarters 100 100 100 98 98 90 85 80 30 40 75 85 35 40 Morningglory 80 90 85 75 90 85 85 70 15 65 75 85 55 70

Nutsedge, Yellow 10 5 20 5 5 5 5 5 5 5 5 10 0 5

Oat, Wild 55 70 35 20 5 5 15 0 0 0 5 20 5 5

Oilseed Rape 90 95 75 80 60 95 - 60 60 45 40 100 10 40

Pigweed 100 100 98 98 100 100 98 95 40 75 100 95 80 98

Ragweed 70 75 75 65 10 70 50 30 25 15 40 55 25 10

Ryegrass, Italian 10 40 10 5 0 10 10 0 0 0 5 5 5 5

Soybean 70 90 98 75 60 95 75 65 70 30 40 40 15 10

Velvetleaf 100 80 75 80 50 75 75 40 60 25 75 45 20 25

Waterhemp 100 100 98 90 100 100 100 95 35 90 100 98 90 100

Wheat 0 0 30 0 5 10 5 0 5 10 5 30 10 10

Table D Compounds

62 g ai/ha 178 179 180 183 185 191 192 198 200 212 221 224 228 229

Postemergence

Barnyardgrass 10 5 5 5 0 5 5 20 10 15 5 10 20 5

Blackgrass 10 15 5 5 0 0 0 10 40 0 5 5 25 15

Chickweed 60 95 85 65 5 70 50 60 100 30 80 40 98 80

Corn 5 10 10 15 5 10 5 15 10 10 5 5 10 5

Crabgrass, Large 20 5 5 5 10 10 10 20 25 10 25 10 35 5

Foxtail, Giant 5 40 30 5 5 5 25 15 10 15 5 5 20 5

Galium 98 70 100 95 5 85 50 98 100 65 100 60 98 65

Johnsongrass 15 5 5 5 5 5 5 35 45 20 15 5 25 0

Kochia 100 100 100 100 5 85 90 100 100 100 100 95 100 98

Lambsquarters 75 75 98 65 15 70 40 70 85 98 95 80 90 70

Morningglory 100 85 90 90 10 60 10 80 85 75 80 35 80 25

Nutsedge, Yellow 10 5 10 5 0 5 0 15 5 10 5 5 5 10

Oat, Wild 5 15 5 10 0 5 0 10 30 5 10 0 40 10

Oilseed Rape 80 85 80 100 0 60 5 60 100 20 90 50 80 60

Pigweed 85 98 75 85 35 30 55 90 85 100 98 85 95 70

Ragweed 20 50 35 60 15 60 15 55 60 55 45 55 60 70

Ryegrass, Italian 5 5 5 5 0 0 0 10 35 0 20 0 15 0

Soybean 35 70 70 75 35 75 55 30 90 85 85 65 80 45

Velvetleaf 60 30 35 55 10 30 30 55 70 60 80 30 65 45

Waterhemp 85 95 90 75 25 70 55 95 98 100 100 85 95 80

Wheat 5 30 15 30 0 0 5 5 25 5 5 0 10 5

Table D Compound Table D Compound

62 g ai/ha 230 62 g ai/ha 230 Postemergence Postemergence

Barnyardgrass 10 Nutsedge, Yellow 5

Blackgrass 10 Oat, Wild 5

Chickweed 75 Oilseed Rape 75

Corn 0 Pigweed 70

Crabgrass, Large 5 Ragweed 55

Foxtail, Giant 10 Ryegrass, Italian 5

Galium 85 Soybean 65

Johnsongrass 5 Velvetleaf 55

Kochia 100 Waterhemp 75

Lambsquarters 80 Wheat 5

Morningglory 5

Table D Compounds

31 g ai/ha 35 50 53 54 55 57 58 60 62 63 96 113 116 118

Postemergence

Barnyardgrass 20 0 10 5 10 5 0 0 50 10 0 15 5 20

Blackgrass 40 0 40 5 10 0 0 0 20 10 10 15 5 10

Chickweed 85 0 80 5 75 50 10 50 70 65 85 85 15 70

Corn 10 0 0 0 10 5 0 0 10 5 15 10 10 10

Crabgrass, Large 10 0 20 5 10 5 5 5 55 5 5 20 5 10

Foxtail, Giant 10 0 20 30 50 10 0 5 25 5 5 5 5 15

Galium 75 15 85 55 90 50 45 40 85 70 90 80 60 90

Johnsongrass 5 0 0 0 5 0 0 0 25 5 0 5 20 5

Kochia 100 0 100 55 100 90 50 50 98 95 60 100 100 95

Lambsquarters 85 5 80 5 85 40 75 20 98 70 65 85 60 85

Morningglory 85 0 80 75 70 45 45 40 85 50 40 75 10 85

Nutsedge, Yellow 5 - - - 5 5 0 0 5 0 5 5 5 5

Oat, Wild 40 0 10 0 15 0 0 0 30 20 20 15 5 10

Oilseed Rape 80 5 80 20 95 55 10 50 80 90 45 50 10 30

Pigweed 90 5 90 80 85 55 25 35 98 85 95 90 75 95

Ragweed 85 5 50 0 40 50 45 30 65 40 10 60 35 45

Ryegrass, Italian 5 0 5 0 5 0 0 0 5 0 5 5 0 0

Soybean 80 5 90 10 75 70 40 65 80 45 50 55 55 60

Velvetleaf 55 0 60 5 50 50 35 50 60 25 35 60 65 75

Waterhemp 95 0 90 60 90 55 40 30 98 85 95 80 90 90

Wheat 5 0 0 0 25 5 5 5 30 0 0 0 0 0 Table D Compounds

31 g ai/ha 120 121 130 131 143 144 145 149 153 156 157 162 168 169

Postemergence

Barnyardgrass 15 25 10 10 5 5 5 5 5 0 5 10 5 5

Blackgrass 35 25 5 5 10 15 20 0 0 5 5 30 15 0

Chickweed 100 100 80 80 50 80 80 30 20 45 75 60 98 40

Corn 15 20 25 5 5 5 5 5 0 5 5 5 5 5

Crabgrass, Large 25 10 20 5 10 10 10 5 5 5 5 5 5 5

Foxtail, Giant 10 10 5 10 10 10 10 10 0 10 20 10 35 5

Galium 98 90 90 85 70 85 80 60 70 60 70 60 95 70

Johnsongrass 30 35 5 5 5 10 5 10 0 5 0 5 5 0

Kochia 100 100 95 90 100 100 100 90 50 30 90 100 100 60

Lambsquarters 100 100 100 98 80 80 85 70 35 35 55 65 85 40

Morningglory 98 75 80 75 - 85 85 60 5 15 35 65 85 15

Nutsedge, Yellow 10 10 5 0 5 5 5 0 0 5 10 0 5 0

Oat, Wild 40 45 15 15 0 0 10 0 0 0 10 5 10 5

Oilseed Rape 85 80 80 45 50 80 70 30 40 40 25 5 100 5

Pigweed 100 98 95 98 90 98 95 85 20 60 65 90 85 80

Ragweed 55 65 60 45 5 60 50 30 10 10 25 30 50 5

Ryegrass, Italian 5 10 5 5 0 5 0 0 0 0 5 0 5 0

Soybean 70 60 55 15 30 80 60 40 40 25 35 10 75 5

Velvetleaf 85 80 80 65 30 55 70 30 20 15 40 40 40 10

Waterhemp 100 95 85 90 100 85 90 80 10 70 75 98 90 90

Wheat 0 0 5 0 5 10 5 0 0 5 0 0 10 5

Table D Compounds

31 g ai/ha 170 178 179 180 183 185 191 192 198 200 212 221 224 228

Postemergence

Barnyardgrass 0 15 0 0 5 0 5 5 10 10 5 5 5 20

Blackgrass 0 5 5 0 5 0 0 0 5 30 0 10 0 15

Chickweed 65 50 80 60 60 0 55 50 60 95 30 85 15 85

Corn 5 5 10 5 15 0 5 0 10 5 5 0 5 10

Crabgrass, Large 5 10 5 5 5 0 10 5 15 10 10 10 5 20

Foxtail, Giant 30 5 5 50 5 5 5 25 15 20 10 5 5 10

Galium 50 80 80 75 65 0 70 50 75 100 60 80 50 98

Johnsongrass 0 10 5 0 5 0 5 5 20 20 5 5 5 10

Kochia 60 95 100 90 95 0 80 80 95 100 100 100 70 100

Lambsquarters 40 70 75 80 65 10 70 50 55 80 80 95 75 85 Morningglory 30 100 65 55 75 25 65 0 55 50 98 65 35 65

Nutsedge, Yellow 5 5 5 0 5 0 5 5 5 5 5 5 0 5

Oat, Wild 5 0 5 5 5 0 0 0 5 30 0 10 0 20

Oilseed Rape 5 80 75 60 85 0 40 0 50 85 - 70 10 85

Pigweed 90 85 90 75 85 35 30 20 98 85 100 95 85 95

Ragweed 5 5 25 40 35 20 40 5 55 55 40 50 55 35

Ryegrass, Italian 0 0 5 0 0 0 0 0 0 25 0 5 0 5

Soybean 10 35 45 60 55 30 65 30 25 85 70 25 40 55

Velvetleaf 5 40 20 40 55 10 30 20 45 60 50 65 25 40

Waterhemp 80 80 90 75 80 25 60 40 85 90 98 85 75 95

Wheat 20 5 10 5 20 0 0 0 0 10 5 0 0 5

Table D Compounds Table D Compounds

31 g ai/ha 229 230 31 g ai/ha 229 230

Postemergence Postemergence

Barnyardgrass 5 5 Nutsedge, Yellow 0 0

Blackgrass 10 10 Oat, Wild 10 0

Chickweed 60 65 Oilseed Rape 70 60

Corn 20 0 Pigweed 60 65

Crabgrass, Large 0 5 Ragweed 50 40

Foxtail, Giant 5 5 Ryegrass, Italian 0 0

Galium 70 85 Soybean 40 55

Johnsongrass 0 0 Velvetleaf 60 40

Kochia 90 85 Waterhemp 70 70

Lambsquarters 70 70 Wheat 10 5

Morningglory 25 5

Table D Compounds

16 g ai/ha 35 50 53 54 55 57 58 60 63 96 113 116 118 120

Postemergence

Barnyardgrass 15 0 5 0 5 0 0 0 5 0 10 5 10 10

Blackgrass 35 0 5 0 5 0 0 0 5 0 5 0 5 20

Chickweed 85 0 50 5 70 30 5 45 60 60 70 5 75 95

Corn 5 0 0 0 10 0 0 0 5 5 5 5 5 15

Crabgrass, Large 10 0 10 5 5 5 5 5 5 5 10 5 10 30

Foxtail, Giant 5 0 40 0 40 0 0 0 0 0 5 5 5 10

Galium 70 30 60 50 80 40 40 30 60 70 80 60 85 98

Johnsongrass 10 0 0 0 5 0 0 0 5 0 5 10 5 5

Kochia 100 0 90 50 98 75 35 50 90 25 90 100 95 98 Lambsquarters 80 0 70 0 75 60 10 20 10 65 70 40 75 100

Morningglory 60 0 50 5 70 5 20 0 50 85 85 15 85 85

Nutsedge, Yellow 5 - - - 0 0 0 0 0 0 5 5 5 5

Oat, Wild 10 0 5 0 5 0 0 5 0 15 10 5 5 35

Oilseed Rape 45 5 70 5 95 30 5 60 60 40 80 50 5 80

Pigweed 80 0 85 60 85 30 20 20 85 98 90 75 80 98

Ragweed 45 5 50 0 25 20 20 15 10 0 80 40 80 40

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 5 0 0 5

Soybean 65 5 60 15 65 40 55 65 35 15 80 40 75 90

Velvetleaf 50 0 55 0 35 10 60 40 10 20 60 55 65 70

Waterhemp 75 0 80 45 85 60 35 15 85 85 85 70 85 90

Wheat 0 0 0 0 5 0 0 0 0 0 0 70 0 0

Table D Compounds

16 g ai/ha 121 130 131 143 144 145 149 153 156 157 162 168 169 170

Postemergence

Barnyardgrass 20 10 10 5 5 5 5 5 0 5 5 5 5 0

Blackgrass 5 0 5 10 5 15 0 0 0 5 0 10 0 0

Chickweed 95 80 65 45 70 70 5 20 5 50 50 65 5 30

Corn 10 10 5 5 5 5 0 0 5 5 5 5 0 5

Crabgrass, Large 15 10 5 10 5 5 5 0 5 5 5 5 5 5

Foxtail, Giant 10 5 10 5 5 5 5 0 5 40 10 35 0 5

Galium 80 65 80 50 80 80 60 70 20 60 60 70 55 50

Johnsongrass 35 0 5 0 5 5 5 0 0 0 5 5 0 0

Kochia 98 90 85 100 100 100 90 50 10 80 100 100 40 5

Lambsquarters 98 85 95 80 85 70 55 15 25 25 50 55 5 10

Morningglory 65 55 70 95 85 85 25 5 5 20 45 40 15 30

Nutsedge, Yellow 5 0 0 0 5 5 0 0 0 5 0 5 0 0

Oat, Wild 25 5 10 0 0 5 0 0 0 0 5 10 0 0

Oilseed Rape 70 60 60 50 25 60 20 50 5 5 5 85 0 5

Pigweed 98 85 85 75 85 90 85 20 65 65 75 60 75 60

Ragweed 20 70 30 0 25 10 5 10 5 20 20 20 5 5

Ryegrass, Italian 0 0 0 0 0 0 0 0 0 0 0 5 0 0

Soybean 55 50 30 30 60 50 30 35 15 10 25 45 5 10

Velvetleaf 75 80 45 30 35 60 10 5 10 10 20 40 10 5

Waterhemp 95 75 85 85 85 85 80 5 35 75 95 80 55 65

Wheat 0 5 0 0 5 5 0 0 0 0 0 10 0 0 Table D Compounds

16 g ai/ha 178 179 .80 183 185 191 192 198 200 212 220 221 224 228

Postemergence

Barnyardgrass 10 0 0 5 0 5 5 10 5 5 10 0 5 15

Blackgrass 0 5 0 0 0 0 0 5 30 0 5 5 0 15

Chickweed 50 70 60 30 0 50 0 5 60 10 40 75 10 85

Corn 0 5 5 10 0 5 0 5 5 5 5 0 0 5

Crabgrass, Large 5 5 5 5 0 5 5 10 10 5 15 10 5 15

Foxtail, Giant 0 5 60 5 35 5 10 10 5 10 5 35 0 10

Galium 75 70 65 65 0 40 35 70 75 60 60 80 40 85

Johnsongrass 10 0 0 0 0 5 0 5 15 5 5 0 5 10

Kochia 90 90 85 90 0 50 50 60 95 90 100 98 35 100

Lambsquarters 25 70 70 35 10 50 35 10 70 40 70 85 55 85

Morningglory 70 30 40 65 0 65 0 55 55 75 75 65 15 65

Nutsedge, Yellow 5 5 0 5 0 0 0 5 5 10 5 5 0 5

Oat, Wild 0 0 0 0 0 0 0 5 20 0 5 5 0 10

Oilseed Rape 35 40 5 5 0 0 0 30 70 10 10 70 0 65

Pigweed 80 80 70 55 10 35 15 85 90 100 85 95 85 85

Ragweed 5 30 30 15 10 30 0 30 30 35 25 35 30 20

Ryegrass, Italian 0 0 0 0 0 0 0 0 20 0 0 5 0 0

Soybean 15 25 45 65 15 45 10 10 60 60 10 35 35 60

Velvetleaf 60 15 45 30 5 15 20 50 30 20 25 70 10 35

Waterhemp 70 60 40 80 5 25 20 85 80 80 80 70 70 90

Wheat 0 5 5 5 0 0 0 0 5 0 0 0 0 0

Table D Compounds Table D Compounds

16 g ai/ha 229 230 8 g ai/ha 35 156 157 220

Postemergence Postemergence

Barnyardgrass 5 5 Barnyardgrass 10 0 0 10

Blackgrass 0 0 Blackgrass 30 0 0 0

Chickweed 60 65 Chickweed 50 5 10 40

Corn 5 0 Corn 5 0 0 5

Crabgrass, Large 0 0 Crabgrass, Large 5 0 5 5

Foxtail, Giant 0 5 Foxtail, Giant 5 0 20 5

Galium 70 80 Galium 80 20 50 55

Johnsongrass 0 0 Johnsongrass 0 0 0 0

Kochia 85 65 Kochia 95 0 20 100

Lambsquarters 60 55 Lambsquarters 75 10 25 35 Morningglory 40 5 Morningglory 25 5 5 25

Nutsedge, Yellow 0 0 Nutsedge, Yellow 5 0 5 0

Oat, Wild 0 0 Oat, Wild 5 0 0 0

Oilseed Rape 45 50 Oilseed Rape 5 5 5 5

Pigweed 55 60 Pigweed 80 15 70 80

Ragweed 35 30 Ragweed 40 0 15 15

Ryegrass, Italian 0 0 Ryegrass, Italian 0 0 0 0

Soybean 20 50 Soybean 40 5 10 10

Velvetleaf 15 25 Velvetleaf 30 0 5 10

Waterhemp 60 65 Waterhemp 75 5 55 70

Wheat 0 5 Wheat 0 0 0 0

Table D Compounds Table D Compound

4 g ai/ha 157 220 2 g ai/ha 220

Postemergence Postemergence

Barnyardgrass 0 5 Barnyardgrass 5

Blackgrass 0 0 Blackgrass 0

Chickweed 5 10 Chickweed 5

Corn 0 5 Corn 0

Crabgrass, Large 0 5 Crabgrass, Large 5

Foxtail, Giant 0 5 Foxtail, Giant 0

Galium 10 50 Galium 50

Johnsongrass 0 0 Johnsongrass 0

Kochia 0 50 Kochia 20

Lambsquarters 20 45 Lambsquarters 55

Morningglory 0 15 Morningglory 35

Nutsedge, Yellow 0 0 Nutsedge, Yellow 0

Oat, Wild 0 0 Oat, Wild 0

Oilseed Rape 0 5 Oilseed Rape 0

Pigweed 35 75 Pigweed 70

Ragweed 50 15 Ragweed 5

Ryegrass, Italian 0 0 Ryegrass, Italian 0

Soybean 5 10 Soybean 15

Velvetleaf 5 15 Velvetleaf 5

Waterhemp 20 60 Waterhemp 15

Wheat 0 0 Wheat 0 Table D Compound Table D Compound 250 g ai/ha 62 250 g ai/ha 62

Preemergence Preemergence

Barnyardgrass 100 Nutsedge, Yellow 60

Blackgrass 90 Oilseed Rape 100

Corn 70 Pigweed 100

Crabgrass, Large 100 Ragweed 85

Foxtail, Giant 100 Ryegrass, Italian 95

Galium 100 Soybean 95

Johnsongrass 98 Velvetleaf 100

Lambsquarters 100 Waterhemp 100

Morningglory 100 Wheat 50

Table D Compounds

125 g ai/ha 53 54 55 57 58 60 62 63 104 113 118 120 131 144

Preemergence

Barnyardgrass 95 95 100 85 80 75 100 100 70 100 100 100 100 100

Blackgrass 95 70 90 60 95 70 90 90 30 80 90 90 95 95

Corn 5 0 80 30 20 5 60 15 0 40 30 75 65 65

Crabgrass, Large 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Foxtail, Giant 100 95 100 100 98 95 100 100 100 100 100 100 100 100

Galium 98 85 100 90 100 98 100 98 70 90 95 90 90 98

Johnsongrass 55 40 100 80 50 45 90 85 65 100 100 98 85 100

Lambsquarters 100 85 98 100 100 100 98 95 90 98 98 100 98 100

Morningglory 40 15 100 45 45 20 98 60 25 95 90 75 85 100

Nutsedge, Yellow 5 15 70 20 15 5 10 5 0 60 65 45 70 85

Oilseed Rape 100 100 100 100 100 100 100 98 50 100 100 100 95 100

Pigweed 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Ragweed 85 35 95 100 100 90 75 70 60 90 85 100 25 100

Ryegrass, Italian 60 30 95 50 5 30 90 90 5 70 60 90 90 98

Soybean 80 20 98 95 85 95 85 60 25 80 95 50 85 95

Velvetleaf 100 100 100 100 100 100 100 100 65 100 100 100 98 100

Waterhemp 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Wheat 5 0 60 5 0 0 40 45 5 20 5 5 5 25

Table D Compounds

125 g ai/ha 145 158 168 179 180 183 200 229

Preemergence Barnyardgrass 100 20 100 35 80 90 100 100

Blackgrass 95 90 90 80 70 50 90 85

Corn 45 15 55 5 30 5 20 40

Crabgrass, Large 100 100 100 100 100 100 100 100

Foxtail, Giant 100 100 100 85 100 100 100 98

Galium 100 100 100 98 98 95 95 98

Johnsongrass 95 40 100 65 90 45 100 70

Lambsquarters 100 80 98 100 90 100 100 95

Morningglory 100 70 100 15 100 40 90 45

Nutsedge, Yellow 45 5 45 25 30 5 15 45

Oilseed Rape 100 98 100 100 100 100 100 100

Pigweed 100 100 100 100 100 100 100 100

Ragweed 100 50 100 60 55 10 80 95

Ryegrass, Italian 85 20 95 80 65 50 90 60

Soybean 90 95 85 45 80 80 85 95

Velvetleaf 100 70 100 100 100 100 100 100

Waterhemp 100 100 100 100 100 100 100 98

Wheat 10 0 85 35 30 0 40 15

Table D Compounds

62 g ai/ha 32 35 53 54 55 57 58 60 62 63 104 113 118 120

Preemergence

Barnyardgrass 98 100 40 10 100 75 65 30 98 98 25 98 100 90

Blackgrass 35 90 90 40 90 50 80 10 90 90 0 70 60 90

Corn 0 15 100 0 35 5 10 0 30 15 0 25 30 25

Crabgrass, Large 100 100 98 90 100 100 100 100 100 98 98 100 100 100

Foxtail, Giant 95 100 98 95 100 100 85 40 100 98 90 100 100 98

Galium 75 100 100 60 100 90 100 100 100 98 75 98 95 90

Johnsongrass 85 98 35 10 85 40 20 15 75 70 15 90 85 95

Lambsquarters 100 100 100 85 100 100 100 85 95 90 90 98 95 90

Morningglory 0 90 45 5 100 35 0 10 55 25 25 85 85 60

Nutsedge, Yellow 25 5 0 0 55 20 0 0 5 0 0 15 15 35

Oilseed Rape 100 100 100 100 100 100 100 90 98 98 30 100 100 95

Pigweed 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Ragweed 70 80 55 10 90 100 75 65 65 55 55 85 70 25

Ryegrass, Italian 10 80 15 5 85 5 0 0 60 80 0 60 65 90

Soybean 65 85 55 20 95 95 80 65 70 45 25 90 80 60

Velvetleaf 85 100 100 85 100 100 100 100 100 100 70 100 100 100 Waterhemp 98 100 100 100 100 100 100 100 100 100 100 100 100 100

Wheat 5 15 0 0 25 0 0 0 10 10 5 10 0 5

Table D Compounds

62 g ai/ha 131 143 144 145 158 168 179 180 183 200 229

Preemergence

Barnyardgrass 85 98 100 85 35 100 15 35 30 100 65

Blackgrass 90 90 95 95 50 90 45 60 0 90 70

Corn 60 100 15 10 5 25 0 5 0 10 5

Crabgrass, Large 100 100 100 100 85 100 75 100 98 100 100

Foxtail, Giant 100 100 100 100 85 100 85 85 80 100 90

Galium 90 80 98 100 100 100 90 98 95 100 98

Johnsongrass 80 80 100 90 10 85 20 60 20 85 45

Lambsquarters 85 85 100 100 100 100 100 100 90 95 80

Morningglory 35 55 100 90 15 80 0 5 5 70 35

Nutsedge, Yellow 5 5 50 30 5 15 0 0 0 0 10

Oilseed Rape 85 95 100 100 90 100 - 100 100 100 100

Pigweed 100 100 100 100 100 100 100 100 100 100 100

Ragweed 0 40 100 75 70 100 40 15 0 70 55

Ryegrass, Italian 35 70 80 70 0 95 15 50 15 85 20

Soybean 50 25 90 75 45 55 30 60 35 40 60

Velvetleaf 80 85 100 100 40 100 85 90 90 100 100

Waterhemp 100 100 100 100 100 100 90 95 95 100 98

Wheat 0 0 25 5 0 45 0 0 0 20 0

Table D Compounds

31 g ai/ha 32 35 53 54 55 57 58 60 62 63 104 113 118 120

Preemergence

Barnyardgrass 55 75 5 5 85 20 5 5 50 65 10 95 60 75

Blackgrass 30 90 25 5 90 5 5 5 5 85 0 40 10 60

Corn 0 0 10 0 20 0 20 0 35 5 0 0 5 35

Crabgrass, Large 98 100 95 75 100 85 90 55 95 98 85 100 100 100

Foxtail, Giant 85 98 85 10 100 90 15 5 95 80 80 100 100 98

Galium 65 100 95 85 100 70 98 85 100 98 80 90 98 98

Johnsongrass 75 60 0 0 75 10 10 0 30 35 20 70 70 55

Lambsquarters 98 98 100 60 100 100 100 80 100 90 80 98 90 95

Morningglory 5 55 0 0 50 20 25 0 25 0 5 35 5 30

Nutsedge, Yellow 0 5 0 0 10 10 0 0 0 0 0 10 0 5

Oilseed Rape 100 100 100 85 100 100 98 98 100 98 0 100 98 90 Pigweed 98 100 100 100 100 85 100 100 100 100 100 100 100 100

Ragweed 75 75 40 40 75 35 35 55 0 20 25 55 20 0

Ryegrass, Italian 0 30 10 5 35 0 0 0 40 40 0 10 5 35

Soybean 25 60 25 10 35 65 35 55 60 15 20 40 75 10

Velvetleaf 55 85 100 70 100 100 100 100 90 100 50 85 70 75

Waterhemp 100 100 100 85 100 90 100 100 100 100 100 100 100 100

Wheat 0 5 0 0 0 0 0 0 0 0 0 5 0 0

Table D Compounds

31 g ai/ha 131 143 144 145 157 158 168 179 180 183 200 229

Preemergence

Barnyardgrass 75 70 80 85 5 5 75 5 0 5 95 55

Blackgrass 80 15 95 90 5 15 90 30 0 0 90 15

Corn 10 5 5 5 0 0 15 0 0 0 0 5

Crabgrass, Large 100 100 98 100 40 90 100 65 75 70 100 85

Foxtail, Giant 100 100 100 100 20 55 100 30 60 35 100 70

Galium 30 80 98 98 85 50 100 90 80 50 98 80

Johnsongrass 30 60 75 75 5 0 95 0 10 5 60 10

Lambsquarters 80 85 100 100 100 100 100 100 100 85 98 80

Morningglory 40 35 75 55 10 15 70 0 0 0 45 0

Nutsedge, Yellow 5 0 30 0 0 0 5 0 0 0 0 0

Oilseed Rape 50 85 100 100 100 50 100 95 95 100 100 100

Pigweed 100 100 100 100 100 75 100 100 98 60 100 100

Ragweed 0 30 85 60 0 60 45 30 5 0 5 50

Ryegrass, Italian 20 5 60 35 5 0 95 5 0 0 80 20

Soybean 10 10 75 60 50 25 30 0 25 10 10 35

Velvetleaf 65 75 100 100 75 25 100 65 85 80 100 90

Waterhemp 100 98 100 100 100 100 100 90 95 100 100 100

Wheat 0 0 5 0 5 0 5 0 0 0 5 0

Table D Compounds

16 g ai/ha 32 35 53 54 55 57 58 60 63 104 113 118 120 131

Preemergence

Barnyardgrass 5 65 0 0 25 5 5 0 30 0 30 10 25 30

Blackgrass 0 70 5 5 15 5 0 0 30 0 10 0 70 5

Corn 0 0 5 0 5 0 5 0 0 0 0 0 0 0

Crabgrass, Large 90 100 65 10 100 75 25 5 65 65 98 100 98 98

Foxtail, Giant 35 90 10 0 100 50 0 0 30 30 85 98 95 80

Galium 25 100 85 50 100 80 0 98 75 90 90 60 90 95 Johnsongrass 45 10 0 0 30 0 10 0 5 5 10 10 50 0

Lambsquarters 95 100 100 5 100 80 25 10 95 65 85 90 70 75

Morningglory 0 0 0 0 10 10 10 0 0 5 20 30 0 0

Nutsedge, Yellow 65 0 20 0 0 0 0 0 0 0 0 0 0 0

Oilseed Rape 80 98 80 60 100 100 60 80 70 0 98 85 50 10

Pigweed 100 100 95 5 100 75 50 75 95 100 100 100 100 100

Ragweed 60 40 0 10 70 25 100 15 75 40 40 85 0 0

Ryegrass, Italian 0 0 0 0 15 0 0 0 0 0 5 0 5 0

Soybean 15 30 0 0 25 - 30 35 5 10 35 80 75 5

Velvetleaf 40 85 100 15 90 100 85 60 40 25 70 80 50 20

Waterhemp 100 100 100 25 100 100 100 80 90 100 100 100 100 100

Wheat 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table D Compounds

16 g ai/ha 143 144 145 157 158 168 179 180 183 200 229

Preemergence

Barnyardgrass 20 70 65 0 0 35 0 0 5 35 15

Blackgrass 10 55 15 0 0 85 0 0 0 85 15

Corn 0 0 0 5 0 0 0 0 0 0 0

Crabgrass, Large 98 90 85 5 25 100 10 30 5 98 75

Foxtail, Giant 85 100 85 0 5 100 5 5 5 95 5

Galium 10 95 90 80 0 100 90 75 50 85 40

Johnsongrass 15 20 10 0 0 35 0 0 0 25 10

Lambsquarters 70 100 100 100 75 90 75 95 80 75 35

Morningglory 10 20 15 0 5 5 0 0 0 5 0

Nutsedge, Yellow 0 15 0 0 0 5 0 0 0 0 0

Oilseed Rape 0 98 40 40 40 95 30 70 50 85 90

Pigweed 100 100 100 100 70 85 30 80 50 100 100

Ragweed 0 75 25 0 80 35 25 0 0 0 35

Ryegrass, Italian 5 5 0 0 0 70 0 0 0 30 0

Soybean 5 35 10 0 0 5 0 5 0 100 5

Velvetleaf 30 100 90 45 35 85 15 75 40 100 70

Waterhemp 100 100 100 100 100 100 75 40 10 98 95

Wheat 0 0 0 0 0 0 0 0 0 0 0

Table D Compounds Table D Compound

8 g ai/ha 32 35 143 4 g ai/ha 157

Preemergence Preemergence

Barnyardgrass 0 5 5 Barnyardgrass 0 Blackgrass 0 70 0 0 Blackgrass 0

Corn 0 0 0 0 Corn 0

Crabgrass, Large 100 80 60 0 Crabgrass, Large 0

Foxtail, Giant 0 70 40 0 Foxtail, Giant 0

Galium 0 85 10 80 Galium 70

Johnsongrass 0 0 35 0 Johnsongrass 0

Lambsquarters 95 100 25 25 Lambsquarters 0

Morningglory 0 0 0 0 Morningglory 0

Nutsedge, Yellow 60 0 0 0 Nutsedge, Yellow 0

Oilseed Rape 50 85 0 0 Oilseed Rape 0

Pigweed 100 100 90 100 Pigweed 20

Ragweed 75 55 0 0 Ragweed 0

Ryegrass, Italian 0 0 0 0 Ryegrass, Italian 0

Soybean 10 10 0 0 Soybean 0

Velvetleaf 5 65 35 5 Velvetleaf 0

Waterhemp 100 100 95 70 Waterhemp 0

Wheat 0 0 0 0 Wheat 0

Table D Compounds

250 g ai/ha 1 32 40 53 55 144 145 178 180 221

Flood

Barnyardgrass 0 20 0 0 30 35 35 0 10 60

Ducksalad 0 95 40 80 90 100 95 70 75 90

Rice 0 15 0 0 0 40 35 0 0 40

Sedge, Umbrella 0 90 50 75 100 95 90 75 80 95

Table D Compounds

125 g ai/ha 1 32 40 53 55 144 145 178 180

Flood

Barnyardgrass 0 10 0 0 10 15 0 0 10

Ducksalad 0 65 20 80 85 90 95 70 75

Rice 0 0 0 0 0 25 15 0 0

Sedge, Umbrella 0 65 30 70 85 95 90 60 75

Table D Compounds

62 g ai/ha 1 32 40 53 55 144 145 178 180 221

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 0 40

Ducksalad 0 60 0 50 80 85 85 65 0 80

Rice 0 0 0 0 0 15 15 0 0 15 Sedge, Umbrella 0 40 0 0 75 80 75 60 50

Table D Compounds

31 g ai/ha 1 32 40 53 55 144 145 178 180

Flood

Barnyardgrass 0 0 0 0 0 0 0 0 0

Ducksalad 0 0 0 40 75 75 80 40 0

Rice 0 0 0 0 0 0 0 0 0

Sedge, Umbrella 0 0 0 0 75 65 60 30 0

TEST E

Seeds of plant species selected from bluegrass (annual bluegrass, Poa annua), blackgrass (Alopecurus myosuroides), canarygrass (Phalaris minor), chickweed (common chickweed, Stellaria media), galium (catchweed bedstraw, Galium aparine), downy bromegrass (Bromus tectorum), field poppy (Papaver rhoeas), field violet (Viola arvensis), green foxtail (Setaria viridis), deadnettle (henbit deadnettle, Lamium amplexicaule), Italian ryegrass (Lolium multiflorum), kochia (Kochia scoparia), lambsquarters (Chenopodium album), oilseed rape (Brassica napus), pigweed (Amaranthus retroflexus), Russian thistle (Salsola iberica), chamomile (scentless chamomile, Matricaria inodora), speedwell (bird's- eye speedwell, Veronica persica), spring barley (Hordeum vulgare), spring wheat (Triticum aestivum), wild buckwheat (Polygonum convolvulus), wild mustard (Sinapis arvensis), wild oat (Avena fatua), wild radish (Raphanus raphanistrum), windgrass (Apera spica-venti), winter barley (Hordeum vulgare), and winter wheat (Triticum aestivum) were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant. At the same time, these species were planted in pots containing Redi-Earth ® planting medium (Scotts Company, 14111 Scottslawn Road, MarysviUe, Ohio 43041) comprising spaghnum peat moss, vermiculite, wetting agent and starter nutrients and treated with postemergence applications of the test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm (1- to 4-leaf stage).

Treated plants and controls were maintained in a controlled growth environment for 7 to 21 days after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table E, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table E Compounds

125 g ai/ha 35 53 55 62 144 145 168 200

Postemergence

Barley, Spring 25 10 20 25 45 30 25 35

Barley, Winter 30 10 10 35 45 40 15 25

Blackgrass 60 25 40 75 85 80 60 75 Bluegrass 60 5 25 60 65 70 15 70

Bromegrass, Downy 30 5 10 40 75 55 35 35

Buckwheat, Wild 95 95 95 100 100 100 100 100

Canarygrass 60 40 30 55 85 65 55 60

Chamomile 10 0 5 10 95 30 10 15

Chickweed 100 65 70 90 100 95 90 100

Deadnettle 80 65 80 70 - 100 80 90

Field Poppy 100 80 95 75 100 100 100 100

Field Violet 75 70 90 85 100 100 95 95

Foxtail, Green 55 25 60 65 100 98 75 55

Galium 85 75 85 90 100 100 85 90

Kochia 90 80 85 95 100 100 85 90

Lambsquarters 90 75 90 95 100 95 95 95

Mustard, Wild 100 95 95 100 100 100 95 100

Oat, Wild 60 25 50 60 90 80 65 35

Oilseed Rape 100 80 95 100 100 100 100 100

Pigweed 90 90 95 95 100 100 95 90

Radish, Wild 95 90 80 100 100 100 85 95

Russian Thistle - - - - 98 100 - -

Ryegrass, Italian 60 5 20 35 65 40 25 40

Speedwell 100 100 100 100 100 100 100 100

Wheat, Spring 40 35 45 40 75 55 40 35

Wheat, Winter 40 35 40 35 70 55 35 25

Windgrass 40 20 40 65 55 60 40 45

Table E Compounds

62 g ai/ha 35 53 55 62 144 145 168 200

Postemergence

Barley, Spring 10 10 15 20 35 20 15 25

Barley, Winter 5 5 5 20 35 30 10 20

Blackgrass 55 10 20 40 60 65 35 55

Bluegrass 40 5 15 55 55 65 10 55

Bromegrass, Downy 15 5 10 20 40 55 25 25

Buckwheat, Wild 90 90 95 95 100 100 95 95

Canarygrass 55 25 30 45 65 40 25 45

Chamomile 5 5 5 5 80 30 10 10

Chickweed 75 60 70 80 100 100 70 100

Deadnettle 70 60 70 65 - 100 75 80 Field Poppy 80 80 100 70 100 100 100 100

Field Violet 75 70 85 70 100 90 90 75

Foxtail, Green 55 10 50 25 80 40 60 45

Galium 75 75 80 75 100 98 80 75

Kochia 80 70 85 90 100 100 85 85

Lambsquarters 85 65 85 95 98 95 90 90

Mustard, Wild 85 95 95 100 100 100 95 100

Oat, Wild 35 10 40 35 65 40 40 30

Oilseed Rape 95 80 90 80 100 100 95 100

Pigweed 90 90 95 95 100 100 95 90

Radish, Wild 85 90 80 90 100 100 80 85

Russian Thistle - - - - 95 90 - -

Ryegrass, Italian 25 5 15 30 40 25 20 25

Speedwell 100 95 100 100 100 100 90 100

Wheat, Spring 25 20 25 25 45 45 25 20

Wheat, Winter 25 15 30 30 35 35 25 15

Windgrass 30 10 25 30 25 20 25 35

Table E Compounds

31 g ai/ha 35 53 55 62 144 145 168 200

Postemergence

Barley, Spring 5 5 10 15 25 15 15 15

Barley, Winter 0 5 0 10 20 15 10 10

Blackgrass 35 5 10 30 50 35 25 35

Bluegrass 20 0 0 35 45 60 5 35

Bromegrass, Downy 5 0 0 15 35 35 15 10

Buckwheat, Wild 85 65 95 80 95 100 95 70

Canarygrass 25 10 20 35 60 25 15 35

Chamomile 5 5 5 5 75 30 5 10

Chickweed 75 50 55 70 100 85 45 75

Deadnettle 60 30 50 35 - 100 55 60

Field Poppy 75 65 90 55 100 100 85 80

Field Violet 65 50 70 65 90 100 75 80

Foxtail, Green 35 10 45 20 50 30 60 35

Galium 80 75 85 70 95 95 75 75

Kochia 75 55 70 75 100 100 80 85

Lambsquarters 80 70 80 95 95 90 85 85

Mustard, Wild 85 75 85 100 100 100 95 95 Oat, Wild 15 5 15 25 25 30 10 20

Oilseed Rape 80 75 75 80 100 100 85 85

Pigweed 90 85 90 90 100 100 80 90

Radish, Wild 75 60 70 70 100 100 75 80

Russian Thistle - - - - 90 85 - -

Ryegrass, Italian 5 0 20 20 15 10 10 10

Speedwell 100 60 80 95 100 100 75 100

Wheat, Spring 10 10 15 20 35 35 20 10

Wheat, Winter 15 5 15 20 30 20 10 5

Windgrass 25 5 10 20 20 10 15 20

Table E Compounds

16 g ai/ha 35 53 55 62 144 145 168 200

Postemergence

Barley, Spring 5 5 10 10 15 15 10 10

Barley, Winter 0 5 0 5 30 15 5 5

Blackgrass 20 0 5 15 25 25 15 15

Bluegrass 15 0 0 10 25 15 10 20

Bromegrass, Downy 5 0 5 10 25 25 5 5

Buckwheat, Wild 75 70 65 75 100 100 65 65

Canarygrass 10 5 10 25 35 15 15 10

Chamomile 5 5 5 0 80 20 5 5

Chickweed 65 30 55 65 85 80 50 65

Deadnettle 40 20 20 35 - 100 20 50

Field Poppy 70 60 85 40 100 100 55 75

Field Violet 60 25 65 60 95 65 75 70

Foxtail, Green 20 10 30 15 40 15 20 25

Galium 70 75 70 70 80 95 75 70

Kochia 75 50 65 65 100 98 80 70

Lambsquarters 80 65 75 75 80 90 75 75

Mustard, Wild 90 65 70 75 100 100 75 75

Oat, Wild 10 5 10 15 20 15 5 10

Oilseed Rape 70 70 75 65 100 70 70 75

Pigweed 85 85 85 90 98 100 90 85

Radish, Wild 65 60 75 65 100 95 70 65

Russian Thistle - - - - 85 80 - -

Ryegrass, Italian 0 0 20 10 5 5 5 5

Speedwell 75 60 75 70 100 100 80 70 Wheat, Spring 0 10 5 5 25 30 10 5

Wheat, Winter 5 5 0 10 20 15 5 0

Windgrass 10 5 5 10 10 5 10 10

Table E Compounds

125 g ai/ha 35 53 55 62 144 145 168 200

Preemergence

Barley, Spring - 35 50 0 65 80 35 -

Barley, Winter - 25 35 5 55 85 40 -

Blackgrass 95 30 100 65 100 75 100 100

Bluegrass 70 25 100 75 85 90 100 100

Bromegrass, Downy 25 15 55 20 55 60 40 80

Buckwheat, Wild 100 100 100 100 100 100 100 100

Canarygrass 100 95 100 90 100 100 100 100

Chamomile 70 - - 65 100 100 - 75

Chickweed 100 100 100 100 100 100 100 100

Deadnettle 95 65 0 100 100 100 100 100

Field Poppy 90 100 100 100 100 100 100 95

Field Violet 100 100 100 100 100 100 100 100

Foxtail, Green 100 55 100 85 100 100 100 100

Galium 100 100 100 100 100 100 100 100

Kochia 100 100 100 100 100 100 100 100

Lambsquarters 100 100 100 100 100 100 100 100

Mustard, Wild 95 100 100 100 100 100 100 100

Oat, Wild 35 25 45 20 75 85 50 75

Oilseed Rape 100 100 100 100 100 100 100 100

Pigweed 100 100 100 100 100 100 100 100

Radish, Wild 100 90 100 100 100 100 100 95

Russian Thistle - - - - 100 100 - -

Ryegrass, Italian 75 25 50 25 100 70 75 85

Speedwell 100 100 100 100 100 100 100 100

Wheat, Spring - 10 35 10 55 70 30 -

Wheat, Winter - 30 20 5 35 75 30 -

Windgrass 100 50 100 50 100 98 100 100

Table E Compounds

62 g ai/ha 35 53 55 62 144 145 168 200

Preemergence

Barley, Spring - 35 45 0 45 45 30 - Barley, Winter - 30 10 5 55 30 25 -

Blackgrass 65 25 60 15 98 60 100 90

Bluegrass 35 20 10 10 40 10 80 95

Bromegrass, Downy 35 15 55 10 35 35 10 45

Buckwheat, Wild 90 100 100 80 100 85 100 100

Canarygrass 95 65 100 50 100 100 100 100

Chamomile 70 - - 60 100 100 - 60

Chickweed 95 100 100 100 100 100 100 100

Deadnettle 95 50 0 40 100 100 80 100

Field Poppy 90 100 100 100 100 100 100 95

Field Violet 90 60 100 35 100 100 100 -

Foxtail, Green 90 20 100 65 95 55 100 100

Galium 100 60 70 65 100 100 100 55

Kochia 100 55 100 85 100 100 100 100

Lambsquarters 90 100 100 95 100 100 100 100 Mustard, Wild 95 100 100 95 100 100 95 85 Oat, Wild 45 10 35 15 65 30 35 30 Oilseed Rape 100 100 100 65 100 100 65 100 Pigweed 100 100 100 100 100 100 100 100 Radish, Wild 100 100 100 95 100 85 100 95 Russian Thistle - - - - 100 60 - - Ryegrass, Italian 35 25 50 15 70 50 30 30 Speedwell 100 100 100 95 100 100 100 100 Wheat, Spring - 10 15 0 40 20 20 - Wheat, Winter - 25 10 0 25 25 10 - Windgrass 85 35 100 50 100 75 100 100

Table E Compounds

31 g ai/ha 35 53 55 62 144 145 168 200

Preemergence

Barley, Spring - 35 10 0 25 25 15 -

Barley, Winter - 10 10 0 35 15 5 -

Blackgrass 60 10 15 15 75 50 35 75

Bluegrass 35 10 10 5 15 0 10 70

Bromegrass, Downy 35 15 20 0 10 20 10 35

Buckwheat, Wild 75 100 100 35 100 100 65 75

Canarygrass 55 20 20 0 80 75 15 55

Chamomile 10 - - 65 20 100 - 25 Chickweed 100 100 100 75 100 100 80 90

Deadnettle 80 10 0 20 100 100 50 90

Field Poppy 80 100 100 75 100 100 100 90

Field Violet 70 25 80 10 100 100 100 50

Foxtail, Green 90 10 25 40 35 45 100 25

Galium 55 30 100 60 70 100 60 25

Kochia 65 15 100 5 100 100 100 100

Lambsquarters 85 75 100 85 100 100 100 85

Mustard, Wild 60 100 100 80 100 100 80 95

Oat, Wild 0 0 15 10 30 30 10 0

Oilseed Rape 95 75 100 25 80 100 40 100

Pigweed 95 20 100 100 100 100 100 100

Radish, Wild 95 70 100 40 80 15 45 70

Russian Thistle - - - - 65 10 - -

Ryegrass, Italian 25 10 0 0 25 20 0 25

Speedwell 100 70 100 95 100 100 100 100

Wheat, Spring - 5 15 0 15 15 15 -

Wheat, Winter - 15 10 0 15 20 10 -

Windgrass 80 15 25 15 75 25 15 55

Table E Compounds

16 g ai/ha 35 53 55 62 144 145 168 200

Preemergence

Barley, Spring - 35 10 0 10 15 0 -

Barley, Winter - 15 5 0 30 10 0 -

Blackgrass 30 10 0 5 15 10 10 25

Bluegrass 0 10 0 0 10 0 0 20

Bromegrass, Downy 0 0 20 0 10 10 0 10

Buckwheat, Wild 60 65 65 25 85 100 0 65

Canarygrass 40 10 10 0 35 40 15 10

Chamomile 5 - - 0 15 5 - 25

Chickweed 55 100 65 65 100 100 100 70

Deadnettle 35 10 0 15 90 0 10 60

Field Poppy 75 100 100 65 100 100 80 80

Field Violet 15 50 70 0 95 100 85 -

Foxtail, Green 5 10 10 20 20 0 10 -

Galium 25 25 10 5 20 25 60 15

Kochia 25 10 55 0 98 60 35 70 Lambsquarters 65 60 95 35 100 100 45 10

Mustard, Wild 20 90 80 25 90 95 80 85

Oat, Wild 0 0 0 0 35 25 10 0

Oilseed Rape 60 50 20 10 35 50 10 60

Pigweed 90 30 75 95 100 100 55 100

Radish, Wild 100 50 70 25 80 15 0 80

Russian Thistle - - - - 15 0 - -

Ryegrass, Italian 0 10 0 0 10 10 0 0

Speedwell 100 100 100 95 100 95 100 100

Wheat, Spring - 5 15 0 5 15 15 -

Wheat, Winter - 15 5 0 0 0 5 -

Windgrass 35 0 5 0 10 10 0 15

TEST F

Seeds of plant species selected from corn (Zea mays), soybean (Glycine max), velvetleaf (Abutilon theophrasti), lambsquarters (Chenopodium album), wild poinsettia (Euphorbia heterophylla), palmer pigweed (Amaranthus palmeri), waterhemp (common waterhemp, Amaranthus rudis), Surinam grass (Brachiaria decumbens), large (Lg) crabgrass (Digitaria sanguinalis), Brazilian crabgrass (Digitaria horizontalis), fall panicum (Panicum dichotomiflorum), giant foxtail (Setaria faberii), green foxtail (Setaria viridis), goosegrass (Eleusine indica), johnsongrass (Sorghum halepense), ragweed (common ragweed, Ambrosia elatior), barnyardgrass (Echinochloa crus-galli), sandbur (southern sandbur, Cenchrus echinatus), arrowleaf sida (Sida rhombifolia), Italian ryegrass (Lolium multiflorum), dayflower (Virginia (VA) dayflower, Commelina virginica), field bindweed (Convolvulus arvensis), cocklebur (common cocklebur, Xanthium strumarium), morningglory (Ipomoea coccinea), nightshade (eastern black nightshade, Solanum ptycanthum), kochia (Kochia scoparia), yellow nutsedge (Cyperus esculentus), and hairy beggarticks (Bidens pilosa), were planted into a silt loam soil and treated preemergence with test chemicals formulated in a non-phytotoxic solvent mixture which included a surfactant.

At the same time, plants from these crop and weed species and also waterhemp RESl, (ALS & Triazine resistant common waterhemp, Amaranthus rudis), and waterhemp_RES2, (ALS & HPPD resistant common waterhemp, Amaranthus rudis) were treated with postemergence applications of test chemicals formulated in the same manner. Plants ranged in height from 2 to 18 cm for postemergence treatments (1- to 4-leaf stage).

Treated plants and controls were maintained in a greenhouse for 14 to 21 days, after which time all species were compared to controls and visually evaluated. Plant response ratings, summarized in Table F, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result. Table F Compounds

125 g ai/ha 35 53 58 62 96 144 145 149 179 200 212 221

Postemergence

Arrowleaf Sida 98 98 90 98 95 100 95 98 100 95 100 98

Barnyardgrass 20 10 5 20 20 75 70 10 0 25 10 70

Beggarticks 70 60 65 80 40 75 70 50 50 10 40 70

Corn 20 10 5 10 10 10 20 15 15 25 0 20

Crabgrass, Brazil 40 20 10 10 25 55 50 25 30 20 35 75

Dayflower, VA 80 60 10 65 70 85 85 50 - 35 50 80

Field Bindweed 70 60 50 75 50 90 90 75 50 35 70 80

Horseweed - - - - 10 25 40 20 10 - 10 30

Kochia - 98 75 - 95 95 100 95 95 - 100 100

Panicum, Fall 50 60 15 60 25 60 80 40 10 15 10 60

Pigweed, Palmer 100 100 60 100 90 100 100 100 85 100 98 100

Poinsettia, Wild 80 70 60 50 50 65 80 70 35 80 60 80

Ragweed - - - - 40 90 70 35 50 - 50 80

Ryegrass, Italian 0 0 0 10 10 40 15 5 0 20 0 5

Sandbur 0 10 10 0 0 20 15 10 10 5 10 0

Soybean 98 95 95 85 80 95 95 90 90 90 95 95

Waterhemp 100 100 90 100 95 100 100 98 100 100 100 100

Waterhemp RESl 100 100 75 100 95 100 100 100 100 98 98 98

Waterhemp RES2 100 100 80 100 95 100 100 100 100 98 100 100

Table F Compounds

62 g ai/ha 35 53 55 58 62 96 144 145 149 179 200 212 221

Postemergence

Arrowleaf Sida 98 100 100 75 98 90 100 98 95 85 95 85 98

Barnyardgrass 10 0 35 0 20 20 50 50 10 0 15 0 30

Beggarticks 65 50 70 50 50 40 70 65 40 40 10 40 70

Corn 15 0 20 5 5 10 10 20 10 10 20 0 10

Crabgrass, Brazil 35 20 30 10 15 20 40 40 20 20 20 30 45

Dayflower, VA 50 50 - 20 25 70 60 75 40 - 15 40 80

Field Bindweed 50 50 70 30 50 20 80 80 50 35 35 60 -

Horseweed - - 20 - - 0 10 20 10 10 - 15 10

Kochia - 95 98 60 - 75 95 95 90 90 - 100 100

Panicum, Fall 50 15 30 10 10 10 35 50 20 15 5 10 40

Pigweed, Palmer 100 100 98 70 100 95 100 100 98 85 100 100 100

Poinsettia, Wild 50 70 45 50 50 60 70 80 60 20 60 50 70 Ragweed - - 55 - - 20 85 60 30 40 - 30 70

Ryegrass, Italian 0 5 10 0 10 0 20 10 10 0 15 0 0

Sandbur 0 5 15 0 0 0 20 5 15 5 0 0 0

Soybean 95 95 95 90 65 40 98 95 90 75 65 75 98

Waterhemp 100 100 100 80 100 100 100 100 95 95 98 95 95

Waterhemp RESl 100 95 100 70 100 95 100 100 90 100 95 95 100

Waterhemp RES2 100 100 100 75 100 90 100 100 100 100 98 98 95

Table F Compounds

31 g ai/ha 35 53 55 58 62 96 144 145 149 179 200 212 221

Postemergence

Arrowleaf Sida 95 98 95 60 95 80 100 95 85 80 85 70 90

Barnyardgrass 0 0 50 0 20 10 30 25 5 0 0 0 25

Beggarticks 60 40 55 50 10 30 60 50 30 50 5 40 60

Corn 15 0 15 0 0 5 5 10 10 0 10 0 10

Crabgrass, Brazil 30 15 40 5 10 5 50 20 20 20 15 30 25

Dayflower, VA 40 30 70 10 5 40 50 60 20 - 25 20 70

Field Bindweed 35 50 25 20 35 10 75 75 50 25 35 40 75

Horseweed - - 15 - - 0 0 20 20 0 - 0 5

Kochia - 80 95 30 - 75 95 100 80 75 - 90 98

Panicum, Fall 40 20 40 0 5 15 30 10 20 10 5 0 15

Pigweed, Palmer 95 90 98 50 95 80 100 100 95 90 98 75 90

Poinsettia, Wild 50 60 35 60 40 30 50 75 40 15 40 40 75

Ragweed - - 55 - - 20 50 50 40 40 - 20 60

Ryegrass, Italian 0 0 0 0 0 0 20 5 10 0 0 0 0

Sandbur 0 0 25 0 0 0 15 5 5 0 0 0 0

Soybean 85 95 70 70 40 - 95 95 85 50 40 50 95

Waterhemp 90 98 90 65 100 90 100 98 95 95 95 90 98

Waterhemp RESl 90 90 100 65 100 90 95 98 85 90 90 80 95

Waterhemp RES2 95 90 100 70 100 90 100 90 95 100 95 95 98

Table F Compounds

16 g ai/ha 35 53 58 62 96 144 145 149 179 200 212 221

Postemergence

Arrowleaf Sida 80 90 70 80 70 100 95 75 70 75 75 80

Barnyardgrass 0 0 0 15 0 10 10 0 0 0 0 15

Beggarticks 50 30 40 5 0 70 55 5 20 0 25 50

Corn 10 0 0 0 0 10 5 0 5 0 0 5

Crabgrass, Brazil 20 10 5 0 0 40 20 20 10 10 20 20 Dayflower, VA 40 40 5 0 20 50 50 10 - 0 30 60

Field Bindweed 30 55 10 40 5 70 70 60 15 20 30 70

Horseweed - - - - 0 0 0 0 0 - 0 0

Kochia - 60 40 - 65 95 98 60 65 - 50 95

Panicura, Fall 40 5 0 0 0 25 10 10 15 5 0 10

Pigweed, Palmer 75 65 50 70 70 90 95 65 70 95 30 85

Poinsettia, Wild 40 50 30 35 0 50 70 50 15 50 35 65

Ragweed - - - - 15 50 30 10 45 - 20 50

Ryegrass, Italian 0 0 0 0 0 10 10 0 0 0 0 0

Sandbur 0 0 0 0 0 10 5 0 0 0 0 0

Soybean 80 80 50 20 40 65 95 50 60 20 50 60

Waterhemp 85 95 60 90 75 100 95 85 70 80 90 90

Waterhemp RESl 80 85 20 85 85 90 95 80 90 75 70 85

Waterhemp RES2 90 80 60 80 85 98 95 95 95 95 70 90

Table F Compounds

8 g ai/ha 35 53 58 62 200

Postemergence

Arrowleaf Sida 60 70 50 65 65

Barnyardgrass 0 0 0 10 0

Beggarticks 50 15 40 5 0

Corn 10 0 0 0 0

Crabgrass, Brazil 10 0 5 0 10

Dayflower, VA 10 30 5 0 0

Field Bindweed 20 30 10 40 20

Kochia - 50 30 - -

Panicum, Fall 30 0 15 0 5

Pigweed, Palmer 60 70 50 90 85

Poinsettia, Wild 30 50 30 25 35

Ryegrass, Italian 0 0 0 0 0

Sandbur 0 0 0 0 0

Soybean 70 40 50 10 15

Waterhemp 70 80 65 80 75

Waterhemp RESl 90 70 10 80 70

Waterhemp RES2 90 70 65 80 75

Table F Compounds

125 g ai/ha 35 53 58 62 96 144 145 149 168 179 200

Preemergence Arrowleaf Sida 100 100 98 100 90 100 98 100 100 90 100

Barnyardgrass 65 50 15 25 0 100 75 35 100 5 60

Beggarticks 50 20 20 0 20 0 25 0 0 0 0

Cocklebur 0

Corn 20 15 0 0 0 35 60 0 35 40 0

Crabgrass, Brazil 100 90 75 100 5 100 100 85 100 25 100

Crabgrass, Large 100 98 80 98 95 100 100 85 100 60 100

Dayflower, VA 95 95 80 80 20 95 70 40 90 85 90

Field Bindweed 50 0 0 0 40 70 95 25 70 0 30

Foxtail, Giant 100 95 40 75 20 100 100 85 100 20 100

Foxtail, Green 98 90 25 90 25 100 100 50 100 15 100

Goosegrass 95 60 75 75 60 100 95 60 100 0 98

Johnsongrass 65 5 20 40 98 70 85 15 100 10 90

Kochia 100 100 30 95 90 100 100 90 100 98 100

Lambsquarters 100 98 100 100 100 100 100 100 100 100 100

Morningglory 65 0 10 50 25 95 35 10 75 25 15

Nightshade 100 98 98 100 90 100 98 100 98 100 98

Nutsedge, Yellow 35 20 0 0 0 0 0 15 20 0 35

Panicura, Fall 100 98 100 100 70 100 100 100 100 75 100 Pigweed, Palmer 100 35 100 100 100 100 100 100 65 100

Poinsettia, Wild 40 0 20 35 25 35 65 35 90 0 70

Ragweed 70 40 75 35 35 85 80 20 98 0 40

Ryegrass, Italian 70 0 0 40 30 100 90 40 70 10 40

Sandbur 65 0 0 35 30 95 95 10 90 0 75

Soybean 90 35 75 40 0 75 40 30 40 35 50

Surinam Grass 35 0 0 10 0 80 25 15 100 0 35

Velvetleaf 100 100 100 100 80 100 100 100 100 100 100

Waterhemp 100 100 100 100 100 100 100 100 100 100 100

Table F Compounds

62 g ai/ha 35 53 55 58 62 96 144 145 149 168 179 200 Preemergence

Arrowleaf Sida 100 100 100 75 95 80 100 98 65 100 80

Barnyardgrass 10 20 85 0 0 0 70 30 15 80 0

Beggarticks 20 30 0 10 0 0 0 30 0 0 0

Corn 0 0 40 0 0 0 40 40 0 40 0

Crabgrass, Brazil 100 85 100 35 100 0 98 95 35 100 15

Crabgrass, Large 75 80 100 65 70 65 100 98 70 98 35 Dayflower, VA 90 50 40 - 30 0 85 35 5 70 35 70

Field Bindweed 50 0 10 0 0 60 65 65 35 50 0 30

Foxtail, Giant 70 70 98 0 65 0 95 85 40 100 30 100

Foxtail, Green 75 20 70 0 40 35 98 100 50 100 0 100

Goosegrass 75 10 50 5 5 40 95 80 40 98 0 95

Johnsongrass 35 0 90 0 35 50 30 100 0 35 10 35

Kochia 100 50 100 0 35 65 100 100 75 100 70 80

Lambsquarters 100 95 100 90 95 100 100 100 100 100 100 98

Morningglory 30 0 98 10 0 35 65 15 0 15 35 0

Nightshade 98 98 98 90 98 65 100 98 98 98 100 98

Nutsedge, Yellow 10 0 0 0 0 0 0 0 0 0 0 10

Panicura, Fall 100 95 100 90 95 50 100 95 98 100 50 98

Pigweed, Palmer - 100 100 35 100 100 100 100 100 100 35 100

Poinsettia, Wild 70 0 30 20 25 0 20 65 0 50 0 60

Ragweed 40 30 50 25 40 50 95 65 35 65 0 35

Ryegrass, Italian 65 0 30 0 0 30 40 40 20 65 0 20

Sandbur 40 0 0 0 0 40 50 25 0 65 0 40

Soybean 70 0 50 35 10 0 40 15 0 20 0 30

Surinam Grass 20 0 10 0 15 0 75 0 15 70 0 10

Velvetleaf 100 100 100 100 100 80 100 100 85 100 90 100

Waterhemp 100 100 100 90 100 100 100 100 100 100 100 100

Table F Compounds

31 g ai/ha 35 53 55 58 62 96 144 145 149 168 179 200

Preemergence

Arrowleaf Sida 100 65 98 35 70 70 100 90 35 100 80 100

Barnyardgrass 20 0 10 0 0 0 20 5 0 25 0 0

Beggarticks 20 0 0 0 0 0 0 35 0 0 0 0

Cocklebur 0

Corn 30 0 0 0 0 0 0 0 0 0 0 0

Crabgrass, Brazil 98 5 75 0 75 0 95 80 15 100 0 98

Crabgrass, Large 75 15 98 50 25 30 100 95 0 95 0 85

Dayflower, VA 65 0 60 0 0 0 30 0 0 10 0 50

Field Bindweed 50 0 0 0 0 0 60 50 50 60 0 30

Foxtail, Giant 70 20 90 0 35 0 90 65 20 98 0 65

Foxtail, Green 30 0 20 0 10 30 95 40 0 100 0 98

Goosegrass 60 0 5 5 0 40 60 70 0 95 0 80

Johnsongrass 0 0 20 0 20 60 0 20 0 30 0 5 Kochia 85 20 100 0 20 0 100 98 0 100 0 50

Lambsquarters 100 95 100 65 95 100 100 100 0 100 100 98

Morningglory 0 0 30 10 0 35 0 10 0 0 0 0

Nightshade 98 90 98 80 70 0 98 80 80 98 65 60

Nutsedge, Yellow 0 0 0 0 0 0 0 0 0 0 0 0

Panicum, Fall 100 0 90 65 0 40 100 80 80 95 0 35

Pigweed, Palmer - 90 75 0 75 98 100 100 90 100 0 100

Poinsettia, Wild 35 0 0 20 30 0 0 0 0 0 0 20

Ragweed 0 0 40 0 25 20 0 70 25 35 0 10

Ryegrass, Italian 15 0 0 0 0 0 0 20 0 30 0 0

Sandbur 10 0 0 0 0 10 10 35 0 30 0 5

Soybean 40 0 40 20 0 0 10 0 0 0 0 20

Surinam Grass 0 0 0 0 15 0 75 0 0 65 0 0

Velvetleaf 70 90 100 100 75 60 100 98 70 75 65 80

Waterhemp 100 95 100 75 98 100 100 100 100 100 95 100

Table F Compounds

16 g ai/ha 35 53 58 62 96 144 145 149 168 179 200

Preemergence

Arrowleaf Sida 80 20 0 20 50 95 65 0 95 0 65

Barnyardgrass 0 0 0 0 0 0 0 0 0 0 0

Beggarticks 0 0 0 0 0 0 0 0 0 0 0

Corn 0 0 0 0 0 0 0 0 0 0 0

Crabgrass, Brazil 95 0 0 0 0 75 5 0 65 0 90

Crabgrass, Large 60 0 20 0 0 80 10 0 65 0 50

Dayflower, VA 25 0 0 0 0 0 0 0 5 0 15

Field Bindweed 35 0 0 0 0 40 0 0 40 0 0

Foxtail, Giant 10 0 0 15 0 15 0 0 65 0 35

Foxtail, Green 0 0 0 0 25 25 5 0 70 0 10

Goosegrass 0 0 0 0 50 75 0 0 80 0 70

Johnsongrass 0 0 0 0 20 0 0 0 0 0 0

Kochia 40 0 0 - 0 98 75 0 95 0 25

Lambsquarters 98 65 0 90 5 100 100 - 100 98 0

Morningglory 0 0 0 0 35 0 0 0 0 0 0

Nightshade 95 35 65 0 0 98 90 0 5 - 35

Nutsedge, Yellow 0 0 0 0 0 0 0 0 0 0 0

Panicum, Fall 35 0 35 0 - 95 65 0 35 0 70

Pigweed, Palmer - 0 0 80 80 100 100 25 98 0 85 Poinsettia, Wild 30 0 0 0 0 0 0 0 0 0 0

Ragweed 0 0 0 20 0 0 0 20 10 0 0

Ryegrass, Italian 0 0 0 0 0 0 25 0 15 0 0

Sandbur 10 0 0 0 0 0 0 0 10 0 5

Soybean 35 0 10 0 0 - 0 0 0 0 0

Surinam Grass 0 0 0 0 0 0 0 0 50 0 0

Velvetleaf 70 65 70 35 0 80 35 10 35 15 25

Waterhemp 100 0 75 85 40 98 100 35 100 95 98

Table F Compounds

8 g ai/ha 35 53 58 62 200

Preemergence

Arrowleaf Sida 50 0 20 0 0

Barnyardgrass 0 0 0 0 0

Beggarticks 0 0 0 0 0

Corn 0 0 0 0 0

Crabgrass, Brazil 0 0 0 0 0

Crabgrass, Large 0 0 0 0 0

Dayflower, VA 0 0 0 0 0

Field Bindweed 0 0 0 0 0

Foxtail, Giant 0 0 0 0 0

Foxtail, Green 0 0 0 0 0

Goosegrass 0 0 0 0 10

Johnsongrass 0 0 0 0 0

Kochia 0 0 0 10 20

Lambsquarters 90 65 - 70 0

Morningglory 0 0 0 0 0

Nightshade 75 - 0 0 0

Nutsedge, Yellow 0 0 0 0 0

Panicum, Fall 0 0 0 0 0

Pigweed, Palmer - 0 0 10 0

Poinsettia, Wild 20 0 0 0 0

Ragweed 0 0 0 0 0

Ryegrass, Italian 0 0 0 0 0

Sandbur 0 0 0 0 0

Soybean 0 0 0 0 0

Surinam Grass 0 0 0 0 0

Velvetleaf 40 0 20 0 0 Waterhemp 100 0 20 80 70

TEST G

Three plastic pots (ca. 16-cm diameter) per rate were partially filled with sterilized Tama silt loam soil comprising a 35:50: 15 ratio of sand, silt and clay and 2.6% organic matter. Separate plantings for each of the three pots were as follows. Seeds from the U.S. of monochoria {Monochoria vaginalis), small-flower umbrella sedge (Cyperus difformis), hardstem bulrush (Scirpus juncoides), and redstem (purple redstem, Ammannia coccinea), were planted into one 16-cm pot for each rate. Seeds from the U.S. of rice flatsedge {Cyperus iria), bearded sprangletop (Leptochloa fascicularis), one stand of 9 or 10 water seeded rice seedlings (Indica rice, Oryza sativa), and two stands of 3 or 4 transplanted rice seedlings (Oryza sativa cv. 'Japonica - M202') were planted into one 16-cm pot for each rate. Seeds from the U.S. of barnyardgrass (Echinochloa crus-galli), and late watergrass (Echinochloa oryzicola) were planted into one 16-cm pot for each rate. Plantings were sequential so that crop and weed species were at the 2.0 to 2.5-leaf stage at time of treatment.

Potted plants were grown in a greenhouse with day/night temperature settings of

30/27 °C, and supplemental balanced lighting was provided to maintain a 16-hour photoperiod. Test pots were maintained in the greenhouse until test completion.

At time of treatment, test pots were flooded to 3 cm above the soil surface, treated by application of test compounds directly to the paddy water, and then maintained at that water depth for the duration of the test. Effects of treatments on rice and weeds were visually evaluated by comparison to untreated controls after 21 days. Plant response ratings, summarized in Table G, are based on a scale of 0 to 100 where 0 is no effect and 100 is complete control. A dash (-) response means no test result.

Table G Compounds Table G ' Compounds

250 g ai/ha 35 55 125 g ai/ha 35 55

Flood Flood

Barnyardgrass 100 100 Barnyardgrass 100 100

Bulrush, Hardstem 100 100 Bulrush, Hardstem 100 100

Flatsedge, Rice 100 100 Flatsedge, Rice 100 100

Monochoria 100 100 Monochoria 100 100

Redstem 100 100 Redstem 90 100

Rice, Transplanted 100 100 Rice, Transplanted 45 80

Rice, Water Seeded 100 100 Rice, Water Seeded 100 100

Sedge, Umbrella 100 100 Sedge, Umbrella 100 100

Sprangletop, Brdd. 100 100 Sprangletop, Brdd. 100 100

Watergrass, Late 100 100 Watergrass, Late 40 75 Table G Compounds Table G Compound;

64 g ai/ha 35 55 32 g ai/ha 35 55

Flood Flood

Barnyardgrass 45 75 Barnyardgrass 30 0

Bulrush, Hardstem 95 100 Bulrush, Hardstem 0 80

Flatsedge, Rice 100 100 Flatsedge, Rice 100 85

Monochoria 100 100 Monochoria 98 100

Redstem 85 95 Redstem 0 85

Rice, Transplanted 30 60 Rice, Transplanted 15 20

Rice, Water Seeded 70 100 Rice, Water Seeded 60 45

Sedge, Umbrella 98 100 Sedge, Umbrella 0 98

Sprangletop, Brdd. 100 80 Sprangletop, Brdd. 60 45

Watergrass, Late 30 0 Watergrass, Late 0 0