Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REMOVAL OF AROMATIC IMPURITIES FROM AN ALKENE STREAM USING AN ACID CATALYST, SUCH AS A LEWIS ACID
Document Type and Number:
WIPO Patent Application WO/2015/118470
Kind Code:
A1
Abstract:
A process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, including: a. providing the following reaction components: i. a chemical composition comprising the following: a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and b)An olefin in an amount of about 50 to about 99.99 wt. %, based on the total weight of the chemical composition, and ii. an acid; and b. reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition; wherein the concentration B is less than the concentration A.

Inventors:
SCHMIDT ROLAND (DE)
AZAM SHAHID (SA)
Application Number:
PCT/IB2015/050861
Publication Date:
August 13, 2015
Filing Date:
February 05, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SAUDI BASIC IND CORP (SA)
International Classes:
C10G29/20; C07C2/70; C10G17/02; C10G17/09; C10G50/00
Domestic Patent References:
WO2013061336A22013-05-02
Foreign References:
US20110178355A12011-07-21
US20070142686A12007-06-21
US3094568A1963-06-18
US3129256A1964-04-14
Other References:
See also references of EP 3102652A1
Download PDF:
Claims:
CLAIMS

1. A process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, comprising:

a. providing the following reaction components:

i. a chemical composition comprising the following:

a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and

b) An olefin in an amount in an amount of about 50 to about 99.99 wt. %, based on the total weight of the chemical composition, and ii. an acid; and

b. reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition;

wherein the concentration B is less than the concentration A.

2. The process according to Claim 1, wherein the olefin b) is an a-olefin.

3. The process according to any of the preceding claims, wherein the olefin b) is a C2-C20 olefin.

4. The process according to any of the preceding claims, wherein the

concentration A is in an amount of about 2 ppm to about 10 wt. % based on the total weight of the chemical composition i.

5. The process according to any of the preceding claims, wherein the ratio of concentration A: concentration B is about 1:0 to about 1:0.1.

6. The process according to any of the preceding claims, wherein the aromatic compound is benzene.

7. The process according to any of the preceding claims, wherein a further olefin is present as a component of a), wherein the further olefin is different to the olefin b).

8. The process according to Claim 7, wherein the further olefin is a C2-C20 olefin.

9. The process according to any of the preceding claims, wherein the acid comprises a Lewis acid.

10. The process according to Claim 9, wherein the Lewis acid is of the form AlaXbRc, wherein:

X is a halogen,

R is an alkyl group or hydrogen,

a is 1 or 2,

b is an integer of 0 to 3* a, and

c is an integer equal to 3*a-b.

11. The process according to Claim 9 or 10, wherein the Lewis acid is Al2Cl3Eth3.

12. The process according to any of Claims 9 to 11, wherein the acid further comprises a protic compound.

13. The process according to Claim 12, wherein the protic compound comprises imidazolium, ammonium, or a combination comprising at least one of the foregoing.

14. The process according to any of Claims 9 to 13, wherein the Lewis acid is present in step b. in a concentration of about 0.1 to about 50 wt. %, based on the total weight of the reaction components.

15. The process according to any of Claims 9 to 14, wherein the Lewis acid is present in step b. in a concentration of about 1 to about 20 wt. %.

16. The process according to any of the preceding claims, wherein the chemical composition i. is a homogeneous liquid.

17. The process according to any of the preceding claims, wherein the reaction b. is carried out at a temperature of about 0 to about 250 °C.

18. A process for the preparation of a downstream product comprising: i. preparation of an alkene by a process according to any of preceding claims; and ii. reaction of the alkene to form the downstream product.

19. The process according to Claim 18, wherein the downstream product is a polymer.

20. The process according to Claim 18 or 19, wherein the downstream product is a polythene or a polypropene.

21. The process according to any of Claims 18 to 20, wherein the downstream product is converted into a shaped body.

Description:
REMOVAL OF AROMATIC IMPURITIES FROM AN ALKENE STREAM USING AN ACID CATALYST, SUCH AS A LEWIS ACID

TECHINCAL FIELD

[0001] Disclosed herein is a process for to the removal of aromatic impurities from an alkene stream using an acid catalyst. Also disclosed is a process for the preparation of downstream products preferably polymers and shaped bodies.

BACKGROUND

[0002] Alkenes, in particular a-olefins, have for a long time been desirable in the chemical industry. Due to the double bond, they can be converted into a number of other valuable compounds such as alcohols, aldehydes, ketones and organic halides, just to name a few. In polymerisation reactions they can be used as monomer or co-monomer and are particularly valuable in the production of plastics. For reasons of toxicity, environmental safety and production efficiency, it is desirable to produce an alkene stream with reduced content of certain aromatic compounds, in particular benzene. Reduction of content of certain aromatic compounds is also a concern in terms of compliance with various governmental environmental regulation. There remains a need in the prior art for methods for the reduction of the content of certain aromatic compounds, particularly benzene, in alkene streams.

SUMMARY

[0003] Disclosed, in various embodiments, are processes for the preparation of a chemical composition comprising an aromatic compound.

[0004] A process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, includes: a. providing the following reaction components: i. a chemical composition comprising the following: a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and b) An olefin in an amount in an amount of about 50 to about 99.99 wt. %, based on the total weight of the chemical composition, and ii. an acid; and b. reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition; wherein the concentration B is less than the concentration A [0005] These and other features and characteristics are more particularly described below.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The following is a brief description of the drawings wherein like elements are numbered alike and which are presented for the purposes of illustrating the exemplary embodiments disclosed herein and not for the purposes of limiting the same.

[0007] FIG. 1 is a schematic process flow diagram for the reduction in the content of certain aromatic compounds.

DETAILED DESCRIPTION

[0008] The present application is generally based on overcoming at least one of the problems encountered in the state of the art in relation to the reduction in the content of certain aromatic compounds in an alkene stream, in particular the reduction of benzene content in an alkene stream, particular where the alkene is an alpha olefin. This applies in particular to low concentrations of the aromatic compound, which should be removed in an industrial scale process.

[0009] Another problem is to provide an efficient and sustainable alkene source for producing downstream products and shaped bodies.

[0010] A contribution to solving at least one of the problems identified herein is made by a process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, comprising:

a. providing the following reaction components:

i. a chemical composition comprising the following:

a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition,

b) An olefin in an amount in an amount of about 50 to about 99.99 wt. %, preferably about 80 to about 99.99 wt. %, more preferably about 95 to about 99.99 wt. %, most preferably about 99 to about 99.99 wt. %, based on the total weight of the chemical composition,

ii. an acid; b. reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition;

wherein the concentration B is less than the concentration A.

[0011] In one embodiment of the process, the olefin b) is an a-olefin.

[0012] In one embodiment of the process, the olefin b) is a C 2 -C 20 olefin, preferably a C 2 -C15 olefin, more preferably a C 4 -Cio olefin.

[0013] In one embodiment of the process, the olefin b) is C6-C 20 olefin, preferably a C 6 -Ci 5 olefin, more preferably a C 6 -Cio olefin.

[0014] In one embodiment of the process, the concentration A is about 2 parts per million (ppm) to about 10 weight percent (wt. %), preferably about 3 ppm to about 5 wt. %, more preferably about 4 ppm to about 1 wt. %, based on the total weight of the chemical composition i.

[0015] In one embodiment of the process, the ratio of A: B is about 1 :0 to about 1 :0.1, preferably about 1 :0 to about 1 :0.01, more preferably about 1 :0.1 to about 1 :001.

[0016] In one embodiment of the process, the aromatic compound is benzene.

[0017] In one embodiment of the process, a further olefin is present as a component of a), wherein the further olefin is different to the olefin b).

[0018] In one embodiment of the process, the further olefin is a C 2 -C 20 olefin, preferably a C 2 -C15 olefin, more preferably a C 4 -Cio olefin.

[0019] In one embodiment of the process, the acid comprises a Lewis acid.

[0020] In one embodiment of the process, the Lewis acid is of the form Al a X b R c , wherein:

-X is a halogen,

-R is an alkyl group or hydrogen, preferably ethyl,

-a is 1 or 2,

-b is an integer of 0 to 3* a, preferably a to 2* a, and

-c in an integer equal to 3*a-b.

[0021] In one embodiment of the process, the Lewis acid is Al 2 Cl 3 Eth 3 .

[0022] In one embodiment of the process, the acid further comprises a protic compound.

[0023] In one embodiment of the process, the protic compound comprises

imidazolium, ammonium, or a combination comprising at least one of the foregoing. [0024] In one embodiment of the process, the Lewis acid is present in step b. in a concentration of about 0.1 to about 50 wt. %, preferably about 0.5 to about 20 wt. %, more preferably about 1 to about 5 wt. %, based on the total weight of the reaction components.

[0025] In one embodiment of the process, the Lewis acid is present in step b. in a concentration of about 1 to about 20 wt. %, preferably about 2 to about 10 wt. %, more preferably about 3 to about 5 wt. %.

[0026] In one embodiment of the process, the chemical composition i. is a homogeneous liquid.

[0027] In one embodiment of the process, the reaction b. is carried out at a temperature of about 0 to about 250 °C, preferably about 30 to about 200 °C, more preferably about 80 to about 150 °C.

[0028] A contribution to achieving at least one of the above mentioned objects is made by a process for the preparation of a downstream product comprising:

i. preparation of an alkene by a process as described herein; and

ii. reaction of the alkene to form the downstream product.

[0029] In one embodiment of the process for the preparation of a downstream product, the downstream product is a polymer.

[0030] In one embodiment of the process for the preparation of a downstream product, the downstream product is a polyethene or a polypropene (e.g., polyethylene or polypropylene).

[0031] In one embodiment of the process for the preparation of a downstream product, the downstream product is converted into a shaped body.

[0032] A contribution solving at least one of the problems identified herein is made by a process for the treatment of an olefin stream, preferably an a-olefin stream, in order to reduce the content of a certain aromatic compound a, preferably benzene.

[0033] In one embodiment, the content of the aromatic compound a is reduced by means of an alkylation reaction to yield an alkylated aromatic compound distinct from the aromatic compound a. In one aspect of this embodiment, the alkylated aromatic compound can differ from the aromatic compound a by a single additional alkylation or multiple additional alkylations. The alkylated aromatic compound preferably differs from the aromatic compound a by one, two or three additional alkylations. In one aspect of this embodiment, the product composition comprises at least two or more distinct alkylated aromatic compounds which can be distinct by virtue of a different number of alkyl groups, or different type of alkyl groups, or by a combination of both. In another aspect, at least 50 wt. %, preferably at least 90 wt. %, more preferably at least 99 wt. % of the alkylated aromatic product is composed of a single alkylation product.

[0034] In one embodiment, the reaction of the aromatic compound, preferably the alkylation reaction, is catalysed by an acid. In one aspect of this embodiment, a further catalyst, different from the acid catalyst, can be present.

[0035] The skilled person can choose the reaction conditions in any way he sees fit in order to increase the advantageous properties of the reaction.

[0036] It is preferred that the reaction be carried out in the liquid phase, preferably in a single homogeneous liquid phase.

[0037] It is preferred for the reaction to be carried out at a temperature of about 0 to about 250 °C, preferably about 0 to about 200 °C, more preferably about 0 to about 150 °C.

[0038] It is preferred that the reaction be carried out at a pressure which allows a liquid phase reaction. In one embodiment, the reaction is carried out at a pressure of about 0.1 MegaPascals (MPa) to about 12 MPa (about 1 to about 120 bar), preferably about 1 MPa to about 6 MPa (about 10 to about 60 bar), more preferably about 2 MPa to about 5.5 MPa (about 20 to about 55 bar).

[0039] A contribution to solving at least one of the problems disclosed herein is made by a process for the treatment of a chemical composition comprising the following:

a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and

b) An olefin in an amount of about 50 to about 99.99 wt. %, preferably about 80 to about 99.99 wt. %, more preferably about 95 to about 99.999 wt. %, most preferably about 99 to about 99.9999 wt. %, based on the total weight of the chemical composition.

[0040] The olefin can be chosen according to the particular application. Preferred olefins are a-olefins and/or olefins which are employed as monomers and/or co-monomers in polymerisation reactions. Preferred α-olefins in this context are those comprising carbon atoms about 2 to about 30, preferably about 2 to about 15, more preferably about 2 to about 8. Preferred α-olefins are ethene, propene, but-l-ene, pent-l-ene, hex-l-ene, hept-l-ene, oct-1- ene, non-l-ene, dec-l-ene and higher a-olefins. The preferred a-olefins are hex-l-ene, hept- l-ene or oct-l-ene.

[0041] The alkene stream can contain a single olefin or can comprise at least two or more distinct olefins. In one embodiment, at least 50 wt. %, more preferably at least 90 wt. %, most preferably at least about 99 wt. % of the chemical composition i) is a single alkene. In another embodiment, the chemical composition comprises at least 10 wt. %, preferably at least 15 wt. %, more preferably at least 20 wt. % of a first olefin and at least 10 wt. %, preferably at least 15 wt. %, more preferably at least 20 wt. % of a second olefin distinct from the first olefin.

[0042] In a further embodiment, the alkene stream contains more than distinct alkenes, preferably with at least one of those alkenes being a C 6 -C2o alkene, preferably a C 6 - Ci5 alkene, more preferably a C 6 -Cio alkene. In one aspect of this embodiment, the alkene stream comprises hex-l-ene, preferably in an amount of 50 to about 99 wt. %, more preferably about 65 to about 95 wt. %, most preferably about 75 to about 90 wt. %, based on the total weight of the alkene stream. In one aspect of this embodiment, the alkene stream comprises hept-l-ene, preferably in an amount of about 1 to about 30 wt. %, more preferably about 3 to about 20 wt. %, most preferably about 8 to about 15 wt. %, based on the total weight of the alkene stream. In one aspect of this embodiment, the alkene stream comprises oct-l-ene, preferably in an amount about 0.1 to about 10 wt. %, more preferably about 0.5 to about 7 wt. %, most preferably about 1 to about 5 wt. %, based on the total weight of the alkene stream. In one aspect of this embodiment, the alkene stream comprises alkene with more than 8 carbon atoms, preferably about 0.1 to about 10 wt. %, more preferably about 0.5 to about 7 wt. %, most preferably about 1 to about 5 wt. %, based on the total weight of the alkene stream. In one aspect of this embodiment, the aromatic compound a, which is preferably benzene, is present in the alkene stream in a concentration A in an amount of about 2 ppm to about 1000 ppm, preferably about 20 ppm to about 700 ppm, more preferably about 100 ppm to about 400 ppm. In one aspect of this embodiment, the aromatic compound is present in the product stream in a concentration B in an amount of about 0 ppm to about 1 ppm, preferably about 0.01 ppm to about 0.5 ppm, more preferably about 0.1 ppm to about 0.4 ppm.

[0043] The aromatic compound a can be chosen according to the particular application. Preferred aromatic compounds a are based on a benzene ring or on a naphthalene ring, preferably based on a benzene ring. The aromatic compound a can itself be singly alkylated multiply alkylated or not alkylated. The aromatic compound a is preferably not alkylated. Preferred aromatic compounds a are benzene, toluene, xylene, styrene, or a derivative of any of the preceding, or a mixture of at least two or more of the preceding, preferably benzene. Preferred substituents of the aromatic compound a are halogen, preferably F, CI, Br or I, preferably F or CI. Preferred isomers of xylene in this context are ortho, meta or para, or a combination of at least two or more thereof. The preferred aromatic compound a is benzene.

[0044] In one embodiment, the aromatic content of the composition i) consists of at least 50 wt. %, preferably at least 90 wt. %, more preferably at least about 99 wt. % of a single aromatic compound, based on the total weight of aromatic compounds in the composition i). In another embodiment, the aromatic content of the composition i) comprises at least 10 wt. %, preferably at least 15 wt. %, more preferably at least 20 wt. % of a first aromatic compound and at least about 10 wt. %, preferably at least about 15 wt. %, more preferably at least about 20 wt. % of a second aromatic compound, in each case based on the total weight of aromatic compounds in the composition i).

[0045] The acid ii. preferably catalyses the reaction which reduces the content of aromatic compound a in the composition i). The skilled person has knowledge of acids and their use as chemical catalysts. He can select any acid which he considers fit for improving the advantageous characteristics of the reaction.

[0046] Preferred catalysts are liquid acids, preferably comprising a Lewis acid.

[0047] Preferred Lewis acids in this context are compounds which are capable of accepting at least one or more than one lone pair. The skilled person has knowledge of Lewis acids and can select the Lewis acid in any way he sees fit in order to enhance the

advantageous properties of the reaction.

[0048] Preferred Lewis acids comprise at least one or two or more Lewis acid centres or atoms which are capable of accepting at least one or two or more lone pairs. In one embodiment, the Lewis acid comprises at least one or two or more selected from the list consisting of the following: B, Al, P, As, Sb, Si, Ge, Se, Te, I, Be, S, or a combination comprising at least one of the foregoing; preferably selected from the list consisting of the following: B, Al, P, As, Sb or Si, or a combination comprising at least one of the foregoing; more preferably selected from the list consisting of the following: B, Al, or a combination comprising at least one of the foregoing. The most preferred Lewis acids comprise at least one or two or more Al atoms.

[0049] Preferred Lewis acids comprising Al are of the general formula

A1„Y 3

wherein:

-n is an integer of about 1 to about 10, preferably about 1 to about 5, preferably 1 or 2, most preferably 1; -Y is a hydrocarbon residue, preferably an alkyl group, a halogen, an alkoxy group, a thioalkyl group, or hydrogen, wherein the Y within a single molecule can be the same as or different to each other. Y is preferably alkyl, H or halogen.

[0050] In one embodiment, the Lewis acid is of the general form

Al a XbR c ,

wherein:

-X is a halogen, preferably F, Br, or CI, more preferably CI;

-R is an alkyl group, preferably a Ci-Cio alkyl, more preferably a C 1 -C5 alkyl, most preferably ethyl;

-a is 1 or 2;

-b is an integer of 0 to 3* a; and

c is an integer equal to 3*a-b.

[0051] In one embodiment, preferred Lewis acids are at least one or two or more selected from: AICI 3 , AlBr 3 , A1H 3 , A1F 3 , Al(alkyl) 3 or a combination comprising at least one of the foregoing, preferably AlEth 3 , BH 3 , BF 3 , BC1 3 , or a combination comprising at least one of the foregoing.

[0052] In another embodiment, the Lewis acid is of the form general form Al 2 Cl n Etli 6 - n , wherein n is an integer of about 2 to about 6. In one aspect of this embodiment, the Lewis acid is Al 2 Cl 3 Eth 3 .

[0053] In one embodiment, the acid catalyst comprises a protic compound in addition to the Lewis acid.

[0054] In one aspect of this embodiment, the protic compound comprises at least one or more than one N-H bond, preferably present in a positive ion. In this context it is preferred that the protic compound comprise at least one or more than one cation selected from the following: ammonium or derivative thereof, imidazolium or derivative thereof, pyrazolium or derivative thereof, oxazolium or derivative thereof, pyridinium or derivative thereof, isoxazolium or derivative thereof, thiazolium or derivative thereof, preferably ammonium or derivative thereof or imidazolium or derivative thereof, or a combination comprising at least one of the foregoing.

[0055] Preferred derivatives of the above protic compounds comprise alkyl substituents. Preferred derivatives of ammonium are primary, secondary or tertiary ammonium, wherein preferred alkyl groups are methyl, ethyl, propyl butyl, pentyl or hexyl, preferably methyl or ethyl. [0056] Preferred derivatives of imidazolium are alkyl substituted imidazolium, wherein the alkyl groups are preferably one or more than one selected from the following: methyl, ethyl, propyl, butyl, pentyl, hexyl, preferably methyl or butyl, or a combination comprising at least one of the foregoing. The imidazolium is preferably substituted at one or more than one of the following position: 1, 2, 4, 5, preferably 1 or 4. Preferred imidazolium derivatives are dimethyl imidazolium, preferably 1,4-dimethyl imidazolium; di butyl imidazolium, preferably 1,4-dibutyl imidazolium; methyl imidazolium, preferably 1 -methyl imidazolium or 4-methyl imidazolium; methyl-butyl imidazolium, preferably l-methyl-4- butyl-imidazolium or l-butyl-4-methyl imidazolium.

[0057] Preferred counter ions for protic cations, preferably ammonium or

imidazolium cations in this context are halides, preferably chloride, bromide or iodide. The preferred protic compound is butyl imidazolium chloride.

[0058] In one embodiment, the process for the preparation of chemical composition, preferably an olefin stream, with a reduced content of a certain aromatic compound, preferably a reduced benzene content, is coupled to further subsequent reactions in order to obtain downstream products. Preferred downstream products are those obtained from polymerisation reactions, hydrogenation reactions, halogenation reactions, and other chemical functionalization reactions, preferably polymerisation reactions. Preferred monomeric downstream products are vinyl chloride monomer (VCM), ethylene glycol monomer (MEG), ethylene oxide (EO), acrylonitrile, butadiene, styrene, vinyl acetate monomer (VAM). Preferred oligomers are olefins, preferably linear olefins, preferably alpha olefins, preferably linear alpha olefins, such as 1-butene, 1-hexene, 1-octene, 1-decene, 1- dodecene, 1-tetradecene, 1-hexadecene or 1-octadecene. Preferred polymerisation reactions can be mono-polymerization reactions or co-polymerization reactions. Preferred

polymerisation products are polythenes, substituted polythenes, polythene derivatives, polyvinyl chlorides, polyethylene glycols (PEG), acrylonitrile butadiene styrenes (ABS), polyvinyl acetates, poly olefins, preferably poly alpha olefins (PAO), styrene butadiene rubber (SBR), and other polymers comprising at least one of the above described monomers. Preferred polymers are polythenes or polythene derivatives. Preferred forms of polythene and its derivatives are ultra-high-molecular- weight polyethylene (UHMWPE), ultra-low- molecular- weight polyethylene (ULMWPE or PE-WAX), high-molecular- weight polyethylene (HMWPE), high-density polyethylene (HDPE), high-density cross-linked polyethylene (HDXLPE), cross-linked polyethylene (PEX or XLPE), medium-density polyethylene (MDPE), linear low-density polyethylene (LLDPE), low-density polyethylene (LDPE), or very-low-density polyethylene (VLDPE), chlorinated polyethylene (CPE), or combinations of at least two thereof, preferably HDPE, LLDPE or LDPE. Preferred functionalization products are aromatic or non-aromatic compounds, saturated or unsaturated compounds, ketones, aldehydes, esters, amides, amines, carboxylic acids, alcohols etc.

[0059] In one embodiment, the downstream products are further processed, particularly in the case where the downstream product is a polymer, particularly when it is polythene or a derivative thereof. In one embodiment, this further processing preferably involves formation of shaped objects such as plastic parts for electronic devices, automobile parts, such as bumpers, dashboards, or other body parts, furniture, or other parts or merchandise, or for packaging, such as plastic bags, film, or containers.

[0060] FIG. 1 shows a schematic process flow diagram 100 for the reduction in the content of certain aromatic compound a, preferably benzene, of a chemical composition, preferably an olefin stream, preferably an a-olefin stream, wherein the chemical composition enters the process with a content A of the aromatic compound 101 and exits the process with a content B of the aromatic compound a 105. The chemical composition 101 can first optionally undergo pre-processing 102, preferably one or more selected from the following: heating, cooling, filtration, distillation, or a combination comprising at least one of the foregoing. The chemical composition is then contacted with the acid 103, preferably comprising a Lewis acid, preferably an aluminium alkyl halide. The chemical composition is then optionally post-processed 104, preferably one or more selected from the following: heating, cooling, filtration, distillation, or a combination comprising at least one of the foregoing. Following the process to reduce the content of the aromatic compound a, the chemical composition 105 can optionally be used as a reactant in a further downstream reaction 106, preferably a polymerisation reaction, to produce a downstream product, preferably a poly a-olefin.

[0061] The content of aromatic compound a was determined using Capillary gas chromatography. Where the aromatic compound a was benzene, The ASTM international standard method ASTM D6229 - 06(2010) was used.

[0062] The following example are merely illustrative of the device disclosed herein and are not intended to limit the scope hereof. EXAMPLES

Example 1

[0063] 100 milliliters (ml) of a hydrocarbon mixture with the composition given in column 2 of Table 1 was reacted with 5 ml aluminium sesquichloride in a batch reactor (Parr 300 ml Autoclave Model 4566 Mini Benchtop reactor). The reaction was carried out at 2 MegaPascals (MPa) (20 bar), 120 °C for 10 minutes under stirring. The hydrocarbon mixture following reaction is given in column 3 of Table 1.

[0064] The process disclosed herein includes at least the following embodiments:

[0065] Embodiment 1: A process for the preparation of a chemical composition comprising an aromatic compound a in a concentration B by weight, based on the total weight of the chemical composition, comprising: a. providing the following reaction components: i. a chemical composition comprising the following: a) The aromatic compound a in a concentration A by weight based on the total weight of the chemical composition, and b) An olefin in an amount in an amount of about 50 to about 99.99 wt. %, based on the total weight of the chemical composition, and ii. an acid; and b. reacting the components to obtain the chemical composition comprising the aromatic compound a in a concentration B by weight based on the total weight of the chemical composition; wherein the concentration B is less than the concentration A.

[0066] Embodiment 2: The process according to Embodiment 1, wherein the olefin b) is an a-olefin.

[0067] Embodiment 3: The process according to any of the preceding embodiments, wherein the olefin b) is a C2-C20 olefin.

[0068] Embodiment 4: The process according to any of the preceding embodiments, wherein the concentration A is in an amount of about 2 ppm to about 10 wt. % based on the total weight of the chemical composition i. [0069] Embodiment 5: The process according to any of the preceding embodiments, wherein the ratio of concentration A: concentration B is about 1:0 to about 1:0.1.

[0070] Embodiment 6: The process according to any of the preceding embodiments, wherein the aromatic compound is benzene.

[0071] Embodiment 7: The process according to any of the preceding embodiments, wherein a further olefin is present as a component of a), wherein the further olefin is different to the olefin b).

[0072] Embodiment 8: The process according to Embodiment 7, wherein the further olefin is a C2-C20 olefin.

[0073] Embodiment 9: The process according to any of the preceding embodiments, wherein the acid comprises a Lewis acid.

[0074] Embodiment 10: The process according to Embodiments 9, wherein the Lewis acid is of the form Al a X b R c , wherein: X is a halogen, R is an alkyl group or hydrogen, a is 1 or 2, b is an integer of 0 to 3* a, and c is an integer equal to 3*a-b.

[0075] Embodiment 11: The process according to Embodiments 9 or 10, wherein the Lewis acid is Al 2 Cl 3 Eth 3 .

[0076] Embodiment 12: The process according to any of Embodiments 9 to 11, wherein the acid further comprises a protic compound.

[0077] Embodiment 13: The process according to Embodiment 12, wherein the protic compound comprises imidazolium, ammonium, or a combination comprising at least one of the foregoing.

[0078] Embodiment 14: The process according to any of Embodiments 9 to 13, wherein the Lewis acid is present in step b. in a concentration of about 0.1 to about 50 wt. %, based on the total weight of the reaction components.

[0079] Embodiment 15: The process according to any of Embodiments 9 to 14, wherein the Lewis acid is present in step b. in a concentration of about 1 to about 20 wt. %.

[0080] Embodiment 16: The process according to any of the preceding embodiments, wherein the chemical composition i. is a homogeneous liquid.

[0081] Embodiment 17: The process according to any of the preceding embodiments, wherein the reaction b. is carried out at a temperature of about 0 to about 250 °C.

[0082] Embodiment 18: A process for the preparation of a downstream product comprising: i. preparation of an alkene by a process according to any of preceding

embodiments; and ii. reaction of the alkene to form the downstream product. [0083] Embodiment 19: The process according to Embodiment 18, wherein the downstream product is a polymer.

[0084] Embodiment 20: The process according to Embodiments 18 or 19, wherein the downstream product is a polythene or a polypropene.

[0085] Embodiment 21: The process according to any of Embodiments 18 to 20, wherein the downstream product is converted into a shaped body.

[0086] In general, the invention may alternately comprise, consist of, or consist essentially of, any appropriate components herein disclosed. The invention may additionally, or alternatively, be formulated so as to be devoid, or substantially free, of any components, materials, ingredients, adjuvants or species used in the prior art compositions or that are otherwise not necessary to the achievement of the function and/or objectives of the present invention. The endpoints of all ranges directed to the same component or property are inclusive and independently combinable (e.g., ranges of "less than or equal to 25 wt%, or 5 wt% to 20 wt%," is inclusive of the endpoints and all intermediate values of the ranges of "5 wt% to 25 wt%," etc.). Disclosure of a narrower range or more specific group in addition to a broader range is not a disclaimer of the broader range or larger group. "Combination" is inclusive of blends, mixtures, alloys, reaction products, and the like. Furthermore, the terms "first," "second," and the like, herein do not denote any order, quantity, or importance, but rather are used to denote one element from another. The terms "a" and "an" and "the" herein do not denote a limitation of quantity, and are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. "Or" means "and/or." The suffix "(s)" as used herein is intended to include both the singular and the plural of the term that it modifies, thereby including one or more of that term (e.g., the film(s) includes one or more films). Reference throughout the specification to "one embodiment", "another embodiment", "an embodiment", and so forth, means that a particular element (e.g., feature, structure, and/or characteristic) described in connection with the embodiment is included in at least one embodiment described herein, and may or may not be present in other embodiments. In addition, it is to be understood that the described elements may be combined in any suitable manner in the various embodiments.

[0087] The modifier "about" used in connection with a quantity is inclusive of the stated value and has the meaning dictated by the context (e.g., includes the degree of error associated with measurement of the particular quantity). The notation "+ 10%" means that the indicated measurement can be from an amount that is minus 10% to an amount that is plus 10% of the stated value. The terms "front", "back", "bottom", and/or "top" are used herein, unless otherwise noted, merely for convenience of description, and are not limited to any one position or spatial orientation. "Optional" or "optionally" means that the

subsequently described event or circumstance can or cannot occur, and that the description includes instances where the event occurs and instances where it does not. Unless defined otherwise, technical and scientific terms used herein have the same meaning as is commonly understood by one of skill in the art to which this invention belongs. A "combination" is inclusive of blends, mixtures, alloys, reaction products, and the like.

[0088] All cited patents, patent applications, and other references are incorporated herein by reference in their entirety. However, if a term in the present application contradicts or conflicts with a term in the incorporated reference, the term from the present application takes precedence over the conflicting term from the incorporated reference

[0089] While particular embodiments have been described, alternatives,

modifications, variations, improvements, and substantial equivalents that are or may be presently unforeseen may arise to applicants or others skilled in the art. Accordingly, the appended claims as filed and as they may be amended are intended to embrace all such alternatives, modifications variations, improvements, and substantial equivalents.