Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REPROGRAMMING PROGENITOR COMPOSITIONS AND METHODS OF USE THEREFORE
Document Type and Number:
WIPO Patent Application WO/2016/138464
Kind Code:
A9
Abstract:
The invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency. In particular embodiments the invention is predicated upon increased expression of an estrogen related receptor and changes in the oxidative and glycolytic pathways.

Inventors:
EVANS RONALD (US)
DOWNES MICHAEL (US)
KIDA YASUYUKI S (US)
KAWAMURA TERUHISA (US)
WEI ZONG (US)
YU RUTH T (US)
ATKINS ANNETTE R (US)
Application Number:
PCT/US2016/019911
Publication Date:
November 09, 2017
Filing Date:
February 26, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SALK INST FOR BIOLOGICAL STUDI (US)
International Classes:
C12N5/074; C12N5/10
Attorney, Agent or Firm:
HUNTER-ENSOR, Melissa et al. (US)
Download PDF:
Claims:
What is claimed is:

1. A method for selecting a mammalian induced pluripotent stem cell progenitor, the method comprising isolating an induced pluripotent stem cell progenitor expressing one or more of Oct4, Sox2, Klf4 and cMyc, and having increased expression of an estrogen related receptor relative to a reference cell, thereby selecting an induced pluripotent stem cell progenitor.

2. A method for selecting a mammalian induced pluripotent stem cell progenitor, the method comprising isolating an induced pluripotent stem cell progenitor expressing one or more of Oct4, Sox2, Klf4 and cMyc, having reduced expression of stem cell antigen 1 (Seal) and CD34, and having increased expression of an estrogen related receptor relative to a reference cell, thereby selecting an induced pluripotent stem cell progenitor.

3. The method of claim 1 or 2, wherein the estrogen related receptor is ERRa, ERR and ERRy.

4. The method of claim 1 or 2, wherein the cell further expresses an increased level of PGC-la, PGC-Ιβ, or IDH3 relative to a reference cell. 5. The method of claim 1 or 2, wherein the induced pluripotent stem cell progenitor is a human or murine cell.

6. The method of claim 1 or 2, wherein the induced pluripotent stem cell progenitor is obtained by expressing Oct4, Sox2, Klf4 and cMyc in a cell selected from the group consisting of a fibroblast, embryonic fibroblast, human lung fibroblast, adipose stem cell, and IMR90 cell.

7. A method of isolating a cell population enriched for induced pluripotent stem cell progenitors, the method comprising isolating one or more induced pluripotent stem cell progenitors expressing Oct4, Sox2, Klf4 and cMyc, and having increased expression of an estrogen related receptor relative to a reference cell, and culturing the one or more mammalian induced pluripotent stem cell progenitors to obtain a cell population enriched for induced pluripotent stem cell progenitors.

8. A method of obtaining a murine induced pluripotent stem cell progenitor, the method comprising expressing Oct4, Sox2, Klf4 and cMyc in a murine cell in culture, isolating from the culture a cell having reduced expression of Seal and CD34 and having increased expression of ERRy relative to a reference cell, and culturing the cell to obtain an induced pluripotent stem cell progenitor.

9. The method of claim 8, wherein the murine cell is a mouse embryonic fibroblast.

10. The method of claim 8, wherein the cell further expresses an increased level of PGC- 1β and/or IDH3 relative to a reference cell.

11. A method of obtaining a human induced pluripotent stem cell progenitor, the method comprising expressing Oct4, Sox2, Klf4 and cMyc in a human cell in culture, isolating from the culture a cell having increased expression of ERRa and/or PGC-la and/or PGC-Ιβ and/or IDH3 relative to a reference cell, thereby obtaining a human induced pluripotent stem cell progenitor.

12. The method of any one of claims 1-11, wherein the induced pluripotent stem cell progenitor expresses Oct4, Sox2, Klf4 and cMyc. 13. The method of any one of claims 1-11, wherein the reference cell expresses Seal and/or CD34 or a human ortholog or functional equivalent thereof.

14. The method of any one of claims 1-11, wherein the reference cell fails to express detectable levels of one or more of Oct4, Sox2, Klf4 and cMyc.

15. The method of any one of claims 1-11, wherein the cell expresses a reduced level of Seal and CD34 proteins or human orthologs thereof, or polynucleotides encoding said proteins.

16. The method of any one of claims 1-11, wherein the cell has an increased metabolic rate defined by increased extracellular acidification rate and/or oxygen consumption rate relative to a reference cell.

17. The method of any one of claims 1-11, wherein ERRy and PGC-Ιβ expression is at least about 5 or 10 fold higher than the level in a reference cell.

18. The method of any one of claims 1-11, wherein polynucleotide expression level is determined by qPCR analysis.

20. The method of any one of claims 1-11, wherein the cell comprises one or more retroviral vectors encoding Oct4, Sox2, Klf4 and cMyc.

21. The method of any one of claims 1-11, wherein the induced pluripotent stem cells are hyper-energetic cells.

22. The method of claim 21, wherein levels of an analyte selected from the group consisting of nicotinamide adenine dinucleotide (NADH), a-ketoglutarate, cellular ATP,

NADH/NAD+ ratio, ATP synthase in mitochondria (ATP5G1), succinate dehydrogenase (SDHB), isocitrate dehydrogenase (IDH3) and NADH dehydrogenase (NDUFA2), superoxide dismutase 2 (SOD2), NADPH oxidase 4 (NOX4) and catalase (CAT) were increased in a reprogrammed cell. 23. The method of claim 21, wherein the methylation state of a histone in a promoter or an enhancer region is altered in a gene that functions in fibroblast identity or reprogramming relative to a reference cell.

24. The method of claim 23, wherein the histone is H3 histone.

25. The method of claim 23, wherein the alteration is in the methylation state of a lysine located at fourth (4th) amino acid position from an N-terminal of the histone.

26. An induced pluripotent stem cell progenitor obtained according to the method of any one of claims 1-25.

27. A method for generating a induced pluripotent stem cell progenitor or induced pluripotent stem cell, the method comprising expressing recombinant estrogen related receptor (ERR) alpha or gamma in a cell expressing Oct4, Sox2, Klf4 and cMyc and culturing the cell, thereby generating a induced pluripotent stem cell progenitor or induced pluripotent stem cell.

28. The method of claim 27, wherein the cell also expresses PGC-la, PGC-Ιβ, and/or

IDH3.

29. The method of claim 27, wherein the cell has reduced expression of Seal and CD34. 30. The method of claim 27, wherein the cell or cells comprise retroviral vectors encoding Oct4, Sox2, Klf4 and cMyc.

31. A cellular composition comprising an effective amount of an induced pluripotent stem cell or cellular descendant thereof in a pharmaceutically acceptable excipient.

32. The cellular composition of claim 31, wherein the induced pluripotent stem cell is capable of giving rise to a pancreatic cell, neuronal cell, or cardiac cell.

33. A kit comprising an induced pluripotent stem cell or progenitor thereof obtained according to the method of any one of claims 1-30 and instructions for administering said cell to a subject.

34. An expression vector comprising a promoter sequence of an oxidative or glycolytic pathway gene operably linked to a polynucleotide encoding a detectable polypeptide.

35. The expression vector of claim 34, wherein the promoter is sufficient to direct or enhance transcription of an ERR polynucleotide.

36. The expression vector of claim 34, wherein the vector is a lentiviral vector.

37. The expression vector of claim 34, wherein the promoter comprises an ERR alpha enhancer sequence.

38. The expression vector of claim 34, wherein the promoter comprises at least about nucleotide positions 64072402-64073375 of chromosome 11. 39. A mammalian cell comprising the expression vector of any one of claims 34 - 38.

40. The cell of claim 39, wherein the cell further comprises a polynucleotide sequence encoding one or more of Oct4, Sox2, Klf4 and cMyc. 41. A method of selecting a cell having increased oxidative and/or glycolytic pathway activity, the method comprising detecting an increase in the level or activity of a protein or polynucleotide listed in FIG. 7.

42. The method of claim 41, wherein the cell comprises an expression vector comprising a polynucleotide sequence that is 5' of the open reading frame encoding said protein and that directs expression of said open reading frame.

43. The method of claim 41, wherein the cell comprises an expression vector comprising a polynucleotide encoding a protein listed in FIG. 7 fused to a detectable polypeptide.

44. The method of claim 43, wherein the detectable polypeptide is selected from the group consisting of GFP, RFP, YFP, and luciferase.

45. A method of selecting a cell having increased oxidative and/or glycolytic pathway activity, the method comprising detecting an increase in levels of a reactive oxygen species.

Description:
REPROGRAMMING PROGENITOR COMPOSITIONS

AND METHODS OF USE THEREFORE

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of and priority to U.S. Provisional Application Serial No.

62/126,417, filed February 27, 2015, the contents of which are incorporated herein by reference.

STATEMENT OF RIGHTS TO INVENTIONS MADE UNDER FEDERALLY SPONSORED

RESEARCH

This invention was made with US government support under HD 105278, DK057978,

DK062434, and DK063491 awarded by the National Institutes of Health. The US government has certain rights in the invention.

BACKGROUND OF THE INVENTION

A need exists for cell-based compositions to repair or replace damaged or diseased tissues or organs. In the United States alone, thousands of patients die every year waiting for donor organs to become available because the need for transplantable organs far exceeds the supply. In addition, many serious medical conditions, such as neurodegenerative disorders, heart disease, and diabetes, could be helped by cell-based therapies. One limitation to the development of cell-based therapies is the lack of a reliable source of pluripotent stem cells.

SUMMARY OF THE INVENTION

As described below, the invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency.

In one aspect, the invention provides a method for selecting a mammalian induced pluripotent stem cell progenitor, the method involving isolating an induced pluripotent stem cell progenitor expressing one or more of Oct4, Sox2, Klf4 and cMyc, and having increased expression of an estrogen related receptor relative to a reference cell, thereby selecting an induced pluripotent stem cell progenitor.

In another aspect, the invention provides a method for selecting a mammalian induced pluripotent stem cell progenitor, the method involving isolating an induced pluripotent stem cell progenitor expressing one or more of Oct4, Sox2, Klf4 and cMyc, having reduced expression of Seal and CD34, and having increased expression of an estrogen related receptor relative to a reference cell, thereby selecting an induced pluripotent stem cell progenitor.

In yet another aspect, the invention provides a method of isolating a cell population enriched for induced pluripotent stem cell progenitors, the method involving isolating one or more induced pluripotent stem cell progenitors expressing Oct4, Sox2, Klf4 and cMyc, and having increased expression of an estrogen related receptor relative to a reference cell, and culturing the one or more mammalian induced pluripotent stem cell progenitors to obtain a cell population enriched for induced pluripotent stem cell progenitors.

In still another aspect, the invention provides a method of obtaining a murine induced pluripotent stem cell progenitor, the method involving expressing Oct4, Sox2, Klft and cMyc in a murine cell in culture, isolating from the culture a cell having reduced expression of Seal and CD34 and having increased expression of ERRy relative to a reference cell, and culturing the cell to obtain an induced pluripotent stem cell progenitor. In one embodiment, the murine cell is a mouse embryonic fibroblast. In another embodiment, the cell further expresses an increased level of PGC-Ιβ and/or IDH3 relative to a reference cell.

In another aspect, the invention provides a method of obtaining a human induced pluripotent stem cell progenitor, the method involving expressing Oct4, Sox2, Klft and cMyc in a human cell in culture, isolating from the culture a cell having increased expression of ERRa and/or PGC-Ια and/or PGC-Ιβ and/or IDH3 relative to a reference cell, thereby obtaining a human induced pluripotent stem cell progenitor.

In yet another aspect, the invention provides an induced pluripotent stem cell progenitor obtained according to the above aspects or any other aspect of the invention delineated herein or various embodiments of the above aspects or any other aspect of the invention delineated herein.

In still another aspect, the invention provides a method for generating a induced pluripotent stem cell progenitor or induced pluripotent stem cell, the method involving expressing recombinant estrogen related receptor (ERR) alpha or gamma in a cell expressing Oct4, Sox2, Klft and cMyc and culturing the cell, thereby generating a induced pluripotent stem cell progenitor or induced pluripotent stem cell. In one embodiment, the cell also expresses PGC-la, PGC-Ιβ, and/or IDH3. In another embodiment, the cell is Scal " CD34 " . In yet another embodiment, the cell or cells include retroviral vectors encoding Oct4, Sox2, Klft and cMyc.

In another aspect, the invention provides a cellular composition containing an effective amount of an induced pluripotent stem cell or cellular descendant thereof in a pharmaceutically acceptable excipient. In one embodiment, the induced pluripotent stem cell is capable of giving rise to a pancreatic cell, neuronal cell, or cardiac cell.

In yet another aspect, the invention provides a kit containing an induced pluripotent stem cell or progenitor thereof obtained according to the above aspects or any other aspect of the invention delineated herein or various embodiments of the above aspects or any other aspect of the invention delineated herein.

In still another aspect, the invention provides an expression vector containing a promoter sequence of an oxidative or glycolytic pathway gene operably linked to a polynucleotide encoding a detectable polypeptide. In one embodiment, the promoter is sufficient to direct or enhance transcription of an ERR polynucleotide. In another embodiment, the vector is a lentiviral vector. In yet another embodiment, the promoter comprises an ERR alpha enhancer sequence. In still another embodiment, the promoter comprises at least about nucleotide positions 64072402-64073375 of chromosome 11.

In another aspect, the invention provides a mammalian cell containing the expression vector containing a promoter sequence of an oxidative or glycolytic pathway gene operably linked to a polynucleotide encoding a detectable polypeptide. In one embodiment, the cell further contains a polynucleotide sequence encoding one or more of Oct4, Sox2, Klf4 and cMyc.

In yet another aspect, the invention provides a method of selecting a cell having increased oxidative and/or glycolytic pathway activity, the method involving detecting an increase in the level or activity of a protein or polynucleotide listed in FIG. 7. In one embodiment, the cell contains an expression vector containing a polynucleotide sequence that is 5' of the open reading frame encoding said protein and that directs expression of said open reading frame. In another embodiment, the cell contains an expression vector containing a polynucleotide encoding a protein listed in FIG. 7 fused to a detectable polypeptide. In yet another embodiment, the detectable polypeptide is selected from the group consisting of GFP, RFP, YFP, and luciferase.

In still another aspect, the invention provides a method of selecting a cell having increased oxidative and/or glycolytic pathway activity, the method involving detecting an increase in levels of a reactive oxygen species.

In various embodiments of the above aspects or any other aspect of the invention delineated herein, the estrogen related receptor is ERRa, ERR or ERRy. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell further expresses an increased level of PGC-1 a, PGC-Ιβ, and/or IDH3 relative to a reference cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the induced pluripotent stems cell progenitor is a human or murine cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the induced pluripotent stem cell progenitor is obtained by expressing Oct4, Sox2, Klf4 and/or cMyc in a cell that is a fibroblast, embryonic fibroblast, human lung fibroblast, adipose stem cell, or IMR90 cell.

In various embodiments of the above aspects or any other aspect of the invention delineated herein, the induced pluripotent stem cell progenitor expresses Oct4, Sox2, Klf4 and cMyc. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the reference cell expresses Sea 1 and/or CD 34 or a human ortholog or functional equivalent thereof. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the reference cell fails to express detectable levels of one or more of Oct4, Sox2, Klf4 and cMyc. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells express undetectable levels of Seal and CD34 proteins or human orthologs thereof, or polynucleotides encoding said proteins. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells display an increased metabolic rate defined by increased extracellular acidification rate and/or oxygen consumption rate relative to a reference cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, ERRy and/or PGC-Ιβ expression is at least about 2, 5 or 10 fold higher than the level in a reference cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, polynucleotide expression level is determined by qPCR analysis. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells contains one or more retroviral vectors encoding Oct4, Sox2, Klf4 and cMyc. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the induced pluripotent stem cells are hyper-energetic cells.

In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells has increased in one or more of nicotinamide adenine dinucleotide (NADH), a-ketoglutarate, cellular ATP, NADH/NAD+ ratio, ATP synthase in mitochondria (ATP5G1), succinate dehydrogenase (SDHB), isocitrate dehydrogenase (IDH3) and NADH dehydrogenase (NDUFA2), superoxide dismutase 2 (SOD2), NADPH oxidase 4 (NOX4) and catalase (CAT) were increased about five days following expression of Oct4, Sox2, Klf4 and cMyc. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells has increased gene expression profile or activity in one or more pathways listed in FIG. 10B. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells has a decreased methylation level of an amino acid of a histone in a promoter or an enhancer region associated with genes that function in fibroblast identity relative to a reference cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the cell or cells has an increased methylation level of an amino acid of a histone in a promoter or an enhancer region associated with genes that function in reprogramming relative to a reference cell. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the reference cell does not express detactable ERRa. In various embodiments of the above aspects or any other aspect of the invention delineated herein, the histone is H3 histone, and the amino acid is a lysine located at fourth (4th) amino acid position from a N-terminal of the histone.

Other features and advantages of the invention will be apparent from the detailed description, and from the claims. Definitions

Unless defined otherwise, all technical and scientific terms used herein have the meaning commonly understood by a person skilled in the art to which this invention belongs. The following references provide one of skill with a general definition of many of the terms used in this invention: Singleton et al., Dictionary of Microbiology and Molecular Biology (2nd ed. 1994); The Cambridge Dictionary of Science and Technology (Walker ed., 1988); The Glossary of Genetics, 5th Ed., R. Rieger et al. (eds.), Springer Verlag (1991); and Hale & Marham, The Harper Collins Dictionary of Biology (1991). As used herein, the following terms have the meanings ascribed to them below, unless specified otherwise.

By "induced pluripotent stem cell progenitor" also termed a "reprogramming progenitor" is meant a cell that gives rise to an induced pluripotent stem cell.

By "Seal polypeptide" is meant a protein or fragment thereof having at least 85% amino acid sequence identity to the sequence provided at NCBI Ref: NP 001258375.1 and having SCA1 antigenicity. An exemplary murine amino acid sequence is provided below:

MDTSHTTKSCLLILLVALLCAERAQGLECYQCYGVPFETSCPSITCPYPDGVCVTQEAAV IVDSQTRKVKNNLCL PICPPNIESMEILGTKV VKTSCCQEDLCNVAVPNGGSTWTMAGVLLFSLSSVLLQTLL

By "Seal polynucleotide" is meant any nucleic acid molecule encoding a Seal polypeptide or fragment thereof. An exemplary murine Seal nucleic acid sequence is provided at NCBI Ref NM 001271446.1, and reproduced below:

1 cttaaccaat

61 gatgecaget

121 tgccactgtg

181 ccttctctga

241 gccctactgt

301 tttgagactt

361 gaggcagcag

421 atctgccctc

481 tcctgttgcc

541 atggcagggg

601 tcctcccaat

661 ccctctagtg

721 catgttttgc

781 tcaagtctgt

841 cacacagcca

901 ataagtatct

961 caataaaccc

By "CD34 polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 001020280.1 (human) or NCBI Ref: NP 001104529.1 (murine). An exemplary human amino acid sequence is provided below:

1 mlvrrgarag prmprgwtal cllsllpsgf msldnngtat pelptqgtfs nvstnvsyqe

61 tttpstlgst slhpvsqhgn eattnitett vkftstsvit svygntnssv qsqtsvistv

121 fttpanvstp ettlkpslsp gnvsdlstts tslatsptkp ytssspilsd ikaeikcsgi

181 revkltqgic leqnktssca efkkdrgegl arvlcgeeqa dadagaqvcs lllaqsevrp

241 qclllvlanr teissklqlm kkhqsdlkkl gildfteqdv ashqsysqkt lialvtsgal

301 lavlgitgyf lmnrrswspt gerlgedpyy tengggqgys sgpgtspeaq gkasvnrgaq 361 engtgqatsr nghsarqhvv adtel

An exemplary murine amino acid sequence is provided below:

MQVHRDTRAGLLLPWRWVALCLMSLLHLNNLTSATTETSTQGI SPSVPTNESVEENITSSIPGSTSHYLIYQDSS KTTPAISETMVNFTVTSGIPSGSGTPHTFSQPQTSPTGILPTTSDSISTSEMTWKSSLPS INVSDYSPNNSSFEM TSPTEPYAYTSSSAPSAIKGEIKCSGIREVRLAQGICLELSEASSCEEFKKEKGEDLIQI LCEKEEAEADAGASV CSLLLAQSEVRPECLLMVLANSTELPSKLQLMEKHQSDLRKLGIQSFNKQDIGSHQSYSR KTLIALVTSGVLLAI LGTTGYFLM RRSWSPTGERLELEP

By "CD34 polynucleotide" is meant any nucleic acid sequence encoding an CD34 polypeptide or fragment thereof.

An exemplary human CD34 nucleic acid sequence is provided at NCBI Ref

NM_001025109.1:

1 ccttttttgg cctcgacggc ggcaacccag cctccctcct aacgccctcc gcctttggga

61 ccaaccaggg gagctcaagt tagtagcagc caaggagagg cgctgccttg ccaagactaa

121 aaagggaggg gagaagagag gaaaaaagca agaatccccc acccctctcc cgggcggagg

181 gggcgggaag agcgcgtcct ggccaagccg agtagtgtct tccactcggt gcgtctctct

241 aggagccgcg cgggaaggat gctggtccgc aggggcgcgc gcgcagggcc caggatgccg

301 cggggctgga ccgcgctttg cttgctgagt ttgctgcctt ctgggttcat gagtcttgac

361 aacaacggta ctgctacccc agagttacct acccagggaa cattttcaaa tgtttctaca

421 aatgtatcct accaagaaac tacaacacct agtacccttg gaagtaccag cctgcaccct

481 gtgtctcaac atggcaatga ggccacaaca aacatcacag aaacgacagt caaattcaca

541 tctacctctg tgataacctc agtttatgga aacacaaact cttctgtcca gtcacagacc

601 tctgtaatca gcacagtgtt caccacccca gccaacgttt caactccaga gacaaccttg

661 aagcctagcc tgtcacctgg aaatgtttca gacctttcaa ccactagcac tagccttgca

721 acatctccca ctaaacccta tacatcatct tctcctatcc taagtgacat caaggcagaa

781 atcaaatgtt caggcatcag agaagtgaaa ttgactcagg gcatctgcct ggagcaaaat

841 aagacctcca gctgtgcgga gtttaagaag gacaggggag agggcctggc ccgagtgctg

901 tgtggggagg agcaggctga tgctgatgct ggggcccagg tatgctccct gctccttgcc

961 cagtctgagg tgaggcctca gtgtctactg ctggtcttgg ccaacagaac agaaatttcc

1021 agcaaactcc aacttatgaa aaagcaccaa tctgacctga aaaagctggg gatcctagat

1081 ttcactgagc aagatgttgc aagccaccag agctattccc aaaagaccct gattgcactg

1141 gtcacctcgg gagccctgct ggctgtcttg ggcatcactg gctatttcct gatgaatcgc

1201 cgcagctgga gccccacagg agaaaggctg ggcgaagacc cttattacac ggaaaacggt

1261 ggaggccagg gctatagctc aggacctggg acctcccctg aggctcaggg aaaggccagt

1321 gtgaaccgag gggctcagga aaacgggacc ggccaggcca cctccagaaa cggccattca

1381 gcaagacaac acgtggtggc tgataccgaa ttgtgactcg gctaggtggg gcaaggctgg 1441 gcagtgtccg agagagcacc cctctctgca tctgaccacg tgctaccccc atgctggagg

1501 tgacatctct tacgcccaac ccttccccac tgcacacacc tcagaggctg ttcttggggc

1561 cctacacctt gaggaggggc aggtaaactc ctgtccttta cacattcggc tccctggagc

1621 cagactctgg tcttctttgg gtaaacgtgt gacgggggaa agccaaggtc tggagaagct

1681 cccaggaaca atcgatggcc ttgcagcact cacacaggac ccccttcccc taccccctcc

1741 tctctgccgc aatacaggaa cccccagggg aaagatgagc ttttctaggc tacaattttc

1801 tcccaggaag ctttgatttt taccgtttct tccctgtatt ttctttctct actttgagga

1861 aaccaaagta accttttgca cctgctctct tgtaatgata tagccagaaa aacgtgttgc

1921 cttgaaccac ttccctcatc tctcctccaa gacactgtgg acttggtcac cagctcctcc

1981 cttgttctct aagttccact gagctccatg tgccccctct accatttgca gagtcctgca

2041 cagttttctg gctggagcct agaacaggcc tcccaagttt taggacaaac agctcagttc

2101 tagtctctct ggggccacac agaaactctt tttgggctcc tttttctccc tctggatcaa

2161 agtaggcagg accatgggac caggtcttgg agctgagcct ctcacctgta ctcttccgaa

2221 aaatcctctt cctctgaggc tggatcctag ccttatcctc tgatctccat ggcttcctcc

2281 tccctcctgc cgactcctgg gttgagctgt tgcctcagtc ccccaacaga tgcttttctg

2341 tctctgcctc cctcaccctg agccccttcc ttgctctgca cccccatatg gtcatagccc

2401 agatcagctc ctaaccctta tcaccagctg cctcttctgt gggtgaccca ggtccttgtt

2461 tgctgttgat ttctttccag aggggttgag cagggatcct ggtttcaatg acggttggaa

2521 atagaaattt ccagagaaga gagtattggg tagatatttt ttctgaatac aaagtgatgt

2581 gtttaaatac tgcaattaaa gtgatactga aacacaaaaa a

An exemplary murine CD34 nucleic acid sequence is provided at NCBI Ref:

NM_001111059.1:

1 ggggataagc cagcatcccc cacccactcc ggacagggag caggggagga gagccaatat

61 cccccacccc tgcgcagggc ggaggagcgc gtcccgcgcc gggccgcctc ctgcaccgag

121 cgcatctccg gagcggtaca ggagaatgca ggtccacagg gacacgcgcg cggggctcct

181 gctgccatgg cgctgggtag ctctctgcct gatgagtctg ctgcatctaa ataacttgac

241 ttctgctacc acggagactt ctacacaagg aatatcccca tcagttccta ccaatgagtc

301 tgttgaggaa aatatcacat ctagcatccc tggaagtacc agccactact tgatctatca

361 ggacagcagt aagaccacac cagccatctc agagactatg gtcaacttta cagttacctc

421 tgggatccct tcaggctctg gaactccaca cactttttca caaccacaga cttccccaac

481 tggcatactg cctactactt cagacagtat ttccacttca gagatgacct ggaagtccag

541 cctgccatct ataaatgttt ctgattattc gcctaataat agcagctttg agatgacatc

601 acccaccgag ccatatgctt acacatcatc ttctgctccg agtgccatta agggagaaat

661 caaatgctct ggaatccgag aagtgaggtt ggcccagggt atctgcctgg aactaagtga

721 agcatctagt tgtgaggagt ttaagaagga aaagggagaa gatctaattc aaatactgtg

781 tgaaaaggag gaggctgagg ctgatgctgg tgctagtgtc tgctccctgc ttctagccca

841 gtctgaggtt aggcctgagt gtttgctgat ggtcttggcc aatagcacag aacttcccag

901 caaactccag cttatggaaa agcaccaatc tgacttgaga aagctgggga tccaaagctt

961 caataaacaa gatatcggga gccaccagag ctattcccga aagactctta ttgcattggt

1021 cacctctgga gttctgctgg ccatcttggg caccactggt tatttcctga tgaaccgtcg

1081 cagttggagc cctacaggag aaaggctgga gctggaacct tgatggctgt tgggaagaaa 1141 agaggctgca catgtagctg tacctgctct gccccccccc cactcctact tcctttgtgc

1201 tctcctcaca gtacctcaca accctgctta ccagataatg ctactttatt tctatactgt

1261 ccagggtgaa gacccttatt acacggagaa tggtggaggc cagggctata gctcaggacc

1321 tggggcctcc cctgagactc agggaaaggc caatgtgacc cgaggggctc aggagaacgg

1381 gaccggccag gccacttcca gaaacggcca ttcagcaaga caacatgtgg tggctgacac

1441 agaactgtga tttggttggg tgggcaactg ggtggtatgc aggaaagtgg catctcttgt

1501 ctctgacttc atgctgcctt cagctcatgt ccggccttct cctattacat acacttctga

1561 aactgttcct gggactcttc accttgggga aggcagataa actgccttct gcacattcaa

1621 cttcctgaat ccaatctctg acctttgggt caagttgtgg tgggaagaag cctaggtcta

1681 gaggagctgc caaaaaagtt ggtggctatg tagcacttgc cctggaccca tttctcctct

1741 ctcgcctctt cacgggaact ctccggaaga ctagcttttc taagctacca cttcttccca

1801 ggaaactttg ctatttttac tgcttcttcc cctactttat ggaaaccaag gtattcactg

1861 acatgtgctc ccttgcaagg gtacagccag aaaagtgcta ttttaaaata catccttaaa

1921 aaatgcatcc cttataactt caagacactg tggatttagt caccaacttc tatcttgttc

1981 acctgttcct gaatgtctgt ctacagaggc caggacaact ttctgtctgg agtctgctca

2041 atgttttaga gcaacagctc aatctgatcc cttgggccca cacagaaatc tcattggttc

2101 aacctagaca ggacagtgga attagacttt gaactgagcc tctgtttttt gttttatttt

2161 attgctgggg tttgaaccca gagcttcaca cagcttcttt aggcttccaa gtagcttgag

2221 ctaccaggcc cagctgagct aaacctcctg acctgagctc ttcaaaggaa tactcttgct

2281 ctgaggccct tggccttctc taaattacgt gacttccccc ttcctctgac tcctggggga

2341 gctgtggcct cagtcccctg gcagattcct ttcagtctgt gcctttccta gtccaaaccc

2401 cttcactatt ttataaccct ttgtgatcag aggttcagaa tatctacaaa gactataagc

2461 ttcctctcct ggggttaagg ggagaacagg ggtcctgatt ttaatgatgg ctaggaacaa

2521 aactttccag agatgagagg attgggtgta ttctcttctg aataaacgtg atgagtgaaa

2581 atgatgtaat taaattgatg atgaaatatt tgatgtggcc c

By "cMyc polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 002458.2 (human) or NP_001170823.1 (murine).

An exemplary human amino acid sequence is provided below:

MDFFRWENQQPPATMPLNVS TNRNYDLDYDSVQPYFYCDEEEN YQQQQQSELQPPAPSEDIWKKFELLPTPP LSPSRRSGLCSPSYVAVTPFSLRGDNDGGGGSFSTADQLEMVTELLGGDMVNQSFICDPD DETFIKNI IIQDCMW SGFSAAAKLVSEKLASYQAARKDSGSPNPARGHSVCSTSSLYLQDLSAAASECIDPSWFP YPLNDSSSPKSCAS QDSSAFSPSSDSLLSSTESSPQGSPEPLVLHEETPPTTSSDSEEEQEDEEEIDWSVEKRQ APGKRSESGSPSAG GHSKPPHSPLVLKRCHVSTHQHNYAAPPSTRKDYPAAKRVKLDSVRVLRQI SNNRKCTSPRSSDTEENVKRRTHN VLERQRRNELKRSFFALRDQIPELENNEKAPKWILKKATAYILSVQAEEQKLI SEEDLLRKRREQLKHKLEQLR NSCA

An exemplary murine amino acid sequence is provided below:

MPLNVNFTNRNYDLDYDSVQPYFICDEEENFYHQQQQSELQPPAPSEDIWKKFELLPTPP LSPSRRSGL CSPSYVAVATSFSPREDDDGGGGNFSTADQLEMMTELLGGDMVNQSFICDPDDETFIKNI IIQDCMWSGFSAAAK LVSEKLASYQAARKDSTSLSPARGHSVCSTSSLYLQDLTAAASECIDPSWFPYPLNDSSS PKSCTSSDSTAFSP SSDSLLSSESSPPASPEPLVLHEETPPTTSSDSEEEQEDEEEIDWSVEKRQTPAKRSESG SSPSRGHSKPPHSP LVLKRCHVSTHQHNYAAPPSTRKDYPAAKRAKLDSGRVLKQISNNRKCSSPRSSDTEEND KRRTHNVLERQRRNE LKRS FALRDQI PELENNEKAPKWILKKATAYILSIQADEHKLTSEKDLLRKRREQLKHKLEQLRNSGA

By "cMyc" is meant a nucleic acid molecule encoding a cMyc polypeptide. An exemplary human cMyc polynucleotide sequence is provided at NM 002467.4, the sequence of which is reproduced below:

1 gacccccgag ctgtgctgct cgcggccgcc accgccgggc cccggccgtc cctggctccc 61 ctcctgcctc gagaagggca gggcttctca gaggcttggc gggaaaaaga acggagggag 121 ggatcgcgct gagtataaaa gccggttttc ggggctttat ctaactcgct gtagtaattc 181 cagcgagagg cagagggagc gagcgggcgg ccggctaggg tggaagagcc gggcgagcag 241 agctgcgctg cgggcgtcct gggaagggag atccggagcg aatagggggc ttcgcctctg 301 gcccagccct cccgctgatc ccccagccag cggtccgcaa cccttgccgc atccacgaaa 361 ctttgcccat agcagcgggc gggcactttg cactggaact tacaacaccc gagcaaggac 421 gcgactctcc cgacgcgggg aggctattct gcccatttgg ggacacttcc ccgccgctgc 481 caggacccgc ttctctgaaa ggctctcctt gcagctgctt agacgctgga tttttttcgg 541 gtagtggaaa accagcagcc tcccgcgacg atgcccctca acgttagctt caccaacagg 601 aactatgacc tcgactacga ctcggtgcag ccgtatttct actgcgacga ggaggagaac 661 ttctaccagc agcagcagca gagcgagctg cagcccccgg cgcccagcga ggatatctgg 721 aagaaattcg agctgctgcc caccccgccc ctgtccccta gccgccgctc cgggctctgc 781 tcgccctcct acgttgcggt cacacccttc tcccttcggg gagacaacga cggcggtggc 841 gggagcttct ccacggccga ccagctggag atggtgaccg agctgctggg aggagacatg 901 gtgaaccaga gtttcatctg cgacccggac gacgagacct tcatcaaaaa catcatcatc 961 caggactgta tgtggagcgg cttctcggcc gccgccaagc tcgtctcaga gaagctggcc 1021 tcctaccagg ctgcgcgcaa agacagcggc agcccgaacc ccgcccgcgg ccacagcgtc 1081 tgctccacct ccagcttgta cctgcaggat ctgagcgccg ccgcctcaga gtgcatcgac 1141 ccctcggtgg tcttccccta ccctctcaac gacagcagct cgcccaagtc ctgcgcctcg 1201 caagactcca gcgccttctc tccgtcctcg gattctctgc tctcctcgac ggagtcctcc 1261 ccgcagggca gccccgagcc cctggtgctc catgaggaga caccgcccac caccagcagc 1321 gactctgagg aggaacaaga agatgaggaa gaaatcgatg ttgtttctgt ggaaaagagg 1381 caggctcctg gcaaaaggtc agagtctgga tcaccttctg ctggaggcca cagcaaacct 1441 cctcacagcc cactggtcct caagaggtgc cacgtctcca cacatcagca caactacgca 1501 gcgcctccct ccactcggaa ggactatcct gctgccaaga gggtcaagtt ggacagtgtc 1561 agagtcctga gacagatcag caacaaccga aaatgcacca gccccaggtc ctcggacacc 1621 gaggagaatg tcaagaggcg aacacacaac gtcttggagc gccagaggag gaacgagcta 1681 aaacggagct tttttgccct gcgtgaccag atcccggagt tggaaaacaa tgaaaaggcc 1741 cccaaggtag ttatccttaa aaaagccaca gcatacatcc tgtccgtcca agcagaggag 1801 caaaagctca tttctgaaga ggacttgttg cggaaacgac gagaacagtt gaaacacaaa 1861 cttgaacagc tacggaactc ttgtgcgtaa ggaaaagtaa ggaaaacgat tccttctaac 1921 agaaatgtcc tgagcaatca cctatgaact tgtttcaaat gcatgatcaa atgcaacctc 1981 acaaccttgg ctgagtcttg agactgaaag atttagccat aatgtaaact gcctcaaatt 2041 ggactttggg cataaaagaa cttttttatg cttaccatct tttttttttc tttaacagat 2101 ttgtatttaa gaattgtttt taaaaaattt taagatttac acaatgtttc tctgtaaata 2161 ttgccattaa atgtaaataa ctttaataaa acgtttatag cagttacaca gaatttcaat 2221 cctagtatat agtacctagt attataggta ctataaaccc taattttttt tatttaagta 2281 cattttgctt tttaaagttg atttttttct attgttttta gaaaaaataa aataactggc 2341 aaatatatca ttgagccaaa tcttaaaaaa aaaaaaaaa

An exemplary murine cMyc polynucleotide sequence is provided at NM 001177352.1, the sequence of which is reproduced below:

1 cccgcccacc cgccctttat attccggggg tctgcgcggc cgaggacccc tgggctgcgc

61 tgctctcagc tgccgggtcc gactcgcctc actcagctcc cctcctgcct cctgaagggc

121 agggcttcgc cgacgcttgg cgggaaaaag aagggagggg agggatcctg agtcgcagta

181 taaaagaagc ttttcgggcg tttttttctg actcgctgta gtaattccag cgagagacag

241 agggagtgag cggacggttg gaagagccgt gtgtgcagag ccgcgctccg gggcgaccta

301 agaaggcagc tctggagtga gaggggcttt gcctccgagc ctgccgccca ctctccccaa

361 ccctgcgact gacccaacat cagcggccgc aaccctcgcc gccgctggga aactttgccc

421 attgcagcgg gcagacactt ctcactggaa cttacaatct gcgagccagg acaggactcc

481 ccaggctccg gggagggaat ttttgtctat ttggggacag tgttctctgc ctctgcccgc 541 gatcagctct cctgaaaaga gctcctcgag ctgtttgaag gctggatttc ctttgggcgt 601 tggaaacccc gcagacagcc acgacgatgc ccctcaacgt gaacttcacc aacaggaact 661 atgacctcga ctacgactcc gtacagccct atttcatctg cgacgaggaa gagaatttct 721 atcaccagca acagcagagc gagctgcagc cgcccgcgcc cagtgaggat atctggaaga 781 aattcgagct gcttcccacc ccgcccctgt ccccgagccg ccgctccggg ctctgctctc 841 catcctatgt tgcggtcgct acgtccttct ccccaaggga agacgatgac ggcggcggtg 901 gcaacttctc caccgccgat cagctggaga tgatgaccga gttacttgga ggagacatgg 961 tgaaccagag cttcatctgc gatcctgacg acgagacctt catcaagaac atcatcatcc 1021 aggactgtat gtggagcggt ttctcagccg ctgccaagct ggtctcggag aagctggcct 1081 cctaccaggc tgcgcgcaaa gacagcacca gcctgagccc cgcccgcggg cacagcgtct 1141 gctccacctc cagcctgtac ctgcaggacc tcaccgccgc cgcgtccgag tgcattgacc 1201 cctcagtggt ctttccctac ccgctcaacg acagcagctc gcccaaatcc tgtacctcgt 1261 ccgattccac ggccttctct ccttcctcgg actcgctgct gtcctccgag tcctccccac 1321 gggccagccc tgagccccta gtgctgcatg aggagacacc gcccaccacc agcagcgact 1381 ctgaagaaga gcaagaagat gaggaagaaa ttgatgtggt gtctgtggag aagaggcaaa 1441 cccctgccaa gaggtcggag tcgggctcat ctccatcccg aggccacagc aaacctccgc 1501 acagcccact ggtcctcaag aggtgccacg tctccactca ccagcacaac tacgccgcac 1561 ccccctccac aaggaaggac tatccagctg ccaagagggc caagttggac agtggcaggg 1621 tcctgaagca gatcagcaac aaccgcaagt gctccagccc caggtcctca gacacggagg 1681 aaaacgacaa gaggcggaca cacaacgtct tggaacgtca gaggaggaac gagctgaagc 1741 gcagcttttt tgccctgcgt gaccagatcc ctgaattgga aaacaacgaa aaggccccca 1801 aggtagtgat cctcaaaaaa gccaccgcct acatcctgtc cattcaagca gacgagcaca 1861 agctcacctc tgaaaaggac ttattgagga aacgacgaga acagttgaaa cacaaactcg 1921 aacagcttcg aaactctggt gcataaactg acctaactcg aggaggagct ggaatctctc 1981 gtgagagtaa ggagaacggt tccttctgac agaactgatg cgctggaatt aaaatgcatg 2041 ctcaaagcct aacctcacaa ccttggctgg ggctttggga ctgtaagctt cagccataat 2101 tttaactgcc tcaaacttaa atagtataaa agaacttttt tttatgcttc ccatcttttt 2161 tctttttcct tttaacagat ttgtatttaa ttgttttttt aaaaaaatct taaaatctat 2221 ccaattttcc catgtaaata gggccttgaa atgtaaataa ctttaataaa acgtttataa 2281 cagttacaaa agattttaag acatgtacca taattttttt tatttaaaga cattttcatt 2341 tttaaagttg atttttttct attgttttta gaaaaaaata aaataattgg aaaaaatac

In this disclosure, "comprises," "comprising," "containing" and "having" and the like can have the meaning ascribed to them in U.S. Patent law and can mean " includes," "including," and the like; "consisting essentially of or "consists essentially" likewise has the meaning ascribed in U.S. Patent law and the term is open-ended, allowing for the presence of more than that which is recited so long as basic or novel characteristics of that which is recited is not changed by the presence of more than that which is recited, but excludes prior art embodiments.

"Detect" refers to identifying the presence, absence or amount of the analyte to be detected.

By "disease" is meant any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ. Examples of diseases include diseases associated with a deficiency in cell number. Such diseases include but are not limited to neurodegenerative disorders, heart disease, and diabetes.

By "effective amount" is meant the amount of a cell of the invention required to ameliorate the symptoms of a disease relative to an untreated patient. The effective amount of active compound(s) used to practice the present invention for therapeutic treatment of a disease varies depending upon the manner of administration, the age, body weight, and general health of the subject. Ultimately, the attending physician or veterinarian will decide the appropriate amount and dosage regimen. Such amount is referred to as an "effective" amount. By "estrogen related receptor (ERR) alpha polypeptide" is meant a protein having at least 85% amino acid sequence identity to an estrogen-related receptor alpha sequence provided at NCBI Ref No. NP_001269379 or NP 031979.2, or a fragment thereof having transcriptional regulatory activity.

The sequence of human ERR alpha also termed "ERR1" is provided below:

Errl_HUMAN Estrogen-related receptor alpha OS=Homo sapiens GN mssqvvgiep lyikaepasp dspkgssete teppvalapg paptrclpgh keeedgegag pgeqgggklv lsslpkrlcl vcgdvasgyh ygvasceack affkrtiqgs ieyscpasne ceitkrrrka cqacrftkcl rvgmlkegvr ldrvrggrqk ykrrpevdpl pfpgpfpagp lavaggprkt aapvnalvsh llvvepekly ampdpagpdg hlpavatlcd lfdreivvti swaksipgfs slslsdqmsv lqsvwmevlv lgvaqrslpl qdelafaedl vldeegaraa glgelgaall qlvrrlqalr lereeyvllk alalansdsv hiedaeaveq lrealheall eyeagragpg ggaerrragr llltlpllrq tagkvlahfy gvklegkvpm hklflemlea ramd

The sequence of a murine ERR alpha (NCBI Ref No. NP 031979.2) polypeptide also termed "ERR1" is provided below:

MSSQWGIEPLYIKAEPASPDSPKGSSETETEPPVTLASGPAPARCLPGHKEEEDGEGAGS GEQGSGKLVLSSLP KRLCLVCGDVASGYHYGVASCEACKAFFKRTIQGSIEYSCPASNECEITKRRRKACQACR FTKCLRVGMLKEGVR

LDRVRGGRQKYKRRPEVDPLPFPGPFPAGPLAVAGGPRKTAPVNALVSHLLWEPEKL YAMPDPASPDGHLPAVA

TLCDLFDREIWTI SWAKSI PGFSSLSLSDQMSVLQSVWMEVLVLGVAQRSLPLQDELAFAEDLVLDEEGARAAG

LGDLGAALLQLVRRLQALRLEREEYVLLKALALANSDSVHIEDAEAVEQLREALHEA LLEYEAGRAGPGGGAERR

RAGRLLLTLPLLRQTAGKVLAHFYGVKLEGKVPMHKLFLEMLEAMMD

By "ERR alpha polynucleotide" is meant any nucleic acid sequence encoding an ERR alpha polypeptide or fragment thereof. An exemplary human ERR alpha nucleic acid sequence is provided at NCBI Ref: NM_001282450 and reproduced below:

1 tagaggtctc ccgcgggcgg ggagggggag gcgtagcaac tttaggcaac ttcccaaagg 61 tgtgcgcagg ttgggggcgg gacgcggcgc cccgggaggt ggcggcctct gcgacagcgg 121 gagtataaga gtggacctgc aggctggtcg cgaggaggtg gagcggcgcc cgccgtgtgc

181 ctgggaccgg catgctgggg caggagggca gccgcgtgtc aggtgaccag cgccatgtcc 241 agccaggtgg tgggcattga gcctctctac atcaaggcag agccggccag ccctgacagt 301 ccaaagggtt cctcggagac agagaccgag cctcctgtgg ccctggcccc tggtccagct 361 cccactcgct gcctcccagg ccacaaggaa gaggaggatg gggagggggc tgggcctggc 421 gagcagggcg gtgggaagct ggtgctcagc tccctgccca agcgcctctg cctggtctgt

481 ggggacgtgg cctccggcta ccactatggt gtggcatcct gtgaggcctg caaagccttc 541 ttcaagagga ccatccaggg gagcatcgag tacagctgtc cggcctccaa cgagtgtgag 601 atcaccaagc ggagacgcaa ggcctgccag gcctgccgct tcaccaagtg cctgcgggtg 661 ggcatgctca aggagggagt gcgcctggac cgcgtccggg gtgggcggca gaagtacaag 721 cggcggccgg aggtggaccc actgcccttc ccgggcccct tccctgctgg gcccctggca

781 gtcgctggag gcccccggaa gacagcagcc ccagtgaatg cactggtgtc tcatctgctg 841 gtggttgagc ctgagaagct ctatgccatg cctgaccccg caggccctga tgggcacctc 901 ccagccgtgg ctaccctctg tgacctcttt gaccgagaga ttgtggtcac catcagctgg 961 gccaagagca tcccaggctt ctcatcgctg tcgctgtctg accagatgtc agtactgcag 1021 agcgtgtgga tggaggtgct ggtgctgggt gtggcccagc gctcactgcc actgcaggat

1081 gagctggcct tcgctgagga cttagtcctg gatgaagagg gggcacgggc agctggcctg 1141 ggggaactgg gggctgccct gctgcaacta gtgcggcggc tgcaggccct gcggctggag 1201 cgagaggagt atgttctact aaaggccttg gcccttgcca attcagactc tgtgcacatc 1261 gaagatgccg aggctgtgga gcagctgcga gaagctctgc acgaggccct gctggagtat 1321 gaagccggcc gggctggccc cggagggggt gctgagcggc ggcgggcggg caggctgctg

1381 ctcacgctac cgctcctccg ccagacagcg ggcaaagtgc tggcccattt ctatggggtg 1441 aagctggagg gcaaggtgcc catgcacaag ctgttcttgg agatgctcga ggccatgatg

1501 gactgaggca aggggtggga ctggtggggg ttctggcagg acctgcctag catggggtca

1561 gccccaaggg ctggggcgga gctggggtct gggcagtgcc acagcctgct ggcagggcca

1621 gggcaatgcc atcagcccct gggaacaggc cccacgccct ctcctccccc tcctaggggg

1681 tgtcagaagc tgggaacgtg tgtccaggct ctgggcacag tgctgcccct tgcaagccat

1741 aacgtgcccc cagagtgtag ggggccttgc ggaagccata gggggctgca cgggatgcgt

1801 gggaggcaga aacctatctc agggagggaa ggggatggag gccagagtct cccagtgggt

1861 gatgcttttg ctgctgctta atcctacccc ctcttcaaag cagagtggga cttggagagc

1921 aaaggcccat gcccccttcg ctcctcctct catcatttgc attgggcatt agtgtccccc

1981 cttgaagcaa taactccaag cagactccag cccctggacc cctggggtgg ccagggcttc

2041 cccatcagct cccaacgagc ctcctcaggg ggtaggagag cactgcctct atgccctgca

2101 gagcaataac actatattta tttttgggtt tggccaggga ggcgcaggga catggggcaa

2161 gccagggccc agagcccttg gctgtacaga gactctattt taatgtatat ttgctgcaaa

2221 gagaaaccgc ttttggtttt aaacctttaa tgagaaaaaa atatataata ccgagctcaa 2281 aaaaaaaaaa aaa

An exemplary murine ERR alpha nucleic acid sequence is provided at NCBI Ref No.

NM_007953.2:

1 tggaggaagc ggagtaggaa gcagccgcga tgtccttttg tgtcctacaa gcagccagcg

61 gcgccgccga gtgagggggg acgcagcgcg gcggggcggt gcggccggag gaggcggccc

121 ccgctcaccc cggcgctccg ggccgctcgg cccccatgcc tgcccgccag ccctgccgga

181 gcccaaggtg accagcacca tgtccagcca ggtggtgggc atcgagcctc tctacatcaa

241 ggcagagcca gccagtcctg acagtccaaa gggttcctca gagactgaga ctgaaccccc

301 ggtgaccctg gcctctggtc cagctccagc ccgctgcctt ccagggcaca aggaggagga

361 ggatggggag ggggcagggt ctggtgagca gggcagtggg aagctagtgc tcagctctct

421 acccaaacgc ctctgcctgg tctgtgggga tgtggcctct ggctaccact acggtgtggc

481 atcctgtgag gcctgcaaag ccttcttcaa gaggaccatc caggggagca tcgagtacag

541 ctgtccggcc tccaatgagt gtgagatcac caagcggaga cgcaaggcct gtcaggcctg

601 ccgcttcacc aagtgcctgc gggtgggcat gctcaaggag ggtgtgcgtc tggaccgtgt

661 ccgcggcgga cggcagaagt acaaacggcg gccagaggtg gaccctttgc ctttcccggg

721 ccccttccct gctggacctc tggcagtagc tggaggaccc aggaagacag ccccagtgaa

781 cgctctggtg tcgcatctgc tggtggttga acctgagaag ctgtacgcca tgcctgaccc

841 agcaagcccc gatggacacc tccccgctgt ggccactctc tgtgaccttt ttgatcgaga

901 gatagtggtc accatcagct gggccaagag catcccaggc ttctcctcac tgtcactgtc

961 tgaccagatg tcagtactgc agagtgtgtg gatggaagtg ctggtgctgg gtgtggccca

1021 gcgctcactg ccactgcagg atgagctggc ctttgctgag gacctggtcc tagatgaaga

1081 gggggcacgg gcagctggcc tgggggatct gggggcagcc ctgctgcagc tggttcggcg

1141 actgcaagct cttcggctgg agcgggagga gtacgtcctg ctgaaagctc tggcccttgc

1201 caattctgac tctgtgcaca ttgaagatgc tgaggctgtg gagcagctgc gcgaagccct

1261 gcatgaggcc ctgctggagt atgaagctgg ccgggctggc cctggagggg gtgctgagcg

1321 gaggcgtgca ggcaggctgc tgcttacgct gccactcctc cgccagacag caggcaaagt

1381 cctggcccat ttctatgggg tgaagctgga gggcaaggtg cccatgcaca agctgttttt

1441 ggaaatgctt gaggccatga tggactgagg caaggggtgg gacagggtgg ggtggctggc

1501 aggatctgcc cagcataggg tgttagcccc aaaggggcaa agctggagtc tgggcagtgc

1561 catagcctgc tggcagggcc agggcaatgc catccgcccc tgggagaagg cttcatgccc

1621 ttccctcccc actttgtgtg tgtgggggat tgtcagaagc caggaaagtg aatgcccagg

1681 tgtgggcaca gtgctgcccc ttgcaagcca taacgtgccc cccaagagtg ttgggggcct 1741 cgcggaagcc atagggggct gcaggggatg tgcaggaggc agacactgat ctcagggagg

1801 gaagggatgg aggccgccgg ctcccactgg gtgatgcttt tgctgctgct taatccgatc

1861 tcctctccgg agcagagggg ggcttggaaa gcaaaggccc cgtcccttcg ctcctctcct

1921 catccgcatt gggcattatt gccccccctt gaagcaataa ctccaagcag gctccagccc

1981 ctggacccca ggggtggcca gggcccccta tcagctccca cctcaagggg tgggggacag

2041 cactgcctct atgccctgca gagcaataac actatattta tttttgggtt tggccaggga

2101 ggcgcagggc catggggcaa gccagggccc agagcccttg gctgtacaga gactctattt

2161 taatgtatat ttgctgcaaa gagaaaccgc ttttggtttt gaacctttaa tgagaaaaaa

2221 aatatactat ggagctcaag taaaaaaaaa aaaaaaaaaa aaaa

By "estrogen-related receptor (ERR) gamma polypeptide" also termed "ERR3" is meant a protein having at least 85% amino acid sequence identity to an estrogen-related receptor gamma sequence provided at NCBI Ref No. P62508 (human), NP_001230721.1 (murine), or a fragment thereof having transcriptional regulatory activity.

The sequence of human ERR gamma is provided below:

sp|P62508|ERR3_HUMAN Estrogen-related receptor gamma OS=Homo sapiens GN

MDSVELCLPE SFSLHYEEEL LCRMSNKDRH IDSSCSSFIK TEPSSPASLT DSVNHHSPGG

SSDASGSYSS TM GHQNGLD SPPLYPSAPI LGGSGPVRKL YDDCSSTIVE DPQTKCEYML

NSMPKRLCLV CGDIASGYHY GVASCEACKA FFKRTIQGNI EYSCPATNEC EITKRRRKSC

QACRFMKCLK VGMLKEGVRL DRVRGGRQKY KRRIDAENSP YLNPQLVQPA KKPYNKIVSH

LLVAEPEKIY AMPDPTVPDS DIKALTTLCD LADRELWII GWAKHIPGFS TLSLADQMSL

LQSAWMEILI LGWYRSLSF EDELVYADDY IMDEDQSKLA GLLDLNNAIL QLVKKYKSMK

LEKEEFVTLK AIALANSDSM HIEDVEAVQK LQDVLHEALQ DYEAGQHMED PRRAGKMLMT LPLLRQTSTK AVQHFYNIKL EGKVPMHKLF LEMLEAKV

A murine estrogen-related receptor gamma sequence is provided at NCBI Ref No. NP_001230721.1. The sequence of murine ERR gamma is provided below:

MSNKDRHIDSSCSSFIKTEPSSPASLTDSV HHSPGGSSDASGSYSSTM GHQNGLDSPPLYPSAPILG GSGPVRKLYDDCSSTIVEDPQTKCEYMLNSMPKRLCLVCGDIASGYHYGVASCEACKAFF KRTIQGNIEYSCPAT NECEITKRRRKSCQACRFMKCLKVGMLKEGVRLDRVRGGRQKYKRRIDAENSPYLNPQLL QSAWMEILILGWYR SLSFEDELVYADDYIMDEDQSKLAGLLDLNNAILQLVKKYKSMKLEKEEFVTLKAIALAN SDSMHIEDVEAVQKL QDVLHEALQDYEAGQHMEDPRRAGKMLMTLPLLRQTSTKAVQHFYNIKLEGKVPMHKLFL EMLEAKV

By "ERR gamma polynucleotide" is meant any nucleic acid sequence encoding an ERR gamma polypeptide or fragment thereof. An exemplary human ERR gamma nucleic acid sequence is provided at NCBI Ref: NM 001438.3 aagctccaat cggggcttta agtccttgat taggagagtg tgagagcttt ggtcccaact 61 ggctgtgcct ataggcttgt cactaggaga acatttgtgt taattgcact gtgctctgtc 121 aaggaaactt tgatttatag ctggggtgca caaataatgg ttgccggtcg cacatggatt 181 cggtagaact ttgccttcct gaatcttttt ccctgcacta cgaggaagag cttctctgca 241 gaatgtcaaa caaagatcga cacattgatt ccagctgttc gtccttcatc aagacggaac 301 cttccagccc agcctccctg acggacagcg tcaaccacca cagccctggt ggctcttcag 361 acgccagtgg gagctacagt tcaaccatga atggccatca gaacggactt gactcgccac 421 ctctctaccc ttctgctcct atcctgggag gtagtgggcc tgtcaggaaa ctgtatgatg 481 actgctccag caccattgtt gaagatcccc agaccaagtg tgaatacatg ctcaactcga 541 tgcccaagag actgtgttta gtgtgtggtg acatcgcttc tgggtaccac tatggggtag 601 catcatgtga agcctgcaag gcattcttca agaggacaat tcaaggcaat atagaataca 661 gctgccctgc cacgaatgaa tgtgaaatca caaagcgcag acgtaaatcc tgccaggctt 721 gccgcttcat gaagtgttta aaagtgggca tgctgaaaga aggggtgcgt cttgacagag 781 tacgtggagg tcggcagaag tacaagcgca ggatagatgc ggagaacagc ccatacctga 841 accctcagct ggttcagcca gccaaaaagc catataacaa gattgtctca catttgttgg 901 tggctgaacc ggagaagatc tatgccatgc ctgaccctac tgtccccgac agtgacatca 961 aagccctcac tacactgtgt gacttggccg accgagagtt ggtggttatc attggatggg 1021 cgaagcatat tccaggcttc tccacgctgt ccctggcgga ccagatgagc cttctgcaga 1081 gtgcttggat ggaaattttg atccttggtg tcgtataccg gtctctttcg tttgaggatg 1141 aacttgtcta tgcagacgat tatataatgg acgaagacca gtccaaatta gcaggccttc 1201 ttgatctaaa taatgctatc ctgcagctgg taaagaaata caagagcatg aagctggaaa 1261 aagaagaatt tgtcaccctc aaagctatag ctcttgctaa ttcagactcc atgcacatag 1321 aagatgttga agccgttcag aagcttcagg atgtcttaca tgaagcgctg caggattatg 1381 aagctggcca gcacatggaa gaccctcgtc gagctggcaa gatgctgatg acactgccac 1441 tcctgaggca gacctctacc aaggccgtgc agcatttcta caacatcaaa ctagaaggca 1501 aagtcccaat gcacaaactt tttttggaaa tgttggaggc caaggtctga ctaaaagctc 1561 cctgggcctt cccatccttc atgttgaaaa agggaaaata aacccaagag tgatgtcgaa 1621 gaaacttaga gtttagttaa caacatcaaa aatcaacaga ctgcactgat aatttagcag 1681 caagactatg aagcagcttt cagattcctc cataggttcc tgatgagttt ctttctactt 1741 tctccatcat cttctttcct ctttcttccc acatttctct ttctctttat tttttctcct 1801 tttcttcttt cacctccctt atttctttgc ttctttcatt cctagttccc attctccttt 1861 attttcttcc cgtctgcctg ccttctttct tttctttacc tactctcatt cctctctttt 1921 ctcatccttc cccttttttc taaatttgaa atagctttag tttaaaaaaa aatcctccct 1981 tccccctttc ctttcccttt ctttcctttt tccctttcct tttccctttc ctttcctttc 2041 ctcttgacct tctttccatc tttctttttc ttccttctgc tgctgaactt ttaaaagagg 2101 tctctaactg aagagagatg gaagccagcc ctgccaaagg atggagatcc ataatatgga 2161 tgccagtgaa cttattgtga accatactgt ccccaatgac taaggaatca aagagagaga 2221 accaacgttc ctaaaagtac agtgcaacat atacaaattg actgagtgca gtattagatt 2281 tcatgggagc agcctctaat tagacaactt aagcaacgtt gcatcggctg cttcttatca 2341 ttgcttttcc atctagatca gttacagcca tttgattcct taattgtttt ttcaagtctt 2401 ccaggtattt gttagtttag ctactatgta actttttcag ggaatagttt aagctttatt 2461 cattcatgca atactaaaga gaaataagaa tactgcaatt ttgtgctggc tttgaacaat 2521 tacgaacaat aatgaaggac aaatgaatcc tgaaggaaga tttttaaaaa tgttttgttt 2581 cttcttacaa atggagattt ttttgtacca gctttaccac ttttcagcca tttattaata 2641 tgggaattta acttactcaa gcaatagttg aagggaaggt gcatattatc acggatgcaa 2701 tttatgttgt gtgccagtct ggtcccaaac atcaatttct taacatgagc tccagtttac 2761 ctaaatgttc actgacacaa aggatgagat tacacctaca gtgactctga gtagtcacat 2821 atataagcac tgcacatgag atatagatcc gtagaattgt caggagtgca cctctctact 2881 tgggaggtac aattgccata tgatttctag ctgccatggt ggttaggaat gtgatactgc 2941 ctgtttgcaa agtcacagac cttgcctcag aaggagctgt gagccagtat tcatttaaga 3001 ggcaataagg caaatgccag aattaaaaaa aaaaatcatc aaagacagaa aatgcctgac 3061 caaattctaa aacctaatcc atataagttt attcatttag gaatgttcgt ttaaattaat 3121 ctgcagtttt taccaagagc taagccaata tatgtgcttt tcaaccagta ttgtcacagc 3181 atgaaagtca agtcaggttc cagactgtta agaggtgtaa tctaatgaag aaatcaatta 3241 gatgccccga aatctacagt cgctgaataa ccaataaaca gtaacctcca tcaaatgcta 3301 taccaatgga ccagtgttag tagctgctcc ctgtattatg tgaacagtct tattctatgt 3361 acacagatgt aattaaaatt gtaatcctaa caaacaaaag aaatgtagtt cagcttttca 3421 atgtttcatg tttgctgtgc ttttctgaat tttatgttgc attcaaagac tgttgtcttg 3481 ttcttgtggt gtttggattc ttgtggtgtg tgcttttaga cacagggtag aattagagac 3541 aatattggat gtacaattcc tcaggagact acagtagtat attctattcc ttaccagtaa 3601 taaggttctt cctaataata attaagagat tgaaactcca aacaagtatt cattatgaac 3661 agatacacat caaaatcata ataatatttt caaaacaagg aataatttct ctaatggttt 3721 attatagaat accaatgtat agcttagaaa taaaactttg aatatttcaa gaatatagat 3781 aagtctaatt tttaaatgct gtatatatgg ctttcactca atcatctctc agatgttgtt 3841 attaactcgc tctgtgttgt tgcaaaactt tttggtgcag attcgtttcc aaaactattg 3901 ctactttgtg tgctttaaac aaaatacctt gggttgatga aacatcaacc cagtgctagg 3961 aatactgtgt atctatcatt agctatatgg gactatattg tagattgtgg tttctcagta 4021 gagaagtgac tgtagtgtga ttctagataa atcatcatta gcaattcatt cagatggtca 4081 ataacttgaa atttatagct gtgataggag ttcagaaatt ggcacatccc tttaaaaata 4141 acaacagaaa atacaactcc tgggaaaaaa ggtgctgatt ctataagatt atttatatat 4201 gtaagtgttt aaaaagatta ttttccagaa agtttgtgca gggtttaagt tgctactatt 4261 caactacact atatataaat aaaatatata caatatatac attgttttca ctgtatcaca 4321 ttaaagtact tgggcttcag aagtaagagc caaccaactg aaaacctgag atggagatat 4381 gttcaaagaa tgagatacaa ttttttagtt ttcagtttaa gtaactctca gcattacaaa 4441 agagtaagta tctcacaaat aggaaataaa actaaaacgt ggatttaaaa agaactgcac 4501 gggctttagg gtaaatgctc atcttaaacc tcactagagg gaagtcttct caagtttcaa 4561 gcaagaccat ttacttaatg tgaagttttg gaaagttata aaggtgtatg ttttagccat 4621 atgattttaa ttttaatttt gcttctttta ggttcgttct tatttaaagc aatatgattg 4681 tgtgactcct tgtagttaca cttgtgtttc aatcagatca gattgttgta tttattccac 4741 tattttgcat ttaaatgata acataaaaga tataaaaaat ttaaaactgc tatttttctt 4801 atagaagaga aaatgggtgt tggtgattgt attttaatta tttaagcgtc tctgtttacc 4861 tgcctaggaa aacattttat ggcagtctta tgtgcaaaga tcgtaaaagg acaaaaaatt 4921 taaactgctt ataataatcc aggagttgca ttatagccag tagtaaaaat aataataata 4981 ataataaaac catgtctata gctgtagatg ggcttcacat ctgtaaagca atcaattgta 5041 tatttttgtg atgtgtacca tactgtgtgc tccagcaaat gtccatttgt gtaaatgtat 5101 ttattttata ttgtatatat tgttaaatgc aaaaaggaga tatgattctg taactccaat 5161 cagttcagat gtgtaactca aattattatg cctttcagga tgatggtaga gcaatattaa 5221 acaagcttcc

By "ERR gamma polynucleotide" is meant any nucleic acid sequence encoding an ERR gamma polypeptide or fragment thereof. An exemplary murine ERR gamma nucleic acid sequence is provided at NCBI Ref: NM

1 agcccgaacc

61 ggacagtctc

121 cgaccaagcg

181 ggctctgcac

241 gaagatgtaa

301 aatgtcaaac

361 ctccagccca

421 cgccagtggg

481 tctctacccc

541 ctgctccagc

601 gcccaagaga

661 atcatgtgaa

721 ctgcccagcc

781 ccgcttcatg

841 gcgtggaggt

901 ccctcagctg

961 ggctgaacca

1021 agccctcacc

1081 aaaacatatt

1141 tgcatggatg

1201 acttgtctat

1261 tgacctaaat

1321 ggaagaattc

1381 agatgtggaa

1441 ggctggccag

1501 gctgaggcag

1561 agtgcccatg

1621 ccctgggccc

1681 gaatcttaga

1741 ccacagtacg

1801 atcccacgat

1861 gtttggcttc

1921 ctcctctgtc

1981 gctctcacct

2041 ctgattgtat 2101 cttttttttg tttgtttgtt tgtttccttt ccttccttct gctgctgaac tcttaatagc

2161 agtctctaac tggagagaga aagagagaga gatggaagcc agccctgcca aaggacagag

2221 atccatacta tggatgccag tgaacttgtc atgaaccatg acatccccag tgagtaagga

2281 atcaaagaga gaaccgtacc taaagtacat tgcaacgcaa acggatcaac ttagtgcagt

2341 attagattct accgggcagc cttcgatcag acaacctaag tggcggcatt ggctgcttct

2401 ccttgctttc tcatctagat cagttacagc catttgattc cttaattctt ttgtcaagtc

2461 ttccaggtgt tggttagttt agctactatg taactttttc agggaatcct ttaagcttta

2521 ttcattcatg caatactaga gaggggtaag gataccgcaa cctcgtgctg gctttgaaca

2581 attgaacact aatgaaggac aaatgaaccc tgaaggaaga tttttaaaaa tgtttcgttt

2641 cttcttacaa atggagattt ttttgtacca gctttaccac ttttcagcca tttattaata

2701 tggggattta acttactcaa gcaatagttg aagggaaggt gcatattacc acggatgcaa

2761 tttatgttgt gtgccagtct ggtcccaaac atcagtttct tacatgagct ccagtttgcc

2821 taaatgttca ctgacaccaa ggattagatg atacctgccg tgacaccgag tggtcccatc

2881 cacgagcact gcacatggga tccctatctg tagaattagc accagtacac ctccctgccg

2941 ggagggacag tcgccatacg gtttctagct gccctcgtgg ttaggaacaa gatgctgcct

3001 gtatacaaac tctgtctcag aaggagctgt gagccaatac catttcagag gcaataaagg

3061 ctaagtgcca gaattcaaac caaccaacca tcaaagacag cagacgcctg accaaattct

3121 aaagtcctga tccataggag tcgattcact taggaatggt tgtttaaatt aacctgcagg

3181 tttgttttgt ttccttgttt gtttttttac caaaagctaa gccaatagat gtgctttttc

3241 aacaagtatg gtcacagcac gaaggtcagt caggtttcag actgtaacca ggtgtaatct

3301 aatgaagaaa tcaaatgtcc cctcccgaaa cctacagtcg ccgaataacc agaaaccagt

3361 aacctccgta gaacgcttta ccaatggacc agtgttagta gctgctctct gtattctgtg

3421 gacagtctta ttctatgtac acagatgtaa ttaaagttgt actcctaaca aacaaaagaa

3481 tagttcagct tcaatgttcc atgtttgctg cgcttttctg aactttatgt tgcattcaga

3541 aactgtcgtc ttgttctcgt ggtgtttgga ttcttgtggt gtgtgctttt agacacaggg

3601 tagaattaga gacagtattg gatgtatact tcctcaggag actacagtag tatattctac

3661 tccttaccag taataactaa gagattgaaa ctccaaaaca gtattcatta cgatcagaca

3721 cacatcaaaa tcataataat attttcaaaa aagggataat ttctctaatg gtttattata

3781 gaataccaat gtatagctta gacataaaac tttgaatatt caagaatata gataagtcta

3841 atttttaaat gctgtatata aggcttccac ctgatcatct ctcagatgtt gttattaact

3901 cgctctgtgt tgttgcaaac ctttttggtg cggacttgct tccaaaacta ttgctacttt

3961 gtgtgcgtta agcaaaatac cttggactga gggtgtctca gccctgtgct aggaatactg

4021 tgtatctatc attagctata tgggaatata tcgtagattg tggttctcag tagagaaagt

4081 gactgtagtg tgactctagg taaatcatca ttagcaattc attcggatgg tcaataactt

4141 gaaattgata gctgtgataa gttttaaaaa attggcaaat ccctgactaa acatcaacag

4201 aaaatacaac tcctgggggg gaaaggtgct catcctgtaa gattctttca tcatgtaagt

4261 gtttgaaaca ttactttgca gaaggtttat gcagggttta agttactacc gctcaataat

4321 gctatatata cacaaatgga atatagacaa tgtatgtacc caccgtttca ctgagtcgca

4381 gagaagaatc tgagcttcag aagccagagc ccacaagtga tcaggtgaga cagaggcaca

4441 tttaaggaag gaggtacaat gtgtagttct ccgtttaaaa gacttggcct tttaaaacaa

4501 caaatatctc acaactatgg tgaaaacaac aacagcttca agtgtggatc taaaggaaac 4561 gcacaggttt agggtaaata ccatttgtac cttgctcgag caaagtttat tgttttgttt

4621 ttttttgttt tgttttgttt tgttttcaag tttccagcaa gaccgtttag ttaatgccag

4681 ctgtcaggaa gataccaagg tgtatgtttt agccatgcaa tttgcagttt tattttcctt

4741 ttaggtttgt ccttatttaa ggcagtgcga ttgttttggc ttcttgtagt gactctcgtg

4801 ttttaatcaa gccagattgt tgtatttatt ccactatttt gcatttaaat gatgacataa

4861 aagatataaa aaatttaaaa ctgctatttt tcttatagaa gagaaaatgg atgttggtga

4921 ttgtatttta attatttaag catctctgtt tacctgcctg ggacaacatt ttatggcagt

4981 cttatgtgca aagatcgtga atggacaaaa caaaaaatta aactgcttac aatgatccag

5041 gagttgcatt atagccagta gtaaaaataa taatgataat taataataat taataataat

5101 aatgaaacca tgtctatagc tgtaggtggg catcacatct gtaaagcaat caattgtata

5161 tttttgtgat gtgtaccata ctgtgtgctc cagcaaatgt ccatttgtgt aaatgtattt

5221 attttatatt gtatatattg ttaaatgcaa aaaggagcta tgattctgtg actccaatca

5281 gttcagatat gtaactcaaa ttattatgcc tttcaggagg atggtagaac aatattaaac

5341 aagcttccac ttttaaaaaa aaaaaaaaaa aaaa

The invention provides for the use of other estrogen-related receptors, such as ERRbeta. The amino acid sequence of Homo sapiens estrogen-related receptor beta (ESRRbeta) is provided, for example, at NCBI Accession No. NP 004443, which is reproduced below:

1 mssddrhlgs scgsfiktep sspssgidal shhspsgssd asggfglalg thangldspp

61 mfagaglggt pcrksyedca sgimedsaik ceymlnaipk rlclvcgdia sgyhygvasc

121 eackaffkrt iqgnieyscp atneceitkr rrkscqacrf mkclkvgmlk egvrldrvrg

181 grqkykrrld sesspylslq isppakkplt kivsyllvae pdklyamppp gmpegdikal

241 ttlcdladre lvviigwakh ipgfsslslg dqmsllqsaw meililgivy rslpyddklv

301 yaedyimdee hsrlagllel yrailqlvrr ykklkvekee fvtlkalala nsdsmyiedl

361 eavqklqdll healqdyels qrheepwrtg kllltlpllr qtaakavqhf ysvklqgkvp

421 mhkl flemle akvgqeqlrg spkdermssh dgkcpfqsaa ftsrdqsnsp gipnprpssp

481 tplnergrqi spstrtpggq gkhlwltm

A polynucleotide sequence encoding an ERRbeta is provided, for example, at NCBI Accession No. NM 004452, which is reproduced below:

1 ccgcagagag gtgtggtcag

61 cagagatgcg caggttaggc

121 gcaatggaag ctcttcctgg

181 tgagcttggc ttgcaactca

241 aataaaagtt tcctgaggtc

301 tgaggccaga ggtgatccag

361 tgctgaacag gatgtcctcg

421 agactgagcc gtccagcccg

481 gctcgtccga cgccagcggc

541 actcgccacc catgtttgca

601 aggactgtgc cagcggcatc

661 ccatccccaa gcgcctgtgc 721 tggcctcctg cgaggcttgc aaggccttct tcaagaggac tatccaaggg aacattgagt 781 acagctgccc ggccaccaac gagtgcgaga tcaccaaacg gaggcgcaag tcctgccagg 841 cctgccgctt catgaaatgc ctcaaagtgg ggatgctgaa ggaaggtgtg cgccttgatc 901 gagtgcgtgg aggccgtcag aaatacaagc gacggctgga ctcagagagc agcccatacc 961 tgagcttaca aatttctcca cctgctaaaa agccattgac caagattgtc tcatacctac

1021 tggtggctga gccggacaag ctctatgcca tgcctccccc tggtatgcct gagggggaca 1081 tcaaggccct gaccactctc tgtgacctgg cagaccgaga gcttgtggtc atcattggct 1141 gggccaagca catcccaggc ttctcaagcc tctccctggg ggaccagatg agcctgctgc 1201 agagtgcctg gatggaaatc ctcatcctgg gcatcgtgta ccgctcgctg ccctatgacg 1261 acaagctggt gtacgctgag gactacatca tggatgagga gcactcccgc ctcgcggggc

1321 tgctggagct ctaccgggcc atcctgcagc tggtacgcag gtacaagaag ctcaaggtgg 1381 agaaggagga gtttgtgacg ctcaaggccc tggccctcgc caactccgat tccatgtaca 1441 tcgaggatct agaggctgtc cagaagctgc aggacctgct gcacgaggca ctgcaggact 1501 acgagctgag ccagcgccat gaggagccct ggaggacggg caagctgctg ctgacactgc 1561 cgctgctgcg gcagacggcc gccaaggccg tgcagcactt ctatagcgtc aaactgcagg

1621 gcaaagtgcc catgcacaaa ctcttcctgg agatgctgga ggccaaggtt ggccaagagc 1681 agcttagagg atctcccaag gatgaaagaa tgtcaagcca tgatggaaaa tgccccttcc 1741 aatcagctgc cttcacaagc agggatcaga gcaactcccc ggggatcccc aatccacgcc 1801 cttctagtcc aacccccctc aatgagagag gcaggcagat ctcacccagc actaggacac 1861 caggaggcca gggaaagcat ctctggctca ccatgtaaca tctggcttgg agcaagtggg

1921 tgttctgcac accaggcagc tgcacctcac tggatctagt gttgctgcga gtgacctcac 1981 ttcagagccc ctctagcaga gtggggcgga agtcctgatg gttggtgtcc atgaggtgga 2041 agctgctttt atacttaaaa ctcagatcac aacaggaaat gtgtcagtaa caatggaact 2101 ccatccaatg ggaaagttcc tggtactgaa ggggtccatt ggacactcag aaaagaagtt 2161 caggggccaa cttcttagct ggaatcctgg ccagatgagg accctctccg gggaagggag

2221 aggactgact tagtggaagg tggtgaagtg aggagagttt aggggaacct tcccccagtg 2281 gaacagatct caagtttacc ctaaacctgc catttctgga aaatctgtaa agaggaaaca 2341 gcctgtctca gctgtactct catgatacag gtcatttgaa atgaaccaag aaataaaaca 2401 tgaaaatcca accatggaga aggtggtatg gctgggtttt gtttggtccc cttgtcctta 2461 tacgttctaa agtttccaga ctggctttgt cactttgtga actcgtcatg tgtgaaaacc

2521 aatctttgca tatagggaac ttcctcgggc cacactttaa gaaccaagta agaggctctc 2581 aagactccag cagagtcggg aggccatggc agcgccttag aggagctgga acctgcaccc 2641 acctgtgtcg gtgggggggg cctcctttcc ccatagactc tgccctccct ctgtgcagat 2701 ggaagtggca ggggagggtg accagcttgt gacaagaaga ctgaagggtc cagagtccat 2761 gctcacggaa cagcaccaaa gaaaagcact atgtggaaag attgttttat tttctaataa

2821 tgataatatg gctggaatgg cttcttaaga tgtatatatt ttttaaaatg gcagttcccc 2881 attgcagcat cacctacttg tatgtctttc tgcctctgta tatgttctcc cagaaacccc 2941 catgtaaatc aaatgcccta ggatgcttcc atcctggtcc catgtatctg gaatctaata 3001 aataaggaaa ggaaaaaaaa aaaaaaaaa By "fragment" is meant a portion of a polypeptide or nucleic acid molecule. This portion contains, preferably, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, or 90% of the entire length of the reference nucleic acid molecule or polypeptide. A fragment may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, or 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nucleotides or amino acids.

By "increases or decreases" is meant a positive or negative alteration. Such alterations are by

5%, 10%, 25%, 50%, 75%, 85%, 90% or even by 100% of a reference value.

The terms "isolated," "purified," or "biologically pure" refer to material that is free to varying degrees from components which normally accompany it as found in its native state. "Isolate" denotes a degree of separation from original source or surroundings. "Purify" denotes a degree of separation that is higher than isolation. A "purified" or "biologically pure" protein is sufficiently free of other materials such that any impurities do not materially affect the biological properties of the protein or cause other adverse consequences. That is, a nucleic acid or peptide of this invention is purified if it is substantially free of cellular material, viral material, or culture medium when produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. Purity and homogeneity are typically determined using analytical chemistry techniques, for example, poly aery lamide gel electrophoresis or high performance liquid chromatography. The term "purified" can denote that a nucleic acid or protein gives rise to essentially one band in an electrophoretic gel. For a protein that can be subjected to modifications, for example, phosphorylation or glycosylation, different modifications may give rise to different isolated proteins, which can be separately purified.

By "isolated cell" is meant a cell that is separated from the molecular and/or cellular components that naturally accompany the cell. In particular embodiments, the cell is a Scal-CD34- cell isolated from a population expressing Seal and/or CD34. In other embodiments, the cell is isolated from a population expressing Oct4, Sox2, Klf4 and cMyc.

By "isolated polynucleotide" is meant a nucleic acid (e.g., a DNA) that is free of the genes which, in the naturally -occurring genome of the organism from which the nucleic acid molecule of the invention is derived, flank the gene. The term therefore includes, for example, a recombinant DNA that is incorporated into a vector; into an autonomously replicating plasmid or virus; or into the genomic DNA of a prokaryote or eukaryote; or that exists as a separate molecule (for example, a cDNA or a genomic or cDNA fragment produced by PCR or restriction endonuclease digestion) independent of other sequences. In addition, the term includes an RNA molecule that is transcribed from a DNA molecule, as well as a recombinant DNA that is part of a hybrid gene encoding additional polypeptide sequence.

By an "isolated polypeptide" is meant a polypeptide of the invention that has been separated from components that naturally accompany it. Typically, the polypeptide is isolated when it is at least 60%, by weight, free from the proteins and naturally -occurring organic molecules with which it is naturally associated. Preferably, the preparation is at least 75%, more preferably at least 90%, and most preferably at least 99%, by weight, a polypeptide of the invention. An isolated polypeptide of the invention may be obtained, for example, by extraction from a natural source, by expression of a recombinant nucleic acid encoding such a polypeptide; or by chemically synthesizing the protein. Purity can be measured by any appropriate method, for example, column chromatography, polyacrylamide gel electrophoresis, or by HPLC analysis.

By "Klf4 polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref NP 004226.3 (human) or NP 034767.2 (mouse). An exemplary human Klf4 amino acid sequence is provided below:

MRQPPGESDMAVSDALLPSFSTFASGPAGREKTLRQAGAPNNRWREELSHMKRLPPVLPG RPYDLAAATVATDLE SGGAGAACGGSNLAPLPRRETEEFNDLLDLDFILSNSLTHPPESVAATVSSSASASSSSS PSSSGPASAPSTCSF TYPIRAGNDPGVAPGGTGGGLLYGRESAPPPTAPFNLADINDVSPSGGFVAELLRPELDP VYI PPQQPQPPGGGL MGKFVLKASLSAPGSEYGSPSVISVSKGSPDGSHPVWAPYNGGPPRTCPKIKQEAVSSCT HLGAGPPLSNGHRP AAHDFPLGRQLPSRTTPTLGLEEVLSSRDCHPALPLPPGFHPHPGPNYPSFLPDQMQPQV PPLHYQELMPPGSCM PEEPKPKRGRRSWPRKRTATHTCDYAGCGKTYTKSSHLKAHLRTHTGEKPYHCDWDGCGW KFARSDELTRHYRKH TGHRPFQCQKCDRAFSRSDHLALHMKRHF"

An exemplary Klf4 murine amino acid sequence is provided below:

MRQPPGESDMAVSDALLPSFSTFASGPAGREKTLRPAGAPTNRWREELSHMKRLPPLPGR PYDLAATVATDLESG GAGAACSSNNPALLARRETEEFNDLLDLDFILSNSLTHQESVAATVTTSASASSSSSPAS SGPASAPSTCSFSYP IRAGGDPGVAASNTGGGLLYSRESAPPPTAPFNLADINDVSPSGGFVAELLRPELDPVYI PPQQPQPPGGGLMGK FVLKASLTTPGSEYSSPSVI SVSKGSPDGSHPVWAPYSGGPPRMCPKIKQEAVPSCTVSRSLEAHLSAGPQLSN GHRPNTHDFPLGRQLPTRTTPTLSPEELLNSRDCHPGLPLPPGFHPHPGPNYPPFLPDQM QSQVPSLHYQELMPP GSCLPEEPKPKRGRRSWPRKRTATHTCDYAGCGKTYTKSSHLKAHLRTHTGEKPYHCDWD GCGWKFARSDELTRH YRKHTGHRPFQCQKCDRAFSRSDHLALHMKRHF

By "Klf4" is meant a nucleic acid molecule encoding a Klf4 polypeptide. An exemplary human Klf4 polynucleotide sequence is provided at NM_004235.4 below:

1 agtttcccga ccagagagaa cgaacgtgtc tgcgggcgcg cggggagcag aggcggtggc 61 gggcggcggc ggcaccggga gccgccgagt gaccctcccc cgcccctctg gccccccacc 121 ctcccacccg cccgtggccc gcgcccatgg ccgcgcgcgc tccacacaac tcaccggagt 181 ccgcgccttg cgccgccgac cagttcgcag ctccgcgcca cggcagccag tctcacctgg 241 cggcaccgcc cgcccaccgc cccggccaca gcccctgcgc ccacggcagc actcgaggcg 301 accgcgacag tggtggggga cgctgctgag tggaagagag cgcagcccgg ccaccggacc 361 tacttactcg ccttgctgat tgtctatttt tgcgtttaca acttttctaa gaacttttgt 421 atacaaagga actttttaaa aaagacgctt ccaagttata tttaatccaa agaagaagga 481 tctcggccaa tttggggttt tgggttttgg cttcgtttct tctcttcgtt gactttgggg 541 ttcaggtgcc ccagctgctt cgggctgccg aggaccttct gggcccccac attaatgagg 601 cagccacctg gcgagtctga catggctgtc agcgacgcgc tgctcccatc tttctccacg 661 ttcgcgtctg gcccggcggg aagggagaag acactgcgtc aagcaggtgc cccgaataac 721 cgctggcggg aggagctctc ccacatgaag cgacttcccc cagtgcttcc cggccgcccc 781 tatgacctgg cggcggcgac cgtggccaca gacctggaga gcggcggagc cggtgcggct 841 tgcggcggta gcaacctggc gcccctacct cggagagaga ccgaggagtt caacgatctc 901 ctggacctgg actttattct ctccaattcg ctgacccatc ctccggagtc agtggccgcc 961 accgtgtcct cgtcagcgtc agcctcctct tcgtcgtcgc cgtcgagcag cggccctgcc 1021 agcgcgccct ccacctgcag cttcacctat ccgatccggg ccgggaacga cccgggcgtg 1081 gcgccgggcg gcacgggcgg aggcctcctc tatggcaggg agtccgctcc ccctccgacg 1141 gctcccttca acctggcgga catcaacgac gtgagcccct cgggcggctt cgtggccgag 1201 ctcctgcggc cagaattgga cccggtgtac attccgccgc agcagccgca gccgccaggt 1261 ggcgggctga tgggcaagtt cgtgctgaag gcgtcgctga gcgcccctgg cagcgagtac 1321 ggcagcccgt cggtcatcag cgtcagcaaa ggcagccctg acggcagcca cccggtggtg 1381 gtggcgccct acaacggcgg gccgccgcgc acgtgcccca agatcaagca ggaggcggtc 1441 tcttcgtgca cccacttggg cgctggaccc cctctcagca atggccaccg gccggctgca 1501 cacgacttcc ccctggggcg gcagctcccc agcaggacta ccccgaccct gggtcttgag 1561 gaagtgctga gcagcaggga ctgtcaccct gccctgccgc ttcctcccgg cttccatccc 1621 cacccggggc ccaattaccc atccttcctg cccgatcaga tgcagccgca agtcccgccg 1681 ctccattacc aagagctcat gccacccggt tcctgcatgc cagaggagcc caagccaaag 1741 aggggaagac gatcgtggcc ccggaaaagg accgccaccc acacttgtga ttacgcgggc 1801 tgcggcaaaa cctacacaaa gagttcccat ctcaaggcac acctgcgaac ccacacaggt 1861 gagaaacctt accactgtga ctgggacggc tgtggatgga aattcgcccg ctcagatgaa 1921 ctgaccaggc actaccgtaa acacacgggg caccgcccgt tccagtgcca aaaatgcgac 1981 cgagcatttt ccaggtcgga ccacctcgcc ttacacatga agaggcattt ttaaatccca 2041 gacagtggat atgacccaca ctgccagaag agaattcagt attttttact tttcacactg 2101 tcttcccgat gagggaagga gcccagccag aaagcactac aatcatggtc aagttcccaa 2161 ctgagtcatc ttgtgagtgg ataatcagga aaaatgagga atccaaaaga caaaaatcaa 2221 agaacagatg gggtctgtga ctggatcttc tatcattcca attctaaatc cgacttgaat 2281 attcctggac ttacaaaatg ccaagggggt gactggaagt tgtggatatc agggtataaa 2341 ttatatccgt gagttggggg agggaagacc agaattccct tgaattgtgt attgatgcaa 2401 tataagcata aaagatcacc ttgtattctc tttaccttct aaaagccatt attatgatgt 2461 tagaagaaga ggaagaaatt caggtacaga aaacatgttt aaatagccta aatgatggtg 2521 cttggtgagt cttggttcta aaggtaccaa acaaggaagc caaagttttc aaactgctgc 2581 atactttgac aaggaaaatc tatatttgtc ttccgatcaa catttatgac ctaagtcagg 2641 taatatacct ggtttacttc tttagcattt ttatgcagac agtctgttat gcactgtggt 2701 ttcagatgtg caataatttg tacaatggtt tattcccaag tatgccttaa gcagaacaaa 2761 tgtgtttttc tatatagttc cttgccttaa taaatatgta atataaattt aagcaaacgt 2821 ctattttgta tatttgtaaa ctacaaagta aaatgaacat tttgtggagt ttgtattttg 2881 catactcaag gtgagaatta agttttaaat aaacctataa tattttatct gaaaaaaaaa 2941 aaaaaaaaa

An exemplary murine Klf4 polynucleotide sequence is provided at NM 010637.3 below:

1 agttccccgg ccaagagagc gagcgcggct ccgggcgcgc ggggagcaga ggcggtggcg 61 ggcggcggcg gcacccggag ccgccgagtg cccctccccg cccctccagc cccccaccca 121 gcaacccgcc cgtgacccgc gcccatggcc gcgcgcaccc ggcacagtcc ccaggactcc 181 gcaccccgcg ccaccgccca gctcgcagtt ccgcgccacc gcggccattc tcacctggcg 241 gcgccgcccg cccaccgccc ggaccacagc ccccgcgccg ccgacagcca cagtggccgc 301 gacaacggtg ggggacactg ctgagtccaa gagcgtgcag cctggccatc ggacctactt 361 atctgccttg ctgattgtct atttttataa gagtttacaa cttttctaag aatttttgta 421 tacaaaggaa cttttttaaa gacatcgccg gtttatattg aatccaaaga agaaggatct 481 cgggcaatct gggggttttg gtttgaggtt ttgtttctaa agtttttaat cttcgttgac 541 tttggggctc aggtacccct ctctcttctt cggactccgg aggaccttct gggcccccac 601 attaatgagg cagccacctg gcgagtctga catggctgtc agcgacgctc tgctcccgtc 661 cttctccacg ttcgcgtccg gcccggcggg aagggagaag acactgcgtc cagcaggtgc 721 cccgactaac cgttggcgtg aggaactctc tcacatgaag cgacttcccc cacttcccgg 781 ccgcccctac gacctggcgg cgacggtggc cacagacctg gagagtggcg gagctggtgc 841 agcttgcagc agtaacaacc cggccctcct agcccggagg gagaccgagg agttcaacga 901 cctcctggac ctagacttta tcctttccaa ctcgctaacc caccaggaat cggtggccgc 961 caccgtgacc acctcggcgt cagcttcatc ctcgtcttcc ccggcgagca gcggccctgc 1021 cagcgcgccc tccacctgca gcttcagcta tccgatccgg gccgggggtg acccgggcgt 1081 ggctgccagc aacacaggtg gagggctcct ctacagccga gaatctgcgc cacctcccac 1141 ggcccccttc aacctggcgg acatcaatga cgtgagcccc tcgggcggct tcgtggctga 1201 gctcctgcgg ccggagttgg acccagtata cattccgcca cagcagcctc agccgccagg 1261 tggcgggctg atgggcaagt ttgtgctgaa ggcgtctctg accacccctg gcagcgagta 1321 cagcagccct tcggtcatca gtgttagcaa aggaagccca gacggcagcc accccgtggt 1381 agtggcgccc tacagcggtg gcccgccgcg catgtgcccc aagattaagc aagaggcggt 1441 cccgtcctgc acggtcagcc ggtccctaga ggcccatttg agcgctggac cccagctcag 1501 caacggccac cggcccaaca cacacgactt ccccctgggg cggcagctcc ccaccaggac 1561 tacccctaca ctgagtcccg aggaactgct gaacagcagg gactgtcacc ctggcctgcc 1621 tcttccccca ggattccatc cccatccggg gcccaactac cctcctttcc tgccagacca 1681 gatgcagtca caagtcccct ctctccatta tcaagagctc atgccaccgg gttcctgcct 1741 gccagaggag cccaagccaa agaggggaag aaggtcgtgg ccccggaaaa gaacagccac 1801 ccacacttgt gactatgcag gctgtggcaa aacctatacc aagagttctc atctcaaggc 1861 acacctgcga actcacacag gcgagaaacc ttaccactgt gactgggacg gctgtgggtg 1921 gaaattcgcc cgctccgatg aactgaccag gcactaccgc aaacacacag ggcaccggcc 1981 ctttcagtgc cagaagtgtg acagggcctt ttccaggtcg gaccaccttg ccttacacat 2041 gaagaggcac ttttaaatcc cacgtagtgg atgtgaccca cactgccagg agagagagtt 2101 cagtattttt ttttctaacc tttcacactg tcttcccacg aggggaggag cccagctggc 2161 aagcgctaca atcatggtca agttcccagc aagtcagctt gtgaatggat aatcaggaga 2221 aaggaagagt tcaagagaca aaacagaaat actaaaaaca aacaaacaaa aaaacaaaca 2281 aaaaaaacaa gaaaaaaaaa tcacagaaca gatggggtct gatactggat ggatcttcta 2341 tcattccaat accaaatcca acttgaacat gcccggactt acaaaatgcc aaggggtgac 2401 tggaagtttg tggatatcag ggtatacact aaatcagtga gcttgggggg agggaagacc 2461 aggattccct tgaattgtgt ttcgatgatg caatacacac gtaaagatca ccttgtatgc 2521 tctttgcctt cttaaaaaaa aaaaaagcca ttattgtgtc ggaggaagag gaagcgattc 2581 aggtacagaa catgttctaa cagcctaaat gatggtgctt ggtgagtcgt ggttctaaag 2641 gtaccaaacg ggggagccaa agttctccaa ctgctgcata cttttgacaa ggaaaatcta 2701 gttttgtctt ccgatctaca ttgatgacct aagccaggta aataagcctg gtttatttct 2761 gtaacatttt tatgcagaca gtctgttatg cactgtggtt tcagatgtgc aataatttgt 2821 acaatggttt attcccaagt atgcctttaa gcagaacaaa tgtgtttttc tatatagttc 2881 cttgccttaa taaatatgta atataaattt aagcaaactt ctattttgta tatttgtaaa 2941 ctacaaagta aaaaaaaatg aacattttgt ggagtttgta ttttgcatac tcaaggtgag 3001 aaataagttt taaataaacc tataatattt tatctgaacg acaaaaaaaa aaaaaaa

By "marker" is meant any protein or polynucleotide having an alteration in expression level or activity that is associated with a disease or disorder.

By "negative" is meant that a cell expresses an undetectable level of a marker or a reduced level of marker, such that the cell can be distinguished in a negative selection from a population of unselected cells.

By "Oct4 polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 001167002.1 (human) or NP 001239381.1 (murine) and having transcriptional regulatory activity .

An exemplary Oct4 human amino acid sequence is provided below:

MGVLFGKVFSQTTICRFEALQLSFKNMCKLRPLLQKWVEEADNNENLQEICKAETLVQAR KRKRTSIENRVRGNL ENLFLQCPKPTLQQISHIAQQLGLEKDWRVWFCNRRQKGKRSSSDYAQREDFEAAGSPFS GGPVSFPLAPGPHF GTPGYGSPHFTALYSSVPFPEGEAFPPVSVTTLGSPMHSN

An exemplary Oct4 murine amino acid sequence (NCBI Ref: NP_001239381.1) is provided below:

MKALQKELEQFAKLLKQKRITLGYTQADVGLTLGVLFGKVFSQTTICRFEALQLSLKNMC KLRPLLEKWVEEADN NENLQEICKSETLVQARKRKRTSIENRVRWSLETMFLKCPKPSLQQITHIANQLGLEKDW RVWFCNRRQKGKRS SIEYSQREEYEATGTPFPGGAVSFPLPPGPHFGTPGYGSPHFTTLYSVPFPEGEAFPSVP VTALGSPMHSN

By "Oct4 polynucleotide" is meant a nucleic acid molecule encoding a Oct4 polypeptide. An exemplary human Oct4 polynucleotide sequence is provided at NM 001173531.2 and reproduced below:

1 ggaaaaaagg aaagtgcact tggaagagat ccaagtgggc aacttgaaga acaagtgcca 61 aatagcactt ctgtcatgct ggatgtcagg gctctttgtc cactttgtat agccgctggc 121 ttatagaagg tgctcgataa atctcttgaa tttaaaaatc aattaggatg cctctatagt 181 gaaaaagata cagtaaagat gagggataat caatttaaaa aatgagtaag tacacacaaa 241 gcactttatc cattcttatg acacctgtta cttttttgct gtgtttgtgt gtatgcatgc 301 catgttatag tttgtgggac cctcaaagca agctggggag agtatatact gaatttagct 361 tctgagacat gatgctcttc ctttttaatt aacccagaac ttagcagctt atctatttct 421 ctaatctcaa aacatcctta aactgggggt gatacttgag tgagagaatt ttgcaggtat 481 taaatgaact atcttctttt ttttttttct ttgagacaga gtcttgctct gtcacccagg 541 ctggagtgca gtggcgtgat ctcagctcac tgcaacctcc gcctcccggg ttcaagtgat 601 tctcctgcct cagcctcctg agtagctggg attacagtcc caggacatca aagctctgca 661 gaaagaactc gagcaatttg ccaagctcct gaagcagaag aggatcaccc tgggatatac 721 acaggccgat gtggggctca ccctgggggt tctatttggg aaggtattca gccaaacgac 781 catctgccgc tttgaggctc tgcagcttag cttcaagaac atgtgtaagc tgcggccctt 841 gctgcagaag tgggtggagg aagctgacaa caatgaaaat cttcaggaga tatgcaaagc 901 agaaaccctc gtgcaggccc gaaagagaaa gcgaaccagt atcgagaacc gagtgagagg 961 caacctggag aatttgttcc tgcagtgccc gaaacccaca ctgcagcaga tcagccacat 1021 cgcccagcag cttgggctcg agaaggatgt ggtccgagtg tggttctgta accggcgcca 1081 gaagggcaag cgatcaagca gcgactatgc acaacgagag gattttgagg ctgctgggtc 1141 tcctttctca gggggaccag tgtcctttcc tctggcccca gggccccatt ttggtacccc 1201 aggctatggg agccctcact tcactgcact gtactcctcg gtccctttcc ctgaggggga 1261 agcctttccc cctgtctccg tcaccactct gggctctccc atgcattcaa actgaggtgc 1321 ctgcccttct aggaatgggg gacaggggga ggggaggagc tagggaaaga aaacctggag 1381 tttgtgccag ggtttttggg attaagttct tcattcacta aggaaggaat tgggaacaca 1441 aagggtgggg gcaggggagt ttggggcaac tggttggagg gaaggtgaag ttcaatgatg 1501 ctcttgattt taatcccaca tcatgtatca cttttttctt aaataaagaa gcctgggaca 1561 cagtagatag acacacttaa aaaaaaaaa

An exemplary murine Oct4 polynucleotide sequence is provided at NM_001252452.1 and reproduced below:

1 gcagccttaa aacttcttca gaatagggtg acattttgtc ctcagtgggg cggttttgag 61 taatctgtga gcagatagga acttgctggg tcccaggaca tgaaagccct gcagaaggag 121 ctagaacagt ttgccaagct gctgaagcag aagaggatca ccttggggta cacccaggcc 181 gacgtggggc tcaccctggg cgttctcttt ggaaaggtgt tcagccagac caccatctgt 241 cgcttcgagg ccttgcagct cagccttaag aacatgtgta agctgcggcc cctgctggag 301 aagtgggtgg aggaagccga caacaatgag aaccttcagg agatatgcaa atcggagacc 361 ctggtgcagg cccggaagag aaagcgaact agcattgaga accgtgtgag gtggagtctg 421 gagaccatgt ttctgaagtg cccgaagccc tccctacagc agatcactca catcgccaat 481 cagcttgggc tagagaagga tgtggttcga gtatggttct gtaaccggcg ccagaagggc 541 aaaagatcaa gtattgagta ttcccaacga gaagagtatg aggctacagg gacacctttc 601 ccaggggggg ctgtatcctt tcctctgccc ccaggtcccc actttggcac cccaggctat 661 ggaagccccc acttcaccac actctactca gtcccttttc ctgagggcga ggcctttccc 721 tctgttcccg tcactgctct gggctctccc atgcattcaa actgaggcac cagccctccc 781 tggggatgct gtgagccaag gcaagggagg tagacaagag aacctggagc tttggggtta 841 aattctttta ctgaggaggg attaaaagca caacaggggt ggggggtggg atggggaaag 901 aagctcagtg atgctgttga tcaggagcct ggcctgtctg tcactcatca ttttgttctt 961 aaataaagac tgggacacac agtagatagc t

By "PGC1 alpha polypeptide" is meant a protein or fragment thereof having at least 85% identity to the amino acid sequence provided at NCBI Ref: NP 037393.1 or UniProt Ref: Q9UBK2 (human), NCBI Ref: NP 032930.1 (mouse) and having transcriptional coactivating activity. An exemplary PGC1 alpha human amino acid sequence is provided below:

>sp I Q9UBK2 I PRGC1_HUMAN Peroxisome proli ferator-activated receptor gamma coactivator 1-alpha OS=Homo sapiens GN=PPARGC1A PE=1 SV=1

MAWDMCNQDSESVWSDIECAALVGEDQPLCPDLPELDLSELDVNDLDTDS LGGLKWCSDQSEII SNQYNNEPSN I EKIDEENEANLLAVLTETLDSLPVDEDGLPSFDALTDGDVTTDNEASPSSMPDGTPPPQE AEEPSLLKKLLLA PANTQLSYNECSGLSTQNHANHNHRIRTNPAIVKTENSWSNKAKSICQQQKPQRRPCSEL LKYLTTNDDPPHTKP TENRNSSRDKCTSKKKSHTQSQSQHLQAKPTTLSLPLTPESPNDPKGSPFENKTIERTLS VELSGTAGLTPPTTP PHKANQDNPFRASPKLKSSCKTWPPPSKKPRYSESSGTQGNNSTKKGPEQSELYAQLSKS SVLTGGHEERKTKR PSLRLFGDHDYCQSINSKTEILINISQELQDSRQLENKDVSSDWQGQICSSTDSDQCYLR ETLEASKQVSPCSTR KQLQDQEIRAELNKHFGHPSQAVFDDEADKTGELRDSDFSNEQFSKLPMFINSGLAMDGL FDDSEDESDKLSYPW DGTQSYSLFNVSPSCSSFNSPCRDSVSPPKSLFSQRPQRMRSRSRSFSRHRSCSRSPYSR SRSRSPGSRSSSRSC YYYESSHYRHRTHRNSPLYVRSRSRSPYSRRPRYDSYEEYQHERLKREEYRREYEKRESE RAKQRERQRQKAIEE RRVIYVGKIRPDTTRTELRDRFEVFGEIEECTVNLRDDGDSYGFITYRYTCDAFAALENG YTLRRSNETDFELYF CGRKQFFKSNYADLDSNSDDFDPASTKSKYDSLDFDSLLKEAQRSLRR

An exemplary murine PGC1 alpha amino acid sequence is provided below:

MAWDMCSQDSVWSDIECAALVGEDQPLCPDLPELDLSELDVNDLDTDSFLGGLKWCSDQS EI ISNQYNN EPANI FEKIDEENEANLLAVLTETLDSLPVDEDGLPSFDALTDGAVTTDNEASPSSMPDGTPPPQ EAEEPSLLKK LLLAPANTQLSYNECSGLSTQNHAANHTHRIRTNPAIVKTENSWSNKAKSICQQQKPQRR PCSELLKYLTTNDDP PHTKPTENRNSSRDKCASKKKSHTQPQSQHAQAKPTTLSLPLTPESPNDPKGSPFENKTI ERTLSVELSGTAGLT PPTTPPHKANQDNPFKASPKLKPSCKTWPPPTKRARYSECSGTQGSHSTKKGPEQSELYA QLSKSSGLSRGHEE RKTKRPSLRLFGDHDYCQSLNSKTDILINI SQELQDSRQLDFKDASCDWQGHICSSTDSGQCYLRETLEASKQVS PCSTRKQLQDQEIRAELNKHFGHPCQAVFDDKSDKTSELRDGDFSNEQFSKLPVFINSGL AMDGLFDDSEDESDK LSYPWDGTQPYSLFDVSPSCSSFNSPCRDSVSPPKSLFSQRPQRMRSRSRSFSRHRSCSR SPYSRSRSRSPGSRS SSRSCYYYESSHYRHRTHRNSPLYVRSRSRSPYSRRPRYDSYEAYEHERLKRDEYRKEHE KRESERAKQRERQKQ KAIEERRVIYVGKIRPDTTRTELRDRFEVFGEIEECTV LRDDGDSYGFITYRYTCDAFAALENGYTLRRSNETD FELYFCGRKQFFKSNYADLDTNSDDFDPASTKSKYDSLDFDSLLKEAQRSLRR

By "PGC1 alpha polynucleotide" is meant a nucleic acid molecule encoding a PGC1 alpha polypeptide. An exemplary human PGC1 alpha polynucleotide sequence is provided at NM_013261: tagtaagaca ggtgccttca gttcactctc agtaaggggc tggttgcctg catgagtgtg 61 tgctctgtgt cactgtggat tggagttgaa aaagcttgac tggcgtcatt caggagctgg 121 atggcgtggg acatgtgcaa ccaggactct gagtctgtat ggagtgacat cgagtgtgct 181 gctctggttg gtgaagacca gcctctttgc ccagatcttc ctgaacttga tctttctgaa 241 ctagatgtga acgacttgga tacagacagc tttctgggtg gactcaagtg gtgcagtgac 301 caatcagaaa taatatccaa tcagtacaac aatgagcctt caaacatatt tgagaagata 361 gatgaagaga atgaggcaaa cttgctagca gtcctcacag agacactaga cagtctccct 421 gtggatgaag acggattgcc ctcatttgat gcgctgacag atggagacgt gaccactgac 481 aatgaggcta gtccttcctc catgcctgac ggcacccctc caccccagga ggcagaagag 541 ccgtctctac ttaagaagct cttactggca ccagccaaca ctcagctaag ttataatgaa 601 tgcagtggtc tcagtaccca gaaccatgca aatcacaatc acaggatcag aacaaaccct 661 gcaattgtta agactgagaa ttcatggagc aataaagcga agagtatttg tcaacagcaa 721 aagccacaaa gacgtccctg ctcggagctt ctcaaatatc tgaccacaaa cgatgaccct 781 cctcacacca aacccacaga gaacagaaac agcagcagag acaaatgcac ctccaaaaag 841 aagtcccaca cacagtcgca gtcacaacac ttacaagcca aaccaacaac tttatctctt 901 cctctgaccc cagagtcacc aaatgacccc aagggttccc catttgagaa caagactatt 961 gaacgcacct taagtgtgga actctctgga actgcaggcc taactccacc caccactcct 1021 cctcataaag ccaaccaaga taaccctttt agggcttctc caaagctgaa gtcctcttgc 1081 aagactgtgg tgccaccacc atcaaagaag cccaggtaca gtgagtcttc tggtacacaa 1141 ggcaataact ccaccaagaa agggccggag caatccgagt tgtatgcaca actcagcaag 1201 tcctcagtcc tcactggtgg acacgaggaa aggaagacca agcggcccag tctgcggctg 1261 tttggtgacc atgactattg ccagtcaatt aattccaaaa cagaaatact cattaatata 1321 tcacaggagc tccaagactc tagacaacta gaaaataaag atgtctcctc tgattggcag 1381 gggcagattt gttcttccac agattcagac cagtgctacc tgagagagac tttggaggca 1441 agcaagcagg tctctccttg cagcacaaga aaacagctcc aagaccagga aatccgagcc 1501 gagctgaaca agcacttcgg tcatcccagt caagctgttt ttgacgacga agcagacaag 1561 accggtgaac tgagggacag tgatttcagt aatgaacaat tctccaaact acctatgttt 1621 ataaattcag gactagccat ggatggcctg tttgatgaca gcgaagatga aagtgataaa 1681 ctgagctacc cttgggatgg cacgcaatcc tattcattgt tcaatgtgtc tccttcttgt 1741 tcttctttta actctccatg tagagattct gtgtcaccac ccaaatcctt attttctcaa 1801 agaccccaaa ggatgcgctc tcgttcaagg tccttttctc gacacaggtc gtgttcccga 1861 tcaccatatt ccaggtcaag atcaaggtct ccaggcagta gatcctcttc aagatcctgc 1921 tattactatg agtcaagcca ctacagacac cgcacgcacc gaaattctcc cttgtatgtg 1981 agatcacgtt caagatcgcc ctacagccgt cggcccaggt atgacagcta cgaggaatat 2041 cagcacgaga ggctgaagag ggaagaatat cgcagagagt atgagaagcg agagtctgag 2101 agggccaagc aaagggagag gcagaggcag aaggcaattg aagagcgccg tgtgatttat 2161 gtcggtaaaa tcagacctga cacaacacgg acagaactga gggaccgttt tgaagttttt 2221 ggtgaaattg aggagtgcac agtaaatctg cgggatgatg gagacagcta tggtttcatt 2281 acctaccgtt atacctgtga tgcttttgct gctcttgaaa atggatacac tttgcgcagg 2341 tcaaacgaaa ctgactttga gctgtacttt tgtggacgca agcaattttt caagtctaac 2401 tatgcagacc tagattcaaa ctcagatgac tttgaccctg cttccaccaa gagcaagtat 2461 gactctctgg attttgatag tttactgaaa gaagctcaga gaagcttgcg caggtaacat 2521 gttccctagc tgaggatgac agagggatgg cgaatacctc atgggacagc gcgtccttcc 2581 ctaaagacta ttgcaagtca tacttaggaa tttctcctac tttacactct ctgtacaaaa 2641 acaaaacaaa acaacaacaa tacaacaaga acaacaacaa caataacaac aatggtttac 2701 atgaacacag ctgctgaaga ggcaagagac agaatgatat ccagtaagca catgtttatt 2761 catgggtgtc agctttgctt ttcctggagt ctcttggtga tggagtgtgc gtgtgtgcat 2821 gtatgtgtgt gtgtatgtat gtgtgtggtg tgtgtgcttg gtttagggga agtatgtgtg 2881 ggtacatgtg aggactgggg gcacctgacc agaatgcgca agggcaaacc atttcaaatg 2941 gcagcagttc catgaagaca cgcttaaaac ctagaacttc aaaatgttcg tattctattc 3001 aaaaggaaat atatatatat atatatatat atatatatat atatataaat taaaaaggaa 3061 agaaaactaa caaccaacca accaaccaac caaccacaaa ccaccctaaa atgacagccg 3121 ctgatgtctg ggcatcagcc tttgtactct gtttttttaa gaaagtgcag aatcaacttg 3181 aagcaagctt tctctcataa cgtaatgatt atatgacaat cctgaagaaa ccacaggttc 3241 catagaacta atatcctgtc tctctctctc tctctctctc tctctttttt ttttcttttt 3301 ccttttgcca tggaatctgg gtgggagagg atactgcggg caccagaatg ctaaagtttc 3361 ctaacatttt gaagtttctg tagttcatcc ttaatcctga cacccatgta aatgtccaaa 3421 atgttgatct tccactgcaa atttcaaaag ccttgtcaat ggtcaagcgt gcagcttgtt 3481 cagcggttct ttctgaggag cggacaccgg gttacattac taatgagagt tgggtagaac 3541 tctctgagat gtgttcagat agtgtaattg ctacattctc tgatgtagtt aagtatttac 3601 agatgttaaa tggagtattt ttattttatg tatatactat acaacaatgt tcttttttgt 3661 tacagctatg cactgtaaat gcagccttct tttcaaaact gctaaatttt tcttaatcaa 3721 gaatattcaa atgtaattat gaggtgaaac aattattgta cactaacata tttagaagct 3781 gaacttactg cttatatata tttgattgta aaaacaaaaa gacagtgtgt gtgtctgttg 3841 agtgcaacaa gagcaaaatg atgctttccg cacatccatc ccttaggtga gcttcaatct 3901 aagcatcttg tcaagaaata tcctagtccc ctaaaggtat taaccacttc tgcgatattt 3961 ttccacattt tcttgtcgct tgtttttctt tgaagtttta tacactggat ttgttagggg 4021 aatgaaattt tctcatctaa aatttttcta gaagatatca tgattttatg taaagtctct 4081 caatgggtaa ccattaagaa atgtttttat tttctctatc aacagtagtt ttgaaactag 4141 aagtcaaaaa tctttttaaa atgctgtttt gttttaattt ttgtgatttt aatttgatac 4201 aaaatgctga ggtaataatt atagtatgat ttttacaata attaatgtgt gtctgaagac 4261 tatctttgaa gccagtattt ctttcccttg gcagagtatg acgatggtat ttatctgtat 4321 tttttacagt tatgcatcct gtataaatac tgatatttca ttcctttgtt tactaaagag 4381 acatatttat cagttgcaga tagcctattt attataaatt atgagatgat gaaaataata 4441 aagccagtgg aaattttcta cctaggatgc atgacaattg tcaggttgga gtgtaagtgc 4501 ttcatttggg aaattcagct tttgcagaag cagtgtttct acttgcacta gcatggcctc 4561 tgacgtgacc atggtgttgt tcttgatgac attgcttctg ctaaatttaa taaaaacttc 4621 agaaaaacct ccattttgat catcaggatt tcatctgagt gtggagtccc tggaatggaa 4681 ttcagtaaca tttggagtgt gtattcaagt ttctaaattg agattcgatt actgtttggc 4741 tgacatgact tttctggaag acatgataca cctactactc aattgttctt ttcctttctc 4801 tcgcccaaca cgatcttgta agatggattt cacccccagg ccaatgcagc taattttgat 4861 agctgcattc atttatcacc agcatattgt gttctgagtg aatccactgt ttgtcctgtc 4921 ggatgcttgc ttgatttttt ggcttcttat ttctaagtag atagaaagca ataaaaatac 4981 tatgaaatga aagaacttgt tcacaggttc tgcgttacaa cagtaacaca tctttaatcc 5041 gcctaattct tgttgttctg taggttaaat gcaggtattt taactgtgtg aacgccaaac 5101 taaagtttac agtctttctt tctgaatttt gagtatcttc tgttgtagaa taataataaa 5161 aagactatta agagcaataa attattttta agaaatcgag atttagtaaa tcctattatg 5221 tgttcaagga ccacatgtgt tctctatttt gcctttaaat ttttgtgaac caattttaaa 5281 tacattctcc tttttgccct ggattgttga catgagtgga atacttggtt tcttttctta 5341 cttatcaaaa gacagcacta cagatatcat attgaggatt aatttatccc ccctaccccc 5401 agcctgacaa atattgttac catgaagata gttttcctca atggacttca aattgcatct 5461 agaattagtg gagcttttgt atcttctgca gacactgtgg gtagcccatc aaaatgtaag 5521 ctgtgctcct ctcattttta tttttatttt tttgggagag aatatttcaa atgaacacgt 5581 gcaccccatc atcactggag gcaaatttca gcatagatct gtaggatttt tagaagaccg 5641 tgggccattg ccttcatgcc gtggtaagta ccacatctac aattttggta accgaactgg 5701 tgctttagta atgtggattt ttttcttttt taaaagagat gtagcagaat aattcttcca 5761 gtgcaacaaa atcaattttt tgetaaaega ctccgagaac aacagttggg ctgtcaacat 5821 tcaaagcagc agagagggaa etttgeacta ttggggtatg atgtttgggt cagttgataa 5881 aaggaaacct tttcatgcct ttagatgtga gcttccagta ggtaatgatt atgtgtcctt 5941 tcttgatggc tgtaatgaga acttcaatca ctgtagtcta agacctgatc tatagatgac 6001 ctagaatagc catgtactat aatgtgatga ttctaaattt gtacctatgt gacagacatt 6061 ttcaataatg tgaactgctg atttgatgga gctactttaa gatttgtagg tgaaagtgta 6121 atactgttgg ttgaactatg ctgaagaggg aaagtgagcg attagttgag cccttgccgg 6181 gccttttttc cacctgccaa ttctacatgt attgttgtgg ttttattcat tgtatgaaaa 6241 ttcctgtgat tttttttaaa tgtgcagtac acatcagcct cactgagcta ataaagggaa 6301 acgaatgttt caaateta

An exemplary murine PGC1 alpha polynucleotide sequence is provided at NM 008904.2:

1 gtcatgtgac tggggactgt agtaagacag gtgccttcag ttcactctca gtaaggggct

61 ggttgcctgc atgagtgtgt gctgtgtgtc agagtggatt ggagttgaaa aagcttgact

121 ggegtcatte gggagctgga tggcttggga catgtgcagc caagactctg tatggagtga

181 catagagtgt getgetctgg ttggtgagga ccagcctctt tgcccagatc ttcctgaact

241 tgacctttct gaacttgatg tgaatgactt ggatacagac agctttctgg gtggattgaa

301 gtggtgtagc gaecaategg aaatcatatc caaccagtac aacaatgagc ctgegaacat

361 atttgagaag atagatgaag agaatgaggc aaacttgeta gcggttctca cagagacact

421 ggacagtctc cccgtggatg aagaeggatt gccctcattt gatgeactga cagatggagc

481 cgtgaccact gacaacgagg ccagtccttc ctccatgcct gacggcaccc ctccccctca

541 ggaggcagaa gagccgtctc tacttaagaa gctcttactg gcaccagcca acactcagct

601 cagctacaat gaatgcagcg gtcttagcac tcagaaccat gcagcaaacc acacccacag

661 gatcagaaca aaccctgcca ttgttaagac cgagaattca tggagcaata aagegaagag

721 catttgtcaa cagcaaaagc cacaaagacg tccctgctca gagcttctca agtatctgac

781 cacaaacgat gaccctcctc acaccaaacc cacagaaaac aggaacagca gcagagacaa

841 atgtgcttcg aaaaagaagt cccatacaca accgcagtcg caacatgctc aagccaaacc

901 aacaacttta tctcttcctc tgaccccaga gtcaccaaat gaccccaagg gttccccatt

961 tgagaacaag actattgagc gaaccttaag tgtggaactc tctggaactg caggcctaac

1021 tcctcccaca actcctcctc ataaagecaa ccaagataac cctttcaagg cttcgccaaa

1081 gctgaagccc tettgeaaga ccgtggtgcc accgccaacc aagagggece ggtacagtga

1141 gtgttctggt acccaaggca gccactccac caagaaaggg cccgagcaat ctgagttgta

1201 cgcacaactc agcaagtcct cagggctcag ccgaggacac gaggaaagga agactaaacg

1261 gcccagtctc cggctgtttg gtgaccatga ctactgtcag tcactcaatt ecaaaaegga

1321 tatactcatt aacatatcac aggagctcca agactctaga caactagact teaaagatge

1381 ctcctgtgac tggcaggggc acatctgttc ttccacagat teaggecagt gctacctgag

1441 agagactttg gaggecagea agcaggtctc tccttgcagc accagaaaac agctccaaga

1501 ccaggaaatc egageggage tgaacaagca etteggtcat ccctgtcaag ctgtgtttga

1561 cgacaaatca gacaagacca gtgaactaag ggatggcgac ttcagtaatg aacaattctc

1621 caaactacct gtgtttataa attcaggact agecatggat ggcctatttg atgacagtga

1681 agatgaaagt gataaactga gctacccttg ggatggcacg cagccctatt cattgttcga

1741 tgtgtcgcct tettgetett cctttaactc tccgtgtcga gactcagtgt caccaccgaa

1801 atccttattt tctcaaagac cccaaaggat gcgctctcgt tcaagatcct tttctcgaca

1861 caggtcgtgt tcccgatcac catattccag gtcaagatca aggtccccag gcagtagatc

1921 ctcttcaaga tcctgttact actatgaatc aagccactac agacaccgca cacaccgcaa

1981 ttctcccttg tatgtgagat cacgttcaag gtcaccctac ageegtagge ccaggtacga

2041 cagctatgaa gectatgage acgaaaggct caagagggat gaataccgea aagagcacga

2101 gaagegggag tctgaaaggg ccaaacagag agagaggcag aagcagaaag caattgaaga

2161 gcgccgtgtg atttacgttg gtaaaatcag acctgacaca aegeggacag aattgagaga

2221 ccgctttgaa gtttttggtg aaattgagga atgcaccgta aatctgcggg atgatggaga

2281 cagctatggt ttcatcacct accgttacac ctgtgacgct ttcgctgctc ttgagaatgg

2341 atatacttta egcaggtega acgaaactga cttcgagctg tacttttgtg gaeggaagea

2401 atttttcaag tctaactatg cagacctaga taccaactca gacgattttg accctgcttc

2461 caccaagagc aagtatgact ctctggattt tgatagttta ctgaaggaag ctcagagaag

2521 ettgegcagg taacgtgttc ccaggctgag gaatgacaga gagatggtca atacctcatg

2581 ggacagcgtg tcctttccca agactcttgc aagtcatact taggaatttc tcctacttta

2641 cactctctgt acaaaaataa aacaaaacaa aacaacaata acaacaacaa caacaacaat

2701 aacaacaaca accataccag aacaagaaca aeggtttaca tgaacacagc tgctgaagag

2761 gcaagagaca gaatgataat ccagtaagca caegtttatt cacgggtgtc agetttgett

2821 tccctggagg ctcttggtga cagtgtgtgt gcgtgtgtgt gtgtgggtgt gcgtgtgtgt 2881 atgtgtgtgt gtgtacttgt ttggaaagta catatgtaca catgtgagga cttgggggca 2941 cctgaacaga acgaacaagg gcgacccctt caaatggcag catttccatg aagacacact 3001 taaaacctac aacttcaaaa tgttcgtatt ctatacaaaa ggaaaataaa taaatataaa 3061 ttaaaaggaa agaaaactca caaaccaccc taaaatgaca ctgctgatgc ctgttgtcag 3121 cctccggtac cgtcttttca gaaagtgcaa aacccagaaa gtgcaaaacc aacctgcagc 3181 aagctctctc tctctcttaa tgtaatcatt acgtgacaat cccgaagaca ctacaggttc 3241 catagaactc atatccacct ctctctctct ctctctctct ctctctctct ctctctctct 3301 cctctctcct ctctcctctc tccctccctt ctttgccatt gaatctgggt gggagaggat 3361 actgcaggca ccagatgcta aactttccta acattttgaa gtttctgtag tttgtccttt 3421 gtcctgacac ctatgtatat gttcaaaatg ttgatcttcc actgcagatt ttgaaaagcc 3481 ttgttattgg tcaagcgggg agtgtgttca gtggctcctt ctgaggagca gacgcggtgt 3541 tacatgagta ctgagagttg agtagaactc tctggatgtg ttcagatagt gtaattgcta 3601 cattctctga tgtagttaag tatttacaga tgttaaatgg agtattttta ttttatgtac 3661 atactctaca actatgttct tttttgttac agctatgcac tgtaaatgca gccttctttt 3721 caaaactgct aaatttttct taatcaagaa tattcaaatg taattatgag gtgaaacaat 3781 tattgtacac taacatattt agaagctaaa cttactgctt atatatattt gattgtaaaa 3841 aaaaaaaaaa acaaaaccaa caaaacaaaa gacagtgtgt gtgtgtgtgt ccgttgagtg 3901 caagtccaac aaaatggcgc ttcacgcaca tccatccctt cttaggtgag cttcaatcta 3961 agcatcttgt caacaacaac aaaaatccta ggcccctcaa ggtattaacc acttctgcaa 4021 tatttttcca cattttcttg ttgcttgttt ttctttgaag ttttatacac tggatttgtt 4081 aggggaatga aattttctca tctaaaattt ttctagacaa tatcatgatt ttatgtaaag 4141 tctctcaatg gggaaccatt aagaaatgtt tttattttct ctatcaacag tagatttgaa 4201 actagaggtc aaaaaaaatc tttttaaaat gctgttttgt tttaattttt gtgattttaa 4261 tttgatacaa aatgctgagg taataattac agtatgattt ttacaatagt caatgtgtgt 4321 ctgaagacta tctttgaagc cagtatctct ttcccttggc agagtatgat gatggtattt 4381 aatctgtatt ttttacagtt atacatcctg taaaatactg atatttcatt cctttgttta 4441 ctaaagagac atatttatca gttgcagata gcctatttat tataaattaa gagatgatga 4501 aaataataag gtcagtggag actttctacc cagggtgcat ggcagttgtc aggctggagt 4561 gtaccttctt cgtttgggaa actcagctct cgcagaagca gtgttccatc tttcactagc 4621 atggcctctg atacgaccat ggtgttgttc ttggtgacat tgcttctgct aaatttaata 4681 ttaataataa taaatgtcag aaaaaaaacc ctccattttg agcatcagga tttcatctga 4741 gtatggagtc gctgccatgg gagtcactaa actttggagt atgtatttca tttccaaatt 4801 gagatgcatt tactgtttgg ctgacatgaa ttttctggaa gatatgatag acctactact 4861 taaccgtttt tgtttgtttt tttttctttg ttgttgttgt tttgtttttt gtttttttgt 4921 ttttctctct cacccaacac tatcttacaa aatgggtttc acccccaggc caatgcagct 4981 aattttgaca gctgcattca tttatcacca gcatattgtg ttctgagtga atccactgtc 5041 tgtcctgtcg aatgcttgct caagtgtttg gcttattatt tctaagtaga tagaaagcaa 5101 taaataacta tgaaataaaa aagaattgtg ttcacaggtt ctgcgttaca acagtaacac 5161 atctttaatc cgcctaattc ttgttctgta ggataaatgc aggtatttta actctttgtg 5221 aacgccaaac taaagtttac agtctttctt tctgaatttt gagtatcttc tgttgtagaa 5281 taataataaa aagactatta agagcaataa attattttta agaaatcaat atttagtaaa 5341 tcctgttatg tgtttaagga ccagatgcgt tctctatttt gcctttaaat ttttgtgatc 5401 caactttaaa aacatacgtt gtcttgtttg ccctggatca tggacatgac taaaattttg 5461 tggtttcttt tcttacttat caaaagacaa cactacagat ttcatgttga ggattcattg 5521 agctctcacc ctctggcctg acaaatcttg ttaccatgaa gatagttttc ctccgtggac 5581 ttcaaattgc atctaaaatt agtgaagctt gtgtatctta tgcagacact gtgggtagcc 5641 catcaaaata taagctgtaa gctttgttcc tttcattttt ttttttttac ttcttttggg 5701 agagaatatt tccaacaaac acatgcaccc caccaacagg ggaggcaaat ttcagcatag 5761 atctataaga ctttcagatg accatgggcc attgccttca tgctgtggta agtactacat 5821 ctacaatttt ggtacccgaa ctggtgcttt agaaatgcgg ggtttttatt aaaaaaaaaa 5881 aaaagaaatg tagcagaata attcttttag tgcagcaact cagtttttgt aaaggactct 5941 gagaacactt gggctgtgaa cattcaaagc agcagagagg gaacctggca ctattggggt 6001 aaagtgtttg ggtcagttga aaaaaaggaa accttttcat gcctttagat gtgagctaac 6061 agtaggtaat gatcatgtgt ccctttttga tggctgtacg aagaacttca atcactgtag 6121 tctaagatct gatctataga tgacctagaa tagccatgta atataatgtg atgattctaa 6181 atttgtacct atgtgacaga cattttcaat aatgtgaaaa ctgcagattt gatggagcta 6241 ctttaagatt tgtaggtgaa agtgtgctac tgttggttga actatgctga agagggaaag 6301 tgagtgatta gtttgagccc ttgctggctc ttttccacct gccaattcta catgtattgt 6361 tgtggtttta ttcattgtat gaaaattcct gtgatttttt tttaaatgtg cagtacacat 6421 cagcctcact gagctaataa agggaaaaga atgtttcaaa tcta By "PGC1 beta polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 001166169 or NCBI Ref: NP 573512.1 and having coactivating activity. An exemplary human PGC1 beta amino acid sequence is provided below:

peroxisome proli ferator-activated receptor gamma coactivator 1-beta isofo 2 [Homo sapiens] :

magndcgall deelssffln yladtqgggs geeqlyadfp eldlsqldas dfdsatcfge lqwcpenset epnqyspdds elfqidsene allaeltktl ddipeddvgl aafpaldggd alsctsaspa pssappspap ekpsapapev delsladstq dkkapmmqsq srsctelhkh ltsaqcclqd rglqppclqs prlpakedke pgedcpspqp apasprdsla lgradpgapv sqedmqamvq lirymhtycl pqrklppqtp eplpkacsnp sqqvrsrpws rhhskaswae fsilrellaq dvlcdvskpy rlatpvyasl tprsrprppk dsqaspgrps sveevriaas pkstgprpsl rplrlevkre vrrparlqqq eeedeeeeee eeeeekeeee ewgrkrpgrg lpwtklgrkl essvcpvrrs rrlnpelgpw ltfadeplvp sepqgalpsl clapkaydve relgsptded sgqdqqllrg pqipalespc esgcgdmded pscpqlpprd sprclmlals qsdptfgkks feqtltvelc gtagltpptt ppykpteedp fkpdikhslg keialslpsp eglslkatpg aahklpkkhp ersellshlr hataqpasqa gqkrpfscsf gdhdycqvlr pegvlqrkvl rswepsgvhl edwpqqgapw aeaqapgree drscdagapp kdstllrdhe irasltkhfg lletaleeed lasckspeyd tvfedsssss gessflpeee eeegeeeeed deeedsgvsp tcsdhcpyqs ppskanrqlc srsrsssgss pchswspatr rnfrcesrgp csdrtpsirh arkrrekaig egrvvyiqnl ssdmssrelk rrfevfgeie ecevltrnrr gekygfityr csehaalslt kgaalrkrne psfqlsyggl rhfcwprytd ydsnseealp asgkskyeam dfdsllkeaq qslh

An exemplary murine PGC1 beta polypeptide amino acid sequence is provided below:

MAGNDCGALLDEELSSFFLNYLSDTQGGDSGEEQLCADLPELDLSQLDASDFDSATC FGELQWCPETSETEPSQY SPDDSELFQIDSENEALLAALTKTLDDI PEDDVGLAAFPELDEGDTPSCTPASPAPLSAPPSPTLERLLSPASDV DELSLLQKLLLATSSPTASSDALKDGATWSQTSLSSRSQRPCVKVDGTQDKKTPTLRAQS RPCTELHKHLTSVLP CPRVKACSPTPHPSPRLLSKEEEEEVGEDCPSPWPTPASPQDSLAQDTASPDSAQPPEED VPAMVQLIRYMHTYC LPQRKLPQRAPEPI PQACSSLSRQVQPRSRHPPKAFWTEFSILRELLAQDILCDVSKPYRLAI PVYASLTPQSRP RPPKDSQASPAHSAMAEEVRITASPKSTGPRPSLRPLRLEVKRDVNKPTRQKREEDEEEE EEEEEEEEEKEEEEE EWGRKRPGRGLPWTKLGRKMDSSVCPVRRSRRLNPELGPWLTFTDEPLGALPSMCLDTET HNLEEDLGSLTDSSQ GRQLPQGSQI PALESPCESGCGDTDEDPSCPQPTSRDSSRCLMLALSQSDSLGKKS FEESLTVELCGTAGLTPPT TPPYKPMEEDPFKPDTKLSPGQDTAPSLPSPEALPLTATPGASHKLPKRHPERSELLSHL QHATTQPVSQAGQKR PFSCSFGDHDYCQVLRPEAALQRKVLRSWEPIGVHLEDLAQQGAPLPTETKAPRREANQN CDPTHKDSMQLRDHE IRASLTKHFGLLETALEGEDLASCKSPEYDTVFEDSSSSSGESSFLLEEEEEEEEGGEED DEGEDSGVSPPCSDH CPYQSPPSKASRQLCSRSRSSSGSSSCSSWSPATRKNFRRESRGPCSDGTPSVRHARKRR EKAIGEGRWYIRNL SSDMSSRELKKRFEVFGEIVECQVLTRSKRGQKHGFITFRCSEHAALSVRNGATLRKRNE PSFHLSYGGLRHFRW PRYTDYDPTSEESLPSSGKSKYEAMDFDSLLKEAQQSLH

By "PGC1 beta polynucleotide" is meant a nucleic acid molecule encoding a PGC1 beta polypeptide. An exemplary human PGC1 beta polynucleotide sequence is provided at

NM_001172698:

1 ctcctccctc ctcccttgct cgctcgctgg ctccctcccc ccgggccggc tcggcgttga

61 ctccgccgca cgctgcagcc gcggctggaa gatggcgggg aacgactgcg gcgcgctgct 121 ggacgaagag ctctcctcct tcttcctcaa ctatctcgct gacacgcagg gtggagggtc

181 cggggaggag caactctatg ctgactttcc agaacttgac ctctcccagc tggatgccag

241 cgactttgac tcggccacct gctttgggga gctgcagtgg tgcccagaga actcagagac

301 tgaacccaac cagtacagcc ccgatgactc cgagctcttc cagattgaca gtgagaatga

361 ggccctcctg gcagagctca ccaagaccct ggatgacatc cctgaagatg acgtgggtct 421 ggctgccttc ccagccctgg atggtggaga cgctctatca tgcacctcag cttcgcctgc

481 cccctcatct gcacccccca gccctgcccc ggagaagccc tcggccccag cccctgaggt

541 ggacgagctc tcactggcgg acagcaccca agacaagaag gctcccatga tgcagtctca

601 gagccgaagt tgtacagaac tacataagca cctcacctcg gcacagtgct gcctgcagga

661 tcggggtctg cagccaccat gcctccagag tccccggctc cctgccaagg aggacaagga 721 gccgggtgag gactgcccga gcccccagcc agctccagcc tctccccggg actccctagc

781 tctgggcagg gcagaccccg gtgccccggt ttcccaggaa gacatgcagg cgatggtgca 841 actcatacgc tacatgcaca cctactgcct cccccagagg aagctgcccc cacagacccc 901 tgagccactc cccaaggcct gcagcaaccc ctcccagcag gtcagatccc ggccctggtc 961 ccggcaccac tccaaagcct cctgggctga gttctccatt ctgagggaac ttctggctca 1021 agacgtgctc tgtgatgtca gcaaacccta ccgtctggcc acgcctgttt atgcctccct 1081 cacacctcgg tcaaggccca ggccccccaa agacagtcag gcctcccctg gtcgcccgtc 1141 ctcggtggag gaggtaagga tcgcagcttc acccaagagc accgggccca gaccaagcct 1201 gcgcccactg cggctggagg tgaaaaggga ggtccgccgg cctgccagac tgcagcagca

1261 ggaggaggaa gacgaggaag aagaggagga ggaagaggaa gaagaaaaag aggaggagga

1321 ggagtggggc aggaaaaggc caggccgagg cctgccatgg acgaagctgg ggaggaagct 1381 ggagagctct gtgtgccccg tgcggcgttc tcggagactg aaccctgagc tgggcccctg

1441 gctgacattt gcagatgagc cgctggtccc ctcggagccc caaggtgctc tgccctcact 1501 gtgcctggct cccaaggcct acgacgtaga gcgggagctg ggcagcccca cggacgagga 1561 cagtggccaa gaccagcagc tcctacgggg accccagatc cctgccctgg agagcccctg 1621 tgagagtggg tgtggggaca tggatgagga ccccagctgc ccgcagctcc ctcccagaga 1681 ctctcccagg tgcctcatgc tggccttgtc acaaagcgac ccaacttttg gcaagaagag 1741 ctttgagcag accttgacag tggagctctg tggcacagca ggactcaccc cacccaccac 1801 accaccgtac aagcccacag aggaggatcc cttcaaacca gacatcaagc atagtctagg 1861 caaagaaata gctctcagcc tcccctcccc tgagggcctc tcactcaagg ccaccccagg 1921 ggctgcccac aagctgccaa agaagcaccc agagcgaagt gagctcctgt cccacctgcg 1981 acatgccaca gcccagccag cctcccaggc tggccagaag cgtcccttct cctgttcctt 2041 tggagaccat gactactgcc aggtgctccg accagaaggc gtcctgcaaa ggaaggtgct 2101 gaggtcctgg gagccgtctg gggttcacct tgaggactgg ccccagcagg gtgccccttg 2161 ggctgaggca caggcccctg gcagggagga agacagaagc tgtgatgctg gcgccccacc 2221 caaggacagc acgctgctga gagaccatga gatccgtgcc agcctcacca aacactttgg 2281 gctgctggag accgccctgg aggaggaaga cctggcctcc tgcaagagcc ctgagtatga 2341 cactgtcttt gaagacagca gcagcagcag cggcgagagc agcttcctcc cagaggagga 2401 agaggaagaa ggggaggagg aggaggagga cgatgaagaa gaggactcag gggtcagccc 2461 cacttgctct gaccactgcc cctaccagag cccaccaagc aaggccaacc ggcagctctg 2521 ttcccgcagc cgctcaagct ctggctcttc accctgccac tcctggtcac cagccactcg 2581 aaggaacttc agatgtgaga gcagagggcc gtgttcagac agaacgccaa gcatccggca 2641 cgccaggaag cggcgggaaa aggccattgg ggaaggccgc gtggtgtaca ttcaaaatct 2701 ctccagcgac atgagctccc gagagctgaa gaggcgcttt gaagtgtttg gtgagattga 2761 ggagtgcgag gtgctgacaa gaaataggag aggcgagaag tacggcttca tcacctaccg 2821 gtgttctgag cacgcggccc tctctttgac aaagggcgct gccctgagga agcgcaacga 2881 gccctccttc cagctgagct acggagggct ccggcacttc tgctggccca gatacactga 2941 ctacgattcc aattcagaag aggcccttcc tgcgtcaggg aaaagcaagt atgaagccat 3001 ggattttgac agcttactga aagaggccca gcagagcctg cattgataac agccttaacc 3061 ctcgaggaat acctcaatac ctcagacaag gcccttccaa tatgtttacg ttttcaaaga 3121 aatcaagtat atgaggagag cgagcgagcg tgagagaaca cccgtgagag agacttgaaa 3181 ctgctgtcct ttaaaaaaaa aaaaaatcaa tgtttacatt gaacaaagct gcttctgtct 3241 gtgagtttcc atggtgttga cgttccactg ccacattagt gtcctcgctt ccaacgggtt 3301 gtcccgggtg cacctcgaag tgccgggtcc gtcacccatc gccccttcct tcccgactga 3361 cttcctctcg tagacttgca gctgtgttca ccataacatt tcttgtctgt agtgtgtgat 3421 gatgaaattg ttacttgtga atagaatcag gactataaac ttcattttta attgaaaaaa 3481 aaagtatatc cttaaaataa tgtatttatg gctcagatgt actgtgcctg ggattattgt 3541 attgcttcct tgatttttta actatgcact gtcatgaggt gtttgccact gagctgccct 3601 gctccccttg ccagattgcc ctggaggtgc tgggtggccg ctaggctggt ctgcaggaaa 3661 gcgcggcctg ccgtttccgg gccgtatctg ccaagccctg ccttgtctct tactgagcaa 3721 gtttggctca aattatagga gcccccatct tgtgcccagc tcatgctcca agtgtgtgtc 3781 tatccatttg tactcagact cttgagtacc ttgtaaggaa ggcggggcaa gctgcatcat 3841 tcctgttttc caggggaggc tggcagctcc tcaagaggcg aaatgactgt gggaggtccg 3901 gttaccagtg aggaggcaga gcggtgaccc agaccaggcc ttctggttct tggtcccgtg 3961 cttccgtagt agctggggta aagacaccgt ttcagggact ggtagaggtg agttcggcta 4021 aattgggcac cgggctagaa gcctaagggc tcattttagg ggttacatta ggtgttgatt 4081 caccagcatc aggtgaattc aagccctggc atgtgtcttg gatgcaccat cagctttgat 4141 cctgagtggt cctgcggttt gtctgtgcct gtggacacac tgtcagaact tcagtgacac 4201 ccctggcagc ggtacagaca ggtggtctgg gagcagtcat cttttttggg ccagccacca 4261 gcccatccta ctccctcagg tagtccttcg tctttacctt gtccttgtct gtaaagttgt 4321 tttggtggct ggggcagggg agccaggagg agggagtgaa ggttgggaat agataggaca 4381 atctcctagc tctcctccaa ttgagaaaac actccaattg ggctttgctt taaactttgt 4441 gttcttaagt gatgtcaaag ccatttccag cttaatgttc tgtgggtacc ttgggggcca 4501 ttcatgcagg gagcatggcc aggcagggta tgagtacatt gtttctgatt tctttcatac 4561 atcagggttc ctcgggaaat ttttgtattt tttttttaag tcctgctgct ttaaaaattt 4621 gaaagtggct cattaaacta aacaggctaa tgtaatttgt tgcttatgcc aagcctagac 4681 tgttgagaat tgacgttttt aaagattatc aaatacctca gtaggtaaaa tgagcccatg 4741 atcttccact gagtggtgag catactccca gcccatggac aaggccggaa gagacaggct 4801 ttagtagggg tagggaattt gaactgttgt gtgtcacagc agttgacctc tctggactcc 4861 aatttccttt cctgtgaaat gaactgatta gacatgtttc aacattgtta gcttctgctg 4921 aggcagtgtc tagcccaaga tggcaaatac atagctcatg tgccactact cccacctcct 4981 tgaccaatac agacataact aatcaatcac accactcagg ttccctgagc ctggatgtgc 5041 tataagaatc ctgaaatcag tgctctggta agtcattact aattgattag agttcaatct 5101 atttgacatc ttgggctaat ctttggaagg tttccaacaa tcacacaaaa ccatatgctg 5161 gctgggtttc atgctggcct atccctgtct gtgatgttcc gttccatgag agaaaactcc 5221 cctaatgcta ttccatggcg taacactccc aatactattt tgacgcccac gtccccttgc 5281 agagggtgca gggggcggta gacgaatgac agacaggaac atatttgggg aaggcagggc 5341 ttaggaagat ggaccaaaaa gggacttccc acagcacaga cctgatcatt cggatttcct 5401 ctttagctat tcactgccta gcacatagta ggcacacaat aaatgattat ggaatgggat 5461 aaaatttaga tctttctgct gcctccacta agttaagtcc tgatttacat caaggagaga 5521 actgagatag gaaagaacac tagattccaa gtctggagag ttgggggagt ccagattcta 5581 ccaagaattt cctttgtaac tttggtaagt cccttttact ccctggcacc ccggtgtgct 5641 gaaaggagtt ggtccatata tgatctctta gcccctccta tttgcttctt ccttgattgc 5701 tcttggtcaa agggtcagcc ttgggctggt gatactttag agtaaagaaa tggagagttt 5761 tagcaaagga ccagtctgtc cctccctgct ttggggtcag ctaaagctgt cctttcatgt 5821 cagattaacc taggacactt gtagttagct tagacgttgg cccttgagca gagacctgag 5881 cgtggcattg ggacatgaca tacctaaagt cagggctagg ggacgctgcc tgccaagggc 5941 atcgagtagt ctctacttgc tatcccgtac ataaaatgct acaagttcta aaatttaccg 6001 accctgcaga caacctctat cccgaaggac tcattcggtg ctgtgtatta tttagggcaa 6061 ctccaaggtc tattcagaaa aacgagtgaa ccttggtctc tttcccacca aattgaggag 6121 taacccagag ggagcagctg ccattggcaa ccatctcgtt gtagctctgt cctagtgttt 6181 gctcttgatg atgtttacat gtgatcgcca taaagcttgc tgtagactgt gtcgatagcc 6241 gcccgcacag ggcaggtcgt actgtccgtt tctgtgccgt gctggtgttt tccaaaaatg 6301 tctgatccaa ccactaagtg gaattcttcc atctccttcc tcagtctgta caaggctgaa 6361 tcagaatccc cattctcggg ggctctggtt accgaaggaa aatgcatcaa agagttaaag 6421 aatatgagtg gatggagtgc agctaaggcc cccaccccct gctccgtcac aacttgcccc 6481 ctcaaccaaa aagctgcttt gagtcaaaaa gcacccataa gatacctgca tctgccttga 6541 aatcttgcag catggagtgt catatgtact caggagagag gcagggcttt gcgggcagga 6601 gaaggaaggg aggaatgctc tgagctgcaa agacccagta ctcaagttct gacgtgggag 6661 gagatgcagt gagacgtctc ttgttgccta aagcctgttc ctgttggttt tcttagagtg 6721 atttctccta gacatgtgca gtaggcccac tggggctgct gtgcagtggt gagtaaaagg 6781 gcagggaagg catggacagc ctggtccttc tgcatggaca gctcagtcca tggcccatcc 6841 caggtataga gttcagttaa tcccatttga gcctgcagct taagagatgg ctcatcctaa 6901 ctgtgaagca aaatcagccc cagaggatgt attgatctga ctcactgatg tcaaaattgc 6961 agtatttttt tagcatttga gatttagcag ctgccttcag tttggggtta cccacatccc 7021 agcatcagat atgattaagg aaagaaattg gatgtacaac agcaaagaaa gtgaatgtca 7081 tggtttccct ggccaaagaa gagggaccct gtcatcctta ccaatgggga agaagaaaac 7141 tagtgcatgt gcaatatgtc aaagttagtc ccctagtccc tgaggggttt ttacacacag 7201 atgggctcca ggtctgctcg tcaagtttgg aggtaccggg taaatggagg ggagctgcag 7261 agttggaaac ccacatgcat ggatgtgtcc ttggcccaga accaccatgg gatgggggag 7321 gccctgagcc ggctacaaga cacccaggaa gtaggcaaag gctgactttg cattaaacaa 7381 taaaagcact ttgagaaaac cccaacactt cagcctgggt ccgtgtttct acactggaaa 7441 atacgagtct cctttggctg tgtgaagtga tcttctagag actgggacag ggagtttggg 7501 aatggggctg ctgtcaggta ggagagagca gagatgcctt tggagatgtc agcagcagga 7561 gagccagtgc tggggccaac cctttgctgg ccttttgttg gaagcccttg aaacagggag 7621 ccatgggttt agatcttggt acctaccttt acagaaagat gaaaacagcc cagctgagtg 7681 aaatgagttt gtagagtaag tcacttaact gtaagccatc tcagaatcag aaaccctaat 7741 gtttcttact tgctatgtga ccttgggccc ctgtttcctc atctaccaaa tgagaatgtt 7801 gaatatgagc attaaagtcc ctttcacctc tgagaggctc agatccccaa ccaggagcat 7861 tgggaatcca tcactcctcc ttgaaactga ttccattctc tgacttgacc cagctcctgt 7921 tcagggtgag ggttctctgc aagaaccaac cagcagtagg ttcaatccca ctgtgtcctg 7981 gctgagttgc cttatccaag aagaccagct ccccgggaca gatctaagcc atagtttcta 8041 gtggggacag taaggaatta aacccccaac ttggctaggt aacgatgtca aatctcacat 8101 taaccttgtc tttgtcccca ctggatagct gttaatccga atgttgtgac catttggctg 8161 tttctctctt gttctcagac aatactagca atacactttt tttttttttt tttaaagaaa 8221 aacagcttag gagcttttca cacatttctt tcaaatgatt gtaaaacata tggggcaaca 8281 ggaggcattg atcgcgctgc atatgtttag ggcagctttt gttttttgtt tctttaatgg 8341 tatagcagca gtgactgagc cttcgtgatt cctggggaca gcttttcaga tactctgttt 8401 catcagtatg ctttgcacat ccggaaggag tacaaaaatc caactgccca aatttggggc 8461 ttggaaaata ggttttatag gtggtcggtc cctgggctgt gcaacaactc ctcaaagagg 8521 ggtttatata actagaaccc ccctgggctg tatttttggt caaaggagtc tccaaggcgg 8581 cttacaaaag cttccttttt cacttgacca cccttgctca ttggttactt gtgaagggaa 8641 ttggtcagtt tccacctcag cactttgcct tatcaacatg cggtcgccat ctagtggcca 8701 aaggttgtct ccaccagcta cccagatgga aggcaaataa atcctttcgg ccaccctgct 8761 gtccatcgtg aactttggga atgaaatata atggcctgaa cgaactgcct ttgtgttcag 8821 agatcagtgc aacactaggg tcagaagact ccagaagcag ccacttagta gactctcacg 8881 cagaactgag aaatgcacta gctgtcctgt gggcagaaga gacaggagtg gaccaggaga 8941 ggtccaggtg cccgggaagg gtttactgta actgcaatac tggcagccca gctgctgacc 9001 ttgttaagta aacctttgct gggtggtccg aattctgccc tcaaggcaag ataagaagtt 9061 gggtgtaagg attttgtggg gggcctggcc atgatctttg atatgatccc cgaatagcca 9121 aatagttttt tttgttcaat tttttgtttc tgtattttgt atttttaaaa tcttgtcaaa

9181 tgtttttgtg ttaggaataa aaagtcataa actattccca actttgtttc ttgagggatg

9241 ttctgattcc aatggaaaca ggtgggaaat ctcaagggga gcgtggacaa ggtggtatgt

9301 gcagcagggg aatagactgc ttggatttcc aaatggtttc tggggaagat gaccatccag

9361 aagtccagct tagtgcagtc tgctctggaa ttcacaccca ccccctcgcc tccttgtgcc

9421 atgttgttag cattggcttg gagcatctgc ttcttccaga ggcagctgct aatgttgaaa

9481 ccaacacgag ccctctcccc aaccccaggt ttctaaagaa ggtgtctgta gccagcctta

9541 atcaactggg caaggtggtc cctatggtcc tttccagcat ttccaaatct tggactcaaa

9601 ttattttctc ttggtgtgac cacacagcct agagaattct gagcaatagg agccagggct

9661 ttccctgact ctgcgacagg gtcaaaccaa ggaatggcta aacctgtgag gttttgtcat

9721 ccccgggggt actactgtag ggggcattat ttattaggaa gcttaacaag gtaactacgg

9781 cctgagtgcg tgagtgtaag gctgtgtttg tggtgggggt gtgtgtgtgt gtatctgtgc

9841 acacatacac acgtctgtgc ctgtgtgtgt gtgtttgtgt gtgtgtgtgt gtgtggaatt

9901 acattgatgc atttattgag aaaggtgcaa gaatttcacc tacacagagg gacacatctg

9961 ctttgttatt tataatagaa agctaaattt taatttttta aaggacactg ctaatgattg

10021 agaatcaagt ttttagtttt gctatttttt ttaattggta gaggattttt atatattttt

10081 tccattttgt tgggttgtgt ccttatttat ataaatactt tatccgtaag aggcaaggag

10141 gaaaccttct ttgcttttac atattgtggt tgtcatcgtc cctattttat ttctggtgtg

10201 atttctctgt cttaccttct aaatgagaaa atgttttctt gtatttgtac attgtcagat

10261 tctatagttt cctagataat ttaaccaaat tgctctatgt attattattc tgtgagtata

10321 aagttctatt ttaatgtctg taaatacttc agaactggct tcttttctca aactcccact

10381 gtggggttat tgtttacatc acagaaactg tagaatctct atgctcatgt actgtaaata

10441 gtgaagtgat ctgcttataa ataaacttaa caaatacact atggagatta aaaacaaaat

10501 accacccaca aaaaaaaaaa aaaaa

An exemplary murine PGC1 beta polynucleotide sequence is provided at NM 133249.2: ctcgctccct cccccgggcg ggctcggcgc tgactccgcc gcacgctgca gccgcggctg

6 1 gaagatggcg gggaacgact gcggcgcgct gctggatgaa gagctctcgt ccttcttcct 12 1 caactatctc tctgacacgc agggtgggga ctctggagag gaacagctgt gtgctgactt 1 1 gccagagctt gacctctccc agctggacgc cagtgacttt gactcagcca cgtgctttgg

24 1 ggagctgcag tggtgcccgg agacctcaga gacagagccc agccagtaca gccccgatga 30 1 ctccgagctc ttccagattg acagtgagaa tgaagctctc ttggctgcgc ttacgaagac 36 1 cctggatgac atccccgaag acgatgtggg gctggctgcc ttcccagaac tggatgaagg 42 1 cgacacacca tcctgcaccc cagcctcacc tgccccctta tctgcacccc ccagccccac 48 1 cctggagagg cttctgtccc cagcgtctga cgtggacgag ctttcactgc tacagaagct 54 1 cctcctggcc acatcctccc caacagcaag ctctgacgct ctgaaggacg gggccacctg 60 1 gtcccagacc agcctcagtt ccagaagtca gcggccttgt gtcaaggtgg atggcaccca 66 1 ggataagaag acccccacac tgcgggctca gagccggcct tgtacggaac tgcataagca 72 1 cctcacttcg gtgctgccct gtcccagagt gaaagcctgc tccccaactc cgcacccgag 78 1 ccctcggctc ctctccaaag aggaggagga ggaggtgggg gaggattgcc caagcccttg 84 1 gccgactcca gcctcgcccc aagactccct agcacaggac acggccagcc ccgacagtgc 90 1 ccagcctccc gaggaggatg tgagggccat ggtacagctc attcgctaca tgcataccta 96 1 ctgcctgcct cagaggaagc tgccccaacg ggccccagag ccaatccccc aggcctgcag 102 1 cagcctctcc aggcaggttc aaccccgatc ccggcatccc cccaaagcct tctggactga 108 1 gttctctatc ctaagggaac ttctggccca agatatcctc tgtgatgtta gcaagcccta 114 1 ccgcctggcc atacctgtct atgcttccct cacacctcag tccaggccca ggccccccaa 120 1 ggacagtcag gcctcccctg cccactctgc catggcagaa gaggtgagaa tcactgcttc 126 1 ccccaagagc accgggccta gacccagcct gcgtcctctg aggctggagg tgaaacggga 132 1 tgttaacaag cctacaaggc aaaagcggga ggaagatgag gaggaggagg aggaagaaga 138 1 agaagaggaa gaagaaaaag aagaggaaga agaggagtgg ggcaggaaga gaccaggtcg 144 1 tggcctgcca tggaccaaac tagggaggaa gatggacagc tccgtgtgcc ccgtgcggcg 150 1 ctccaggaga ctgaatccag agctgggtcc ctggctgaca ttcactgatg agcccttagg 156 1 tgctctgccc tcgatgtgcc tggatacaga gacccacaac ctggaggaag acctgggcag 162 1 cctcacagac agtagtcaag gccggcagct cccccaggga tcccagatcc ccgccctgga 168 1 aagcccctgt gagagtgggt gcggagacac agatgaagat ccaagctgcc cacagcccac 174 1 ttccagagac tcctccaggt gcctcatgct ggccttgtca caaagcgact ctcttggcaa 180 1 gaagagcttt gaggagtccc tgacggtgga gctttgcggc acggcaggac tcacgccacc 186 1 caccacacct ccatacaagc caatggagga ggaccccttc aagccagaca ccaagctcag 192 1 cccaggccaa gacacagctc ccagccttcc ctcccccgag gctcttccgc tcacagccac 198 1 cccaggagct tcccacaagc tgcccaagag gcacccagag cgaagcgagc tcctgtccca 204 1 tttgcagcat gccacaaccc aaccagtctc acaggctggc cagaagcgcc ccttctcctg 210 1 ctcctttgga gaccacgact actgccaggt gctcaggcca gaggctgccc tgcagaggaa 216 1 ggtgctgcgg tcctgggagc caatcggggt ccaccttgaa gacttggccc agcagggtgc 2221 ccctctgcca acggaaacaa aggcccctag gagggaggca aaccagaact gtgaccctac 2281 ccacaaggac agcatgcagc taagagacca tgagatccgt gccagtctca caaagcactt 2341 tgggctgctg gagactgctc tggaaggtga agacctggcg tcctgtaaaa gcccggagta 2401 tgacaccgta tttgaggaca gcagcagcag cagtggcgag agtagcttcc tgcttgagga 2461 ggaggaggaa gaggaggagg gaggggaaga ggacgatgaa ggagaggact caggggtcag 2521 ccctccctgc tctgatcact gcccctacca gagcccaccc agtaaggcca gtcggcagct 2581 ctgctcccga agccgctcca gttccggctc ctcgtcctgc agctcctggt caccagccac 2641 ccggaagaac ttcagacgtg agagcagagg gccctgttca gatggaaccc caagcgtccg 2701 gcatgccagg aagcggcggg aaaaggccat cggtgaaggc cgtgtggtat acattcgaaa 2761 tctctccagt gacatgagct ctcgggaact aaagaagcgc tttgaggtgt tcggtgagat 2821 tgtagagtgc caggtgctga cgagaagtaa aagaggccag aagcacggtt ttatcacctt 2881 ccggtgttca gagcacgctg ccctgtccgt gaggaacggc gccaccctga gaaagcgcaa 2941 tgagccctcc ttccacctga gctatggagg gctccggcac ttccgttggc ccagatacac 3001 tgactatgat cccacatctg aggagtccct tccctcatct gggaaaagca agtacgaagc 3061 catggatttt gacagcttac tgaaagaggc ccagcagagc ctgcattgat atcagcctta 3121 accttcgagg aatacctcaa tacctcagac aaggcccttc caatatgttt acgttttcaa 3181 agaaaagagt atatgagaag gagagcgagc gagcgagcga gcgagcgagt gagcgtgaga 3241 gatcacacag gagagagaaa gacttgaatc tgctgtcgtt tcctttaaaa aaaaaaaaac 3301 gaaaaacaaa aacaaatcaa tgtttacatt gaacaaagct gcttccgtcc gtctgtccgt 3361 ccgtccgtcc gtccgtgagt ttccatgctg ttgatgttcc actgccacgt tagcgtcgtc 3421 ctcgcttcca gcggatcgtc ctgggtgcgc ctccaagtgc tgtcagtcgt cctctgcccc 3481 tcccacccga ctgacttcct tctgttagac ttgagctgtg ttcacataac atcttctgtc 3541 tgtagagtgt gatgatgaca ttgttacttg tgaatagaat caggagttag aaactcattt 3601 ttaattgaag aaaaaaaaag tatatcctta aaaagaaaaa aaaaaaaaca aatgta By "operably linked" is meant that a first polynucleotide is positioned adjacent to a second polynucleotide that directs transcription of the first polynucleotide when appropriate molecules (e.g., transcriptional activator proteins) are bound to the second polynucleotide.

By "positive" is meant that a cell expresses a detectable level of a marker.

By "promoter" is meant a polynucleotide sufficient to direct transcription.

By "reference" is meant a standard or control condition. In one embodiment, a reference cell is a cell that expresses Seal and/or CD34. In another embodiment, the reference cell expresses Seal and/or CD34 and also expresses Oct4, Sox2, Klf4 and cMyc (OSKM).

A "reference sequence" is a defined sequence used as a basis for sequence comparison. A reference sequence may be a subset of or the entirety of a specified sequence; for example, a segment of a full-length cDNA or gene sequence, or the complete cDNA or gene sequence. For polypeptides, the length of the reference polypeptide sequence will generally be at least about 16 amino acids, preferably at least about 20 amino acids, more preferably at least about 25 amino acids, and even more preferably about 35 amino acids, about 50 amino acids, or about 100 amino acids. For nucleic acids, the length of the reference nucleic acid sequence will generally be at least about 50 nucleotides, preferably at least about 60 nucleotides, more preferably at least about 75 nucleotides, and even more preferably about 100 nucleotides or about 300 nucleotides or any integer thereabout or therebetween.

By "reprogramming" is meant altering a cell such that at least one protein product is produced in the reprogrammed cell that is not produced in the cell prior to reprogramming or that is not expressed in a corresponding control cell. Typically, the reprogrammed cell has an altered transcriptional or translational profile, such that the reprogrammed cell expresses a set of proteins not expressed in the cell prior to reprogramming (or in a corresponding control cell). By "regenerate" is meant capable of contributing at least one cell to the repair or de novo construction of a tissue or organ.

Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. Nucleic acid molecules useful in the methods of the invention include any nucleic acid molecule that encodes a polypeptide of the invention or a fragment thereof. Such nucleic acid molecules need not be 100% identical with an endogenous nucleic acid sequence, but will typically exhibit substantial identity. Polynucleotides having "substantial identity" to an endogenous sequence are typically capable of hybridizing with at least one strand of a double-stranded nucleic acid molecule. By "hybridize" is meant pair to form a double-stranded molecule between complementary polynucleotide sequences (e.g., a gene described herein), or portions thereof, under various conditions of stringency. (See, e.g., Wahl, G. M. and S. L. Berger (1987) Methods Enzymol. 152:399; Kimmel, A. R. (1987) Methods Enzymol. 152:507).

For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and more preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency hybridization can be obtained in the presence of at least about 35% formamide, and more preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30° C, more preferably of at least about 37° C, and most preferably of at least about 42° C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and the inclusion or exclusion of carrier DNA, are well known to those skilled in the art. Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred: embodiment, hybridization will occur at 30° C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37° C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 100 .mu.g/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42° C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50% formamide, and 200 μg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

For most applications, washing steps that follow hybridization will also vary in stringency. Wash stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the wash steps will ordinarily include a temperature of at least about 25° C, more preferably of at least about 42° C, and even more preferably of at least about 68° C. In a preferred embodiment, wash steps will occur at 25° C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 42 C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a more preferred embodiment, wash steps will occur at 68° C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art. Hybridization techniques are well known to those skilled in the art and are described, for example, in Benton and Davis (Science 196: 180, 1977); Grunstein and Hogness (Proc. Natl. Acad. Sci., USA 72:3961, 1975); Ausubel et al. (Current Protocols in Molecular Biology, Wiley Interscience, New York, 2001); Berger and Kimmel (Guide to Molecular Cloning Techniques, 1987, Academic Press, New York); and Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York.

By "SOX2 polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 003097.1 (human) or NP_035573.3 (murine). An exemplary human amino acid sequence is provided below:

MYN METELKPPGPQQTS GGGGGNSTAAAAGGNQKNS PDRVKRPMNA MVWSRGQRRKMAQENPKMHNSEI S KRL GAEWKLLS ETEKRP I DEAKRLRALHMKEHPDYKYRPRRKT KTLMKKDKYTLPGGLLAPGGNSMAS GVGVGAGLG AGVNQRMDSYAHM GWSNGSYSMMQDQLGYPQHPGLNAHGAAQMQPMHRYDVSALQYNSMTS SQTYM GS PTYSM SYSQQGTPGMALGSMGSWKSEAS S S PPWT S S SHSRAPCQAGDLRDMI SMYL P GAEVPE PAAP S RLHMS QH YQ S GPVPGTAINGTLPLSHM

An exemplary murine amino acid sequence is provided below:

MYNmETELKPPGPQQAS GGGGGGGNATAAATGGNQKNS PDRVKRPMNAFMVWS RGQRRKMAQENPKMHNSEI S K RLGAEWKLLS ETEKRP I DEAKRLRALHMKEHPDYKYRPRRKT KTLMKKDKYTLPGGLLAPGGNSMAS GVGVGAG LGAGVNQRMDSYAHM GWSNGSYSMMQEQLGYPQHPGLNAHGAAQMQPMHRYDVSALQYNSMT S SQTYM GS PTY SMSYSQQGTPGMALGSMGSWKSEAS S S PPWT S S SHSRAPCQAGDLRDMI SMYLPGAEVPEPAAP SRLHMAQHY QS GPVPGTAINGTLPLSHM

By "SOX2 polynucleotide" is meant a nucleic acid molecule encoding a SOX2 polypeptide. An exemplary human SOX2 polynucleotide sequence is provided at NM 003106:

1 ggatggttgt ctattaactt gttcaaaaaa gtatcaggag ttgtcaaggc agagaagaga

61 gtgtttgcaa aagggggaaa gtagtttgct gcctctttaa gactaggact gagagaaaga

121 agaggagaga gaaagaaagg gagagaagtt tgagccccag gcttaagcct ttccaaaaaa

181 taataataac aatcatcggc ggcggcagga tcggccagag gaggagggaa gcgctttttt 241 tgatcctgat tccagtttgc ctctctcttt ttttccccca aattattctt cgcctgattt

301 tcctcgcgga gccctgcgct cccgacaccc ccgcccgcct cccctcctcc tctccccccg

361 cccgcgggcc ccccaaagtc ccggccgggc cgagggtcgg cggccgccgg cgggccgggc

421 ccgcgcacag cgcccgcatg tacaacatga tggagacgga gctgaagccg ccgggcccgc

481 agcaaacttc ggggggcggc ggcggcaact ccaccgcggc ggcggccggc ggcaaccaga 541 aaaacagccc ggaccgcgtc aagcggccca tgaatgcctt catggtgtgg tcccgcgggc

601 agcggcgcaa gatggcccag gagaacccca agatgcacaa ctcggagatc agcaagcgcc

661 tgggcgccga gtggaaactt ttgtcggaga cggagaagcg gccgttcatc gacgaggcta

721 agcggctgcg agcgctgcac atgaaggagc acccggatta taaataccgg ccccggcgga

781 aaaccaagac gctcatgaag aaggataagt acacgctgcc cggcgggctg ctggcccccg 841 gcggcaatag catggcgagc ggggtcgggg tgggcgccgg cctgggcgcg ggcgtgaacc 901 agcgcatgga cagttacgcg cacatgaacg gctggagcaa cggcagctac agcatgatgc 961 aggaccagct gggctacccg cagcacccgg gcctcaatgc gcacggcgca gcgcagatgc 1021 agcccatgca ccgctacgac gtgagcgccc tgcagtacaa ctccatgacc agctcgcaga 1081 cctacatgaa cggctcgccc acctacagca tgtcctactc gcagcagggc acccctggca 1141 tggctcttgg ctccatgggt tcggtggtca agtccgaggc cagctccagc ccccctgtgg

1201 ttacctcttc ctcccactcc agggcgccct gccaggccgg ggacctccgg gacatgatca 1261 gcatgtatct ccccggcgcc gaggtgccgg aacccgccgc ccccagcaga cttcacatgt 1321 cccagcacta ccagagcggc ccggtgcccg gcacggccat taacggcaca ctgcccctct 1381 cacacatgtg agggccggac agcgaactgg aggggggaga aattttcaaa gaaaaacgag 1441 ggaaatggga ggggtgcaaa agaggagagt aagaaacagc atggagaaaa cccggtacgc

1501 tcaaaaagaa aaaggaaaaa aaaaaatccc atcacccaca gcaaatgaca gctgcaaaag 1561 agaacaccaa tcccatccac actcacgcaa aaaccgcgat gccgacaaga aaacttttat 1621 gagagagatc ctggacttct ttttggggga ctatttttgt acagagaaaa cctggggagg 1681 gtggggaggg cgggggaatg gaccttgtat agatctggag gaaagaaagc tacgaaaaac 1741 tttttaaaag ttctagtggt acggtaggag ctttgcagga agtttgcaaa agtctttacc

1801 aataatattt agagctagtc tccaagcgac gaaaaaaatg ttttaatatt tgcaagcaac 1861 ttttgtacag tatttatcga gataaacatg gcaatcaaaa tgtccattgt ttataagctg 1921 agaatttgcc aatatttttc aaggagaggc ttcttgctga attttgattc tgcagctgaa 1981 atttaggaca gttgcaaacg tgaaaagaag aaaattattc aaatttggac attttaattg 2041 tttaaaaatt gtacaaaagg aaaaaattag aataagtact ggcgaaccat ctctgtggtc

2101 ttgtttaaaa agggcaaaag ttttagactg tactaaattt tataacttac tgttaaaagc 2161 aaaaatggcc atgcaggttg acaccgttgg taatttataa tagcttttgt tcgatcccaa 2221 ctttccattt tgttcagata aaaaaaacca tgaaattact gtgtttgaaa tattttctta 2281 tggtttgtaa tatttctgta aatttattgt gatattttaa ggttttcccc cctttatttt 2341 ccgtagttgt attttaaaag attcggctct gtattatttg aatcagtctg ccgagaatcc

2401 atgtatatat ttgaactaat atcatcctta taacaggtac attttcaact taagttttta 2461 ctccattatg cacagtttga gataaataaa tttttgaaat atggacactg aaaaaaaaaa

An exemplary murine SOX2 polynucleotide sequence is provided at NM_011443.3:

1 ctattaactt gttcaaaaaa gtatcaggag ttgtcaaggc agagaagaga gtgtttgcaa 61 aaagggaaaa gtactttgct gcctctttaa gactagggct gggagaaaga agaggagaga

121 gaaagaaagg agagaagttt ggagcccgag gcttaagcct ttccaaaaac taatcacaac 181 aatcgcggcg gcccgaggag gagagcgcct gttttttcat cccaattgca cttcgcccgt 241 ctcgagctcc gcttcccccc aactattctc cgccagatct ccgcgcaggg ccgtgcacgc 301 cgaggccccc gcccgcggcc cctgcatccc ggcccccgag cgcggccccc acagtcccgg 361 ccgggccgag ggttggcggc cgccggcggg ccgcgcccgc ccagcgcccg catgtataac

421 atgatggaga cggagctgaa gccgccgggc ccgcagcaag cttcgggggg cggcggcgga 481 ggaggcaacg ccacggcggc ggcgaccggc ggcaaccaga agaacagccc ggaccgcgtc 541 aagaggccca tgaacgcctt catggtatgg tcccgggggc agcggcgtaa gatggcccag 601 gagaacccca agatgcacaa ctcggagatc agcaagcgcc tgggcgcgga gtggaaactt 661 ttgtccgaga ccgagaagcg gccgttcatc gacgaggcca agcggctgcg cgctctgcac

721 atgaaggagc acccggatta taaataccgg ccgcggcgga aaaccaagac gctcatgaag 781 aaggataagt acacgcttcc cggaggcttg ctggcccccg gcgggaacag catggcgagc 841 ggggttgggg tgggcgccgg cctgggtgcg ggcgtgaacc agcgcatgga cagctacgcg 901 cacatgaacg gctggagcaa cggcagctac agcatgatgc aggagcagct gggctacccg 961 cagcacccgg gcctcaacgc tcacggcgcg gcacagatgc aaccgatgca ccgctacgac

1021 gtcagcgccc tgcagtacaa ctccatgacc agctcgcaga cctacatgaa cggctcgccc 1081 acctacagca tgtcctactc gcagcagggc acccccggta tggcgctggg ctccatgggc 1141 tctgtggtca agtccgaggc cagctccagc ccccccgtgg ttacctcttc ctcccactcc 1201 agggcgccct gccaggccgg ggacctccgg gacatgatca gcatgtacct ccccggcgcc 1261 gaggtgccgg agcccgctgc gcccagtaga ctgcacatgg cccagcacta ccagagcggc

1321 ccggtgcccg gcacggccat taacggcaca ctgcccctgt cgcacatgtg agggctggac 1381 tgcgaactgg agaaggggag agattttcaa agagatacaa gggaattggg aggggtgcaa 1441 aaagaggaga gtaggaaaaa tctgataatg ctcaaaagga aaaaaaatct ccgcagcgaa 1501 acgacagctg cggaaaaaaa ccaccaatcc catccaaatt aacgcaaaaa ccgtgatgcc 1561 gactagaaaa cttttatgag agatcttggg acttcttttt gggggactat ttttgtacag

1621 agaaaacctg agggcggcgg ggagggcggg ggaatcggac catgtataga tctggaggaa 1681 aaaaactacg caaaactttt ttttaaagtt ctagtggtac gttaggcgct tcgcagggag 1741 ttcgcaaaag tctttaccag taatatttag agctagactc cgggcgatga aaaaaaagtt 1801 ttaatatttg caagcaactt ttgtacagta tttatcgaga taaacatggc aatcaaatgt 1861 ccattgttta taagctgaga atttgccaat atttttcgag gaaagggttc ttgctgggtt 1921 ttgattctgc agcttaaatt taggaccgtt acaaacaagg aaggagttta ttcggatttg 1981 aacattttag ttttaaaatt gtacaaaagg aaaacatgag agcaagtact ggcaagaccg 2041 ttttcgtggt cttgtttaag gcaaacgttc tagattgtac taaattttta acttactgtt 2101 aaaggcaaaa aaaaaatgtc catgcaggtt gatatcgttg gtaatttata atagcttttg 2161 ttcaatccta ccctttcatt ttgttcacat aaaaaatatg gaattactgt gtttgaaata 2221 ttttcttatg gtttgtaata tttctgtaaa ttgtgatatt ttaaggtttt tccccccttt 2281 tattttccgt agttgtattt taaaagattc ggctctgtta ttggaatcag gctgccgaga 2341 atccatgtat atatttgaac taataccatc cttataacag ctacattttc aacttaagtt 2401 tttactccat tatgcacagt ttgagataaa taaatttttg aaatatggac actgaaa

By "IDH3a polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 005521.1 (human) or NP_083849.1 (murine). IDH3a may also be termed IDH3a. An exemplary human amino acid sequence is provided below:

MAGPAWISKVSRLLGAFHNPKQVTRGFTGGVQTVTLI PGDGIGPEISAAVMKI DAAKAPIQWEERNVTAIQGPG GKWMIPSEAKESMDKNKMGLKGPLKTPIAAGHPSMNLLLRKTFDLYANVRPCVSIEGYKT PYTDVNIVTIRENTE GEYSGIEHVIVDGWQSIKLITEGASKRIAEFAFEYARNNHRSNVTAVHKANIMRMSDGLF LQKCREVAESCKDI KFNEMYLDTVCLNMVQDPSQFDVLVMPNLYGDILSDLCAGLIGGLGVTPSGNIGANGVAI FESVHGTAPDIAGKD MANPTALLLSAVMMLRHMGLFDHAARIEAACFATIKDGKSLTKDLGGNAKCSDFTEEICR RVKDLD

An exemplary murine amino acid sequence is provided below:

MAGSAWVSKVSRLLGAFHNTKQVTRGFAGGVQTVTLIPGDGIGPEISASVMKI FDAAKAPIQWEERNVTAIQGPG GKWMIPPEAKESMDKNKMGLKGPLKTPIAAGHPSMNLLLRKTFDLYANVRPCVSIEGYKT PYTDVNIVTIRENTE GEYSGIEHVIVDGWQSIKLITEEASKRIAEFAFEYARNNHRSNVTAVHKANIMRMSDGLF LQKCREVAENCKDI KFNEMYLDTVCLNMVQDPSQFDVLVMPNLYGDILSDLCAGLIGGLGVTPSGNIGANGVAI FESVHGTAPDIAGKD MANPTALLLSAVMMLRHMGLFDHAAKIEAACFATIKDGKSLTKDLGGNAKCSDFTEEICR RVKDLD

By "IDH3a polynucleotide" is meant a nucleic acid molecule encoding a IDH3a polypeptide. An exemplary human IDH3a polynucleotide sequence is provided at NM 005530:

1 gttgctgcgg agccaggagg ggaagcgatg gctgggcccg cgtggatctc taaggtctct

61 cggctgctgg gggcattcca caacccaaaa caggtgacca gaggttttac tggtggtgtt

121 cagacagtaa ctttaattcc aggagatggt attggcccag aaatttcagc tgcagttatg

181 aagatttttg atgctgccaa agcacctatt cagtgggagg agcggaacgt cactgccatt

241 caaggacctg gaggaaagtg gatgatccct tcagaggcta aagagtccat ggataagaac

301 aagatgggct tgaaaggccc tttgaagacc ccaatagcag ccggtcaccc atctatgaat

361 ttactgctgc gcaaaacatt tgacctttac gcgaatgtcc gaccatgtgt ctctatcgaa

421 ggctataaaa ccccttacac cgatgtaaat attgtgacca ttcgagagaa cacagaagga

481 gaatacagtg gaattgagca tgtgattgtt gatggagtcg tgcagagtat caagctcatc

541 accgaggggg cgagcaagcg cattgctgag tttgcctttg agtatgcccg gaacaaccac

601 cggagcaacg tcacggcggt gcacaaagcc aacatcatgc ggatgtcaga tgggcttttt

661 ctacaaaaat gcagggaagt tgcagaaagc tgtaaagata ttaaatttaa tgagatgtac

721 cttgatacag tatgtttgaa tatggtacaa gatccttccc aatttgatgt tcttgttatg

781 ccaaatttgt atggagacat ccttagtgac ttgtgtgcag gattgatcgg aggtctcggt

841 gtgacaccaa gtggcaacat tggagccaat ggggttgcaa tttttgagtc ggttcatggg

901 acggctccag acattgcagg caaggacatg gcgaatccca cagccctcct gctcagtgcc

961 gtgatgatgc tgcgccacat gggacttttt gaccatgctg caagaattga ggctgcgtgt 1021 tttgctacaa ttaaggacgg aaagagcttg acaaaagatt tgggaggcaa tgcaaaatgc

1081 tcagacttca cagaggaaat ctgtcgccga gtaaaagatt tagattaaca cttctacaac

1141 tggcatttac atcagtcact ctaaatggac accacatgaa cctctgttta gaatacctac

1201 gtatgtatgc attggtttgc ttgtttcttg acagtacatt tttagatctg gccttttctt

1261 aacaaaatct gtgcaaaaga tgcaggtgga tgtccctagg tctgttttca aagaactttt

1321 tccaagtgct tgttttattt attaagtgtc tacctggtaa atgttttttt tgtaaactct

1381 gagtggactg tatcatttgc tattctaaac cattttacac ttaagttaaa atagtttctc

1441 ttcagctgta aataacagga tacagaatta acaagagaaa atgtctaact ttttaagaaa

1501 aaccttattt tcttcggttt ttgaaaaaca taatggaaat aaaacaggat attgacataa

1561 tagcacaaaa tgacactctt ctaaaactaa atgggcacaa gagaattttc ctgggaaagt

1621 tcacatcaaa aagagtgaat gtggtatatt tctaaatgat atggaaaata gagacagatt

1681 tgtcctttac agaaattact gagtgtgaat aaaaacttca gatccaagaa atatataatg

1741 agagatataa tttttgttaa taagacaaag gtaatatatt ggatacaaag acacaaatgt

1801 attgtgtgtt caattatttt gttgtcttga gatttaatat tctttccaag agcttttaat

1861 gaagcagaga gctagtactt cattttcact ggatacattt tcagcatcat gagttgtcac

1921 agcctctgag cccctgatct gaagccagaa gggctgagtg tattgtaaac ttattcttgc

1981 atgttgctgt ctgggaatgg accacactac agcaggtagt tctgggggcg atactgccga

2041 aaggcccgaa cacatgtatt ttggctgcaa ttgaggaact tgggatgcta ttaattttgt

2101 atttcagcaa ctgccccttc tcctatccca aagcaccaat tactgccctc tgcctcagca

2161 gtaccagtat aagatgacat tccaaagact ggaggcaact cagcctgagt taattcacaa

2221 aattatgcca tgctggggct tgagcttgag cttgggctta ggcttgggct cagcttttga

2281 ccctcaggca tctcctttcc cttcctgtct tcctctccct tctcctctgc tgcagcatga

2341 ttttcttaat cttcagacac tcactatttt catgaacagt taccctctgt ccccacaacc

2401 aaagacaact catggcctcc tttggccctt gtgtaacatt gcaaacctgt ggctttgcaa

2461 aatgtaccca ggtcacaagg ggattttttt ttttttagca atgatatccc tgtctgggtc

2521 actttttaag cttgtaaccg cccccccaga cttataatct taaatgtatt ttcctttgtt

2581 taagctgctg cttcctctgt ttcattggat tgtgccagtt atcagtggct cttgggttca

2641 aagtaataaa gaattccaaa actgaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa

2701 a

An exemplary murine IDH3a polynucleotide sequence is provided at NM 029573:

1 gacgcgatgg ccgggtccgc gtgggtgtcc aaggtctctc ggctgctggg tgcattccac

61 aacacaaaac aggtgacaag aggttttgct ggtggtgttc agacagtaac tttaattcct

121 ggagatggaa ttggcccaga aatttcagcc tcagtcatga agatttttga tgctgccaaa

181 gcacctattc agtgggagga gcgcaatgtc acagcaattc aaggaccagg aggaaagtgg

241 atgatccctc cagaagccaa ggagtccatg gataagaaca agatgggctt gaaaggccca

301 ctaaagaccc caatagccgc tggccatcca tctatgaatc tgttgcttcg taagacattt

361 gacctttatg ccaatgtccg gccatgtgtc tcaattgaag gttataaaac cccttacacg

421 gatgtaaata tcgtcaccat ccgagagaac acggaaggag aatacagtgg aattgagcat

481 gtgatcgttg atggggttgt gcagagcatc aagctcatca ccgaagaagc aagcaagcgc

541 attgcagagt ttgccttcga gtacgctcgg aacaaccacc ggagcaacgt cacagctgtg 601 cacaaagcta acatcatgag gatgtcagat gggctctttc tgcaaaaatg cagggaagtt

661 gcggagaact gtaaagacat taaatttaac gagatgtacc ttgatactgt atgtttaaat

721 atggtacaag acccatccca gtttgatgtt cttgtcatgc caaatttata cggagacatc

781 cttagtgatc tgtgtgcagg actgattgga ggtcttgggg tgactccaag tggcaatatt

841 ggagccaacg gtgttgccat ctttgaatcg gttcatggaa cagccccgga cattgcaggc

901 aaggacatgg ccaaccccac ggccctcctg cttagtgctg tgatgatgct tcgccacatg

961 ggactttttg accatgcagc aaaaatcgag gctgcatgtt ttgctacaat taaggatgga

1021 aagagcttaa caaaagatct gggaggcaac gcgaagtgct ctgacttcac agaagaaatc

1081 tgtcgtagag tcaaagactt agattagcac tcctgctggt ggatttgctg cagtcagtca

1141 atcactccaa aaggataccc tgtaatcctc cttgagggcg cccaccattg gtttgcttgc

1201 ttcttgacag agtacgtttt ttgaatctgg ccttttctta acaaaaccct tgcaatggat

1261 gcacatgatg gccccaggcc ttcattcaaa gggttttccc aagtgctggt tgtatttatt

1321 gtccgtctgg taaaccttat tttgtaaact gtaagtgaac tgtatcattt atcattgtta

1381 acccatttta cacttcaggc aaaatcattt tcctcaactg taaatattct gatacagaat

1441 taataagaga agatatttaa ctttttaaca aaagccctgg atttttggtt tatgaaaaac

1501 aaactgggaa taaaacaggg ttttaacaat cgcacaagat aacattattc taatactaat

1561 gggtacaaaa gaaatttact gggaaagttc acagcaaaaa aatggtatat ttcttaaaaa

1621 tatggaaata aagtatttgt cctatacatg aattactatt aataaaaatg taagctccaa

1681 gaaatccata atgaatgatg taattttgtt actacatcgg taatccttgt caaggccccg

1741 gatgctctct gtgtatttga ttcttttgtt accttgagat tcactatttt gggggaagag

1801 ctttcagata agggagatca ctcctcacta gacagatcgt cagcattgcg agctgtcagc

1861 catgagagcc agccactgca gatcccctcc cacgtggcca cactccagcc agtgctgcag

1921 gtgaccctgg aaaggcctgg ctgccccttg actttcccta aagcaaccag tcactgcctt

1981 ctgccccagt agcacccatt acagacttaa ttgccgaggt ggagctgact cagcccacgc

2041 tcatacaaat caggccaagc gggggcctgt gttaccagct gctgaccatc aggttctgcc

2101 cctcattctt cccacagcct ctgctccaca gcatgaacct agcctttggc ccacaccaaa

2161 gccaagctgt cttcccttag cccttgcact agtttgcaaa ctcgtggctt tgcataatgt

2221 accctggtcc caaggggatt tcttaacaac agatgtccct gtctgggtca tttttttaaa

2281 gcttttattt ggacttacaa tcttctgtgt attttacttt aaaactgctg ctttccctgt

2341 ctcactggat tgttctggtt agcagtggct ttgggttcac agtaataaag aacttaagaa

2401 ctgaaaaaaa aaaaaaaa

By "Κ)Η3β polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 008830.2 (human) or NP_570954.1 (murine). Κ)Η3β may also be termed IDH3b. An exemplary human amino acid sequence is provided below:

M?ALSGVRWLTRALVSAGNPGAWRGLSTSAAAHAASRSQAEDVRVEGSFPVTMLPGD GVGPELMHAVKEVFKAAA VPVEFQEHHLSEVQNMASEEKLEQVLSSMKENKVAIIGKIHTPMEYKGELASYDMRLRRK LDLFANWHVKSLPG YMTRHNNLDLVIIREQTEGEYSSLEHESARGVIECLKIVTRAKSQRIAKFAFDYATKKGR GKVTAVHKANIMKLG DGLFLQCCEEVAELYPKIKFETMI IDNCCMQLVQNPYQFDVLVMPNLYGNI IDNLAAGLVGGAGVVPGESYSAEY AVFETGARHPFAQAVGRNIANPTAMLLSASNMLRHLNLEYHSSMIADAVKKVIKVGKVRT RDMGGYSTTTDFIKS VIGHLQTKGS An exemplary murine amino acid sequence is provided below:

MAALSNVRWLTRAVLAARNSGAWRGLGTSTAHAASQSQAQDVRVEGAFPVTMLPGDGVGP ELMHAVKEVFKAAAV PVEFKEHHLSEVQNMASEEKLEQVLSSMKENKVAI IGKIYTPMEYKGELASYDMQLRRKLDLFANWHVKSLPGY KTRHNNLDLVIIREQTEGEYSSLEHESAKGVIECLKIVTRTKSQRIAKFAFDYATKKGRS KVTAVHKANIMKLGD GLFLQCCEEVAELYPKIKFETMIIDNCCMQLVQNPYQFDVLVMPNLYGNIIDNLAAGLVG GAGWPGESYSAEYA VFETGARHPFAQAVGRNIANPTAMLLSATNMLRHLNLEYHSSMIADAVKKVIKAGKVRTR DMGGYSTTTDFIKSV IGHLHPHGG

By "Κ)Η3β polynucleotide" is meant a nucleic acid molecule encoding a Κ)Η3β polypeptide. An exemplary human Κ)Η3β polynucleotide sequence is provided at NM 006899:

1 gtcacttccc acgcgacttc ctgcgggaaa catggcggca ttgagcggag tccgctggct 61 gacccgagcg ctggtctccg ccgggaaccc tggggcatgg agaggtctga gtacctcggc 121 cgcggcgcac gctgcatcgc ggagccaggc cgaggacgtg agggtggagg gctcctttcc 18811 cgtgaccatg cttccgggag acggtgtggg gcctgagctg atgcacgccg tcaaggaggt 241 gttcaaggct gccgctgtcc cagtggagtt ccaggagcac cacctgagtg aggtgcagaa 301 tatggcatct gaggagaagc tggagcaggt gctgagttcc atgaaggaga acaaagtggc 361 catcattgga aagattcata ccccgatgga gtataagggg gagctagcct cctatgatat 421 gcggctgagg cgtaagttgg acttatttgc caacgtagtc catgtgaagt cacttcctgg 481 gtatatgact cggcacaaca atctagacct ggtgatcatt cgagagcaga cagaagggga 541 gtacagctct ctggaacatg agagtgcaag gggtgtgatt gagtgtttga agattgtcac 601 acgagccaag tctcagcgga ttgcaaagtt cgcctttgac tatgccacca agaaggggcg 661 gggcaaggtc actgctgtcc acaaggccaa catcatgaaa cttggggatg ggttgttcct 721 gcagtgctgt gaggaagttg ctgaactgta ccccaaaatc aaatttgaga caatgatcat 781 agacaactgc tgcatgcagc tggtgcagaa tccttaccag tttgatgtgc ttgtgatgcc 841 caatctctat gggaacatta ttgacaatct ggctgctggc ctggttgggg gagctggtgt 901 ggtccctggt gagagctata gtgcagaata cgcagtcttt gagacgggtg cccggcaccc 961 atttgcccag gcagtgggca ggaatatagc caatcccacg gccatgctgc tgtcggcttc 1021 caacatgctg cggcatctta atcttgagta tcactccagc atgatcgcag atgcggtgaa 1081 gaaggtgatc aaagttggca aggtgcggac tcgagacatg ggcggctaca gcaccacaac 1141 cgacttcatc aagtctgtca tcggtcacct gcagactaaa gggagctaga gccctttatt 1201 tcttccaacc ttgcaaggac cacactcccc atacccttca gtgcagtgta ccagggaaga 1261 gaccttgtgc ctctaagcag tggaccatgg tcaccttgct gggtagagcc taggttgtcc 1321 ttgggccggc ttccttaggg gacagactgt tgggtggtga tggggattgt taggatggag 1381 cccaggccac atggatgatg atgattctcc cccacaggtt cgaacctctg acatgggtgg 1441 ctatgctact tgccatgact tcactgaggc tgtcattgct gccttgcccc acccataggc 1501 cctgtccata cccatgtaag gtgttcaata aagaacatga accaaaaaaa aaaaaaaaaa 1561

An exemplary murine Κ)Η3β polynucleotide sequence is provided at NM 130884:

1 ggcgtcactt cccccgcgac ttcctcggcc gaacatggca gcgctgagca atgtccgctg 61 gctgacccga gcggtgctcg ccgctcggaa ctccggggca tggagaggtc tcggaacatc 121 tacggctcac gccgcttccc agagccaggc acaagatgtg agggtggagg gtgcctttcc 181 tgtgaccatg ctgcctggag acggcgtggg gccagagctc atgcatgctg tcaaggaagt 241 gttcaaggct gctgctgtcc ctgtggaatt taaggagcat catctgagcg aggtgcagaa 301 tatggcttct gaggagaagc tggagcaggt gctgagttcc atgaaggaga acaaagttgc 361 catcattgga aagatctata ccccaatgga gtataagggt gaactagcct cctatgatat 421 gcagctgagg cgtaagttgg atttgtttgc caacgtagtc cacgtgaagt cacttcctgg 481 atacaagact cggcacaaca atctagacct ggttatcatt cgagagcaga cagaagggga 541 gtatagctct ctggaacatg agagcgccaa gggtgtcatt gagtgcctga agatcgtcac 601 tcgcaccaag tctcagagga ttgcaaagtt tgcgttcgac tatgccacca agaaagggcg 661 gagcaaggtc acagccgtcc ataaagccaa catcatgaaa ctaggggatg gcttgttctt 721 gcagtgctgt gaggaagttg ctgaactgta ccctaaaatc aagtttgaaa ccatgatcat 781 agacaactgc tgcatgcagc tggtgcagaa cccttaccag tttgatgtgc tcgtgatgcc 841 caatctctat ggcaacataa ttgacaatct ggctgctggc cttgttgggg gagctggcgt 901 ggttcctggg gagagctaca gtgcagagta tgcagttttt gagacgggtg ctcggcaccc 961 atttgcccag gcagtgggca ggaatatagc caaccccaca gccatgctgc tgtcggccac 1021 caacatgctg cggcatctca atcttgagta tcactccagc atgattgcag atgcagtgaa 1081 gaaagtgatc aaagctggca aggtacggac tcgagacatg ggaggctaca gcaccacaac

1141 tgacttcatc aagtctgtca tcggccacct gcacccccat gggggctaga gcccttactc

1201 cctccaattt caaaaggacc atgcttcgta tacatccctt cagtacaatg gaccagaaga

1261 gaacatctag acagtagact ataatagctt ttctgaggct aggctgtcct gggggctggt

1321 gttaagggta tctcaaaggg tgggttgttg cgacaaggcc cagaccctaa gatgataact

1381 ttttcccaca ggttcgaacc tcagatatgg gtggttatgc cacatgtcat gacttcactg

1441 aagctgtcat tactgccctg tcataaatcc tatacatgcc catgaaaaaa atagtcaata

1501 aacaaaatac acacatacta

By "IDH3y polypeptide" is meant a protein or fragment thereof having at least 85% homology to the sequence provided at NCBI Ref: NP 004126.1 (human) or NP 032349.1 (murine).

IDH3y may also be termed IDH3g. An exemplary human amino acid sequence is provided below:

MALKVATVAGSAAKAVLGPALLCRPWEVLGAHEVPSRNI SEQTI PPSAKYGGRHTVTMI PGDGIGPELMLHVKS VFRHACVPVDFEEVHVSSNADEEDIRNAIMAIRRNRVALKGNIETNHNLPPSHKSRNNIL RTSLDLYANVIHCKS LPGWTRHKDIDILIVRENTEGEYSSLEHESVAGVVESLKI ITKAKSLRIAEYAFKLAQESGRKKVTAVHKANIM KLGDGLFLQCCREVAARYPQITFENMIVDNTTMQLVSRPQQFDVMVMPNLYGNIV NVCAGLVGGPGLVAGANYG HVYAVFETATRNTGKSIANKNIANPTATLLASCMMLDHLKLHSYATSIRKAVLASMDNEN MHTPDIGGQGTTSEA IQDVIRHIRVINGRAVEA

An exemplary murine amino acid sequence is provided below:

MALKVAIAAGGAAKAMLKPTLLCRPWEVLAAHVAPRRSISSQQTI PPSAKYGGRHTVTMI PGDGIGPELMLHVKS VFRHACVPVDFEEVHVSSNADEEDIRNAIMAIRRNRVALKGNIETNHNLPPSHKSRNNIL RTSLDLYANVIHCKS LPGWTRHKDIDILIVRENTEGEYSSLEHESVAGWESLKI ITKAKSLRIAEYAFKLAQESGRKKVTAVHKANIM KLGDGLFLQCCREVAAHYPQITFDSMIVDNTTMQLVSRPQQFDVMVMPNLYGNIVNNVCA GLVGGPGLVAGANYG HVYAVFETATRNTGKSIANKNIANPTATLLASCMMLDHLKLHSYATSIRKAVLASMDNEN MHTPDIGGQGTTSQA IQDIIRHIRIINGRAVEA

By "IDH3y polynucleotide" is meant a nucleic acid molecule encoding a IDH3y polypeptide.

An exemplary human IDH3y polynucleotide sequence is provided at NM 004135:

1 ggggcccagc tggtcgcggt ccccccctca acatggcggc agcggtgctc taggcgccgg 61 aagggggcgt gaatcggtgc gaccgcgcgc gtgcgcagta ccgggtccgc gcctgtcccc 121 gaaacttcgc accccgtcga actctcgcga gagcggtatc tgcgtgtcgg gacgtgcgga 181 ggctctcact ttccgtcatg gcgctgaagg tagcgaccgt cgccggcagc gccgcgaagg 241 cggtgctcgg gccagccctt ctctgccgtc cctgggaggt tctaggcgcc cacgaggtcc 301 cctcgaggaa catcttttca gaacaaacaa ttcctccgtc cgctaagtat ggcgggcggc 361 acacggtgac catgatccca ggggatggca tcgggccaga gctcatgctg catgtcaagt 421 ccgtcttcag gcacgcatgt gtaccagtgg actttgaaga ggtgcacgtg agttccaatg 481 ctgatgaaga ggacattcgc aatgccatca tggccatccg ccggaaccgc gtggccctga 541 agggcaacat cgaaaccaac cataacctgc caccgtcgca caaatctcga aacaacatcc 601 ttcgcaccag cctggacctc tatgccaacg tcatccactg taagagcctt ccaggcgtgg 661 tgacccggca caaggacata gacatcctca ttgtccggga gaacacagag ggcgagtaca 721 gcagcctgga gcatgagagt gtggcgggag tggtggagag cctgaagatc atcaccaagg 781 ccaagtccct gcgcattgcc gagtatgcct tcaagctggc gcaggagagc gggcgcaaga 841 aagtgacggc cgtgcacaag gccaacatca tgaaactggg cgatgggctt ttcctccagt 901 gctgcaggga ggtggcagcc cgctaccctc agatcacctt cgagaacatg attgtggata 961 acaccaccat gcagctggtg tcccggcccc agcagtttga tgtcatggtg atgcccaatc 1021 tctatggcaa catcgtcaac aatgtctgcg cgggactggt cgggggccca ggccttgtgg 1081 ctggggccaa ctatggccat gtgtacgcgg tgtttgaaac agctacgagg aacaccggca 1141 agagtatcgc caataagaac atcgccaacc ccacggccac cctgctggcc agctgcatga 1201 tgctggacca cctcaagctg cactcctatg ccacctccat ccgtaaggct gtcctggcat 1261 ccatggacaa tgagaatatg cacactccgg acatcggggg ccagggcaca acatctgaag 1321 ccatccagga cgtcatccgc cacatccgcg tcatcaacgg ccgggccgtg gaggcctagg 1381 ctggccctag gaccttcttg gtttgctcct tggattcccc ttcccactcc agcaccccag 1441 ccagcctggt acgcagatcc cagaataaag caccttctcc ctagaaaaaa aaaaaaaaaa

1501 aa

An exemplary murine IDH3y polynucleotide sequence is provided at NM 008323:

1 ggtgcttaat gttttgacct gtagaggtcc tcacttttcg tcatggcgct gaaggtggcg 61 atagctgctg gcggtgctgc aaaggcaatg ctcaagccaa ctctcctctg ccgtccttgg 121 gaggttctgg ctgcccatgt ggccccccga aggagcattt cctcacaaca aacaattcct 181 ccatctgcta agtatggtgg gcggcataca gtgactatga tcccagggga tggcatcggc 241 ccagagctca tgttgcatgt taagtctgta ttcaggcatg catgtgtgcc ggtggacttt 301 gaagaggtgc atgtaagctc caacgctgat gaggaggaca tccgcaatgc catcatggcc 361 atccgccgga accgtgtggc cctgaagggc aacattgaaa caaatcataa cctgccacca 421 tcccacaaat ctcgaaacaa catccttcgc accagcctag acctctatgc caacgtcatc

481 cactgtaaga gcctgccagg agtggtgacc cggcacaagg acatagacat cctcattgta 541 cgggaaaaca cagaaggcga gtacagcagc ctggagcatg agagcgtagc aggagtggtg 601 gagagcttga agattatcac caaagccaag tccctgcgca ttgctgaata tgctttcaag 661 ctggcccagg agagtgggcg taagaaagtg acggctgtgc acaaggccaa catcatgaaa 721 ctgggtgatg gactcttcct ccagtgctgc agggaagtag cagcccacta ccctcagatc

781 acctttgaca gcatgattgt agacaacaca acaatgcagc tggtatcccg gcctcagcag 841 tttgatgtca tggtgatgcc taatctctat ggtaacattg tcaacaacgt ctgtgcaggg 901 ctagttggag gcccaggcct tgtggctggg gccaactatg gccatgtgta tgcagtattc 961 gagacagcta caaggaacac aggcaaaagt attgccaata agaacattgc taacccgact 1021 gccacactgc tagcaagctg catgatgcta gaccacctca agctccactc ctatgccact

1081 tccatccgca aagctgtctt agcatccatg gacaatgaaa atatgcatac cccagatatt 1141 ggaggccagg gcaccacatc ccaagccatc caggacatca ttcgtcatat ccgcatcatt 1201 aatggacggg ctgtggaggc ttagctatcc ctacagtttt gctcagcttg tctgtaggac 1261 tctcttctca ctttagcact ccagctagct tgggggacag gacccagaat aaagccactt 1321 ctgttccaga aaaaa

By "IDH3 polynucleotide" is meant a nucleic acid molecule encoding a IDH3 polypeptide. By "substantially identical" is meant a polypeptide or nucleic acid molecule exhibiting at least 50% identity to a reference amino acid sequence (for example, any one of the amino acid sequences described herein) or nucleic acid sequence (for example, any one of the nucleic acid sequences described herein). Preferably, such a sequence is at least 60%, more preferably 80% or 85%, and more preferably 90%, 95% or even 99% identical at the amino acid level or nucleic acid to the sequence used for comparison.

Sequence identity is typically measured using sequence analysis software (for example, Sequence Analysis Software Package of the Genetics Computer Group, University of Wisconsin

Biotechnology Center, 1710 University Avenue, Madison, Wis. 53705, BLAST®, BESTFIT, GAP, or PILEUP/PRETTYBOX programs). Such software matches identical or similar sequences by assigning degrees of homology to various substitutions, deletions, and/or other modifications.

Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine. In an exemplary approach to determining the degree of identity, a BLAST® program may be used, with a probability score between e-3 and e-100 indicating a closely related sequence.

By "subject" is meant a mammal, including, but not limited to, a human or non-human mammal, such as a bovine, equine, canine, murine, ovine, or feline.

Ranges provided herein are understood to be shorthand for all of the values within the range. For example, a range of 1 to 50 is understood to include any number, combination of numbers, or subrange from the group consisting 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50. As used herein, the terms "treat," treating," "treatment," and the like refer to reducing or ameliorating a disorder and/or symptoms associated therewith. It will be appreciated that, although not precluded, treating a disorder or condition does not require that the disorder, condition or symptoms associated therewith be completely eliminated.

Unless specifically stated or obvious from context, as used herein, the term "or" is understood to be inclusive. Unless specifically stated or obvious from context, as used herein, the terms "a", "an", and "the" are understood to be singular or plural.

Unless specifically stated or obvious from context, as used herein, the term "about" is understood as within a range of normal tolerance in the art, for example within 2 standard deviations of the mean. About can be understood as within 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, 0.05%, or 0.01% of the stated value. Unless otherwise clear from context, all numerical values provided herein are modified by the term about.

The recitation of a listing of chemical groups in any definition of a variable herein includes definitions of that variable as any single group or combination of listed groups. The recitation of an embodiment for a variable or aspect herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

Any compositions or methods provided herein can be combined with one or more of any of the other compositions and methods provided herein. BRIEF DESCRIPTION OF THE DRAWINGS

FIGs. 1 A-1T (related to FIG. 2) are bar graphs, images and two schematics showing that ERRs and PGCla/β were direct targets of reprogramming factors during early reprogramming. FIGs. 1A-1D depict bar graphs showing that mouse ERRa/γ and PGCla/β were activated in retroviral reprogramming mouse embryonic fibroblasts (MEFs) at day 3, shown by qPCR results (n=3, *p<0.01, error bars show standard error of the mean (s.e.m.)). FIG. IE is a bar graph showing that depleting ERRy in retroviral reprogramming MEFs after day 4 did not influence reprogramming efficiency (n=3, error bars show standard deviation (s.d).). FIG. IF is a linear graph showing that

reprogramming cells with ERRa or ERRy depletion by lentiviral shRNA showed a reduced proliferation rate. FIG. 1G shows two images of cell cultures of Nanog staining of immortalized MEFs from wild-type (ERRy+/+) or ERRy knockout (ERR γ-/-) embryos after retroviral OSKM reprogramming. FIGs. 1H-1J are bar graphs showing that human ERRa and PGCla/β were up- regulated in retroviral reprogramming human lung fibroblast IMR90 cells at day 5, but not in adipose stem cells (ADSCs), IMR90, or pluripotent stem cells (n=3, *p<0.01, error bars show s.e.m.). FIGs. 1K-1M are bar graphs of qPCR showing relative expression of ERRa, PGC-la and PGC-Ιβ in single factor infected cells (n=3, error bars show s.e.m.). FIG. IN is a schematic representation of ERRa, PGC-la and PGC-Ιβ induction by Oct3/4, Sox2, Klf4 or c-Myc. FIG. 10 is a bar graph showing relative reprogramming efficiencies of doxycycline-inducible reprogramming MEFs with and without ERRy over expression (Ad-ERRy and Ad-GFP, respectively). Reprogramming efficiency based on alkaline phosphatase staining at day 21 (n=6, error bars show s.d. **p<0.01). FIG. IP is a schematic design of the lentiviral reporter which recapitulates the human ERRa enhancer activity. A 974 bp enhancer sequence (chrl 1: 64072402-64073375) which covers the upstream and 5UTR of the human ERRa gene was cloned into a lentiviral reporter which contains green fluorescence protein (GFP) and luciferase. A separate constitutive active promoter EFla drove the expression of Neomycin resistance gene, which allowed the selection in cells with low expression of endogenous ERRa. FIG. 1Q is a schematic design of isolation of a sub-population of reprogramming cells which has high ERRa expression. Human fibroblasts were transduced with lentiviral reprogramming factors which overexpress Oct4, Sox2, Klf4, cMyc, Nanog and Lin28. The fibroblasts were transduced with ERRa reporter at the same time. GFP was not observed at day 1-2, but started to appear and reach its peak around day 4-6. Cells were sorted by GFP intensity at this stage to isolate the top 5% GFP positive cells. FIG. 1R is a fluorescence image showing that the ERRa reporter could be observed in day 5 reprogramming fibroblast, whereas the control which only transduced with reporter but not the reprogramming factors remained GFP negative. FIG. IS shows fluorescence activated cell sorting (FACS) results of reprogramming cells with ERRa reporter. P4 represent the GFP positive population. FIG. IT shows gene expression comparing ERRa and its targets in normal fibroblasts (control), fibroblasts transduced with reporter only (GF only), and GFP+ and GFP- population at reprogramming day 6. ERRa and its targets were highly enriched in GFP+ population, compared to other samples, indicating that the ERRa reporter could fully capture the endogenous ERRa expression pattern.

FIGs. 2A-2J are bar graphs and images showing ERRa/γ and PGCla/β were important for induced pluripotency in both mouse and human cells. FIG. 2A is a bar graph showing mouse embryonic fibroblasts (MEFs) undergoing retroviral reprogramming with OSKM were transduced with control, ERRa, ERRy, PGC- 1 a or PGC- 1 β shRNA. Depletion of ERRa/γ and PGC- 1 α/β significantly reduced reprogramming efficiency. (n=3, error bars show s.d.). FIGs. 2B-2F depict images of cell cultures and graphs showing ERRylox/lox and ERRylox/loxCreERT mouse MEFs infected with a doxycycline-inducible OSKM lentivirus that were treated with 4-Hydroxytamoxifen (4-OHT) 3 days after OSKM induction. FIG. 2B-E are bright field images and graphs showing that ERRy depletion reduced the clusters of early reprogramming cells (FIG. 2B), significantly reduced AP colonies (FIGs. 2C and 2D), and reduced Nanog-positive colonies (FIGs. 2E and 2F) (n=3, *p<0.01, error bars show s.d.). FIG. 2G is a bar graph showing that ERRa and PGC-Ια/β were important for reprogramming of IMR90 (n=3, *p<0.01, error bars show standard deviation (s.d)). FIGs. 2H and 21 are bar graphs depicting qPCR results showing that depletion of p53 lead to increased expression of human ERRa during reprogramming of IMR90 cells (n=3, *p<0.01, error bars show s.e.m). FIG. 2J are two images of cell cultures showing Nanog staining of retroviral OSKM- infected MEFs with p53 (left), or p53 and ERRy (right) shRNA vectors, demonstrating that loss of ERRy resulted in complete collapse of reprogramming even with p53 depletion.

FIGs. 3A-3G are graphs and a heat map showing that ERRa/γ induced a metabolic transition in early reprogramming, which is important to induced pluripotency. FIG. 3A is a graph showing that the time course of oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) in Dox-induced reprogramming mouse embryonic fibroblasts (MEFs), isolated from the single gene transgenic mouse, revealed that the reprogramming population experienced an early oxidative phosphorylation (OXPHOS) burst. FIG. 3B is a graph showing that mitostress test of early reprogramming MEFs in FIG. 3 A showed increased basal OCR and maximal OXPHOS capacity. FIG. 3C is a graph showing that relative gene expression of ERRa, coactivators PGC-la and PGC-Ιβ, and Nanog after retroviral OSKM infection of IMR90 cells, measured by qPCR, indicated that the expression pattern of ERRs and their cofactors coincide with the metabolic switch in early reprogramming (n=3, *p<0.01, error bars show s.e.m.). FIG. 3D is a heat map showing temporal expression of metabolic genes during retroviral OSKM induced IMR90 reprogramming. FIG. 3E is a graph showing OCR and extracellular acidification rate (ECAR) measurements of control and ERRa knockdown retroviral reprogramming IMR90 cells demonstrating that ERRa was important for the early OXPHOS burst in human cells. FIG. 3F. is a graph showing that OCR and ECAR

measurements of control and ERRy knockdown retroviral reprogramming MEF cells demonstrated that ERRy is important for the early OXPHOS burst in mouse cells. FIG. 3G is a graph showing that rotenone treatment, which inhibits the OXPHOS burst, resulted in significant reduction of retroviral reprogramming efficiency in IMR90, indicating that the metabolic switch was important. (n=3, *p<0.05, error bars show s.d.).

FIGs. 4A-4H (related to FIG. 3) are graphs and a heat map showing changes in metabolic activity and proto-oncogene tyrosine-protein kinase (ROS) genes during reprogramming. FIG. 4A is a bar graph showing kinetics of maximal oxidative phosphorylation (OXPHOS) capacity in doxycycline-inducible reprogramming mouse embryonic fibroblasts (MEFs). Reprogramming cells at days 2 to 5 have higher OXPHOS capacity than MEFs and iPSCs. FIGs. 4B and 4C are linear graphs showing that time course measurements of oxygen consumption rate (OCR, FIG. 4B) and extracellular acidification rate (ECAR, FIG. 4C) in retroviral reprogramming IMR90 cells showed an up-regulated metabolic profile in early reprogramming human fibroblasts. FIGs. 4D-4F are bar graphs showing that in early retroviral reprogramming of IMR90 cells, NADH, ATP and

NAD+/NADH levels were changed (n=5, error bars show s.d. *p<0.01). FIG. 4G is a heat map showing that metabolic genes listed in FIG. 4D showed a similar expression pattern between various human ES and iPS lines, in contrast to fibroblast (hFib) lines. FIG. 4H is a linear graph showing the dynamic expression pattern of ROS genes SOD2, NOX4 and CAT during retroviral reprogramming of IMR90 cells (n=3, error bars show s.e.m. *p<0.01). FIGs. 5A-5G are images, graphs and a table showing that ERRy enriched sub-population in early reprogramming represented bona fide reprogramming cells with significantly enhanced reprogramming efficiency. FIG. 5A depicts two images showing Seal and CD34 labeled bona fide reprogramming cells. Retroviral OSKM -infected mouse embryonic fibroblasts (MEFs) stained for Seal (green) and CD34 (red) expression, and phase contrast image (right). Scal-CD34- double negative (DN) cells were demarcated by white dashed lines from phase contrast images. FIG. 5B shows six representative phase contrast images of Scal-CD34- cells during retroviral reprogramming. Arrowheads indicate a representative DN colony. FIGs. 5C and 5D are bar graphs of qPCR demonstrating that ERRy and PGC-Ιβ were enriched in the DN population (n=3, error bars show s.e.m. *p<0.01). FIGs. 5E and 5F are bar graphs showing that fluorescence-activated cell sorting

(FACS)-isolated DN population exhibited higher extracellular acidification rate (ECAR, FIG. 5E) and oxygen consumption rate (OCR,FIG. 5F) than double positive (DP) or single positive (SP) population (n=4, *p<0.05, error bars show s.d.). FIG. 5G is a table showing that DN cells demonstrated significantly higher reprogramming efficiency (n=7, *p<0.05, **p<0.01).

FIGs. 6A-6H (related to FIG. 5) are graphs and images showing pluripotency assays and germline transmission of iPSCs from double negative (DN) population. FIG. 6A is a group of graphs showing flow cytometry analysis of Seal and CD34 expression in WT mouse embryonic fibroblasts (MEFs), retroviral OSKM-infected MEFs, iPSCs and embryonic stem cells (ESCs). FIG. 6B is a bar graph showing that Seal - MEFs had similar reprogramming efficiencies to Scal+ MEFs (n=6, error bars show s.d.). FIG. 6C shows an alkaline phosphatase staining and phase contrast image of iPSCs from DN population. FIG. 6D shows three images of immunofluorescence of SSEA1 (PE), Nanog (FITC) and DNA (DAPI) in iPSCs originating from Scal-CD34- cells. FIGs. 6E and 6F are bar graphs showing q-PCR analysis of pluripotent marker genes (FIG. 6E) and differentiation marker genes (FIG. 6F) in undifferentiated and differentiated mouse ESCs and iPSCs. The scale for Cardiac a-actin and Mtap2 corresponded with y-axis shaded in gray on the right. FIG. 6G is an image that shows an adult chimeric mouse obtained from an iPSC line derived from DN cell population sorted 5 days after OSKM infection. FIG. 6H is an image that shows offspring of chimera crossed with a C56BL/6N female (asterisk) showing pups with black coats (green arrows) originating from iPSC cells.

FIGs. 7A-7G depict a table, graph, heat maps and a schematic of transcriptome analysis that revealed that ERRs orchestrated the up-regulation of a panel of oxidative phosphorylation (OXPHOS) related genes and promoted the metabolic switch during early reprogramming. FIGs. 7A and 7B are a matrix and a graph showing RNA-Seq analysis that revealed that the genome-wide expression pattern of various cell types could be grouped into pluripotent stem cells, mouse embryonic fibroblasts (MEFs) and intermediate retroviral reprogramming cells, demonstrated by distance matrix (FIG. 7A) and clustering analysis (FIG. 7B). FIGs. 7C and 7D are heat maps showing the RNA-Seq patterns of a subset of key pluripotency markers (FIG. 7C) and cell cycle genes (FIG. 7D) that revealed similarity between double negative (DN) cells and ESCs, indicating that the DN population represented bona fide early reprogramming cells which were in the process of adopting induced pluripotency. FIG. 7E is an expression heat map from RNA-Seq data that showed that DN cells had a unique pattern in metabolic genes that represents a hyperenergetic state. FIG. 7F is a heat map of gene expression from microarray in IMR90 cells after ERRa depletion, showing that a significant portion of the OXPHOS program was directly influenced by ERRa in human fibroblast reprogramming. FIG. 7G is a schematic representation of the role of ERRs and PGCla/β in inducing the early OXPHOS burst and transition to induced pluripotency. The OXPHOS burst was important for somatic cell

reprogramming and transient activation of ERRs and their co-factors were epistatic to the roadblock of p53/p21 -induced senescence in reprogramming.

FIGs. 8A-8C (related to FIG. 7) are two pie charts and a table showing that ERRa depletion affected oxidative phosphorylation (OXPHOS) burst during reprogramming. FIGs. 8A and 8B are a pie chart and a table of KEGG PATHWAY analysis, a process that maps molecular datasets, which revealed a panel of OXPHOS related genes in DN population at 5 days after infection, indicating up- regulation of ERRy in bona fide reprogramming cells induced the transcription of OXPHOS program. Gene selection was based on a Bonferroni error threshold of aBonf = 0.01. FIG. 8C is a table of enrichment analysis on gene sets generated using GO ANALYSIS, that shows that ERRa depletion in IMR90 cells induced widespread changes of genes involved in metabolic processes.

FIGs. 9A-9F depict a schematic, graphs, and an image that revealed that ERRs function through IDH and a-ketoglutarate to regulate reprogramming. FIG. 9A is a schematic to demonstrate the function of ERRs in reprograming. IDH3 gene encodes isocitrate dehydrogenase, which catalyzes the oxidation of isocitrate to a-ketoglutarate. H3K4Me2 stands for H3 histone (H3) with its lysine at the fourth (4th) amino acid position from the N-terminal of the protein (K4) dimethylated (Me2). H3K4Me3 stands for histone 3 with its lysine at the fourth (4th) amino acid position from the N- terminal of the protein (K4) trimethylated (Me3). H3K4Mel stands for H3 histone with its lysine at the fourth (4th) amino acid position from the N-terminal of the protein (K4) monomethylated (Mel). H3K4 stands for H3 histone with its lysine at the fourth (4th) amino acid position from the N-terminal of the protein (K4) unmethylated.

FIG. 9B is a bar graph showing the NAD+/NADH ratio change during reprogramming, corresponding with the surge of ERR expression. FIG. 9C is a bar graph showing that IDH3 genes regulation in various reprogramming populations. WT fibroblast stands for wild type filbroblast, which was not infected by lentivirus. Mock infection was included as a control. ERRa-GFP describes a lentivirus encoding GFP protein under the control of the ERRa promoter. Cells were either untreated (WT fibroblasts), mock infected or infected with the ERRa-GFP lentivurus. ERRa- GFP infected cells were FACS stored based on GFP activity (ERRa-GFP+ and ERRa-GFP-). The relative expression of IDH3 genes in the various cell populations was determined by qPCR. FIG. 9D is a bar graph showing α-ketoglutarate level in early reprogramming (day 5) without (control) and with treatment with a small hairpin RNA (shRNA) designed to reduce the expression of ERRy (ERRg shRNA). a-KG stands for a-ketoglutarate. FIG. 9E shows representative images of iPS colonies after treatment of D-2-hydroxyglutarate (D-2-HG) or L-2 -hydroxy glutarate (L-2-HG). FIG. 9F is a bar graph showing that reprogramming efficiency after D-2-HG or L-2-HG treatment of the cells. The image and the bar labelled with "Veh" in FIGs. 9E and 9F represents the iPS colonies after negative control treatment, in which the cells were treated with the solvent for D-2-HG and L-2-HG only.

FIGs. 10A-10B deptict a schematic and a table showing that ERRa expression labels a metabolically active cell subpopulation during early reprogramming. FIG. 10A is schematic presentation of experimental design. IMR90 cells are transduced with lentivirus expressing reprogramming factors Oct4, Sox2, Klf4, Myc, Lin28, and Nanog, together with a lentiviral GFP reporter which reflect the endogenous ERRa activity. Lenti-OSKMLN stands for lentivirus expressing Oct4, Sox2, Klf4, Myc, Lin28, and Nanog GF-hEERa-III stands for a lentiviral GFP reporter in which the GFP activity is a measure of the endogenous ERRa expression pattern. Cells are sorted based on GFP expression in Day 2 to Day6 and RNA sequencing was performed for the cells in all sub-populations. FIG. 10B is a table to show the results of KEGG gene ontology analysis of the genes enriched in GFP+ population.

FIGs. 11 A-l IB are graphs showing the promoter/enhancer landscapes in ERRa+ and ERRa- reprogramming populations. FIG. 11 A are graphs showing the H3K4Me2 level in the

enhancer/promoter regions of of genes that function in fibroblast identity, such as SNAI1 and ZEB2, in ERRa+ and ERRa- population. FIG. 1 IB are graphs showing the H3K4Me2 level in the enhancer/promoter of genes that function in reprograming, such as Oct4 and Sox2. H3K4Me2 stands for H3 histone with the lysine at the fourth (4th) position from the N-terminal of the protein which is dimethylated. DETAILED DESCRIPTION OF THE INVENTION

As described below, the invention generally features compositions comprising induced pluripotent stem cell progenitors (also termed reprogramming progenitor cells) and methods of isolating such cells. The invention also provides compositions comprising induced pluripotent stem cells (iPSCs) derived from such progenitor cells. Induced pluripotent stem cell progenitors generate iPSCs at high efficiency.

Cell metabolism is adaptive to extrinsic demands. However, the intrinsic metabolic demands that drive the induced pluripotent stem cell (iPSC) program remain unclear. While glycolysis increases throughout the reprogramming process, here it was demonstrated that the estrogen related nuclear receptors (ERRa and γ) and their partnered co-factors PGC-la and β, were transiently induced at an early stage resulting in a burst of oxidative phosphorylation (OXPHOS) activity. Up-regulation of ERRa or γ was important for both the OXPHOS burst in human and mouse cells, respectively, as well as in iPSC generation itself. Failure to induce this metabolic switch collapsed the reprogramming process. The invention is based, at least in part, on the discovery of a rare pool of Scal-/CD34- sortable cells that is highly enriched in bona fide reprogramming progenitors.

Transcriptional profiling confirmed that these progenitors are ERRy and PGC-Ιβ positive and have undergone extensive metabolic reprogramming. These studies characterize a previously

unrecognized, ERR-dependent metabolic gate prior to establishment of induced pluripotency.

Accordingly, the invention provides compositions comprising reprogramming progenitors or their descendants (i.e., IPSCs), and methods of using such compositions for the treatment of conditions associated with a deficiency in cell number. Induced Pluripotent Stem Cells

An understanding of the molecular mechanisms that influence the generation, maintenance, and differentiation of human pluripotent stem cells is key to advancing their use in a therapeutic setting. Whereas the transcriptional and epigenetic dynamics have been extensively documented, temporal changes in metabolic states during the induction of pluripotency remain largely unknown. Distinct from somatic cells, pluripotent stem cells have unique metabolic pathways (Zhang et al., 2012, Cell stem cell 11, 589-595), which influence their cellular behavior and epigenetic status. Indeed, factors involved in metabolic functions such as mitochondrial proteins are among the first to be up-regulated in cells undergoing reprogramming. Therefore, delineating the molecular mechanisms governing the dynamic regulation of cellular metabolism is crucial to understanding the connections between metabolic and epigenetic reprogramming.

Nuclear receptors (NRs) are pleiotropic regulators of organ physiology controlling broad aspects of glucose and fatty acid metabolism and overall energy homeostasis (Mangelsdorf et al., 1995, Cell 83, 835-839, Yang et al., 2006, Cell 126, 801-810). While orphan receptors such as the Estrogen Related Receptors (ERRs) are ligand-independent, they nonetheless are capable of directing dramatic changes in both glycolytic and oxidative metabolism in tissues with high energy. ERRs switch between various oxidative states by associating preferentially with their co-activators PGC- la/β. The ERR family member ERR (also known as Esrrb) is glycolytic in the absence of PGC-la and plays a key role in establishing pluripotency (Buganim et al., 2012, Cell 150, 1209-1222; Feng et al., 2009, Nature cell biology 11, 197-203; Festuccia et al., 2012, Cell stem cell 11, 477-490; Martello et al., 2012, Cell stem cell 11, 491-504). In contrast, ERRa and ERRy, which are expressed in oxidative tissues such as skeletal muscle and heart (Narkar et al., 2011, Cell Metab 13, 283-293), have not previously been linked to iPSC generation. As described in detail below, transient up-regulation of ERRa and γ in the early stages of reprogramming induced a unique energetic state. Furthermore, it was shown that the transient OXPHOS burst and increased glycolysis initiated by this metabolic switch were important for epigenetic reprogramming. Mechanistically, ERRa and γ were enriched in bona fide reprogramming progenitors and induced widespread changes in metabolic gene networks. These results indicate that an ERR-mediated metabolic transition is important for induced pluripotency.

Accordingly, the invention provides methods for generating a reprogramming progenitor that is capable of giving rise to induced pluripotent stem cells at high efficiency. In one embodiment, a Scal-CD34- reprogramming progenitor is approximately 50-fold more efficient at generating iPSCs than a reference cell. In other embodiments, nearly 75% of the iPSC colonies in a population were generated by Scal-CD34- reprogramming progenitors which were less than 5% of the OSKM infected cells. Surprisingly, Scal-CD34- reprogramming progenitors exhibited a 1500% increased colony formation frequency (CFF) relative to a reference cell.

Cellular Compositions

Compositions of the invention comprising purified reprogramming progenitors or induced pluripotent stem cells derived from those progenitors can be conveniently provided as sterile liquid preparations, e.g., isotonic aqueous solutions, suspensions, emulsions, dispersions, or viscous compositions, which may be buffered to a selected pH. Liquid preparations are normally easier to prepare than gels, other viscous compositions, and solid compositions. Additionally, liquid compositions are somewhat more convenient to administer, especially by injection. Viscous compositions, on the other hand, can be formulated within the appropriate viscosity range to provide longer contact periods with specific tissues. Liquid or viscous compositions can comprise carriers, which can be a solvent or dispersing medium containing, for example, water, saline, phosphate buffered saline, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like) and suitable mixtures thereof.

Sterile injectable solutions can be prepared by incorporating the reprogramming progenitors or their progeny utilized in practicing the present invention in the required amount of the appropriate solvent with various amounts of the other ingredients, as desired. Such compositions may be in admixture with a suitable carrier, diluent, or excipient such as sterile water, physiological saline, glucose, dextrose, or the like. The compositions can also be lyophilized. The compositions can contain auxiliary substances such as wetting, dispersing, or emulsifying agents (e.g., methylcellulose), pH buffering agents, gelling or viscosity enhancing additives, preservatives, flavoring agents, colors, and the like, depending upon the route of administration and the preparation desired. Standard texts, such as "REMINGTON'S PHARMACEUTICAL SCIENCE", 17th edition, 1985, incorporated herein by reference, may be consulted to prepare suitable preparations, without undue experimentation.

Various additives which enhance the stability and sterility of the compositions, including antimicrobial preservatives, antioxidants, chelating agents, and buffers, can be added. Prevention of the action of microorganisms can be ensured by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, and the like. Prolonged absorption of the injectable pharmaceutical form can be brought about by the use of agents delaying absorption, for example, aluminum monostearate and gelatin. According to the present invention, however, any vehicle, diluent, or additive used would have to be compatible with the reprogramming progenitors or their descendants.

The compositions can be isotonic, i.e., they can have the same osmotic pressure as blood and lacrimal fluid. The desired isotonicity of the compositions of this invention may be accomplished using sodium chloride, or other pharmaceutically acceptable agents such as dextrose, boric acid, sodium tartrate, propylene glycol or other inorganic or organic solutes. Sodium chloride is preferred particularly for buffers containing sodium ions.

Viscosity of the compositions, if desired, can be maintained at the selected level using a pharmaceutically acceptable thickening agent. Methylcellulose is preferred because it is readily and economically available and is easy to work with. Other suitable thickening agents include, for example, xanthan gum, carboxymethyl cellulose, hydroxypropyl cellulose, carbomer, and the like. The preferred concentration of the thickener will depend upon the agent selected. The important point is to use an amount that will achieve the selected viscosity. Obviously, the choice of suitable carriers and other additives will depend on the exact route of administration and the nature of the particular dosage form, e.g., liquid dosage form (e.g., whether the composition is to be formulated into a solution, a suspension, gel or another liquid form, such as a time release form or liquid-filled form).

Those skilled in the art will recognize that the components of the compositions should be selected to be chemically inert and will not affect the viability or efficacy of the reprogramming progenitors or their descendants (i.e., IPSCs) as described in the present invention. This will present no problem to those skilled in chemical and pharmaceutical principles, or problems can be readily avoided by reference to standard texts or by simple experiments (not involving undue

experimentation), from this disclosure and the documents cited herein.

One consideration concerning the therapeutic use of reprogramming progenitors or their descendants (i.e., IPSCs) of the invention is the quantity of cells necessary to achieve an optimal effect. The quantity of cells to be administered will vary for the subject being treated. In a one embodiment, between 104 to 108, between 105 to 107, or between 106 and 107 cells of the invention are administered to a human subject. In preferred embodiments, at least about 1 x 107, 2 x 107, 3 x 107, 4 x 107, and 5 x 107 cells of the invention are administered to a human subject. The precise determination of what would be considered an effective dose may be based on factors individual to each subject, including their size, age, sex, weight, and condition of the particular subject. Dosages can be readily ascertained by those skilled in the art from this disclosure and the knowledge in the art.

The skilled artisan can readily determine the amount of cells and optional additives, vehicles, and/or carrier in compositions and to be administered in methods of the invention. Typically, any additives (in addition to the active stem cell(s) and/or agent(s)) are present in an amount of 0.001 to 50 % (weight) solution in phosphate buffered saline, and the active ingredient is present in the order of micrograms to milligrams, such as about 0.0001 to about 5 wt %, preferably about 0.0001 to about 1 wt %, still more preferably about 0.0001 to about 0.05 wt % or about 0.001 to about 20 wt %, preferably about 0.01 to about 10 wt %, and still more preferably about 0.05 to about 5 wt %. Of course, for any composition to be administered to an animal or human, and for any particular method of administration, it is preferred to determine therefore: toxicity, such as by determining the lethal dose (LD) and LD50 in a suitable animal model e.g., rodent such as mouse; and, the dosage of the composition(s), concentration of components therein and timing of administering the composition(s), which elicit a suitable response. Such determinations do not require undue experimentation from the knowledge of the skilled artisan, this disclosure and the documents cited herein. And, the time for sequential administrations can be ascertained without undue experimentation.

Administration of Cellular Compositions

Compositions comprising reprogramming progenitors or their descendants (i.e., IPSCs) are described herein. In particular, the invention provides for the administration of an induced pluripotent stem cell derived from a reprogramming progenitor that expresses ERRalpha or gamma and optionally PGC1 alpha or beta. Such cells can be provided systemically or locally to a subject for the treatment or prevention of a disease or condition associated with a decrease in cell number (e.g., neurodegenerative diseases, heart disease, autoimmune diseases, type I diabetes, type II diabetes, prediabetes, metabolic disorders, and the treatment of other diseases or disorders associated with a deficiency in cell division, differentiation and cell death (e.g., a reduction in the number of pancreatic cells, a reduction of T-cells, a loss of neuronal cells or myocytes). In one embodiment, cells of the invention are directly injected into an organ or tissue of interest (e.g., pancreas, thymus, brain, muscle, or heart). Alternatively, compositions comprising cells of the invention are provided indirectly to the organ of interest, for example, by administration into the circulatory system (e.g., the cardio or pancreatic vasculature). Expansion and differentiation agents can be provided prior to, during or after administration of the cells to increase production of cells having, for example neurotransmitter, or insulin producing potential in vitro or in vivo. The cells can be administered in any physiologically acceptable vehicle, normally intravascularly, although they may also be introduced into another convenient site where the cells may find an appropriate site for regeneration and differentiation.

In one approach, at least 100,000, 250,000, or 500,000 cells are injected. In other embodiments, 750,000, or 1,000,000 cells are injected. In other embodiments, at least about lxlO 5 cells will be administered, 1 x 106, 1 x 107, or even as many as 1 x 108 to lxlO 10 , or more are administered. Selected cells of the invention comprise a purified population of cells that express ERRalpha or gamma and PGC1 alpha or beta. Preferable ranges of purity in populations comprising selected cells are about 50 to about 55%, about 55 to about 60%, and about 65 to about 70%. More preferably the purity is at least about 70%, 75%, or 80% pure, more preferably at least about 85%, 90%, or 95% pure. In some embodiments, the population is at least about 95% to about 100% selected cells. Dosages can be readily adjusted by those skilled in the art (e.g., a decrease in purity may require an increase in dosage). The cells can be introduced by injection, catheter, or the like.

Compositions of the invention include pharmaceutical compositions comprising

reprogramming progenitors or their descendants (i.e., IPSCs) and a pharmaceutically acceptable carrier. Administration can be autologous or heterologous. For example, somatic cells can be obtained from one subject, and administered to the same subject or a different, compatible subject.

Selected cells of the invention or their progeny (e.g., in vivo, ex vivo or in vitro derived) can be administered via localized injection, including catheter administration, systemic injection, localized injection, intravenous injection, or parenteral administration. When administering a therapeutic composition of the present invention (e.g., a pharmaceutical composition containing a selected cell), it will generally be formulated in a unit dosage injectable form (solution, suspension, emulsion).

Accordingly, the invention also relates to a method of treating a subject having, for example, a disease or condition characterized by a deficiency in cell number, including but not limited to neurodegenerative diseases, cancer, heart disease, autoimmune diseases, type I diabetes, type II diabetes, pre-diabetes, metabolic disorders, and the treatment of other diseases or disorders associated with a deficiency in cell division, differentiation and cell death (e.g., a reduction in the number of pancreatic cells, a reduction of T-cells, a loss of neuronal cells or myocytes). This method comprises administering to the subject an effective amount either of a reprogramming progenitor or descendant thereof (i.e., IPSCs) isolated as explained herein.

Kits

The invention provides kits comprising an effective amount of reprogramming progenitors or their descendants (i.e., IPSCs). In one embodiment, the invention provides a reprogramming progenitor derived from an embryonic fibroblasts (MEFs) or a lung fibroblast that expresses ERRalpha or gamma. Optionally, the cells also express PGCla or β. The cells are provided in unit dosage form. In some embodiments, the kit comprises a sterile container which contains a therapeutic or prophylactic cellular composition; such containers can be boxes, ampules, bottles, vials, tubes, bags, pouches, blister-packs, or other suitable container forms known in the art. Such containers can be made of plastic, glass, laminated paper, metal foil, or other materials suitable for holding medicaments.

If desired a cell of the invention is provided together with instructions for administering the cell to a subject having or at risk of developing a condition characterized by a deficiency in cell number, such as a neurodegenerative disease, heart disease, autoimmune disease, type I diabetes, type II diabetes, pre-diabetes, other metabolic disorders, or other diseases or disorders associated with a deficiency in cell division, differentiation and cell death (e.g., a reduction in the number of pancreatic cells, a reduction of T-cells, a loss of neuronal cells or myocytes). The instructions will generally include information about the use of the composition for the treatment or prevention of a neurodegenerative disease, cancer, heart disease, autoimmune disease, type I diabetes, type II diabetes, pre-diabetes, other metabolic disorders, or other diseases or disorders associated with a deficiency in cell division, differentiation and cell death (e.g., a reduction in the number of pancreatic cells, a reduction of T-cells, a loss of neuronal cells or myocytes). In other embodiments, the instructions include at least one of the following: description of the cells; dosage schedule and administration for treatment or prevention of a neurodegenerative disease, cancer, heart disease, autoimmune disease, type I diabetes, type II diabetes, pre-diabetes, other metabolic disorders, or other diseases or disorders associated with a deficiency in cell division, differentiation and cell death or symptoms thereof; precautions; warnings; indications; counter-indications; overdosage information; adverse reactions; animal pharmacology; clinical studies; and/or references. The instructions may be printed directly on the container (when present), or as a label applied to the container, or as a separate sheet, pamphlet, card, or folder supplied in or with the container.

The practice of the present invention employs, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, biochemistry and immunology, which are well within the purview of the skilled artisan. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", second edition (Sambrook, 1989); "Oligonucleotide Synthesis" (Gait, 1984); "Animal Cell Culture" (Freshney, 1987); "Methods in Enzymology" "Handbook of Experimental Immunology" (Weir, 1996); "Gene Transfer Vectors for Mammalian Cells" (Miller and Calos, 1987); "Current Protocols in Molecular Biology" (Ausubel, 1987); "PCR: The Polymerase Chain Reaction", (Mullis, 1994); "Current Protocols in Immunology" (Coligan, 1991). These techniques are applicable to the production of the polynucleotides and polypeptides of the invention, and, as such, may be considered in making and practicing the invention. Particularly useful techniques for particular embodiments will be discussed in the sections that follow.

The following examples are put forth so as to provide those of ordinary skill in the art with a complete disclosure and description of how to make and use the assay, screening, and therapeutic methods of the invention, and are not intended to limit the scope of what the inventors regard as their invention.

EXAMPLES

Example 1: ERRa/γ are important for somatic cell reprogramming

Temporal gene expression studies in mouse embryonic fibroblasts (MEFs) after

reprogramming with Oct4, Sox2, Klf4 and cMyc (OSKM) or OSK revealed transient increases in the expression of ERRy, PGC-la, PGC-Ιβ, and to a lesser extent, ERRa, 3 days after infection (FIGs. 1A-1D). Furthermore, depletion of ERRy, PGC-la or PGC-Ιβ by shRNA knockdown coincident with OSKM induction significantly reduced reprogramming efficiency in MEFs (FIG. 2A), whereas ERRy depletion later in reprogramming had little effect (FIG. IE). To further explore the timing of gene induction in early reprogramming, OSKM expression was induced in MEFs isolated from ERRylox/lox and ERRylox/lox CreERT mice via doxycycline-inducible lentiviruses (Wei et al., 2009, Stem cells (Dayton, Ohio) 27, 2969-2978). While tamoxifen-treated ERRylox/lox MEFs (ERRy control cells) exhibited multiple foci of reprogramming cells 5 days after doxycycline-induced OSKM expression, ERRylox/lox CreERT MEFs treated with tamoxifen at day 3 (ERRy iKO cells) displayed fibroblast-like morphology (FIG. 2B). Consistent with a failure of the ERRy iKO cells to reprogram, few alkaline phosphatase (AP) or Nanog-positive colonies were observed after 3 weeks of OSKM infection, whereas control cells showed normal reprogramming efficiency (FIGs. 2C-2F). As depletion of ERRy or ERRa in reprogramming cells lead to a reduction in cell proliferation (FIG. IF), the reprogramming efficiencies of immortalized MEFs generated from ERRy knockout (ERRy-/-) or wildtype (ERRy+/+) mouse embryos were also compared. No Nanog-positive cells were detected in (ERRy-/-) cells after OSKM infection (FIG. 1G). Reprogramming efficiencies of doxycycline- inducible reprogramming MEFs with and without ERRy over expression (Ad-ERRy and Ad-GFP, respectively) were also compared indicating that ERRy over expression significantly increased reprogramming efficiency (FIG. 10) Together, these findings indicate that the induction of ERRy early in reprogramming was important for iPSC generation from efficiency in MEFs.

Similar gene expression patterns were observed during the reprogramming of human lung fibroblast IMR90 cells and adipose-derived stem cells (ADSCs), with the distinction that ERRa, rather than ERRy, was up-regulated (FIGs. lH-1 J). Parallel shRNA knockdown studies in the human IMR90 cells revealed a strong dependence on ERRa expression, alongside PGC-la and β expression, whereas depletion of ERRy was partially tolerated (-40% reduction in Nanog+ colonies, FIG. 2G), further indicating that ERRa rather than ERRy was important for iPSC generation in human fibroblasts. Furthermore, knockdown of p53, previously shown to increase iPSC generation

(Kawamura et al., 2009, Nature 460, 1140-1144), resulted in the hyper-induction of ERRa and Nanog during IMR90 cell reprogramming (FIGs. 2H and 21). Notably, the coincident knockdown of ERRy and p53 blocked iPSC generation in MEFs (FIG. 2J), indicating that the ERR signaling pathway was epistatic to p53-induced senescence in iPSC reprogramming.

To decipher the molecular mechanisms driving ERR/PGC-1 induction, IMR90 cells were infected with each of the four factors individually. Distinctive expression patterns for ERRa, PGC-la and -1β were observed 5 days after infection. Klf4, c-Myc and Sox2 were each able to efficiently induce ERRa, Oct3/4 and Klf4 both induced the expression of PGC-la, while c-Myc efficiently induced PGC-Ιβ expression (FIGs. 1K-1M). These patterns of gene induction indicate that all four reprogramming factors contributed in complementary ways to produce the operational ERRa transcriptional complex at day 5 (FIG. IN).

Further, the human ERRa gene was cloned into a lentiviral reporter which contained green fluorescence protein (GFP) and luciferase (FIG. IP). A separate constitutive active promoter EFla drove the expression of Neomycin resistance gene, which allowed the selection in cells with low expression of endogenous ERRa (FIG. IP). A sub-population of reprogramming cells which had high ERRa expression were isolated (FIG. 1Q). Human fibroblasts were transduced with lentiviral reprogramming factors which overexpressed Oct4, Sox2, Klf4, cMyc, Nanog and Lin28 (FIG. 1Q). The fibroblasts were transduced with ERRa reporter at the same time. GFP was not observed at day 1-2, but started to appear and reach its peak around day 4-6 (FIG. 1Q). Cells were sorted by GFP intensity at that stage to isolate the top 5% GFP positive cells (FIG. 1Q). ERRa reporter could be observed in day 5 reprogramming fibroblast, whereas the control which only transduced with reporter but not the reprogramming factors remained GFP negative (FIG. 1R). Reprogramming cells with ERRa reporter were analyzed by fluorescence activated cell sorting (FACS), P4 representing the GFP positive population (FIG. IS). Gene expression between ERRa and its targets in normal fibroblasts (control), fibroblasts transduced with reporter only (GF only), and GFP+ and GFP- population at reprogramming day 6 was compared (FIG. IT). ERRa and its targets were highly enriched in GFP+ population, compared to other samples, indicating that the ERRa reporter could fully capture the endogenous ERRa expression pattern (FIG. IT).

Example 2: ERRs directed a transient hyper-energetic state that functions in reprogramming

The increased expression of ERRs and their co-activators led to the question of whether acutely altered energy flux in the mitochondria may be fueling reprogramming. Mouse embryonic fibroblasts (MEFs) from the reprogramming factor doxycycline-inducible mouse (Carey et al., 2010, Nature methods 7, 56-59) reached an oxidative phosphorylation (OXPHOS) peak around days 2-4 after induction (FIG. 3A). Importantly, the maximal OXPHOS capacity was also significantly increased in early reprogramming MEFs (FIGs. 3B and 4A). A similar bioenergetics time course recorded on days 3 to 10 after OSKM infection in human IMR90 cells revealed a transient increase in mitochondrial OXPHOS that peaked 5 days after infection (2.5-5.0 fold increase in oxygen consumption rates (OCR)) accompanied by a sustained increase in glycolysis (2.5-3.5 fold increase in the extra-cellular acidification rates (ECAR)) (FIGs. 4B and 4C). Corresponding with the increased expression of energy regulators, the levels of both nicotinamide adenine dinucleotide (NADH) and cellular ATP were increased in IMR90 cells 5 days after infection, while the NAD+/NADH ratio decreased (FIGs. 4D-4F). Together, these results indicated that early reprogramming cells were in a hyper-energetic state. Closer examination of human lung fibroblast IMR90 cells revealed remarkably coincident temporal expression patterns of ERRa, PGC-la and β during the early stages of reprogramming that are consistent with the known role of PCGla/β as an ERR cofactor (days 3 to 8, FIG. 3C). ERRs and PGC-ls directly regulate an extensive network of genes controlling energy homeostasis including proteins involved in fatty acid oxidation, the tricarboxylic acid (TCA) cycle and OXPHOS. Therefore, the temporal expression pattern of various known regulators of cellular energy homeostasis during the reprogramming of IMR90 cells was examined. Remarkably, multiple key players in energy metabolism, including ATP synthase in mitochondria (ATP5G1), succinate dehydrogenase (SDHB), isocitrate dehydrogenase (IDH3 A) and NADH dehydrogenase (NDUFA2), reached peak expression at day 5 (FIGs. 3D and 4G). In addition, the induction of superoxide dismutase 2 (SOD2), NADPH oxidase 4 (NOX4) and catalase (CAT) by OSKM infection (FIG. 4H), indicated that the antioxidant program was being triggered coordinately with the ERRa-PGC-1 surge.

Pluripotent stem cells are known to mainly rely on glycolysis to produce energy. Previous studies have focused on the changes in glycolytic activity during reprogramming, as elevated glycolysis was linked to a faster cell cycle and iPSC generation (Folmes et al., 2011, Cell metabolism 14, 264-271; Panopoulos et al., 2012, Cell research 22, 168-177; Shyh-Chang et al., 2013b, Science, New York, NY, 339, 222-226). However, the present findings indicate that iPSC precursors underwent a transient increase in oxidative phosphorylation activity. The dynamics of ECAR support previous work showing that the glycolytic activity of the cells was gradually enhanced and maintained during reprogramming to a level similar to iPSCs (FIGs. 3A and 4C). In contrast, the transient burst of OXPHOS during reprogramming of both human and mouse cells had not been previously documented (FIGs. 3 A, 3B and 4B). This led to the investigation of the potential influence of the ERRa/γ surge on cell plasticity during reprogramming.

To examine a potential causal relationship between ERR expression and the induction of the hyper-energetic state, the metabolic activities of partially reprogrammed cells before and after targeted shRNA knockdowns were compared. Notably, the increase in OXPHOS and glycolysis was completely abrogated in cells depleted of ERRs (ERRa in IMR90 cells at day 5, and ERRy in MEFs at day 3; FIGs. 3E and 3F). Furthermore, the mitochondrial inhibitor Rotenone significantly reduced iPSC generation, though only when treatment was coincident with the observed hyper-energetic state, consistent with the OXPHOS burst being necessary for reprogramming (FIG. 3G). Together these data indicate that ERRa and γ regulate iPSC generation through the induction of a transient enhanced metabolic state that is important for somatic cell reprogramming.

Example 3: Bona fide iPSC progenitors were enriched for ERRy expression

Under standard conditions, only a small percentage of cells are successfully reprogrammed into iPSCs. Given the observation of a metabolic switch in the heterogeneous cell populations present in the early stages of reprogramming, it was hypothesized that the sub-population of bona fide iPSC progenitors might be enriched for the ERR-mediated hyper-energetic burst. Analysis of cell surface markers differentially expressed during mouse embryonic fibroblasts (MEFs) reprogramming revealed that early clusters of reprogramming cells lacked the expression of stem cell antigen 1 (Seal) and cluster of differentiation gene 34 (CD34) expression (FIGs. 5A and 5B). Upon OSKM induction, CD34 expression was promptly up-regulated, resulting in three distinct cell sub-populations in early reprogramming cells; Scal-CD34- double negative (DN), Scal+CD34+ double positive (DP), and Scal+CD34- single positive (SP) (FIG. 6A). Correlating with immunofluorescence staining (FIG. 5A), only a minor fraction (-3-5%) of early reprogramming cells were Scal-CD34- (FIG. 6A).

Strikingly, ERRy and PGC-Ιβ expression were ~10- and ~7-fold higher, respectively, in the early reprogramming DN cells compared to DP or SP cells, as determined by qPCR analysis (FIGs. 5C and 5D). Importantly, these early reprogramming DN cells exhibited significantly elevated extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) compared to DP or SP populations (FIGs. 5E and 5F), consistent with Scal-CD34- labeling a subpopulation of hyper-energetic cells. Notably, Scal-CD34- cells present in non-infected MEFs did not show elevated reprogramming efficiency (FIG. 6B). To test the hypothesis that this hyper-energetic state is important for reprogramming, the number of iPS colonies generated from isolated DN, SP and DP cells was compared. While DN cells comprised only ~5% of the infected cells, they were approximately 50- fold more efficient at generating iPSCs than the DP or SP populations, based on Nanog staining (FIG. 5G; 35.5% (DN) vs 0.6% (DP) or 0.8% (SP)). That is, nearly 75% of the iPSC colonies generated were derived from less than 5% of the infected cells, corresponding to a 1500% increased colony formation frequency (CFF). The iPSCs derived from the DN population showed ESC-like morphology and expressed high levels of alkaline phosphatase activity as well as pluripotency markers (FIGs. 6C-6E). In addition, embryoid body differentiation of the DN-derived iPSCs produced markers from each of the three germ layers (FIG. 6F). Moreover, iPSCs generated from DN cells contributed to the formation of chimeric mice with subsequent crosses demonstrating germline- competency (FIGs. 6G and 6H). Collectively, these data indicate that the hyper-energetic cells identified in early reprogramming represented by the DN population, were bona fide reprogramming precursors that generate iPSCs at high efficiency.

Example 4: Reprogramming cells underwent an ERR-mediated OXPHOS burst

To better understand the molecular underpinnings of cell reprogramming and cell fate determination, the complete transcriptomes, determined by RNA-Sequencing, of somatic fibroblasts (non-infected mouse embryonic fibroblasts (MEFs), mock infected MEFs at day 5), intermediate reprogramming cell populations (DN, DP, SP, unsorted day 5 cells) and pluripotent stem cells (iPSCs generated from the DN population and mESCs) were compared. Not unexpectedly, distance matrix and clustering analyses grouped the cell types into the above 3 categories (FIGs. 7A and 7B). The clear separation of the DN population from the pluripotent stem cells indicated that these transitional cells have yet to adopt a durable pluripotency fate. Furthermore, the more subtle separation of the DN population from the other intermediate reprogramming cells in the cluster analysis indicated that they should express a unique gene signature associated with enhanced reprogramming efficiency (FIG. 7B). Indeed, the expression of selected pluripotency markers and key cell cycle genes in the DN population more closely resembled that observed in ESCs and iPSCs than found in the DP and SP populations (FIGs. 7C and 7D). However, a majority of other stem cell markers including ERR and Nanog were not enriched in the DN population. Thus, the DN cell population is in a definable transcriptional and metabolic state that appeared to facilitate efficient progression toward pluripotency.

Pivotal pathways controlling the enhanced reprogramming efficiency of DN cells were identified by comparing transcriptomes between DN, DP or SP populations. Interestingly, KEGG PATHWAY analysis, a process that maps molecular datasets, of the differentially regulated genes identified (oxidative phosphorylation) OXPHOS as the most significantly altered pathway in DN cells (FIGs. 8A and 8B). Furthermore, a comparison of the expression levels of genes involved in cellular energy metabolism revealed that the majority were upregulated in the DN population (FIG. 7E), consistent with the DN population comprising the most hyper-energetic cells. This supported the idea that a key feature of bona fide reprogramming is directing progenitors to enter a hyper-energetic state.

Finally, to determine if a causal association exists between the ERR surge and the increased expression of energy metabolism genes, the transcriptional consequences of ERRa knockdown in reprogramming IMR90s were examined. The expression of a large number (1061) of metabolic genes was significantly affected by ERRa depletion (FIG. 8C). In particular, dramatic decreases in the expression of regulators of cellular energy homeostasis including NADH dehydrogenases (NDUF), succinate dehydrogenases (SDH), mitochondrial respiratory chains (COX), ATPase, and ATP synthases in mitochondria were seen (FIG. 7F). The fact that ERRa depletion influenced the expression of a plethora of mitochondrial genes, including a variety of genes in Complex I-V, and the TCA cycle (FIG. 7F), further supported the conclusion that transient ERRa/γ expression induced an equally transient OXPHOS burst, facilitating reprogramming and enabling the transition from the somatic to pluripotent state (FIG. 7G).

Recent single-cell expression analyses revealed a requirement for early expression of ERR (Buganim et al., 2012), previously demonstrated by Feng et al. to be a 'Myc substitute' (Feng et al., 2009). In this model, Sox2 and ERR mutually enhanced each other's expression and initiated the reprogramming process, presumably in all transfected cells (Buganim et al., 2012). Here a downstream requirement for other ERR family members, ERRa and ERRy, together with their coactivators PGC-Ια/β, that define a distinct sub-population of cells with dramatically enhanced efficiency for iPSC generation was revealed. A transient surge in ERRa/γ and PGCla/β expression during reprogramming induced an early metabolic switch epitomized by a transient OXPHOS burst and sustained enhanced glycolysis. These findings complement a recent study demonstrating stage- specific roles for HIFla and HIF2a in the early increase in glycolytic metabolism (Mathieu et al., 2014, Haematologica 99, el 12-114). The surprising functional divergence between ERRa/γ and ERR adds a new dimension to the model for reprogramming, in which transient ERRa/γ expression is important to drive an early hyper-energetic metabolic state characterized by increased OXPHOS and glycolysis, whereas ERR is important for establishing induced pluripotency at later reprogramming stages (Chen et al., 2008, Cell 133, 1106-1117; Martello et al., 2012, Cell stem cell 11, 491-504; Zhang et al., 2008, The Journal of biological chemistry 283, 35825-35833). The fact that metabolic reprogramming is a prerequisite of induced pluripotency revealed the functional relevance of a unique metabolic state to achieving cell plasticity. Furthermore, via cell sorting of Scal/CD34 double negative cells it was demonstrated that ERRy and PGC-Ιβ are early markers of a newly defined sub-group of reprogramming progenitors. In summary, these studies characterize a previously unrecognized, ERR/PGC-1 dependent metabolic switch prior to establishment of induced pluripotency in both human and mouse cells (FIG. 7G).

Example 5: ERRs function through IDH and a-ketoglutarate to regulate reprogramming

ERRa/γ regulate IDH gene expression and control the NAD+/NADH level in the cells during reprogramming (FIG. 9A). As a key co-enzyme of histone demethylase, α-ketoglutarate regulates the enzyme activity of several histone demethylases, such as KDM2 and KDM5, which act on

H3K4Me2/3 and H3K9Me3. KDM stands for lysine (K) specific demethylase. As shown in FIG. 9A, ERRy activates IDH3, which in turn catalyzes the oxidation of isocitrate to α-ketoglutarate. During the reaction, NAD+, as electron donor, is converted to NADH, thus decreasing the amount of NAD+ and increasing the amount of NADH and decreasing the NAD+/N ADH ratio (increasing

NADH/NAD+ ratio)(FIG. 9B). Under the regulation of α-ketoglutarate, histone demethylases demethylate histones at the lysine site. For example, H3K4Me3 is demethylated to H3K4Mel. The demethylation of the histone leads to global changes in enhancer and promoter landscape, and subsequently transcriptome dynamics.

IDH3 gene expression was upregulated during reprogramming of a cell population (FIG. 9C).

On day six of reprogramming, the relative expression levels of IDH3oc, ΙϋΗ3β, and IDH3y genes were measured. To evaluate the IDH3 gene expression in response to ERRa expression level, fibroblast cells were infected with a lentivirus expressing GFP under the control of human ERRa promter. GFP expression was used to mark infected cells and was subsequently used to FACS sort the cells into those with high infection (ERRoc-GFP+) and low infection (ERRoc-GFP-). IDH3 α, β and γ gene expression was upregulated in cells expressing high levels of ERRa (GFP+ cells) relative to corresponding control cells. Wild type (WT) fibroblasts, which are not infected, and cells with mock infection (infected with vector only) serve as controls.

The α-ketoglutarate level in early reprogramming (day 5) depends on ERRy level in mouse reprogramming cells. In cells where ERRy expression level was reduced through shRNA silencing, the relative abundance of α-ketoglutarate was lower (FIG. 9D).

Inhibition of a-ketoglutarate-dependent histone demethylases led to reduced reprogramming efficiency (FIGs. 9E and 9F). Fewer iPS colonies were formed after treatment of D-2- hydroxyglutarate (D-2-HG) or L-2 -hydroxy glutarate (L-2-HG), which competitively inhibit a- ketoglutarate-dependent histone demethylases. Reprogramming efficiency was significantly decreased after D-2-HG or L-2-HG treatment. L-2-HG is known to be a more potent competitor than D-2-HG. Correspondingly, L-2-HG treatment led to more significant decrease of reprogramming (n=4-6, *P<0.05, *P<0.01) (FIGs. 9E and 9F). The determination of the abundance of a-ketoglutarate is well known to those skilled in the art. For example, commercial kits are available to quantify a- ketoglutarate. See, e.g., http://www.biovision.com/alpha-ketoglutarate-colorimetric-fl uorometric- assay-kit-2943.html, the content of which is incorporated by reference.

Example 6: ERRa labels a metabolically active subpopulation during early reprogramming

During early reprogramming, ERRa expressing cells and ERRa non-expressing cells were separated by GFP -based FACS analysis and RNA-seq was performed on each cell population (FIG. 10A). KEGG gene ontology analysis was performed to identify the genes enriched in the ERRa expressing population. The highly expressed genes in GFP+ cells were associated with oxidative phosphorylation and other metabolic processes, which correlate with the known function of ERRa. The KEGG gene ontology analysis is well known to those skilled in the art. See, e.g., Mao et al., Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary, Bioinformatics, 2005, 21(19): 3787-93, the content of which is incorporated by reference.

Example 7: The promoter/enhancer landscapes are different between ERRa+ and ERRa- reprogramming population

The promoter/enhancer landscapes were characterized in reprogramming populations. In

ERRa+ populations, H3 histone lysine 4 dimethylated (H3K4Me2) levels were decreased in the enhancer/promoter region of genes that function in fibroblast identity, such as SNAI1 and ZEB2, compared with levels in cells that did not express detectable ERRa. This suggests that ERRa may be involved in the silencing of fibroblast specific epigenetic modifications.

The opposite changes were observed in genes that function in reprograming, such as Oct4 and

Sox2. That is, the H3K4Me2 level was increased in the enhancer/promoter region of these genes, suggesting that ERRa+ population contains cells whose pluripotency circuitry are poised to be activated.

Methods for characterizing the promoter/enhancer landscape measurement is well known to those skilled in the art. One example is to use Chromatin Immunoprecipitation assays (ChIP assays) to identify a polynucleotide associated with a histone with a modified amino acid, such as methylated lysine and quantify the level of the modification of the amino acid in a cell population. See, e.g., Chromatin Assembly and Analysis, Current Protocols in Molecular Biology, Chapter 21 (Ausubel et al. eds., 2011), the content of which is incorporated by reference. The experiments described above were performed with the following methods and materials.

Methods Mouse embryonic fibroblasts (MEFs) were isolated from embryonic day (E) 13.5 embryos obtained from wild-type and ERRy-deficient mice (Alaynick et al., 2007). Retroviruses and lentiviruses were produced in HEK293T cells, and 12 to 14 days after infection MEFs were fixed for staining. Reprogramming of MEFs and human lung fibroblast IMR90s was done as previously described (Kawamura et al., 2009, Nature 460, 1140-1144; Sugii et al., 2010, Proceedings of the National Academy of Sciences of the United States of America 107, 3558-3563; Takahashi et al., 2007, Cell 126, 663-676; Wei et al., 2013, Cell stem cell 2013 Jul 3;13(l):36-47; Yu et al., 2007, Science, New York, NY, 318, 1917-1920). Reprogramming

Mouse reprogramming was performed as previously described, with modifications

(Kawamura et al., 2009, Nature 460, 1140-1144; Sugii et al., 2010, Proceedings of the National Academy of Sciences of the United States of America 107, 3558-3563; Takahashi and Yamanaka, 2006, Cell 126, 663-676; Yu et al., 2007, Science, New York, NY, 318, 1917-1920). For retroviral reprogramming, pMX-based retroviral vectors harboring each of the mouse reprogramming genes (c- Myc, Klf4, Oct4, or Sox2; Addgene) were transfected along with gag/pol and VSV-G envelope genes into HEK293T cells using Lipofectamine (Invitrogen). For lentivirus production, tet-inducible lentiviral vectors containing OSKM (Wei et al., 2009) were transfected together with pspax2 and pMD2.G (Addgene). Two days after transfection, supematants containing viruses were collected and filtered through a 0.45-μιη filter. For retroviral reprogramming, a total of lxlO 4 (MEFs (passages 2- 4) were infected with retroviral mixtures in 12-well plates (day 0). One well was used to quantify cell numbers for each group. Control cells were transduced with GFP retrovirus alone to determine infection efficiencies. On day 2, one-fifth of the cells were passaged onto gelatin-coated plates with MEF feeder layers (Millipore) and cultured in Knockout (KO)-DMEM containing L-glutamine (2 mM), nucleosides (lx), NEAA (nonessential amino acid; lx), β-mercaptoethanol (lx), and LIF (1,000 units/mL), with 15% knockout serum replacement (KSR, Millipore or Invitrogen). Media was changed every other day. On days 7-10, cells were either immunostained for assessing efficiencies or derived into individual colonies for downstream analyses.

For reprogramming of IMR90 fibroblasts, cells were infected with the combination of human reprogramming retroviruses (c-Myc, Klf4, Oct4, or Sox2 in pMXs; Addgene) that had been produced in 293T cells cotransfected with gag/pol and VSV-G as described above. EGFP retrovirus was included at 1/40 volume as internal controls for transduction efficiencies. One well from each group was reserved for quantifying cell numbers. On day 2, cells were passaged onto 12-well plates containing MEF feeder cells (for generating iPSCs) or onto 6-cm dishes without MEF (for collecting mRNAs at day 5). Cells were cultured in Knockout (KO)-DMEM plus 20% knockout serum replacement (KSR) supplemented with β- mercaptoethanol (0.1%), NEAA (lx), Glutamax (1%), and 10 ng/mL FGF2. Media was changed every day. Reprogramming of MEFs using an inducible lentiviral system was performed as previously described (Wei et al., 2009). Doxycyline-inducible MEFs were isolated from Gt(ROSA)26Sortml(rtTA*M2)Jae Collaltm4(tetO-Pou5fl,-Sox2,-Klf4,- Myc)Jae/J mice (Jackson Labs) and reprogramming was performed as previously described (Carey et al., 2010). ERRy-iKO mice were generated by crossing ERRylox/lox (generously provided by Johan Auwerx) and B6.Cg-Tg(CAG-cre/Esrl)5Amc/j (Jackson Labs, Cat. No. 004682) and ERRy-iKO

MEFs were isolated from Embryonic Day 14.5 embryos. The ERRy-iKO MEFs were reprogrammed using the inducible lentiviral system (Wei et al., 2009) and were treated by 4-hydroxytamoxifen (4- OHT) at final concentration 50nM from reprogramming day 0 to day 2. All procedures involving hiPS/hES cells were approved by the Embryonic Stem Cell Research Oversight Committee at the Salk Institute.

Microarray analysis

RNA was extracted from OSKM-induced MEFsat days 3, 4, 5, 6, 7 with shERRa and GFP- infected IMR90 cells at day 5 using RNEASY® (QIAGEN). RNA was DNASE® (AMBION) treated, reverse transcribed to first-strand cDNA using a SUPERSCRIPT® II kit (Invitrogen), and then treated with RNase. Global gene expression analysis was performed as described (Narkar et al., 2011, Cell Metab 13, 283-293.) .

RNA-Seq library generation

Total RNA was isolated from cell pellets treated with RNALATER® using the RNA mini kit

(Qiagen) and treated with DNASEI® (Qiagen) for 30 min at room temperature. Sequencing libraries were prepared from 100-500ng total RNA using the TRUSEQ® RNA Sample Preparation Kit v2 (Illumina) according to the manufacturer's protocol. Briefly, mRNA was purified, fragmented, and used for first-, then second-strand cDNA synthesis followed by adenylation of 3' ends. Samples were ligated to unique adapters and subjected to PCR amplification. Libraries were then validated using the 2100 BIOANALYZER® (Agilent), normalized, and pooled for sequencing. RNA-Seq libraries prepared from two biological replicates for each experimental condition were sequenced on the Illumina HISEQ® 2000 using bar-coded multiplexing and a lOObp read length. High- throughput sequencing and analysis

Image analysis and base calling were performed with Illumina CASAVA®-1.8.2. This yielded a median of 29.9M usable reads per sample. Short read sequences were mapped to a UCSC mm9 reference sequence using the RNA-sequence aligner STAR® (Dobin et al., 2013,

Bioinformatics. 29(1): 15-21). Known splice junctions from mm9 were supplied to the aligner and de novo junction discovery was also permitted. Differential gene expression analysis, statistical testing and annotation were performed using CUFFDIFF® 2 (Trapnell et al., 2013, Nat Biotechnol. 31(1):46- 53). Transcript expression was calculated as gene-level relative abundance in fragments per kilobase of exon model per million mapped fragments and employed correction for transcript abundance bias (Roberts et al., 2011, Genome biology 12, R22). RNA-Seq results for genes of interest were also explored visually using the UCSC Genome Browser. Gene Expression Analysis by qPCR

Samples were run in triplicate and expression was normalized to the levels of the housekeeping controls RplpO (36b4) for human and mouse. Samples were analyzed by qPCR, using SYBR® Green dye (Invitrogen). Endogenous versus exogenous reprogramming gene expression was performed as previously reported (Y ang et al., 2006, Cell 126, 801-810). Statistical comparisons were made using Student's t test. Error bars are mean ± SEM.

Immunohistochemistry and Cell Staining

Cells grown on dishes were immunostained using the VectaStain ABC kit and IMMPACT® DAB substrate (Vector Lab) with rabbit anti-mouse Nanog (Calbiochem), anti-human Nanog (Abeam).

Bioenergetic Assay

Measurements were made with a SEAHORSE® XF instrument. Adherent cells were seeded in 96-well SEAHORSE® cell culture microplates at 20,000 per well 16 hours before measurement. Approximately 60 minutes prior to the assay, culture media was exchanged with a low-buffered

DMEM assay media with 20mM glucose and ImM sodium pyruvate. For measurement of maximal oxidative phosphorylation (OXPHOS) capacity, Oligomycin (final concentration 1.2μΜ), Carbonyl cyanide-4

(trifluoromethoxy)phenylhydrazone (FCCP, final concentration 4μΜ), Antimycin A (final concentration ΙμΜ) and Rotenone (final concentration 2μΜ) were added per manufacturer's instruction. The oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) value were further normalized by measuring the cell number in each well using HOECHST® 33342 staining followed by quantification of fluorescence at 355 excitation and 460 emission. The baseline OCR was defined by the average value for the first 4 measurements. The maximal OXPHOS capacity was defined by the difference between average OCR after addition of Carbonyl cyanide-4

(tafluoromethoxy)phenylhydrazone (FCCP, minute 88-120) and OCR after addition of antimycin A and rotenone (minute 131-163). shRNA knockdown

shRNA constructs for mouse and human ERRa/γ and PGC-Ια/β , as well as control shRNA, were purchased from OPENBIOSYSTEMS®. Lentiviral shRNA were produced in 293T cells and polybrene ^g/ml) was used in transduction. For reprogramming experiments, cells were transduced with lentiviral shRNA at day 0 of reprogramming.

Live cell staining, alkaline phosphatase staining, and cell sorting

Cells were incubated with culture media containing FITC-conjugated anti-Seal (1:50,

Biolegend) and Phycoerythrin (PE)-conjugated anti-CD34 (1 : 100, Biolegend) antibodies for 30 minutes, washed, then maintained in culture. Alkaline phosphatase staining was performed on formaldehyde-fixed cells using 4-Nitro blue tetrazolium chloride (450mg/ml) and 5- Bromo-4-chloro- 3-indolyl phosphate (175mg/ml) in NTMT solution (0.1M NaCl, 0.1M Tris PH9.5, 50mM MgC12, and 0.1% TWEEN®20). OSKM-infected cells were fluorescence-activated cell sorted (FACS, FACSAria, BD Biosciences) 5 days after infection using FITC-conjugated anti-Seal (1 : 100) and phycoerythrin (PE)-conjugated anti-CD34 antibodies (1:200), and subsequently cultured for iPS cell formation. In vitro differentiation

iPS cells were differentiated in vitro by embryoid body formation (Kawamura et al., 2009, Nature 460, 1140-1144) with some modification. Briefly, hanging droplets (1500 single cells at 60 cells/ μΐ in mouse ES cell media without LIF) were suspended on petri-dish lids for two or three days prior to suspension culture. Six days after differentiation, embryoid bodies were plated on gelatinized dishes for 1-2 weeks. Gene expression of pluripotency markers (Oct4, Sox2, Nanong, and E-Ras) and germ-layer markers (AFP, Pdxl, and GATA6 for endoderm; GATA4, SM a-actin, and Cardiac a- actin for mesoderm; Cdx2, Pax6, and Mtap2 for ectoderm) was determined by QPCR. Values were standardized to GAPDH and normalized to undifferentiated mouse ES cells. Blastocyst injections for chimeric mice

Mouse iPS cells (derived from C57BL/6N MEFs) were injected into BALB/c host blastocysts and transferred into 2.5 dpc ICR pseudopregnant recipient females. Chimerism was ascertained after birth by the appearance of black coat color (from iPS cell) in albino host pups. High-contribution chimeras were crossed to C57BL/6N mice to test for germline transmission.

NAD+/NADH assay

Intracellular NAD+ and NADH levels were measured by NAD+/NADH Assay Kit (Abeam, San Francisco, CA) as per manufacturer's instructions. Briefly, 2x 105 cells were washed with cold PBS and extracted with NADH/NAD Extraction Buffer by two freeze/thaw cycles (20 min on dry ice, then 10 min at room temperature). Total NAD (NADt) and NADH were detected in 96-well plates and color was developed and read at 450 nm. NAD/NADH Ratio is calculated as: [NADt - NADH]/NADH. Measurement of ATP

Intracellular ATP was measured by ATP assay kit (Sigma-Aldrich) according to

manufacturer's directions. Briefly, lx 104 cells were washed with cold PBS and ATP extracted with ATP extraction buffer. Amounts of ATP were detected in 384-well plates and measured with a luminometer.

ChlP-Seq library construction, sequencing and data analysis.

ChlP-Seq libraries were constructed using standard Illumina protocols, validated using the 2100 Bio Analyzer (Agilent), normalized and pooled for sequencing. Libraries were sequenced on the Illumina HiSeq 2500 using barcoded multiplexing and a 50-bp read length. Short DNA reads were demultiplexed using Illumina CASAVA vl.8.2. Reads were aligned against the mouse mm9 using the Bowtie aligner allowing up to 2 mismatches in the read. Only tags that map uniquely to the genome were considered for further analysis. Subsequent peak calling and motif analysis were conducted using HOMER, a software suite for ChlP-Seq analysis. The methods for HOMER, which are described below, have been implemented and are freely available at http://biowhat.ucsd.edu/homer/. One tag from each unique position was considered to eliminate peaks resulting from clonal amplification of fragments during the ChlP-Seq protocol. Peaks were identified by searching for clusters of tags within a sliding 200 bp window, requiring adjacent clusters to be at least 1 kb away from each other. The threshold for the number of tags that determine a valid peak was selected for a false discovery rate of <0.01, as empirically determined by repeating the peak finding procedure using randomized tag positions. Peaks are required to have at least 4-fold more tags (normalized to total count) than input or IgG control samples and 4-fold more tags relative to the local background region (10 kb) to avoid identifying regions with genomic duplications or non-localized binding. Peaks are annotated to gene products by identifying the nearest RefSeq transcriptional start site. Visualization of ChlP-Seq results was achieved by uploading custom tracks onto the UCSC genome browser.

RNA-seq and data analysis

Total RNA was isolated using Trizol (Invitrogen) and the RNeasy mini kit (Qiagen). RNA purity and integrity were confirmed using an Agilent Bioanalyzer. Libraries were prepared from lOOng total RNA (TrueSeq v2, Illumina) and singled-ended sequencing performed on the Illumina HiSeq 2500, using bar-coded multiplexing and a 100 bp read length, yielding a median of 34.1M reads per sample. Read alignment and junction finding was accomplished using STAR and differential gene expression with Cuffdiff 2 utilizing UCSC mm9 as the reference sequence.

Chromatin immunoprecipitation Cells were then harvested for ChIP assay. Briefly, after fixation, nuclei were isolated, lysed and sheared with a Diagenode Bioruptor to yield DNA fragment sizes of 200-1000 base pairs followed by immunoprecipitation using H3K4Me2 antibodies (Abeam ab32356). ChlP-Seq data analysis

The procedure was as previously described (Barish et al, 2010; Ding et al, 2013). Briefly, short DNA reads were demultiplexed using Illumina CASAVA vl.8.2. Reads were aligned against the human hgl8 (NCBI Build 36.1) using the Bowtie aligner allowing up to 2 mismatches in the read. Only tags that map uniquely to the genome were considered for further analysis. Subsequent peak calling and motif analysis were conducted using HOMER, a software suite for ChlP-Seq analysis. The methods for HOMER, which are described below, have been implemented and are freely available at http://biowhat.ucsd.edu/homer/. One tag from each unique position was considered to eliminate peaks resulting from clonal amplification of fragments during the ChlP-Seq protocol. Peaks were identified by searching for clusters of tags within a sliding 200 bp window, requiring adjacent clusters to be at least 1 kb away from each other. The threshold for the number of tags that determine a valid peak was selected for a false discovery rate of <0.01, as empirically determined by repeating the peak finding procedure using randomized tag positions. Peaks are required to have at least 4-fold more tags (normalized to total count) than input or IgG control samples and 4-fold more tags relative to the local background region (10 kb) to avoid identifying regions with genomic duplications or non-localized binding. Peaks are annotated to gene products by identifying the nearest RefSeq transcriptional start site. Visualization of ChlP-Seq results was achieved by uploading custom tracks onto the UCSC genome browser.

Other Embodiments

From the foregoing description, it will be apparent that variations and modifications may be made to the invention described herein to adopt it to various usages and conditions. Such embodiments are also within the scope of the following claims.

The recitation of a listing of elements in any definition of a variable herein includes definitions of that variable as any single element or combination (or subcombination) of listed elements. The recitation of an embodiment herein includes that embodiment as any single embodiment or in combination with any other embodiments or portions thereof.

All patents and publications mentioned in this specification are herein incorporated by reference to the same extent as if each independent patent and publication was specifically and individually indicated to be incorporated by reference.