Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RANKING BASED CELL RESELECTION
Document Type and Number:
WIPO Patent Application WO/2015/153053
Kind Code:
A1
Abstract:
In a method of cell reselection for a User Equipment UE, the UE measures a signal strength and/or quality of a target cell. A threshold value is set based at least in part on the rank difference between a serving cell and the target cell. The serving cell and target cell may have the same priority or no network indicated priority. The UE reselects to the target cell when the signal strength exceeds the threshold value.

Inventors:
YANG MING (US)
CHIN TOM (US)
SHI GUANGMING (US)
Application Number:
PCT/US2015/019053
Publication Date:
October 08, 2015
Filing Date:
March 05, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
QUALCOMM INC (US)
International Classes:
H04W48/20; H04W36/08
Foreign References:
EP2458921A12012-05-30
US20130344872A12013-12-26
Other References:
3GPP TS 36.304 V12.0.0 (2014-03): "3GPP TS 36.304 V12.0.0 (2014-03); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode (Release 12)", 3GPP STANDARD; 3GPP TS 36.304, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V12.0.0, 16 March 2014 (2014-03-16), pages 1 - 34, XP050769943
3GPP TS 25.304 V12.1.0 (2014-03): "3GPP TS 25.304 V12.1.0 (2014-03); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; User Equipment (UE) procedures in idle mode and procedures for cell reselection in connected mode (Release 12)", 3GPP STANDARD; 3GPP TS 25.304, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. V12.1.0, 17 March 2014 (2014-03-17), pages 1 - 54, XP050769944
Attorney, Agent or Firm:
LENKIN, Alan M. et al. (Suite 35002029 Century Park Eas, Los Angeles California, US)
Download PDF:
Claims:
CLAIMS

WHAT IS CLAIMED IS:

1. A method of cell reselection for a user equipment (UE), comprising:

measuring a signal strength and/or quality of a target cell; setting an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell, the serving cell and target cell having either a same priority or no network indicated priority; and

reselecting to the target cell when the signal strength exceeds the absolute threshold value.

2. The method of claim 1, further comprising setting the absolute threshold value based at least in part on whether the serving cell and target cell are preferred radio access technologies (RATs) or a preferred frequency.

3. The method of claim 2, further comprising increasing the threshold value when the serving cell is a preferred RAT or preferred frequency and the target cell is not a preferred RAT or preferred frequency.

4. The method of claim 2, further comprising decreasing the threshold value when the serving cell is not a preferred RAT or preferred frequency and the target cell is a preferred RAT or preferred frequency.

5. The method of claim 2, in which the preferred RAT is for a service type

associated with the UE.

6. The method of claim 1, further comprising decreasing the threshold value when the rank difference is high.

7. The method of claim 1, further comprising increasing the threshold value when the rank difference is low. The method of claim 1, increasing the threshold value when a neighbor cell, other than the target cell, is a preferred RAT or preferred frequency and target cell is not preferred and/or when the neighbor cell has a higher rank than the target cell.

The method of claim 8, in which a first time to trigger (TTT) has expired for the target cell and a second TTT has not expired for the neighbor cell.

The method of claim 8, in which the target cell and the neighbor cell are on different frequencies of a same RAT.

An apparatus for wireless communication, comprising:

means for measuring a signal strength and/or quality of a target cell; means for setting an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell, the serving cell and target cell having either a same priority or no network indicated priority; and means for reselecting to the target cell when the signal strength exceeds the absolute threshold value.

A computer program product for wireless communication in a wireless network, comprising:

a non-transitory computer-readable medium having non-transitory program code recorded thereon, the program code comprising:

program code to measure a signal strength and/or quality of a target cell; program code to set an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell, the serving cell and target cell having either a same priority or no network indicated priority; and

program code to reselect to the target cell when the signal strength exceeds the absolute threshold value.

An apparatus for wireless communication, comprising:

a memory; and

at least one processor coupled to the memory, the at least one processor being configured: to measure a signal strength and/or quality of a target cell;

to set an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell, the serving cell and target cell having either a same priority or no network indicated priority; and

to reselect to the target cell when the signal strength exceeds the absolute threshold value.

14. The apparatus of claim 13, further comprising setting the absolute threshold value based at least in part on whether the serving cell and target cell are preferred radio access technologies (RATs) or preferred frequency.

The apparatus of claim 14, further comprising increasing the threshold value when the serving cell is a preferred RAT or preferred frequency and the target cell is not a preferred RAT or preferred frequency.

The apparatus of claim 14, further comprising decreasing the threshold value when the serving cell is not a preferred RAT or preferred frequency and the target cell is a preferred RAT or preferred frequency.

The apparatus of claim 14, in which the preferred RAT is for a service associated with the UE.

The apparatus of claim 13, further comprising decreasing the threshold value when the rank difference is high.

The apparatus of claim 13, further comprising increasing the threshold value when the rank difference is low.

The apparatus of claim 13, increasing the threshold value when a neighbor cell, other than the target cell, is a preferred RAT or preferred frequency and target cell is not preferred and/or when the neighbor cell has a higher rank than the target cell.

21. The apparatus of claim 20, in which a first time to trigger (TTT) has expired for the target cell and a second TTT has not expired for the neighbor cell.

22. The apparatus of claim 20, in which the target cell and the neighbor cell are on different frequencies of a same RAT.

Description:
RANKING BASED CELL RESELECTION

BACKGROUND

Field

[0001] Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to cell reselection in a wireless network.

Background

[0002] Wireless communication networks are widely deployed to provide various communication services such as telephony, video, data, messaging, broadcasts, and so on. Such networks, which are usually multiple access networks, support

communications for multiple users by sharing the available network resources. One example of such a network is the Universal Terrestrial Radio Access Network

(UTRAN). The UTRAN is the radio access network (RAN) defined as a part of the Universal Mobile Telecommunications System (UMTS), a third generation (3G) mobile phone technology supported by the 3rd Generation Partnership Project (3GPP). The UMTS, which is the successor to Global System for Mobile Communications (GSM) technologies, currently supports various air interface standards, such as Wideband-Code Division Multiple Access (W-CDMA), Time Division-Code Division Multiple Access (TD-CDMA), and Time Division-Synchronous Code Division Multiple Access (TD- SCDMA). For example, China is pursuing TD-SCDMA as the underlying air interface in the UTRAN architecture with its existing GSM infrastructure as the core network. The UMTS also supports enhanced 3G data communications protocols, such as High Speed Packet Access (HSPA), which provides higher data transfer speeds and capacity to associated UMTS networks. HSPA is a collection of two mobile telephony protocols, High Speed Downlink Packet Access (HSDPA) and High Speed Uplink Packet Access (HSUPA), that extends and improves the performance of existing wideband protocols.

[0003] As the demand for mobile broadband access continues to increase, research and development continue to advance the UMTS technologies not only to meet the growing demand for mobile broadband access, but to advance and enhance the user experience with mobile communications.

SUMMARY

[0004] In one aspect, a method of wireless communication is disclosed. The method includes measuring a signal strength and/or quality of a target cell. An absolute threshold value is set based at least in part on a rank difference between a serving cell and the target cell. The serving cell and target cell may have the same priority or no network indicated priority. The UE reselects to the target cell when the signal strength exceeds the absolute threshold value.

[0005] Another aspect discloses an apparatus including means for measuring a signal strength and/or quality of a target cell. Also included is a means for setting an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell. The serving cell and target cell may have the same priority or no network indicated priority. The apparatus also includes means for reselecting to the target cell when the signal strength exceeds the absolute threshold value.

[0006] In another aspect, a computer program product for wireless communications in a wireless network having a non-transitory computer-readable medium is disclosed. The computer readable medium has non-transitory program code recorded thereon which, when executed by the processor(s), causes the processor(s) to perform operations of measuring a signal strength and/or quality of a target cell. The program code also causes the processor(s) to set an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell. The serving cell and target cell may have the same priority or no network indicated priority. The program code also causes the processor(s) to reselect to the target cell when the signal strength exceeds the absolute threshold value.

[0007] Another aspect discloses wireless communication having a memory and at least one processor coupled to the memory. The processor(s) is configured to measure a signal strength and/or quality of a target cell. The processor(s) is also configured to set an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell where the serving cell and target cell have either the same priority or no network indicated priority. The processor(s) is also configured to reselect to the target cell when the signal strength exceeds the absolute threshold value.

[0008] This has outlined, rather broadly, the features and technical advantages of the present disclosure in order that the detailed description that follows may be better understood. Additional features and advantages of the disclosure will be described below. It should be appreciated by those skilled in the art that this disclosure may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the teachings of the disclosure as set forth in the appended claims. The novel features, which are believed to be characteristic of the disclosure, both as to its organization and method of operation, together with further objects and advantages, will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The features, nature, and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings in which like reference characters identify correspondingly throughout.

[0010] FIGURE 1 is a block diagram conceptually illustrating an example of a telecommunications system.

[0011] FIGURE 2 is a block diagram conceptually illustrating an example of a frame structure in a telecommunications system.

[0012] FIGURE 3 is a block diagram conceptually illustrating an example of a node B in communication with a UE in a telecommunications system.

[0013] FIGURE 4 is a diagram illustrating network coverage areas according to aspects of the present disclosure. [0014] FIGURE 5 is a block diagram illustrating a method for cell reselection according to one aspect of the present disclosure.

[0015] FIGURE 6 is a diagram illustrating an example of a hardware implementation for an apparatus employing a processing system according to one aspect of the present disclosure.

DETAILED DESCRIPTION

[0016] The detailed description set forth below, in connection with the appended drawings, is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of the various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well-known structures and components are shown in block diagram form in order to avoid obscuring such concepts.

[0017] Turning now to FIGURE 1, a block diagram is shown illustrating an example of a telecommunications system 100. The various concepts presented throughout this disclosure may be implemented across a broad variety of telecommunication systems, network architectures, and communication standards. By way of example and without limitation, the aspects of the present disclosure illustrated in FIGURE 1 are presented with reference to a UMTS system employing a TD-SCDMA standard. In this example, the UMTS system includes a (radio access network) RAN 102 (e.g., UTRAN) that provides various wireless services including telephony, video, data, messaging, broadcasts, and/or other services. The RAN 102 may be divided into a number of Radio Network Subsystems (RNSs) such as an RNS 107, each controlled by a Radio Network Controller (RNC) such as an RNC 106. For clarity, only the RNC 106 and the RNS 107 are shown; however, the RAN 102 may include any number of RNCs and RNSs in addition to the RNC 106 and RNS 107. The RNC 106 is an apparatus responsible for, among other things, assigning, reconfiguring and releasing radio resources within the RNS 107. The RNC 106 may be interconnected to other RNCs (not shown) in the RAN 102 through various types of interfaces such as a direct physical connection, a virtual network, or the like, using any suitable transnnrt network [0018] The geographic region covered by the RNS 107 may be divided into a number of cells, with a radio transceiver apparatus serving each cell. A radio transceiver apparatus is commonly referred to as a node B in UMTS applications, but may also be referred to by those skilled in the art as a base station (BS), a base transceiver station (BTS), a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), an access point (AP), or some other suitable terminology. For clarity, two node Bs 108 are shown; however, the RNS 107 may include any number of wireless node Bs. The node Bs 108 provide wireless access points to a core network 104 for any number of mobile apparatuses. Examples of a mobile apparatus include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a notebook, a netbook, a smartbook, a personal digital assistant (PDA), a satellite radio, a global positioning system (GPS) device, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, or any other similar functioning device. The mobile apparatus is commonly referred to as user equipment (UE) in UMTS applications, but may also be referred to by those skilled in the art as a mobile station (MS), a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless

communications device, a remote device, a mobile subscriber station, an access terminal (AT), a mobile terminal, a wireless terminal, a remote terminal, a handset, a terminal, a user agent, a mobile client, a client, or some other suitable terminology. For illustrative purposes, three UEs 110 are shown in communication with the node Bs 108. The downlink (DL), also called the forward link, refers to the communication link from a node B to a UE, and the uplink (UL), also called the reverse link, refers to the communication link from a UE to a node B.

[0019] The core network 104, as shown, includes a GSM core network. However, as those skilled in the art will recognize, the various concepts presented throughout this disclosure may be implemented in a RAN, or other suitable access network, to provide UEs with access to types of core networks other than GSM networks.

[0020] In this example, the core network 104 supports circuit-switched services with a mobile switching center (MSC) 112 and a gateway MSC (GMSC) 114. One or more RNCs, such as the RNC 106, may be connected to the MSC 112. The MSC 112 is an apparatus that controls call setup, call routing, and UE mobility functions. The MSC 112 also includes a visitor location register (VLR) (not shown) that contains subscriber- related information for the duration that a UE is in the coverage area of the MSC 112. The GMSC 114 provides a gateway through the MSC 112 for the UE to access a circuit- switched network 116. The GMSC 114 includes a home location register (HLR) (not shown) containing subscriber data, such as the data reflecting the details of the services to which a particular user has subscribed. The HLR is also associated with an authentication center (AuC) that contains subscriber-specific authentication data. When a call is received for a particular UE, the GMSC 114 queries the HLR to determine the UE's location and forwards the call to the particular MSC serving that location.

[0021] The core network 104 also supports packet-data services with a serving GPRS support node (SGSN) 118 and a gateway GPRS support node (GGSN) 120. GPRS, which stands for General Packet Radio Service, is designed to provide packet-data services at speeds higher than those available with standard GSM circuit-switched data services. The GGSN 120 provides a connection for the RAN 102 to a packet-based network 122. The packet-based network 122 may be the Internet, a private data network, or some other suitable packet-based network. The primary function of the GGSN 120 is to provide the UEs 110 with packet-based network connectivity. Data packets are transferred between the GGSN 120 and the UEs 110 through the SGSN 118, which performs primarily the same functions in the packet-based domain as the MSC 112 performs in the circuit-switched domain.

[0022] The UMTS air interface is a spread spectrum Direct-Sequence Code Division Multiple Access (DS-CDMA) system. The spread spectrum DS-CDMA spreads user data over a much wider bandwidth through multiplication by a sequence of

pseudorandom bits called chips. The TD-SCDMA standard is based on such direct sequence spread spectrum technology and additionally calls for a time division duplexing (TDD), rather than a frequency division duplexing (FDD) as used in many FDD mode UMTS/W-CDMA systems. TDD uses the same carrier frequency for both the uplink (UL) and downlink (DL) between a node B 108 and a UE 110, but divides uplink and downlink transmissions into different time slots in the carrier.

[0023] FIGURE 2 shows a frame structure 200 for a TD-SCDMA carrier. The TD- SCDMA carrier, as illustrated, has a frame 202 that is 10 ms in length. The chip rate in TD-SCDMA is 1.28 Mcps. The frame 202 has two 5 ms subframes 204, and each of the subframes 204 includes seven time slots, TSO through TS6. The first time slot, TSO, is usually allocated for downlink communication, while the second time slot, TS1, is usually allocated for uplink communication. The remaining time slots, TS2 through TS6, may be used for either uplink or downlink, which allows for greater flexibility during times of higher data transmission times in either the uplink or downlink directions. A downlink pilot time slot (DwPTS) 206, a guard period (GP) 208, and an uplink pilot time slot (UpPTS) 210 (also known as the uplink pilot channel (UpPCH)) are located between TSO and TS1. Each time slot, TS0-TS6, may allow data transmission multiplexed on a maximum of 16 code channels. Data transmission on a code channel includes two data portions 212 (each with a length of 352 chips) separated by a midamble 214 (with a length of 144 chips) and followed by a guard period (GP) 216 (with a length of 16 chips). The midamble 214 may be used for features, such as channel estimation, while the guard period 216 may be used to avoid inter-burst interference. Also transmitted in the data portion is some Layer 1 control information, including Synchronization Shift (SS) bits 218. Synchronization Shift bits 218 only appear in the second part of the data portion. The Synchronization Shift bits 218 immediately following the midamble can indicate three cases: decrease shift, increase shift, or do nothing in the upload transmit timing. The positions of the SS bits 218 are not generally used during uplink communications.

[0024] FIGURE 3 is a block diagram of a node B 310 in communication with a UE 350 in a RAN 300, where the RAN 300 may be the RAN 102 in FIGURE 1, the node B 310 may be the node B 108 in FIGURE 1, and the UE 350 may be the UE 110 in FIGURE 1. In the downlink communication, a transmit processor 320 may receive data from a data source 312 and control signals from a controller/processor 340. The transmit processor 320 provides various signal processing functions for the data and control signals, as well as reference signals (e.g., pilot signals). For example, the transmit processor 320 may provide cyclic redundancy check (CRC) codes for error detection, coding and interleaving to facilitate forward error correction (FEC), mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M- quadrature amplitude modulation (M-QAM), and the like), spreading with orthogonal variable spreading factors (OVSF), and multiplying with scrambling codes to produce a series of symbols. Channel estimates from a channel processor 344 may be used by a controller/processor 340 to determine the coding, modulation, spreading, and/or scrambling schemes for the transmit processor 320. These channel estimates may be derived from a reference signal transmitted by the UE 350 or from feedback contained in the midamble 214 (FIGURE 2) from the UE 350. The symbols generated by the transmit processor 320 are provided to a transmit frame processor 330 to create a frame structure. The transmit frame processor 330 creates this frame structure by multiplexing the symbols with a midamble 214 (FIGURE 2) from the controller/processor 340, resulting in a series of frames. The frames are then provided to a transmitter 332, which provides various signal conditioning functions including amplifying, filtering, and modulating the frames onto a carrier for downlink transmission over the wireless medium through smart antennas 334. The smart antennas 334 may be implemented with beam steering bidirectional adaptive antenna arrays or other similar beam technologies.

[0025] At the UE 350, a receiver 354 receives the downlink transmission through an antenna 352 and processes the transmission to recover the information modulated onto the carrier. The information recovered by the receiver 354 is provided to a receive frame processor 360, which parses each frame, and provides the midamble 214

(FIGURE 2) to a channel processor 394 and the data, control, and reference signals to a receive processor 370. The receive processor 370 then performs the inverse of the processing performed by the transmit processor 320 in the node B 310. More specifically, the receive processor 370 descrambles and despreads the symbols, and then determines the most likely signal constellation points transmitted by the node B 310 based on the modulation scheme. These soft decisions may be based on channel estimates computed by the channel processor 394. The soft decisions are then decoded and deinter leaved to recover the data, control, and reference signals. The CRC codes are then checked to determine whether the frames were successfully decoded. The data carried by the successfully decoded frames will then be provided to a data sink 372, which represents applications running in the UE 350 and/or various user interfaces (e.g., display). Control signals carried by successfully decoded frames will be provided to a controller/processor 390. When frames are unsuccessfully decoded by the receiver processor 370, the controller/processor 390 may also use an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support retransmission requests for those frames.

[0026] In the uplink, data from a data source 378 and control signals from the controller/processor 390 are provided to a transmit processor 380. The data source 378 may represent applications running in the UE 350 and various user interfaces (e.g., keyboard). Similar to the functionality described in connection with the downlink transmission by the node B 310, the transmit processor 380 provides various signal processing functions including CRC codes, coding and interleaving to facilitate FEC, mapping to signal constellations, spreading with OVSFs, and scrambling to produce a series of symbols. Channel estimates, derived by the channel processor 394 from a reference signal transmitted by the node B 310 or from feedback contained in the midamble transmitted by the node B 310, may be used to select the appropriate coding, modulation, spreading, and/or scrambling schemes. The symbols produced by the transmit processor 380 will be provided to a transmit frame processor 382 to create a frame structure. The transmit frame processor 382 creates this frame structure by multiplexing the symbols with a midamble 214 (FIGURE 2) from the

controller/processor 390, resulting in a series of frames. The frames are then provided to a transmitter 356, which provides various signal conditioning functions including amplification, filtering, and modulating the frames onto a carrier for uplink transmission over the wireless medium through the antenna 352.

[0027] The uplink transmission is processed at the node B 310 in a manner similar to that described in connection with the receiver function at the UE 350. A receiver 335 receives the uplink transmission through the antenna 334 and processes the transmission to recover the information modulated onto the carrier. The information recovered by the receiver 335 is provided to a receive frame processor 336, which parses each frame, and provides the midamble 214 (FIGURE 2) to the channel processor 344 and the data, control, and reference signals to a receive processor 338. The receive processor 338 performs the inverse of the processing performed by the transmit processor 380 in the UE 350. The data and control signals carried by the successfully decoded frames may then be provided to a data sink 339 and the controller/processor, respectively. If some of the frames were unsuccessfully decoded by the receive processor, the controller/processor 340 may also use an acknowledgement (ACK) and/or negative acknowledgement (NACK) protocol to support retransmission requests for those frames.

[0028] The controller/processors 340 and 390 may be used to direct the operation at the node B 310 and the UE 350, respectively. For example, the controller/processors 340 and 390 may provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions. The computer readable media of memory 392 may store data and software for the UE 350. For example, the memory 392 of the UE 350 may store a cell reselection module 391 which, when executed by the controller/processor 390, configures the UE 350 for cell reselection.

[0029] Certain UEs may be capable of communicating on multiple radio access technologies (RATs). Such UEs may be referred to as multimode UEs. For example, a multimode UE may be capable of communications on a Universal Terrestrial Radio Access (UTRA) frequency division duplexed (FDD) network such as a Wideband-Code Division Multiple Access (W-CDMA) network, a UTRA time division duplexed (TDD) network such as a Time Division-Synchronous Code Division Multiple Access (TD- SCDMA) network, a Global System for Mobile Communications (GSM)network and/or a Long Term Evolution (LTE) network.

[0030] Some networks, such as a newly deployed network, may cover only a portion of a geographical area. Another network, such as an older more established network, may better cover the area, including remaining portions of the geographical area. FIGURE 4 illustrates coverage of an established network utilizing a first type of radio access technology (RAT-1), such as a GSM network, and also illustrates a newly deployed network utilizing a second type of radio access technology (RAT-2), such as a TD- SCDMA network.

[0031] The geographical area 400 may include RAT-1 cells 402 and RAT-2 cells 404. In one example, the RAT-1 cells are GSM cells and the RAT-2 cells are TD-SCDMA cells. However, those skilled in the art will appreciate that other types of radio access technologies may be utilized within the cells. A user equipment (UE) 406 may move from one cell, such as a RAT-1 cell 404, to another cell, such as a RAT-2 cell 402. The movement of the UE 406 may sp^i a hanHn p r nr a PPII reselection. [0032] The handover or cell reselection may be performed when the UE moves from a coverage area of a first RAT to the coverage area of a second RAT, or vice versa. A handover or cell reselection may also be performed when there is a coverage hole or lack of coverage in one network or when there is traffic balancing between a first RAT and the second RAT networks. As part of that handover or cell reselection process, while in a connected mode with a first system (e.g., TD-SCDMA) a UE may be specified to perform a measurement of a neighboring cell (such as GSM cell). For example, the UE may measure the neighbor cells of a second network for signal strength, frequency channel, and base station identity code (BSIC). The UE may then connect to the strongest cell of the second network. Such measurement may be referred to as inter radio access technology (IRAT) measurement.

[0033] The UE may send a serving cell a measurement report indicating results of the IRAT measurement performed by the UE. The serving cell may then trigger a handover of the UE to a new cell in the other RAT based on the measurement report. The measurement may include a serving cell signal strength, such as a received signal code power (RSCP) for a pilot channel (e.g., primary common control physical channel (PCCPCH)). The signal strength is compared to a serving system threshold. The serving system threshold can be indicated to the UE through dedicated radio resource control (RRC) signaling from the network. The measurement may also include a neighbor cell received signal strength indicator (RSSI). The neighbor cell signal strength can be compared with a neighbor system threshold. Before handover or cell reselection, in addition to the measurement processes, the base station IDs (e.g., BSICs) are confirmed and re-confirmed.

[0034] When the UE is camped on a first RAT serving cell, the UE regularly searches for a better cell from the neighbor cell indicated by a (system information block) SIB11/12 message or a measurement control message (MCM). If a better neighbor cell in the second RAT network is found, then IRAT RATI to RAT2 cell reselection is performed.

[0035] Cell reselection may be based on rank or priority criteria. For priority based cell reselection, the priority is indicated by a network, and cell reselection is based on the priority (or preference) assigned to each RAT. For example, a first RAT (e.g., LTE) may have higher priority than a second RAT (GSM) . For purposes of cell reselection. the cell associated with the first RAT is given higher priority for reselection. In other words, the UE may reselect to a target neighbor cell based on whether the target neighbor cell is preferred for communication by the UE. The target neighbor cell may be preferred relative to other neighbor cells based on services afforded by the target neighbor cell.

[0036] For rank based reselection, all cells have the same priority and are ranked based on signal quality and/or signal strength measurements. Examples of signal strength, include, but are not limited to, PCCPCH, RSCP, SNR and SINR. The serving cell rank (Rs) is determined by:

Rs = Qmeas,s + QhySt s

[0037] where Q mea s,s is the signal quality/strength measurement of the serving cell, and Qhyst s is the hysteresis value.

[0038] The neighbor cell rank (Rn) is determined by:

Rn = Qmeas,n " Qoffset s , n

[0039] Where Qmeas,n is the signal quality/strength measurement of the neighbor cell; and Qoffsets,n is the offset value. If a neighbor cell is ranked as the best cell, and remains so for a predetermined time interval, Treselection, then the UE performs IRAT re-selection to that second neighbor cell.

[0040] When the serving cell becomes weak or falls below a threshold signal strength/quality value, potential neighbor cells may be identified as target cells for cell reselection. However, in some instances, the potential neighbor cells may also be weak, but slightly stronger than the serving cell. In this case, the difference between the rank of the serving cell and the rank of a weak neighbor cell may be very small during the reselection time period. For example, the difference may be indicated by a sum of the offset value and the hysteresis value. As a result, the UE may reselect a weak neighbor cell resulting in communication issues such as missing pages and call set up failure. When the UE reselects a weak neighbor cell, the UE misses the opportunity of selecting a more desirable inter radio access technology neighbor cell (e.g., Long Term Evolution) or stronger neighbor cell. In some instances, selecting a higher ranked neighbor cell regardless of the signal strength/quality of the neighbor cell may be undesirable.

[0041] Aspects of the present disclosure are directed to cell reselection that utilizes a threshold value. In particular, the UE may avoid or skip performing rank based cell reselection when the measurement results of neighbor cells are below the threshold value. In one aspect, the threshold value is a function of a rank difference between the target neighbor cell and the serving cell. In another aspect, the threshold value is an absolute threshold value.

[0042] In one example, the UE measures the signal strength of a target cell. When the signal strength measurement of the target neighbor cell is below the threshold value, the UE does not perform cell reselection to the target neighbor cell. This occurs even when the target neighbor cell is ranked higher than the serving cell and the time to trigger (TTT) timer has expired. When the signal strength of the target cell exceeds the threshold value, the UE reselects to the target cell.

[0043] The threshold value may be adjusted or set based on particular criteria. For example, in one aspect, the threshold value is decreased when the rank difference between the target cell and the serving cell is high. Alternately, the threshold value is increased when the rank difference between the target cell and the serving cell is low.

[0044] In another aspect, the threshold value is adjusted based on RAT or frequency priority and whether the serving cell and/or target cells are preferred RATs. For example, the UE reselects to a target neighbor cell based on whether the target neighbor cell is preferred for communication by the UE. The target neighbor cell may be preferred relative to other neighbor cells based on services afforded by the target neighbor cell. In one example, the threshold value is increased when the serving cell is a preferred RAT and the target cell is not a preferred RAT. Similarly, the threshold value is reduced when the serving cell is not a preferred RAT and the neighbor cell is a preferred RAT.

[0045] In another aspect, the threshold value is adjusted based on the rank difference between a preferred RAT neighbor cell and a non-preferred RAT neighbor cell. In one aspect of the disclosure, the threshold value is increased when the rank difference between the preferred RAT neighbor cell and the non-preferred RAT neighbor cell increases. Similarly, the threshold value is reduced when the rank difference between the preferred RAT neighbor cell and the non-preferred RAT neighbor cell is reduced.

[0046] Further, in another aspect, the threshold value is increased when a neighbor cell, other than a target neighbor cell, is a preferred RAT and the target neighbor cell is not preferred and/or when the neighbor cell has a higher rank than the target cell. In this case, the UE does not reselect to the target neighbor cell if the TTT timer for the target neighbor cell has expired, but the second TTT timer for the neighbor cell has not expired. The target neighbor cell and the serving cell may be on different frequencies of a same RAT or on a same frequency of different RATs.

[0047] Aspects of the present disclosure avoid performing reselection to a weaker neighbor cell and reduce the occurrence of missed pages and UE call setup failures. Further, aspects of the present disclosure are directed to the UE reselecting, or staying on, a preferred RAT, thereby reducing the likelihood of reselecting/remaining on a non- preferred RAT.

[0048] FIGURE 5 shows a wireless communication method 500 of cell reselection for a user equipment (UE) according to one aspect of the disclosure. A UE measures a signal strength of a target cell, as shown in block 502. The UE also sets an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell, as shown in block 504. The serving cell and the target cell have either a same priority or no network indicated priority. Further, the UE reselects to the target cell when the signal strength exceeds the absolute threshold value, as shown in block 506.

[0049] FIGURE 6 is a diagram illustrating an example of a hardware implementation for an apparatus 600 employing a processing system 614. The processing system 614 may be implemented with a bus architecture, represented generally by the bus 624. The bus 624 may include any number of interconnecting buses and bridges depending on the specific application of the processing system 614 and the overall design constraints. The bus 624 links together various circuits including one or more processors and/or hardware modules, represented by the processor 622 the modules 602, 604, 606 and the non-transitory computer-readable medium ( Of, Th p bus ( OA may also link various other circuits such as timing sources, peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, will not be described any further.

[0050] The apparatus includes a processing system 614 coupled to a transceiver 630. The transceiver 630 is coupled to one or more antennas 620. The transceiver 630 enables communicating with various other apparatus over a transmission medium. The processing system 614 includes a processor 622 coupled to a non-transitory computer- readable medium 626. The processor 622 is responsible for general processing, including the execution of software stored on the computer-readable medium 626. The software, when executed by the processor 622, causes the processing system 614 to perform the various functions described for any particular apparatus. The computer- readable medium 626 may also be used for storing data that is manipulated by the processor 622 when executing software.

[0051] The processing system 614 includes a measurement module 602 for measuring signal strength of the target cell. The processing system 614 includes a threshold module 604 for setting an absolute threshold value based at least in part on a rank difference between a serving cell and the target cell. The processing system 614 includes a reselection module 606 for reselecting to the target cell when the signal strength exceeds the absolute threshold value. The modules may be software modules running in the processor 622, resident/stored in the computer readable medium 626, one or more hardware modules coupled to the processor 622, or some combination thereof. The processing system 614 may be a component of the UE 350 and may include the memory 392, and/or the controller/processor 390.

[0052] In one configuration, an apparatus such as a UE is configured for wireless communication including means for measuring. In one aspect, the measuring means may be the antennas 352, the receiver 354, the channel processor 394, the receive frame processor 360, the receive processor 370, the transmitter 356, the transmit frame processor 382, the transmit processor 380, the controller/processor 390, the memory 392, cell reselection module 391, measurement module 602, threshold module 604 and/or the processing system 614 configured to perform the measurement means. The UE is also configured to include means for setting. In one aspect, the setting means may be the antennas 352, the receiver 354, the channel processor 394, the receive frame processor 360, the receive processor 370, the transmitter 356, the transmit frame processor 382, the transmit processor 380, the controller/processor 390, the memory 392, cell reselection module 391, measurement module 602, threshold module 604 and/or the processing system 614 configured to perform the setting means. The UE is also configured to include means for reselecting. In one aspect, the reselecting means may be the antennas 352, the receiver 354, the channel processor 394, the receive frame processor 360, the receive processor 370, the transmitter 356, the transmit frame processor 382, the transmit processor 380, the controller/processor 390, the memory 392, cell reselection module 391, the reselection module 606 and/or the processing system 614 configured to perform the reselecting means. In one aspect, the means functions as recited by the aforementioned means. In another aspect, the

aforementioned means may be a module or any apparatus configured to perform the functions recited by the aforementioned means.

[0053] Several aspects of a telecommunications system has been presented with reference to TD-SCDMA and other wireless communication systems. As those skilled in the art will readily appreciate, various aspects described throughout this disclosure may be extended to other telecommunication systems, network architectures and communication standards. By way of example, various aspects may be extended to other UMTS systems such as W-CDMA, High Speed Downlink Packet Access

(HSDPA), High Speed Uplink Packet Access (HSUPA), High Speed Packet Access Plus (HSPA+) and TD-CDMA. Various aspects may also be extended to systems employing Long Term Evolution (LTE) (in FDD, TDD, or both modes), LTE-Advanced (LTE-A) (in FDD, TDD, or both modes), CDMA2000, Evolution-Data Optimized (EV- DO), Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Ultra- Wideband (UWB), Bluetooth, and/or other suitable systems. The actual telecommunication standard, network architecture, and/or communication standard employed will depend on the specific application and the overall design constraints imposed on the system.

[0054] Several processors have been described in connection with various apparatuses and methods. These processors may be implemented using electronic hardware, computer software, or any combination thereof. Whether such processors are implemented as hardware or software will depend upon the particular application and overall design constraints imposed on the system. By way of example, a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with a microprocessor, microcontroller, digital signal processor (DSP), a field-programmable gate array (FPGA), a programmable logic device (PLD), a state machine, gated logic, discrete hardware circuits, and other suitable processing components configured to perform the various functions described throughout this disclosure. The functionality of a processor, any portion of a processor, or any combination of processors presented in this disclosure may be implemented with software being executed by a microprocessor, microcontroller, DSP, or other suitable platform.

[0055] Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. The software may reside on a non-transitory computer-readable medium. A computer- readable medium may include, by way of example, memory such as a magnetic storage device (e.g., hard disk, floppy disk, magnetic strip), an optical disk (e.g., compact disc (CD), digital versatile disc (DVD)), a smart card, a flash memory device (e.g., card, stick, key drive), random access memory (RAM), read only memory (ROM), programmable ROM (PROM), erasable PROM (EPROM), electrically erasable PROM (EEPROM), a register, or a removable disk. Although memory is shown separate from the processors in the various aspects presented throughout this disclosure, the memory may be internal to the processors (e.g., cache or register).

[0056] Computer-readable media may be embodied in a computer-program product. By way of example, a computer-program product may include a computer-readable medium in packaging materials. Those skilled in the art will recognize how best to implement the described functionality presented throughout this disclosure depending on the particular application and the overall design constraints imposed on the overall system. [0057] It is to be understood that the specific order or hierarchy of steps in the methods disclosed is an illustration of exemplary processes. Based upon design preferences, it is understood that the specific order or hierarchy of steps in the methods may be rearranged. The accompanying method claims present elements of the various steps in a sample order, and are not meant to be limited to the specific order or hierarchy presented unless specifically recited therein.

[0058] The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language of the claims, wherein reference to an element in the singular is not intended to mean "one and only one" unless specifically so stated, but rather "one or more." Unless specifically stated otherwise, the term "some" refers to one or more. A phrase referring to "at least one of a list of items refers to any combination of those items, including single members. As an example, "at least one of: a, b, or c" is intended to cover: a; b; c; a and b; a and c; b and c; and a, b and c. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. No claim element is to be construed under the provisions of 35 U.S.C. ยง 112, sixth paragraph, unless the element is expressly recited using the phrase "means for" or, in the case of a method claim, the element is recited using the phrase "step for."