Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RECEIVING APPARATUS AND METHOD FOR SIMULTANEOUSLY PERFORMING RADIO FREQUENCY ENERGY EXTRACTION AND DATA COMMUNICATION
Document Type and Number:
WIPO Patent Application WO/2016/011676
Kind Code:
A1
Abstract:
The present invention provides a receiving apparatus and a method for simultaneously performing radio frequency energy extraction and data communication. The receiving apparatus comprises a receiving port, an energy extraction circuit and a power management unit. The receiving port is used for receiving radio frequency signals from the outside. The energy extraction circuit is connected to the receiving port and used for extracting power signals and data signals out of the radio frequency signals, outputting the power signals to the power management unit and outputting the data signals to a communication unit. The power management unit is connected to the energy extraction circuit and used for receiving the power signals and storing energy extracted by the energy extraction circuit. By means of the technical solution of the present invention, wireless energy collection and data communication can be performed simultaneously, and accordingly a mobile device or a handheld device can provide power for itself while performing data communication.

Inventors:
WU KE (CN)
Application Number:
PCT/CN2014/083838
Publication Date:
January 28, 2016
Filing Date:
August 06, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HANGZHOU POWTEL TECHNOLOGY CO LTD (CN)
International Classes:
H02J50/20; H04B1/16
Foreign References:
CN202135126U2012-02-01
CN102684314A2012-09-19
CN103297086A2013-09-11
CN102315697A2012-01-11
Attorney, Agent or Firm:
YOULINK INTELLECTUAL PROPERTY LAW FIRM (CN)
北京友联知识产权代理事务所(普通合伙) (CN)
Download PDF:
Claims:
权 利 要 求 书

1. 一种接收装置, 其特征在于, 包括:

接收端口, 用于接收来自外部的射频信号;

能量提取电路, 连接至所述接收端口, 用于从所述射频信号中提取出 功率信号和数据信号, 将所述功率信号输出至功率管理单元, 以及将所述 数据信号输出至通信单元进行数据通信; 所述功率管理单元, 连接至所述 能量提取电路, 用于接收所述功率信号, 储存所述能量提取电路提取的能 量。

2. 根据权利要求 1 所述的接收装置, 其特征在于, 所述能量提取电 路包括整流电路, 用于对所述射频信号进行整流处理, 得到所述功率信号 和数据信号。

3. 根据权利要求 2 所述的接收装置, 其特征在于, 所述接收端口包 括 N个输出端口, 所述 N为大于等于 2的整数;

所述整流电路包括 N个整流器, 所述 N个整流器与所述 N个输出端 口——对应连接。

4. 根据权利要求 3 所述的接收装置, 其特征在于, 每个整流器包 括:

由多个二极管组成的整流单元, 通过功率整流将所述射频信号转换成 所述功率信号以及通过干涉技术得到所述数据信号;

滤波电路, 接收来自所述整流单元的输出信号, 从所述输出信号中过 滤出所述数据信号, 剩余信号为所述功率信号。

5. 根据权利要求 4 所述的接收装置, 其特征在于, 所述整流器还包 括低通滤波器或带通滤波器, 连接在所述整流单元与所述接收端口之间, 对所述射频信号进行过滤处理, 并将经过过滤处理的射频信号输出至所述 整流单元。

6. 根据权利要求 5 所述的接收装置, 其特征在于, 所述整流器还包 括阻抗匹配网络, 连接在所述低通滤波器或带通滤波器与所述整流单元之 间。

7. 根据权利要求 4 所述的接收装置, 其特征在于, 所述滤波电路为 电容和 /或电感的拓朴结构。

8. 根据权利要求 4 所述的接收装置, 其特征在于, 所述整流单元的 拓朴结构为以下结构中的一种:

多个二级管构成的串联结构、 多个二级管构成的并联结构、 电压倍增 式结构、 桥式结构。

9. 根据权利要求 4 所述的接收装置, 其特征在于, 在所述整流单元 由多个二级管串联组成或并联组成时, 每个二极管还连接有电阻, 以保护 相应二极管。

10. 根据权利要求 1至 9中任一项所述的接收装置, 其特征在于, 所 述功率管理单元包括:

电池 或超级电容;

电压转换器, 连接至所述电池或超级电容, 用于将所述直流功率信号 进行电压转换, 并将经电压转换后的功率信号输出至所述电池或超级电 容, 以对所述电池或超级电容进行充电。

11. 一种同时进行射频能量提取和数据通信方法, 其特征在于, 包 括:

接收来自外部的射频信号;

从所述射频信号中提取出功率信号和数据信号;

将所述功率信号输出至功率管理单元, 以进行能量储存, 以及将所述 数据信号输出至通信单元, 以进行数据通信。

12. 根据权利要求 11 所述的同时进行射频能量提取和数据通信方 法, 其特征在于, 釆用整流电路对所述射频信号进行整流处理, 得到所述 功率信号和所述数据信号。

Description:
接收装置以及同时进行射频能量提取和数据通 信方法 技术领域

本发明涉及通信技术领域, 具体而言, 涉及一种接收装置和一种同时 进行射频能量提取和数据通信的方法。 背景技术

基于射频的无线技术使三个独特的系统功能成 为了可能, 即无线通信 (数据 /语音) 、 无线传感 (参数) 和无线供电 (能量) 。 前两个无线应 用在现如今的生活中都可见它们的身影, 并已改变了我们的日常生活。 第 三个无线应用一无线能量传输或传递 (WPT ) 在公众中鲜为人知, 至今尚 未得到良好的开发和应用。 严格来说, 任何在空间中的自然或人为的电磁 辐射和传输应该被称为 WPT, 但我们通常用 WPT特指 "面向电力的" 、 远远低于在红外线和光频段上的无线频率上的 能量传输。

经过近 20 多年的发展, 高密度功率器件, 低功耗集成电路, 高效率 整流天线和创新的电路结构推动各种无线能量 传输技术的研究进展。 此 外, 新兴的应用和市场在促进和 "推进" WPT 上扮演了关键的角色, 例 如生物医学工程中植入了免电池能量收集系统 的 CMOS 器件, 安保应用 和交通运输中的非接触式无线射频识别 (RFID ) , 以及电动汽车和移动 设备的远程充电和供电。

移动设备和手持式系统的特点是功耗和电压驱 动越来越低, 这得益于 较小的蜂窝结构和先进的 CMOS 工艺技术的飞速发展, 随着移动设备和 手持式系统的快速发展, 它使这些设备收集周围环境中来自广播服务和 无 线通信的电磁能来给这些设备供电成为了可能 。 因此, 在无线能量传输和 收集方面, 开发一种独立收发机来实现数据和能量的传输 和接收, 将是下 一代无线系统的研究和应用热点。 发明内容

本发明正是基于上述问题, 提出了一种同时进行射频能量提取和数据 通信的技术, 能够利用接收机模块以无线的方式同时接收数 据和能量。

有鉴于此, 根据本发明的一个方面, 提供了一种接收装置, 包括: 接 收端口, 用于接收来自外部的射频信号; 能量提取电路, 连接至所述接收 端口, 用于从所述射频信号中提取出功率信号和数据 信号, 将所述功率信 号输出至功率管理单元, 以及将所述数据信号输出至通信单元进行数据 通 信; 所述功率管理单元, 连接至所述能量提取电路, 用于接收所述功率信 号, 储存所述能量提取电路提取的能量。

在接收端口的输出中增加能量提取电路, 从接收到的射频信号中提取 出功率信号和数据信号 (数据信号可以是中频信号或低频信号) , 该功率 信号用于射频功率收集, 数据信号用于数据通信。 因此, 能量提取电路从 接收到的射频载波上提取直流功率, 并从相同的射频载波 中得到支持数 据通信所需要的功率, 实现了在数据通信的同时进行无线能量的收集 。

在上述技术方案中, 优选的, 所述能量提取电路包括整流电路, 用于 对所述射频信号进行整流处理, 得到所述功率信号和数据信号。

在上述任一技术方案中, 优选的, 所述接收端口包括 N个输出端口, 所述 N为大于等于 2的整数; 所述整流电路包括 N个整流器, 所述 N个 整流器与所述 N个输出端口——对应连接。

任何结构的接收端口均可以结合于此, 到目前为止接收端口的输出端 口数量有 2、 4、 8及其组合的种类。 应理解, 奇数多端口接收机也是可能 的。 由于接收端口有多个输出端口, 因此每一个输出端口可连接一个整 流器 (即功率检测器), 用于对输出端口输出的射频信号进行整流处理 和功 率读取, 并将功率信号从中频或低频数据信号中分离出 来, 以用于功率收 在上述任一技术方案中, 优选的, 每个整流器包括: 由多个二极管组 成的整流单元, 将所述射频信号转换成所述功率信号和数据信 号; 滤波电 路, 接收来自所述整流单元的输出信号, 从所述输出信号中过滤出所述数 据信号, 剩余信号为所述功率信号。 整流单元的输出信号经过滤波电路的过滤后, 允许数据信号与整流直 流信号的分离, 直流信号 (即功率信号)被输入到功率收集器 (即功率管 理单元) 中。

在上述任一技术方案中, 优选的, 所述整流器还包括低通滤波器或带 通滤波器, 连接在所述整流单元与所述接收端口之间, 对所述射频信号进 行过滤处理, 并将经过过滤处理的射频信号输出至所述整流 单元。

在上述任一技术方案中, 优选的, 所述整流器还包括阻抗匹配网络, 连接在所述低通滤波器或带通滤波器与所述整 流单元之间。

在上述任一技术方案中, 优选的, 所述滤波电路为电容和 /或电感的 拓朴结构。

在上述任一技术方案中, 优选的, 所述整流单元的拓朴结构为以下结 构中的一种: 多个二级管的串联结构、 多个二级管的并联结构、 电压倍增 式结构、 桥式结构。

在上述任一技术方案中, 优选的, 在所述整流单元由多个二级管串联 组成或并联组成时, 每个二极管还连接有电阻, 以保护相应二极管。 为了 使二极管免受静电放电的损坏, 釆用具有高值电阻的路径来保护二极管。

在上述任一技术方案中, 优选的, 所述功率管理单元包括: 电池 和 / 或超级电容; 电压转换器, 连接至所述电池和 /或超级电容, 用于将所述 功率信号进行电压转换, 并将经电压转换后的功率信号输出至所述电池 和 /或超级电容, 以对所述电池和 /或超级电容进行充电。 以确保提供一个恒 定的直流电压供给。 可用一种低泄漏电容作为功率管理单元中的存 储部 件, 并用一个直流-直流转换器将低电压的电平拉 。 根据本发明的另一 方面, 还提供了一种同时进行射频能量提取和数据通 信方法, 包括: 接收 来自外部的射频信号; 从所述射频信号中提取出功率信号和数据信号 ; 将 所述功率信号输出至功率管理单元, 以进行能量储存, 以及将所述数据信 号输出至通信单元, 以进行数据通信。

在上述技术方案中, 优选的, 釆用整流电路对所述射频信号进行整流 处理, 得到所述功率信号和所述数据信号。

在接收端口的输出中增加能量提取电路, 从接收到的射频信号中提取 出功率信号和数据信号, 该功率信号用于射频功率收集, 数据信号用于数 据通信。 因此, 能量提取电路从接收到的射频载波上提取直流 功率, 并从 相同的射频载波中得到支持数据通信所需要的 功率, 实现了在数据通信的 同时进行无线能量的收集。 附图说明

图 1 示出了相关技术中的六端口(常用的多端口之 一)接收机的示意 图;

图 2示出了根据本发明的一个实施例的接收装置 基本结构框架图; 图 3示出了根据本发明的一个实施例的接收装置 示意图;

图 4示出了对应于图 3所示的接收装置的同时进行能量收集和数据 信的处理流程示意图;

图 5示出了图 3所示接收装置中的整流电路的示意图;

图 6示出了根据本发明的另一实施例的接收装置 示意图;

图 7示出了该整流器所获得的输出直流功率相对 输入功率的仿真和 测量结果;

图 8示出了 RF-DC (射频-直流) 转换效率相对于输入功率的仿真和测 量结果;

图 9示出了根据本发明的实施例的同时进行射频 量提取和数据通信 方法的流程图。 具体实施方式

为了能够更清楚地理解本发明的上述目的、 特征和优点, 下面结合附 图和具体实施方式对本发明进行进一步的详细 描述。 需要说明的是, 在不 冲突的情况下, 本申请的实施例及实施例中的特征可以相互组 合。

在下面的描述中阐述了很多具体细节以便于充 分理解本发明, 但是, 本发明还可以釆用其他不同于在此描述的其他 方式来实施, 因此, 本发明 的保护范围并不受下面公开的具体实施例的限 制。

N 端口接收机的基本工作原理和基本特征已在很 多公开出版物中记 载, 为了方便理解根据本发明的接收装置的工作原 理, 下面以六端口接收 机为例, 简单说明六端口接收机的基本工作原理, 虽然在下文中以六端口 接收机为例, 但应理解 N端口接收机均可结合于此来实现根据本发明 接 收装置。

图 1示出了相关技术中的六端口接收机的示意图

如图 1 所示, 描绘了一个六端口接收器的结构, 一般来说, 六端口接 收器的结构主要包括两个部分, 即模拟前端 102和数字前端 104。 模拟前 端 102由一个连接到功率检波器网络的六端口 1022所组成。 六端口 1022 是一个线性器件, 包括两个输入 (接收到的射频 (RF) 信号和本机振荡器

( LO )信号) 和四个输出 (由 RF和 LO信号以一定的相位关系组成四种 不同的组合输出 ) 。 测得的功率信号通过模拟信号输入到模数转换 器

( ADC ) , 以将模拟信号转换为数字信号, 将转换后的数据输入到通信部 分(例如 FPGA ) 。 数字前端 104 包括模数转换器和通信部分。 应理解, 在一些实际情况下, ADC可能是包括在 FPGA模块中的。 FPGA电路板包 含必要的数字信号处理器, 这是计算复基带信号所需要的。

基于以前的多端口技术的研究和开发, 根据本发明的接收装置的基本 结构框架可参见图 2, 功率釆集器 2042 能够提取射频信号的射频能量, 数据传输单元 2044 完成数据通信, 同时进行能量提取和数据传输。 在这 样的结构中, 可实现数据信息和直流功率的同时接收, 数据信息可以从调 制载波信号中提取出来, 而直流功率可从射频载波分量来获得。

同步能量收集和数据通信是下一代的自供电或 混合能源和通信系统的 一种很有前景的方法。 一般来说, 结构简单、 低功耗、 体积小、 成本低以 及高速度都是新兴的无线收发器所必须的。 相比于外差式收发方案, 多端 口技术在收发器设计上的应用已经显示出显著 的优势。 因为多端口零差技 术的功率读取简单, 而非釆用大功率驱动的混频器, 故多端口零差技术一 直很引人注目。 因此, 基于六端口的接收器是对现有接收拓朴结构的 有利 优化。 除了整流信号的 I和 Q分量之外, 可从一个六端口接收机的输出端 得到一个 (DC) 直流信号。 此直流分量可被循环使用或被用于对除电池外 的系统供电。 这将减轻电池的负担或延长电池的使用寿命。 因此, 同步数 据和能量的接收器是可被实现的, 这种方案类似于混合气动 /电动车辆, 为了实现一种同时具有双功能的数据和功率接 收系统, 六端口接收器 的功率检测器和滤波部分被整流模块所替代, 该整流模块具有很高的射频 -直流转换效率, 并且也具有分离中频或低频数据信号和直流功 率信号的 能力。 参见图 3, 根据本发明接收装置基于六端口接收技术, 其主要包括 一个六端口接头 302, 4 个能量提取电路 304, 一个功率管理单元 306 和 一个通信单元 308, 该通信单元 308包括 ADC模块和 FPGA模块。 在图 3 中, 能量提取电路 304 和功率管理单元 306 对应于图 2 中的功率釆集器 2042 , 通信单元 308对应于图 2 中的数据传输单元 2044。 六端口 302接 收来自外部例如发射器的射频信号, 能量提取电路 304对该射频信号进行 处理, 分离出直流功率信号和数据信号 (中频或低频信号) , 其中, 直流 功率信号被输出至功率管理单元 306, 进行能量收集, 可为接收器供电, 实现接收器的自供电; 数据信号被输出至通信单元 308, 实现数据传输。

在图 3 中, 由于基于六端口技术, 因此有四路输出, 在每一输出上连 接一个能量提取电路 304, 以提取每一输出上的射频能量。

本领域技术人员应理解, 虽然在本文中以六端口技术来说明根据本发 明的接收装置的实施例, 事实上, 目前的 N端口接收技术均可结合于此, 每一输出上连接一个能量提取电路。

根据本发明的接收装置的处理流程图可参见图 4, 图 4是同时进行无 线功率传输和数据通信的处理流程图。

如图 4 所示, 首先, 六端口接头接收来自外部的射频信号 402, 接着 该射频信号被输入整流电路进行处理 404, 整流电路的输出分为两个部 分: 传输给一个最佳的电阻负载以实现功率收集的 无线能量收集部分 406, 以及传输给数据通信单元以实现数据提取过程 的数据通信部分 408。 数据信号的提取是通过这些多端口数据信号的 相干组合来实现的。 一旦从六端口接头的所有输出端收集到直流功 率或整流波, 全部收集 )J的 直流电压将由功率管理单元进行调节, 以确保提供一个恒定的直流电压供 给。 可用一种低泄漏电容作为的功率管理单元中的 存储部件, 并用一个直 流-直流转换器将低电压的电平拉高。

基于上面的描述可知, RF 信号由接收天线接收后, 通过六端口接 头, 在四个输出端与 LO信号结合, 从而形成不同相位的四个信号。 它们 是在这四个输出端被注入进整流电路的。 该整流电路的输出信号通过一些 过滤过程, 然后转移到通信单元进行解调过程和数据提取 。 这个过滤过程 允许数据信号 (基带) 和整流直流的分离。 最简单的电路可以用适当的电 容形式来做, 这些电容器能允许基带通过, 却能阻止全部的直流分量, 直 流分量可被重新输入到功率管理单元中。

在根据本发明的接收装置中, 较重要的部分是能量提取电路, 该能量 提取电路可由整流电路构成。 下面结合图 5进一步详细说明根据本发明的 接收装置中的整流电路的基于构成以及基本工 作原理。

如图 5所示, 一般情况下, 与六端口接头 502连接的整流电路可以包 括: 一个低通滤波器或带通滤波器 504 (在某些应用场景下该滤波器可能 不是必需的) , 釆用低通滤波器或带通滤波器, 取决于不同的工作频率, 通过整流元件来抑制不想要的高次谐波; 阻抗匹配网络 506 ; 整流元件 508, 在本实施例中, 该整流元件由一个或多个二极管组成, 具体拓朴结 构决于接收装置结构的配置; 一个用来平滑直流电压输出和提高系统性能 的滤波电路 510, 对在整流的非线性处理过程中所产生的高次谐 波进行衰 减; 一个直流负载 (或直流-直流充电模块) 。

需说明的是, 整流电路具有不同的拓朴结构, 在本实施例中, 可根据 实际应用需要来选择合适的拓朴结构, 如多个二极管的串联结构, 多个二 极管的并联结构, 电压倍增式结构以及桥式结构。 串联结构和并联结构可 降低二极管损耗, 并可作为低功率整流器设计的较好的备选结构 。 在一个 电压倍增式结构中的两个二极管组成的整流电 路可以产生比单二极管整流 器至少高两倍的直流输出电压, 同时电路的尺寸保持不变。 应理解, 上述 例子仅仅是一种示例, 并不用于限制本发明。 为实现无线功率传送, 关键 是实现射频到直流的高效转换效率的整流电路 。 在设计具有高效的射频到 直流的转换效率的整流电路中, 二极管是最重要的元件。 一个整流器的功 率转换效率主要是由二极管的三个参数来决定 , 串联电阻 (Rs ) 通过功率 损失直接限制了效率, 零偏结电容 (CjO ) , 影响了通过二极管振荡的谐 波电流, 以及击穿电压 (Vbr ) 限制了整流电路的功率处理能力 (这只在 大功率应用上会用到) 。 为了实现整流, 有必要选择一个具有高速开关特 性的二极管, 以便能处理高频输入信号, 并且该二极管需具有较低的截止 电压, 以便在 RF输入功率较低时能工作。

接下来结合图 6进一步说明根据本发明的接收装置的又一实 例。 在 本实施例中, 整流电路包括带通滤波器 504、 阻抗匹配网络 506和整流元 件、 滤波电路 510, 其中整流元件包括两个二极管 ( 602 和 604 ) , 滤波 电路 510为电容。 整流电路可将直流部分从中频或低频部分分离 出来, 即 从六端口 504的每个输出端口的整流波可收集到直流功率 , 并且同时可保 持整流波输出的中频或低频 (与基带相关) 部分, 并将其发送到解码器执 行解调过程。 在谐波抑制滤波器之后使用一个直流阻塞电容 器来完成 (应 理解, 该直流阻塞电容器可被集成在过滤器中) 。 整流电路所收集到的直 流部分提供了抵消系统功率载荷或给电池充电 所需的功率。 而涉及接收到 的 RF信号的全部 I和 Q分量的中频或低频部分则被导入到接收器的 据 处理单元。

如上所述, 本发明提供了一种简单的整流拓朴结构, 该结构可用在可 能自供电的收发器结构中。 在本实施例中, 还设计了两个使用高值电阻设 计的阻值很高的路径来保护二极管, 使其免受静电放电 (ESD ) 的损坏, 并且当二极管被注入一个高动态范围的信号时 可防止二极管被烧毁。 阻抗 匹配网络的设计可根据二极管的输入阻抗来决 定。

为了确保本发明所提出的结构可正常工作在微 波和毫米波频段, 整流 器被设计成工作在 24GHz。 根据仿真结果, 在 35mW及 610 Ω电阻负载的 F 输入功率时的整流器是最佳的。 图 7 示出了该整流器所获得的输出直 流功率相对于输入功率的仿真和测量结果, 图 8 示出了射频 -直流转换效 率相对于输入功率的仿真和测量结果。 制作出来的样机是与 23GHz 匹配 的, 故所记录的是在 23GHz 时所测得的效率, 并且在该频率下它表现出 了更好的性能。 仿真和制作出来的样机之间在 24GHz 产生的 4 %的频移 ( 1GHz ) 是可以接受的。 需说明的是, 在毫米波频段, 效率的仿真和测 量结果之间是有一定的差异的。 这种偏差被认为是因为整流二极管的非线 性结电容的效果。 当输入功率小于 35mW时, 转换效率逐渐增加, 之后因 为二极管的电压超过击穿电压, 转换效率即迅速下降。

根据本发明的接收装置可应用于无线通信设备 , 例如手机、 平板电 脑、 智能手表等便携式移动设备。

如图 9所示, 根据本发明的实施例的同时进行射频能量提取 和数据通 信方法, 可以包括以下步骤:

步骤 902, 接收来自外部的射频信号; 步骤 904, 从射频信号中提取 出功率信号和数据信号; 步骤 906, 将功率信号输出至功率管理单元, 以 进行能量储存, 以及将数据信号输出至通信单元, 以进行数据通信。

在上述技术方案中, 优选的, 釆用整流电路对射频信号进行整流处 理, 得到功率信号和基带数据信号。

在接收端口的输出中增加能量提取电路, 从接收到的射频信号中提取 出功率信号和数据信号, 该功率信号用于射频功率收集, 数据信号用于数 据通信。 因此, 能量提取电路从接收到的 RF 载波上提取直流功率, 并从 相同的 RF 载波方案得到支持数据通信所需要的功率, 实现了在数据通信 的同时进行无线能量的收集。

以上结合附图详细说明了根据本发明的技术方 案, 根据本发明的接收 装置能够同时进行能量提取和数据通信, 从而使射频能量可被循环使用或 被用于对除电池外的系统供电, 这将减轻电池的负担或延长电池的使用寿 命。

以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于 本领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精 神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明 的保护范围之内。