Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RESOURCE MAPPING BASED ON BANDWIDTH PART
Document Type and Number:
WIPO Patent Application WO/2019/160458
Kind Code:
A1
Abstract:
There is disclosed a method of operating a user equipment in a radio access network, the user equipment being configured with a set of bandwidth parts, the user equipment being operable for communicating utilising an activated bandwidth part of the set of bandwidth part. The set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics. Further, the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics. The user equipment (10) further operates with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part. The method comprises receiving control signaling in the common search space based on the first set of characteristics while the second bandwidth part is activated. The disclosure also pertains to related devices and methods.

Inventors:
BALDEMAIR ROBERT (SE)
DAHLMAN ERIK (SE)
FALAHATI SOROUR (SE)
LARSSON DANIEL (SE)
PARKVALL STEFAN (SE)
Application Number:
PCT/SE2018/050156
Publication Date:
August 22, 2019
Filing Date:
February 16, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ERICSSON TELEFON AB L M (SE)
International Classes:
H04L1/00; H04L5/00; H04W72/04
Other References:
SAMSUNG: "Wider Bandwidth Operations", vol. RAN WG1, no. Prague, Czech Republic; 20170821 - 20170826, 20 August 2017 (2017-08-20), XP051316454, Retrieved from the Internet [retrieved on 20170820]
CATT: "Remaining aspects of BWP operation", vol. RAN WG1, no. Prague, Czechia; 20171009 - 20171013, 3 October 2017 (2017-10-03), XP051352794, Retrieved from the Internet [retrieved on 20171003]
MEDIATEK INC: "Remaining Details on Bandwidth Part Operation in NR", vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), XP051341510, Retrieved from the Internet [retrieved on 20171008]
NOKIA ET AL: "On remaining aspects of BWPs", vol. RAN WG1, no. Prague, CZ; 20171009 - 20171013, 8 October 2017 (2017-10-08), XP051341781, Retrieved from the Internet [retrieved on 20171008]
Attorney, Agent or Firm:
BOU FAICAL, Roger (SE)
Download PDF:
Claims:
Claims

1 . Method of operating a user equipment (10) in a radio access network, the user

1325 equipment (10) being configured with a set of bandwidth parts, the user equipment

(10) being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts;

wherein the set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set

1330 of characteristics, the second bandwidth part of the set being associated to a second set of characteristics;

wherein further the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics;

1335 wherein the user equipment (10) further operates with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part;

the method comprising receiving control signaling in the common search space based on the first set of characteristics while the second bandwidth part is

1340 activated.

2. User equipment (10) for a radio access network, the user equipment (10) being adapted for being configured with a set of bandwidth parts, the user equipment (10) being operable for communicating utilising an activated bandwidth part of the set of

1345 bandwidth parts;

wherein the set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics;

1350 wherein further the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics;

74256W01 42/46 wherein the user equipment (10) further is adapted to operate with a common search space for control signaling, the common search space being included

1355 in the first bandwidth part and the second bandwidth part;

wherein the user equipment (10) further is adapted to receive control signaling in the common search space based on the first set of characteristics while the second bandwidth part is activated.

1360 3. Method of operating a network node (100) in a radio access network, the method comprising configuring a user equipment (10) with a set of bandwidth parts, the user equipment (10) being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts;

wherein the set of bandwidth parts comprises a first bandwidth part and a

1365 second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics;

wherein further the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and

1370 the second set of characteristics;

wherein the user equipment (10) is configured to operate with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part;

the method comprising transmitting control signaling in the common

1375 search space based on the first set of characteristics while the user equipment (10) is active on the second bandwidth part.

4. Network node (100) for a radio access network, the network node (100) being adapted for configuring a user equipment (10) with a set of bandwidth parts, the user

1380 equipment (10) being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts;

wherein the set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second

1385 set of characteristics;

74256W01 43/46 wherein further the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics;

wherein the user equipment (10) is configured to operate with a common

1390 search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part;

the network node being adapted for transmitting control signaling in the common search space based on the first set of characteristics while the user equipment (10) is active on the second bandwidth part.

1395

5. Method or device according to one of the preceding claims, wherein a frequency domain extension of the common search space is included in the first bandwidth part and the second bandwidth part.

1400 6. Method or device according to one of the preceding claims, wherein the at least one characteristic corresponds to a scrambling code and/or identifier and/or numerology and/or spreading code and/or modulation and/or coding scheme.

7. Method or device according to one of the preceding claims, wherein the second

1405 bandwidth part comprises the first bandwidth part.

8. Method or device according to one of the preceding claims, wherein the first bandwidth part is a default bandwidth part or initial bandwidth part.

1410 9. Method or device according to one of the preceding claims, wherein the at least one characteristic influences error decoding.

10. Method or device according to one of the preceding claims, wherein the control signaling comprises a bit field indicating a resource allocation.

1415

1 1 . Method or device according to claim 10, wherein the bit field is mapped to a resource structure according to the first bandwidth part.

74256W01 44/46

12. Method or device according to one of claims 10 or 11 , wherein the resource 1420 allocation pertains to signaling to be received by the user equipment (10).

13. Program product comprising instructions adapted for causing processing circuitry to control and/or perform a method according to one of claims 1 , 3, or 5 to 12.

1425 14. Carrier medium arrangement carrying and/or storing a program product according to claim 13.

1430

1435

74256W01 45/46

Description:
Resource mapping based on bandwidth part

Technical Field

This disclosure pertains to radio access technology, in particular in the context of 5G networks.

Background

In radio access networks like NR networks, user equipments (UEs) may be configured to operate of different bandwidth parts of a carrier, between which they may be switched, e.g. with control information messages like DCI messages. This possibility brings increased flexibility and may improve performance, however it may require new ways of managing and controlling UEs.

Summary

The present disclosure aims at providing new ways of managing UEs in radio access networks, in which the UEs may be able to switch between bandwidth parts. In particular, consistent, reliable and efficient handling of control signaling in common search spaces may be facilitated. The approaches are particularly advantageously implemented in a 5 th Generation (5G) telecommunication network or 5G radio access technology or network (RAT/RAN), in particular according to 3GPP (3 rd Generation Partnership Project, a standardisation organization). A suitable RAN may in particular be a RAN according to NR, for example release 15 or later, or LTE Evolution.

There is disclosed a method of operating a user equipment in a radio access network. The user equipment is configured with a set of bandwidth parts, the user equipment being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts. The set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics. The first set of characteristics and the second set of

74256W01 1/46 characteristics comprise at least one characteristic different between the first set and the second set of characteristics. The user equipment further operates and/or is configured with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part. The method comprises receiving control signaling in the common search space based on the first set of characteristics while the second bandwidth part is activated. The method may also comprise communicating based on the received control signaling.

Moreover, a user equipment for a radio access network is considered. The user equipment is adapted for being configured with a set of bandwidth parts, the user equipment being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts. The set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics. Furthermore, the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics. The user equipment further is adapted to operate, and/or to be configured, with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part. The user equipment further is adapted to receive control signaling in the common search space based on the first set of characteristics while the second bandwidth part is activated. The user equipment may be adapted for communicating based on the received control signaling. It may be considered that the user equipment comprises, and/or is adapted for utilising, processing circuitry and/or radio circuitry, in particular a receiver and/or transceiver and/or transmitter, for receiving and/or communicating.

A method of operating a network node in a radio access network is described. The method comprises configuring a user equipment with a set of bandwidth parts, the user equipment being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts. The set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a

74256W01 2/46 second set of characteristics. The first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics. The user equipment is configured, e.g. by the network node and/or by construction, to operate with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part. The method comprises transmitting control signaling in the common search space based on the first set of characteristics while the user equipment is active on the second bandwidth part.

According to another approach, there is proposed a network node for a radio access network. The network node is adapted for configuring a user equipment with a set of bandwidth parts, the user equipment being operable for communicating utilising an activated bandwidth part of the set of bandwidth parts. The set of bandwidth parts comprises a first bandwidth part and a second bandwidth part, the first bandwidth part of the set being associated to a first set of characteristics, the second bandwidth part of the set being associated to a second set of characteristics. Further, the first set of characteristics and the second set of characteristics comprise at least one characteristic different between the first set and the second set of characteristics. The user equipment is configured, e.g. by the network node and/or by construction, to operate with a common search space for control signaling, the common search space being included in the first bandwidth part and the second bandwidth part. The network node is adapted for transmitting control signaling in a common search space based on the first set of characteristics while the user equipment is active on the second bandwidth part. The network node may comprise, and/or be adapted to utilise, processing circuitry and/or radio circuitry, in particular a transmitter and/or transceiver and/or receiver, for transmitting and/or configuring, and/or for communicating, e.g. to or with one or more UEs.

It may generally be considered that a frequency domain extension of the common search space is included in the first bandwidth part and the second bandwidth part. A bandwidth part may generally extend in frequency domain.

74256W01 3/46 A common search space may be a search space configured or configurable for one or a plurality of UEs. A search space may generally be a resource range, in particular with extension in frequency space. A common search space may in some cases be associated to a common identifier or code or scrambling, e.g. identified with system information, e.g. a SS block. It may be considered that a common search space is associated to a control channel, in particular a PDCCH or PSCCH. The control signaling may be signaling on such a channel, and/or comprise a control information message like a DCI message or SCI message.

Receiving control signaling may comprise, and/or be based on, demodulating and/or decoding the control signaling. Decoding may be based on at least one characteristic. Receiving control signaling in a search space may in general comprise expecting and/or searching for the control signaling on resources of the search space, in particular in an associated frequency range. The common search space may generally be configured and/or predefined, and/or indicate with system information.

In some variants, the at least one characteristic may correspond to a scrambling code and/or identifier and/or numerology and/or spreading code, and/or modulation and/or coding scheme. A scrambling code may be used for scrambling bits for transmission. An identifier may be a specific form of scrambling code, used e.g. for scrambling of error coding bits, e.g. CRC and/or parity bits.

It may be considered that the second bandwidth part may comprise the first bandwidth part. Thus, at least part of the frequency resources may be shared. However, in particular due to the difference in characteristic/s, reception of the control signaling based on the second set of characteristics associated to the second bandwidth may fail (e.g., decoding may not be successful). Decoding may generally comprise error detection, which may indicate unsuccessful decoding.

It may be considered that the first bandwidth part may be a default bandwidth part or initial bandwidth part. An initial bandwidth part may be a bandwidth part indicated by, and/or based on, and/or related to, initial random access, e.g. before RRC connected mode has been achieved. An initial bandwidth part may be indicated with system

74256W01 4/46 information, e.g. a SS block, or be predefined. A default bandwidth part may be configured with control signaling, e.g. with a RRC configuration. The default bandwidth part may be a bandwidth part a UE falls back to after a configured or configurable timer runs out, if not instructed otherwise, e.g. to reset the timer.

Generally, the at least one (different) characteristic may influence decoding or error decoding, e.g. by scrambling error coding bits like CRC bits or parity bits. Accordingly, the difference in this characteristic may lead to unsuccessful decoding of the control signaling if the second bandwidth part, respectively the associated second set of characteristics is used for decoding.

In some cases, the control signaling may comprise a bit field indicating a resource allocation, in particular a frequency resource allocation. In particular, the bit field may be mapped to a resource structure according to the first bandwidth part. The at least one different characteristic may be a unit size of frequency resources the bit field is mapped to, e.g. if the bit field represents a bit pattern as bit map, in which each bit may indicates a unit of PRBs. In other variants, the bit field may indicate a frequency range within the bandwidth part, e.g. by indicating starting subcarrier or PRB or PRB group, and ending subcarrier or PRB or PRB group, and/or an interval size in PRBs or subcarriers or PRB groups. Such a unit (in particular, PRB group size) may be different between the characteristics, e.g., due to the bandwidth parts having differently sized frequency intervals covered by same or similar sized bit fields, or due to different subcarrier spacing. A unit size may be configurable, e.g. with a configuration of a bandwidth part. It may be considered that the resource allocation pertains to signaling to be received by the user equipment. Such signaling may in particular in a physical channel and/or data channel and/or data channel, e.g. a PDSCH or PSSCH. Communicating based on the control signaling may comprise receiving such signaling. Alternatively, or additionally, communicating based on the control signaling may comprise transmitting on resources indicated by the bit field, e.g. on physical channel and/or a control channel or data channel, and/or a shared or dedicated channel, e.g. PUSCH or PUCCH or PSSCH or PSCCH.

74256W01 5/46 A program product comprising instructions adapted for causing processing circuitry to control and/or perform a method as described herein is also disclosed. Moreover, a carrier medium arrangement carrying and/or storing a program product as disclosed herein is disclosed.

Communicating may pertain in particular to a transmission of system information to be received, e.g. Remaining Minimum System Information (RMSI) and/or SIB- transmission (System Information Block, RMSI may be associated to such, in particular to SIB 1 ); such transmission may be for reception by the UE or receiving radio node. In some examples, communicating may in particular pertain to a random access transmission, e.g. transmission of a random access message 1 (msg1 ) and/or on a random access channel like RACH, e.g., for transmission by the controlled radio node, and/or a random access response (RAR) to be received by the controlled radio node. It may generally be considered that a (frequency) resource allocation and/or code allocation is associated to a time resource allocation, e.g. indicated in the control information signaling, or separately thereof. The control information message may be associated to a specific channel, e.g. control channel, and/or a physical channel, in particular a PDCCH or PSCCH, which may be a common channel, intended for a group of receivers/controlled radio nodes. A resource range for the control information message may be indicated by system information, e.g. in a SS block. The time resource allocation may be associated to a PDSCH or PSSCH transmission (to be received by the controlled radio node), which may in particular comprise RMSI and/or other system information. The control information message may in particular be a DCI message or SCI message.

Brief description of the drawings

The drawings are provided to illustrate concepts and approaches described herein, and are not intended to limit their scope. The drawings comprise:

74256W01 6/46 Figure 1 , showing an exemplary radio node that may be implemented as user equipment; and

Figure 2, showing an exemplary radio node that may be implemented as network node.

Detailed description

An identifier may be included in a message in an explicit identification field. However, in some variants, it may be encoded and/or scrambled on bits of the message, in particular on error coding bits like CRC or parity bits. Different identifiers (e.g., in a set) may be configured and/or predefined. This approach allows mapping the time resource allocation indication to different tables depending on the identifier. Such identifiers are widely used and may be set up early with great flexibility (or be predefined, requiring no signaling overhead). An identifier may be such that a controlled radio node or signaling radio node will not be able to successfully decode a control information message if it uses the wrong identifier and/or does not use the correct identifier. Examples of identifiers comprise Radio Network Temporary Identifiers, RNTIs. A RNTI may be a common RNTI or a shared RNTI or a UE-specific RNTI. RNTIs of different types comprise a Paging RNTI and/or a System Information RNTI and/or a Random Access RNTI and/or a Cell RNTI. RNTIs, in particular Random Access RNTI (used, e.g., for random access signaling), and/or System Information RNTI (used for indication system information signaling, e.g. via a broadcast channel like a PBCH, Physical Broadcast CHannel, which may be associated to a SS block) and/or Paging RNTI (used for paging one or more controlled radio nodes) may be easily provided, e.g. pre-defined, and/or via broadcast signaling or configuration signaling. A RNTI may be considered to be common or shared if it is cell-wide and/or available for a plurality of UEs, and/or used for multicast or broadcast of information.

Figure 1 schematically shows a radio node, in particular a terminal or wireless device 10, which may in particular be implemented as a UE (User Equipment). Radio node 10 comprises processing circuitry (which may also be referred to as control circuitry) 20, which may comprise a controller connected to a memory. Any module of the radio node

74256W01 7/46 10, e.g. a communicating module or determining module, may be implemented in and/or executable by, the processing circuitry 20, in particular as module in the controller. Radio node 10 also comprises radio circuitry 22 providing receiving and transmitting or transceiving functionality (e.g., one or more transmitters and/or receivers and/or transceivers), the radio circuitry 22 being connected or connectable to the processing circuitry. An antenna circuitry 24 of the radio node 10 is connected or connectable to the radio circuitry 22 to collect or send and/or amplify signals. Radio circuitry 22 and the processing circuitry 20 controlling it are configured for cellular communication with a network, e.g. a RAN as described herein, and/or for sidelink communication. Radio node 10 may generally be adapted to carry out any of the methods of operating a radio node like terminal or UE disclosed herein; in particular, it may comprise corresponding circuitry, e.g. processing circuitry, and/or modules.

Figure 2 schematically show a radio node 100, which may in particular be implemented as a network node 100, for example an eNB or gNB or similar for NR. Radio node 100 comprises processing circuitry (which may also be referred to as control circuitry) 120, which may comprise a controller connected to a memory. Any module, e.g. transmitting module and/or receiving module and/or configuring module of the node 100 may be implemented in and/or executable by the processing circuitry 120. The processing circuitry 120 is connected to control radio circuitry 122 of the node 100, which provides receiver and transmitter and/or transceiver functionality (e.g., comprising one or more transmitters and/or receivers and/or transceivers). An antenna circuitry 124 may be connected or connectable to radio circuitry 122 for signal reception or transmittance and/or amplification. Node 100 may be adapted to carry out any of the methods for operating a radio node or network node disclosed herein; in particular, it may comprise corresponding circuitry, e.g. processing circuitry, and/or modules. The antenna circuitry 124 may be connected to and/or comprise an antenna array. The node 100, respectively its circuitry, may be adapted to perform any of the methods of operating a network node or a radio node as described herein; in particular, it may comprise corresponding circuitry, e.g. processing circuitry, and/or modules. The radio node 100 may generally comprise communication circuitry, e.g. for communication with another network node, like a radio node, and/or with a core network and/or an internet or local

74256W01 8/46 net, in particular with an information system, which may provide information and/or data to be transmitted to a user equipment.

Generally, it may be considered that a network node configures, and/or is adapted to configure, a plurality of UEs with the common search space and/or the first bandwidth part, and/or with a first bandwidth part having the first set of characteristics, and/or configures and/or is adapted to configure, a plurality of UEs with a second bandwidth parts and/or second sets of characteristics, which may be the same or different.

References to specific resource structures like transmission timing structure and/or symbol and/or slot and/or mini-slot and/or subcarrier and/or carrier may pertain to a specific numerology, which may be predefined and/or configured or configurable. A transmission timing structure may represent a time interval, which may cover one or more symbols. Some examples of a transmission timing structure are transmission time interval (TTI), subframe, slot and mini-slot. A slot may comprise a predetermined, e.g. predefined and/or configured or configurable, number of symbols, e.g. 6 or 7, or 12 or 14. A mini-slot may comprise a number of symbols (which may in particular be configurable or configured) smaller than the number of symbols of a slot, in particular 1 , 2, 3 or 4 symbols. A transmission timing structure may cover a time interval of a specific length, which may be dependent on symbol time length and/or cyclic prefix used. A transmission timing structure may pertain to, and/or cover, a specific time interval in a time stream, e.g. synchronized for communication. Timing structures used and/or scheduled for transmission, e.g. slot and/or mini-slots, may be scheduled in relation to, and/or synchronized to, a timing structure provided and/or defined by other transmission timing structures. Such transmission timing structures may define a timing grid, e.g., with symbol time intervals within individual structures representing the smallest timing units. Such a timing grid may for example be defined by slots or subframes (wherein in some cases, subframes may be considered specific variants of slots). A transmission timing structure may have a duration (length in time) determined based on the durations of its symbols, possibly in addition to cyclic prefix/es used. The symbols of a transmission timing structure may have the same duration, or may in some variants have different duration. The number of symbols in a transmission timing structure may be predefined and/or configured or configurable, and/or be dependent

74256W01 9/46 on numerology. The timing of a mini-slot may generally be configured or configurable, in particular by the network and/or a network node. The timing may be configurable to start and/or end at any symbol of the transmission timing structure, in particular one or more slots.

There is generally considered a program product comprising instructions adapted for causing processing and/or control circuitry to carry out and/or control any method described herein, in particular when executed on the processing and/or control circuitry. Also, there is considered a carrier medium arrangement carrying and/or storing a program product as described herein.

A carrier medium arrangement may comprise one or more carrier media. Generally, a carrier medium may be accessible and/or readable and/or receivable by processing or control circuitry. Storing data and/or a program product and/or code may be seen as part of carrying data and/or a program product and/or code. A carrier medium generally may comprise a guiding/transporting medium and/or a storage medium. A guiding/transporting medium may be adapted to carry and/or carry and/or store signals, in particular electromagnetic signals and/or electrical signals and/or magnetic signals and/or optical signals. A carrier medium, in particular a guiding/transporting medium, may be adapted to guide such signals to carry them. A carrier medium, in particular a guiding/transporting medium, may comprise the electromagnetic field, e.g. radio waves or microwaves, and/or optically transmissive material, e.g. glass fiber, and/or cable. A storage medium may comprise at least one of a memory, which may be volatile or non-volatile, a buffer, a cache, an optical disc, magnetic memory, flash memory, etc.

A system comprising one or more radio nodes as described herein, in particular a network node and a user equipment, is decribed. The system may be a wireless communication system, and/or provide and/or represent a radio access network.

Moreover, there may be generally considered a method of operating an information system, the method comprising providing information. Alternatively, or additionally, an information system adapted for providing information may be considered. Providing

74256W01 10/46 information may comprise providing information for, and/or to, a target system, which may comprise and/or be implemented as radio access network and/or a radio node, in particular a network node or user equipment or terminal. Providing information may comprise transferring and/or streaming and/or sending and/or passing on the information, and/or offering the information for such and/or for download, and/or triggering such providing, e.g. by triggering a different system or node to stream and/or transfer and/or send and/or pass on the information. The information system may comprise, and/or be connected or connectable to, a target, for example via one or more intermediate systems, e.g. a core network and/or internet and/or private or local network. Information may be provided utilising and/or via such intermediate system/s. Providing information may be for radio transmission and/or for transmission via an air interface and/or utilising a RAN or radio node as described herein. Connecting the information system to a target, and/or providing information, may be based on a target indication, and/or adaptive to a target indication. A target indication may indicate the target, and/or one or more parameters of transmission pertaining to the target and/or the paths or connections over which the information is provided to the target. Such parameter/s may in particular pertain to the air interface and/or radio access network and/or radio node and/or network node. Example parameters may indicate for example type and/or nature of the target, and/or transmission capacity (e.g., data rate) and/or latency and/or reliability and/or cost, respectively one or more estimates thereof. The target indication may be provided by the target, or determined by the information system, e.g. based on information received from the target and/or historical information, and/or be provided by a user, for example a user operating the target or a device in communication with the target, e.g. via the RAN and/or air interface. For example, a user may indicate on a user equipment communicating with the information system that information is to be provided via a RAN, e.g. by selecting from a selection provided by the information system, for example on a user application or user interface, which may be a web interface. An information system may comprise one or more information nodes. An information node may generally comprise processing circuitry and/or communication circuitry. In particular, an information system and/or an information node may be implemented as a computer and/or a computer arrangement, e.g. a host computer or host computer arrangement and/or server or server arrangement. In some variants, an interaction server (e.g., web server) of the

74256W01 11/46 information system may provide a user interface, and based on user input may trigger transmitting and/or streaming information provision to the user (and/or the target) from another server, which may be connected or connectable to the interaction server and/or be part of the information system or be connected or connectable thereto. The information may be any kind of data, in particular data intended for a user of for use at a terminal, e.g. video data and/or audio data and/or location data and/or interactive data and/or game-related data and/or environmental data and/or technical data and/or traffic data and/or vehicular data and/or circumstantial data and/or operational data. The information provided by the information system may be mapped to, and/or mappable to, and/or be intended for mapping to, communication or data signaling and/or one or more data channels as described herein (which may be signaling or channel/s of an air interface and/or used within a RAN and/or for radio transmission). It may be considered that the information is formatted based on the target indication and/or target, e.g. regarding data amount and/or data rate and/or data structure and/or timing, which in particular may be pertaining to a mapping to communication or data signaling and/or a data channels. Mapping information to data signaling and/or data channel/s may be considered to refer to using the signaling/channel/s to carry the data, e.g. on higher layers of communication, with the signaling/channel/s underlying the transmission. A target indication generally may comprise different components, which may have different sources, and/or which may indicate different characteristics of the target and/or communication path/s thereto. A format of information may be specifically selected, e.g. from a set of different formats, for information to be transmitted on an air interface and/or by a RAN as described herein. This may be particularly pertinent since an air interface may be limited in terms of capacity and/or of predictability, and/or potentially be cost sensitive. The format may be selected to be adapted to the transmission indication, which may in particular indicate that a RAN or radio node as described herein is in the path (which may be the indicated and/or planned and/or expected path) of information between the target and the information system. A (communication) path of information may represent the interface/s (e.g., air and/or cable interfaces) and/or the intermediate system/s (if any), between the information system and/or the node providing or transferring the information, and the target, over which the information is, or is to be, passed on. A path may be (at least partly) undetermined when a target indication is provided, and/or the information is

74256W01 12/46 provided/transferred by the information system, e.g. if an internet is involved, which may comprise multiple, dynamically chosen paths. Information and/or a format used for information may be packet-based, and/or be mapped, and/or be mappable and/or be intended for mapping, to packets. Alternatively, or additionally, there may be considered a method for operating a target device comprising providing a target indicating to an information system. More alternatively, or additionally, a target device may be considered, the target device being adapted for providing a target indication to an information system. In another approach, there may be considered a target indication tool adapted for, and/or comprising an indication module for, providing a target indication to an information system. The target device may generally be a target as described above. A target indication tool may comprise, and/or be implemented as, software and/or application or app, and/or web interface or user interface, and/or may comprise one or more modules for implementing actions performed and/or controlled by the tool. The tool and/or target device may be adapted for, and/or the method may comprise, receiving a user input, based on which a target indicating may be determined and/or provided. Alternatively, or additionally, the tool and/or target device may be adapted for, and/or the method may comprise, receiving information and/or communication signaling carrying information, and/or operating on, and/or presenting (e.g., on a screen and/or as audio or as other form of indication), information. The information may be based on received information and/or communication signaling carrying information. Presenting information may comprise processing received information, e.g. decoding and/or transforming, in particular between different formats, and/or for hardware used for presenting. Operating on information may be independent of or without presenting, and/or proceed or succeed presenting, and/or may be without user interaction or even user reception, for example for automatic processes, or target devices without (e.g., regular) user interaction like MTC devices, of for automotive or transport or industrial use. The information or communication signaling may be expected and/or received based on the target indication. Presenting and/or operating on information may generally comprise one or more processing steps, in particular decoding and/or executing and/or interpreting and/or transforming information. Operating on information may generally comprise relaying and/or transmitting the information, e.g. on an air interface, which may include mapping the information onto signaling (such mapping may generally pertain to one or more layers, e.g. one or more

74256W01 13/46 layers of an air interface, e.g. RLC (Radio Link Control) layer and/or MAC layer and/or physical layer/s). The information may be imprinted (or mapped) on communication signaling based on the target indication, which may make it particularly suitable for use in a RAN (e.g., for a target device like a network node or in particular a UE or terminal). The tool may generally be adapted for use on a target device, like a UE or terminal. Generally, the tool may provide multiple functionalities, e.g. for providing and/or selecting the target indication, and/or presenting, e.g. video and/or audio, and/or operating on and/or storing received information. Providing a target indication may comprise transmitting or transferring the indication as signaling, and/or carried on signaling, in a RAN, for example if the target device is a UE, or the tool for a UE. It should be noted that such provided information may be transferred to the information system via one or more additionally communication interfaces and/or paths and/or connections. The target indication may be a higher-layer indication and/or the information provided by the information system may be higher-layer information, e.g. application layer or user-layer, in particular above radio layers like transport layer and physical layer. The target indication may be mapped on physical layer radio signaling, e.g. related to or on the user-plane, and/or the information may be mapped on physical layer radio communication signaling, e.g. related to or on the user-plane (in particular, in reverse communication directions). The described approaches allow a target indication to be provided, facilitating information to be provided in a specific format particularly suitable and/or adapted to efficiently use an air interface. A user input may for example represent a selection from a plurality of possible transmission modes or formats, and/or paths, e.g. in terms of data rate and/or packaging and/or size of information to be provided by the information system.

In general, a numerology and/or subcarrier spacing may indicate the bandwidth (in frequency domain) of a subcarrier of a carrier, and/or the number of subcarriers in a carrier and/or the numbering of the subcarriers in a carrier. Different numerologies may in particular be different in the bandwidth of a subcarrier. In some variants, all the subcarriers in a carrier have the same bandwidth associated to them. The numerology and/or subcarrier spacing may be different between carriers in particular regarding the subcarrier bandwidth. A symbol time length, and/or a time length of a timing structure pertaining to a carrier may be dependent on the carrier frequency, and/or the subcarrier

74256W01 14/46 spacing and/or the numerology. In particular, different numerologies may have different symbol time lengths.

Signaling may generally comprise one or more symbols and/or signals and/or messages. A signal may comprise or represent one or more bits. An indication may represent signaling, and/or be implemented as a signal, or as a plurality of signals. One or more signals may be included in and/or represented by a message. Signaling, in particular control signaling, may comprise a plurality of signals and/or messages, which may be transmitted on different carriers and/or be associated to different signaling processes, e.g. representing and/or pertaining to one or more such processes and/or corresponding information. An indication may comprise signaling, and/or a plurality of signals and/or messages and/or may be comprised therein, which may be transmitted on different carriers and/or be associated to different acknowledgement signaling processes, e.g. representing and/or pertaining to one or more such processes. Signaling associated to a channel may be transmitted such that represents signaling and/or information for that channel, and/or that the signaling is interpreted by the transmitter and/or receiver to belong to that channel. Such signaling may generally comply with transmission parameters and/or format/s for the channel.

Reference signaling may be signaling comprising one or more reference symbols and/or structures. Reference signaling may be adapted for gauging and/or estimating and/or representing transmission conditions, e.g. channel conditions and/or transmission path conditions and/or channel (or signal or transmission) quality. It may be considered that the transmission characteristics (e.g., signal strength and/or form and/or modulation and/or timing) of reference signaling are available for both transmitter and receiver of the signaling (e.g., due to being predefined and/or configured or configurable and/or being communicated). Different types of reference signaling may be considered, e.g. pertaining to uplink, downlink or sidelink, cell-specific (in particular, cell-wide, e.g., CRS) or device or user specific (addressed to a specific target or user equipment, e.g., CSI-RS), demodulation-related (e.g., DMRS) and/or signal strength related, e.g. power-related or energy-related or amplitude-related (e.g., SRS or pilot signaling) and/or phase-related, etc.

74256W01 15/46 An antenna arrangement may comprise one or more antenna elements (radiating elements), which may be combined in antenna arrays. An antenna array or subarray may comprise one antenna element, or a plurality of antenna elements, which may be arranged e.g. two dimensionally (for example, a panel) or three dimensionally. It may be considered that each antenna array or subarray or element is separately controllable, respectively that different antenna arrays are controllable separately from each other. A single antenna element/radiator may be considered the smallest example of a subarray. Examples of antenna arrays comprise one or more multi- antenna panels or one or more individually controllable antenna elements. An antenna arrangement may comprise a plurality of antenna arrays. It may be considered that an antenna arrangement is associated to a (specific and/or single) radio node, e.g. a configuring or informing or scheduling radio node, e.g. to be controlled or controllable by the radio node. An antenna arrangements associated to a UE or terminal may be smaller (e.g., in size and/or number of antenna elements or arrays) than the antenna arrangement associated to a network node. Antenna elements of an antenna arrangement may be configurable for different arrays, e.g. to change the beam forming characteristics. In particular, antenna arrays may be formed by combining one or more independently or separately controllable antenna elements or subarrays. The beams may be provided by analog beamforming, or in some variants by digital beamforming. The informing radio nodes may be configured with the manner of beam transmission, e.g. by transmitting a corresponding indicator or indication, for example as beam identify indication. However, there may be considered cases in which the informing radio node/s are not configured with such information, and/or operate transparently, not knowing the way of beamforming used. An antenna arrangement may be considered separately controllable in regard to the phase and/or amplitude/power and/or gain of a signal feed to it for transmission, and/or separately controllable antenna arrangements may comprise an independent or separate transmit and/or receive unit and/or ADC (Analog-Digital-Converter, alternatively an ADC chain) to convert digital control information into an analog antenna feed for the whole antenna arrangement (the ADC may be considered part of, and/or connected or connectable to, antenna circuitry). A scenario in which each antenna element is individually controllable may be referred to as digital beamforming, whereas a scenario in which

74256W01 16/46 larger arrays/subarrays are separately controllable may be considered an example of analog beamforming. Hybrid forms may be considered.

Uplink or sidelink signaling may be OFDMA (Orthogonal Frequency Division Multiple Access) or SC-FDMA (Single Carrier Frequency Division Multiple Access) signaling. Downlink signaling may in particular be OFDMA signaling. However, signaling is not limited thereto (Filter-Bank based signaling may be considered one alternative).

A radio node may generally be considered a device or node adapted for wireless and/or radio (and/or microwave) frequency communication, and/or for communication utilising an air interface, e.g. according to a communication standard.

A radio node may be a network node, or a user equipment or terminal. A network node may be any radio node of a wireless communication network, e.g. a base station and/or gNodeB (gNB) and/or eNodeB (eNB) and/or relay node and/or micro/nano/pico/femto node and/or transmission point (TP) and/or access point (AP) and/or other node, in particular for a RAN as described herein.

The terms wireless device, user equipment (UE) and terminal may be considered to be interchangeable in the context of this disclosure. A wireless device, user equipment or terminal may represent an end device for communication utilising the wireless communication network, and/or be implemented as a user equipment according to a standard. Examples of user equipments may comprise a phone like a smartphone, a personal communication device, a mobile phone or terminal, a computer, in particular laptop, a sensor or machine with radio capability (and/or adapted for the air interface), in particular for MTC (Machine-Type-Communication, sometimes also referred to M2M, Machine-To-Machine), or a vehicle adapted for wireless communication. A user equipment or terminal may be mobile or stationary.

A radio node may generally comprise processing circuitry and/or radio circuitry. A radio node, in particular a network node, may in some cases comprise cable circuitry and/or communication circuitry, with which it may be connected or connectable to another radio node and/or a core network.

74256W01 17/46 Circuitry may comprise integrated circuitry. Processing circuitry may comprise one or more processors and/or controllers (e.g., microcontrollers), and/or ASICs (Application Specific Integrated Circuitry) and/or FPGAs (Field Programmable Gate Array), or similar. It may be considered that processing circuitry comprises, and/or is (operatively) connected or connectable to one or more memories or memory arrangements. A memory arrangement may comprise one or more memories. A memory may be adapted to store digital information. Examples for memories comprise volatile and non- volatile memory, and/or Random Access Memory (RAM), and/or Read-Only-Memory (ROM), and/or magnetic and/or optical memory, and/or flash memory, and/or hard disk memory, and/or EPROM or EEPROM (Erasable Programmable ROM or Electrically Erasable Programmable ROM).

Radio circuitry may comprise one or more transmitters and/or receivers and/or transceivers (a transceiver may operate or be operable as transmitter and receiver, and/or may comprise joint or separated circuitry for receiving and transmitting, e.g. in one package or housing), and/or may comprise one or more amplifiers and/or oscillators and/or filters, and/or may comprise, and/or be connected or connectable to antenna circuitry and/or one or more antennas and/or antenna arrays. An antenna array may comprise one or more antennas, which may be arranged in a dimensional array, e.g. 2D or 3D array, and/or antenna panels. A remote radio head (RRFI) may be considered as an example of an antenna array. Flowever, in some variants, a RRFI may be also be implemented as a network node, depending on the kind of circuitry and/or functionality implemented therein.

Communication circuitry may comprise radio circuitry and/or cable circuitry. Communication circuitry generally may comprise one or more interfaces, which may be air interface/s and/or cable interface/s and/or optical interface/s, e.g. laser-based. Interface/s may be in particular packet-based. Cable circuitry and/or a cable interfaces may comprise, and/or be connected or connectable to, one or more cables (e.g., optical fiber-based and/or wire-based), which may be directly or indirectly (e.g., via one or more intermediate systems and/or interfaces) be connected or connectable to a target, e.g. controlled by communication circuitry and/or processing circuitry.

74256W01 18/46 Any one or all of the modules disclosed herein may be implemented in software and/or firmware and/or hardware. Different modules may be associated to different components of a radio node, e.g. different circuitries or different parts of a circuitry. It may be considered that a module is distributed over different components and/or circuitries. A program product as described herein may comprise the modules related to a device on which the program product is intended (e.g., a user equipment or network node) to be executed (the execution may be performed on, and/or controlled by the associated circuitry).

A radio access network may be a wireless communication network, and/or a Radio Access Network (RAN) in particular according to a communication standard. A communication standard may in particular a standard according to 3GPP and/or 5G, e.g. according to NR or LTE, in particular LTE Evolution.

A wireless communication network may be and/or comprise a Radio Access Network (RAN), which may be and/or comprise any kind of cellular and/or wireless radio network, which may be connected or connectable to a core network. The approaches described herein are particularly suitable for a 5G network, e.g. LTE Evolution and/or NR (New Radio), respectively successors thereof. A RAN may comprise one or more network nodes, and/or one or more terminals, and/or one or more radio nodes. A network node may in particular be a radio node adapted for radio and/or wireless and/or cellular communication with one or more terminals. A terminal may be any device adapted for radio and/or wireless and/or cellular communication with or within a RAN, e.g. a user equipment (UE) or mobile phone or smartphone or computing device or vehicular communication device or device for machine-type-communication (MTC), etc. A terminal may be mobile, or in some cases stationary. A RAN or a wireless communication network may comprise at least one network node and a UE, or at least two radio nodes. There may be generally considered a wireless communication network or system, e.g. a RAN or RAN system, comprising at least one radio node, and/or at least one network node and at least one terminal.

74256W01 19/46 Transmitting in downlink may pertain to transmission from the network or network node to the terminal. Transmitting in uplink may pertain to transmission from the terminal to the network or network node. Transmitting in sidelink may pertain to (direct) transmission from one terminal to another. Uplink, downlink and sidelink (e.g., sidelink transmission and reception) may be considered communication directions. In some variants, uplink and downlink may also be used to described wireless communication between network nodes, e.g. for wireless backhaul and/or relay communication and/or (wireless) network communication for example between base stations or similar network nodes, in particular communication terminating at such. It may be considered that backhaul and/or relay communication and/or network communication is implemented as a form of sidelink or uplink communication or similar thereto.

Control information or a control information message or corresponding signaling (control signaling) may be transmitted on a control channel, e.g. a physical control channel, which may be a downlink channel or (or a sidelink channel in some cases, e.g. one UE scheduling another UE). For example, control information/allocation information may be signaled by a network node on PDCCH (Physical Downlink Control Channel) and/or a PDSCH (Physical Downlink Shared Channel) and/or a HARQ- specific channel. Acknowledgement signaling, e.g. as a form of control information or signaling like uplink control information/signaling, may be transmitted by a terminal on a PUCCH (Physical Uplink Control Channel) and/or PUSCH (Physical Uplink Shared Channel) and/or a HARQ-specific channel. Multiple channels may apply for multi- component/multi-carrier indication or signaling.

Signaling may generally be considered to represent an electromagnetic wave structure (e.g., over a time interval and frequency interval), which is intended to convey information to at least one specific or generic (e.g., anyone who might pick up the signaling) target. A process of signaling may comprise transmitting the signaling. Transmitting signaling, in particular control signaling or communication signaling, e.g. comprising or representing acknowledgement signaling and/or resource requesting information, may comprise encoding and/or modulating. Encoding and/or modulating may comprise error detection coding and/or forward error correction encoding and/or scrambling. Receiving control signaling may comprise corresponding decoding and/or

74256W01 20/46 demodulation. Error detection coding may comprise, and/or be based on, parity or checksum approaches, e.g. CRC (Cyclic Redundancy Check). Forward error correction coding may comprise and/or be based on for example turbo coding and/or Reed-Muller coding, and/or polar coding and/or LDPC coding (Low Density Parity Check). The type of coding used may be based on the channel (e.g., physical channel) the coded signal is associated to. A code rate may represent the ratio of the number of information bits before encoding to the number of encoded bits after encoding, considering that encoding adds coding bits for error detection coding and forward error correction. Coded bits may refer to information bits (also called systematic bits) plus coding bits.

Communication signaling may comprise, and/or represent, and/or be implemented as, data signaling, and/or user plane signaling. Communication signaling may be associated to a data channel, e.g. a physical downlink channel or physical uplink channel or physical sidelink channel, in particular a PDSCH (Physical Downlink Shared Channel) or PSSCH (Physical Sidelink Shared Channel). Generally, a data channel may be a shared channel or a dedicated channel. Data signaling may be signaling associated to and/or on a data channel.

An indication generally may explicitly and/or implicitly indicate the information it represents and/or indicates. Implicit indication may for example be based on position and/or resource used for transmission. Explicit indication may for example be based on a parametrisation with one or more parameters, and/or one or more index or indices, and/or one or more bit patterns representing the information. It may in particular be considered that control signaling as described herein, based on the utilised resource sequence, implicitly indicates the control signaling type.

A resource element may generally describe the smallest individually usable and/or encodable and/or decodable and/or modulatable and/or demodulatable time- frequency resource, and/or may describe a time-frequency resource covering a symbol time length in time and a subcarrier in frequency. A signal may be allocatable and/or allocated to a resource element. A subcarrier may be a subband of a carrier, e.g. as defined by a standard. A carrier may define a frequency and/or frequency band for

74256W01 21/46 transmission and/or reception. In some variants, a signal (jointly encoded/modulated) may cover more than one resource elements. A resource element may generally be as defined by a corresponding standard, e.g. NR or LTE. As symbol time length and/or subcarrier spacing (and/or numerology) may be different between different symbols and/or subcarriers, different resource elements may have different extension (length/width) in time and/or frequency domain, in particular resource elements pertaining to different carriers.

A resource generally may represent a time-frequency and/or code resource, on which signaling, e.g. according to a specific format, may be communicated, for example transmitted and/or received, and/or be intended for transmission and/or reception.

A border symbol may generally represent a starting symbol or an ending symbol for transmitting and/or receiving. A starting symbol may in particular be a starting symbol of uplink or sidelink signaling, for example control signaling or data signaling. Such signaling may be on a data channel or control channel, e.g. a physical channel, in particular a physical uplink shared channel (like PUSCH) or a sidelink data or shared channel, or a physical uplink control channel (like PUCCH) or a sidelink control channel. If the starting symbol is associated to control signaling (e.g., on a control channel), the control signaling may be in response to received signaling (in sidelink or downlink), e.g. representing acknowledgement signaling associated thereto, which may be HARQ or ARQ signaling. An ending symbol may represent an ending symbol (in time) of downlink or sidelink transmission or signaling, which may be intended or scheduled for the radio node or user equipment. Such downlink signaling may in particular be data signaling, e.g. on a physical downlink channel like a shared channel, e.g. a PDSCH (Physical Downlink Shared Channel). A starting symbol may be determined based on, and/or in relation to, such an ending symbol.

Configuring a radio node, in particular a terminal or user equipment, may refer to the radio node being adapted or caused or set and/or instructed to operate according to the configuration. Configuring may be done by another device, e.g., a network node (for example, a radio node of the network like a base station or eNodeB) or network, in which case it may comprise transmitting configuration data to the radio node to be

74256W01 22/46 configured. Such configuration data may represent the configuration to be configured and/or comprise one or more instruction pertaining to a configuration, e.g. a configuration for transmitting and/or receiving on allocated resources, in particular frequency resources. A radio node may configure itself, e.g., based on configuration data received from a network or network node. A network node may utilise, and/or be adapted to utilise, its circuitry/ies for configuring. Allocation information may be considered a form of configuration data. Configuration data may comprise and/or be represented by configuration information, and/or one or more corresponding indications and/or message/s

Generally, configuring may include determining configuration data representing the configuration and providing, e.g. transmitting, it to one or more other nodes (parallel and/or sequentially), which may transmit it further to the radio node (or another node, which may be repeated until it reaches the wireless device). Alternatively, or additionally, configuring a radio node, e.g., by a network node or other device, may include receiving configuration data and/or data pertaining to configuration data, e.g., from another node like a network node, which may be a higher-level node of the network, and/or transmitting received configuration data to the radio node. Accordingly, determining a configuration and transmitting the configuration data to the radio node may be performed by different network nodes or entities, which may be able to communicate via a suitable interface, e.g., an X2 interface in the case of LTE or a corresponding interface for NR. Configuring a terminal may comprise scheduling downlink and/or uplink transmissions for the terminal, e.g. downlink data and/or downlink control signaling and/or DCI and/or uplink control or data or communication signaling, in particular acknowledgement signaling, and/or configuring resources and/or a resource pool therefor.

A resource structure may be considered to be neighbored in frequency domain by another resource structure, if they share a common border frequency, e.g. one as an upper frequency border and the other as a lower frequency border. Such a border may for example be represented by the upper end of a bandwidth assigned to a subcarrier n, which also represents the lower end of a bandwidth assigned to a subcarrier n+1 . A resource structure may be considered to be neighbored in time

74256W01 23/46 domain by another resource structure, if they share a common border time, e.g. one as an upper (or right in the figures) border and the other as a lower (or left in the figures) border. Such a border may for example be represented by the end of the symbol time interval assigned to a symbol n, which also represents the beginning of a symbol time interval assigned to a symbol n+1 .

Generally, a resource structure being neighbored by another resource structure in a domain may also be referred to as abutting and/or bordering the other resource structure in the domain.

A resource structure may general represent a structure in time and/or frequency domain, in particular representing a time interval and a frequency interval. A resource structure may comprise and/or be comprised of resource elements, and/or the time interval of a resource structure may comprise and/or be comprised of symbol time interval/s, and/or the frequency interval of a resource structure may comprise and/or be comprised of subcarrier/s. A resource element may be considered an example for a resource structure, a slot or mini-slot or a Physical Resource Block (PRB) or parts thereof may be considered others. A resource structure may be associated to a specific channel, e.g. a PUSCH or PUCCH, in particular resource structure smaller than a slot or PRB.

Examples of a resource structure in frequency domain comprise a bandwidth or band, or a bandwidth part. A bandwidth part may be a part of a bandwidth available for a radio node for communicating, e.g. due to circuitry and/or configuration and/or regulations and/or a standard. A bandwidth part may be configured or configurable to a radio node. In some variants, a bandwidth part may be the part of a bandwidth used for communicating, e.g. transmitting and/or receiving, by a radio node. The bandwidth part may be smaller than the bandwidth (which may be a device bandwidth defined by the circuitry/configuration of a device, and/or a system bandwidth, e.g. available for a RAN). It may be considered that a bandwidth part comprises one or more resource blocks or resource block groups, in particular one or more PRBs or PRB groups. A bandwidth part may pertain to, and/or comprise, one or more carriers.

74256W01 24/46 A carrier may generally represent a frequency range or band and/or pertain to a central frequency and an associated frequency interval. It may be considered that a carrier comprises a plurality of subcarriers. A carrier may have assigned to it a central frequency or center frequency interval, e.g. represented by one or more subcarriers (to each subcarrier there may be generally assigned a frequency bandwidth or interval). Different carriers may be non-overlapping, and/or may be neighboring in frequency domain.

It should be noted that the term“radio” in this disclosure may be considered to pertain to wireless communication in general, and may also include wireless communication utilising microwave and/or millimeter and/or other frequencies, in particular between 100 MHz or 1 GHz, and 100 GHz or 20 or 10 GHz. Such communication may utilise one or more carriers.

A radio node, in particular a network node or a terminal, may generally be any device adapted for transmitting and/or receiving radio and/or wireless signals and/or data, in particular communication data, in particular on at least one carrier. The at least one carrier may comprise a carrier accessed based on a LBT procedure (which may be called LBT carrier), e.g., an unlicensed carrier. It may be considered that the carrier is part of a carrier aggregate.

Receiving or transmitting on a cell or carrier may refer to receiving or transmitting utilizing a frequency (band) or spectrum associated to the cell or carrier. A cell may generally comprise and/or be defined by or for one or more carriers, in particular at least one carrier for UL communication/transmission (called UL carrier) and at least one carrier for DL communication/transmission (called DL carrier). It may be considered that a cell comprises different numbers of UL carriers and DL carriers. Alternatively, or additionally, a cell may comprise at least one carrier for UL communication/transmission and DL communication/transmission, e.g., in TDD- based approaches.

A channel may generally be a logical, transport or physical channel. A channel may comprise and/or be arranged on one or more carriers, in particular a plurality of

74256W01 25/46 subcarriers. A channel carrying and/or for carrying control signaling/control information may be considered a control channel, in particular if it is a physical layer channel and/or if it carries control plane information. Analogously, a channel carrying and/or for carrying data signaling/user information may be considered a data channel, in particular if it is a physical layer channel and/or if it carries user plane information. A channel may be defined for a specific communication direction, or for two complementary communication directions (e.g., UL and DL, or sidelink in two directions), in which case it may be considered to have two component channels, one for each direction. Examples of channels comprise a channel for low latency and/or high reliability transmission, in particular a channel for Ultra-Reliable Low Latency Communication (URLLC), which may be for control and/or data.

In general, a symbol may represent and/or be associated to a symbol time length, which may be dependent on the carrier and/or subcarrier spacing and/or numerology of the associated carrier. Accordingly, a symbol may be considered to indicate a time interval having a symbol time length in relation to frequency domain. A symbol time length may be dependent on a carrier frequency and/or bandwidth and/or numerology and/or subcarrier spacing of, or associated to, a symbol. Accordingly, different symbols may have different symbol time lengths. In particular, numerologies with different subcarrier spacings may have different symbol time length. Generally, a symbol time length may be based on, and/or include, a guard time interval or cyclic extension, e.g. prefix or postfix.

A sidelink may generally represent a communication channel (or channel structure) between two UEs and/or terminals, in which data is transmitted between the participants (UEs and/or terminals) via the communication channel, e.g. directly and/or without being relayed via a network node. A sidelink may be established only and/or directly via air interface/s of the participant, which may be directly linked via the sidelink communication channel. In some variants, sidelink communication may be performed without interaction by a network node, e.g. on fixedly defined resources and/or on resources negotiated between the participants. Alternatively, or additionally, it may be considered that a network node provides some control

74256W01 26/46 functionality, e.g. by configuring resources, in particular one or more resource pool/s, for sidelink communication, and/or monitoring a sidelink, e.g. for charging purposes.

Sidelink communication may also be referred to as device-to-device (D2D) communication, and/or in some cases as ProSe (Proximity Services) communication, e.g. in the context of LTE. A sidelink may be implemented in the context of V2x communication (Vehicular communication), e.g. V2V (Vehicle-to-Vehicle), V2I (Vehicle-to-lnfrastructure) and/or V2P (Vehicle-to-Person). Any device adapted for sidelink communication may be considered a user equipment or terminal.

A sidelink communication channel (or structure) may comprise one or more (e.g., physical or logical) channels, e.g. a PSCCH (Physical Sidelink Control CHannel, which may for example carry control information like an acknowledgement position indication, and/or a PSSCH (Physical Sidelink Shared CHannel, which for example may carry data and/or acknowledgement signaling). It may be considered that a sidelink communication channel (or structure) pertains to and/or used one or more carrier/s and/or frequency range/s associated to, and/or being used by, cellular communication, e.g. according to a specific license and/or standard. Participants may share a (physical) channel and/or resources, in particular in frequency domain and/or related to a frequency resource like a carrier) of a sidelink, such that two or more participants transmit thereon, e.g. simultaneously, and/or time-shifted, and/or there may be associated specific channels and/or resources to specific participants, so that for example only one participant transmits on a specific channel or on a specific resource or specific resources, e.g., in frequency domain and/or related to one or more carriers or subcarriers.

A sidelink may comply with, and/or be implemented according to, a specific standard, e.g. a LTE-based standard and/or NR. A sidelink may utilise TDD (Time Division Duplex) and/or FDD (Frequency Division Duplex) technology, e.g. as configured by a network node, and/or preconfigured and/or negotiated between the participants. A user equipment may be considered to be adapted for sidelink communication if it, and/or its radio circuitry and/or processing circuitry, is adapted for utilising a sidelink, e.g. on one or more frequency ranges and/or carriers and/or in one or more formats,

74256W01 27/46 in particular according to a specific standard. It may be generally considered that a Radio Access Network is defined by two participants of a sidelink communication. Alternatively, or additionally, a Radio Access Network may be represented, and/or defined with, and/or be related to a network node and/or communication with such a node.

Communication or communicating may generally comprise transmitting and/or receiving signaling. Communication on a sidelink (or sidelink signaling) may comprise utilising the sidelink for communication (respectively, for signaling). Sidelink transmission and/or transmitting on a sidelink may be considered to comprise transmission utilising the sidelink, e.g. associated resources and/or transmission formats and/or circuitry and/or the air interface. Sidelink reception and/or receiving on a sidelink may be considered to comprise reception utilising the sidelink, e.g. associated resources and/or transmission formats and/or circuitry and/or the air interface. Sidelink control information (e.g., SCI) may generally be considered to comprise control information transmitted utilising a sidelink.

Generally, carrier aggregation (CA) may refer to the concept of a radio connection and/or communication link between a wireless and/or cellular communication network and/or network node and a terminal or on a sidelink comprising a plurality of carriers for at least one direction of transmission (e.g. DL and/or UL), as well as to the aggregate of carriers. A corresponding communication link may be referred to as carrier aggregated communication link or CA communication link; carriers in a carrier aggregate may be referred to as component carriers (CC). In such a link, data may be transmitted over more than one of the carriers and/or all the carriers of the carrier aggregation (the aggregate of carriers). A carrier aggregation may comprise one (or more) dedicated control carriers and/or primary carriers (which may e.g. be referred to as primary component carrier or PCC), over which control information may be transmitted, wherein the control information may refer to the primary carrier and other carriers, which may be referred to as secondary carriers (or secondary component carrier, SCC). However, in some approaches, control information may be send over more than one carrier of an aggregate, e.g. one or more PCCs and one PCC and one or more SCCs.

74256W01 28/46 A transmission may generally pertain to a specific channel and/or specific resources, in particular with a starting symbol and ending symbol in time, covering the interval therebetween. A scheduled transmission may be a transmission scheduled and/or expected and/or for which resources are scheduled or provided or reserved. However, not every scheduled transmission has to be realized. For example, a scheduled downlink transmission may not be received, or a scheduled uplink transmission may not be transmitted due to power limitations, or other influences (e.g., a channel on an unlicensed carrier being occupied). A transmission may be scheduled for a transmission timing substructure (e.g., a mini-slot, and/or covering only a part of a transmission timing structure) within a transmission timing structure like a slot. A border symbol may be indicative of a symbol in the transmission timing structure at which the transmission starts or ends.

Predefined in the context of this disclosure may refer to the related information being defined for example in a standard, and/or being available without specific configuration from a network or network node, e.g. stored in memory, for example independent of being configured. Configured or configurable may be considered to pertain to the corresponding information being set/configured, e.g. by the network or a network node.

A configuration or schedule, like a mini-slot configuration and/or structure configuration, may schedule transmissions, e.g. for the time/transmissions it is valid, and/or transmissions may be scheduled by separate signaling or separate configuration, e.g. separate RRC signaling and/or downlink control information signaling. The transmission/s scheduled may represent signaling to be transmitted by the device for which it is scheduled, or signaling to be received by the device for which it is scheduled, depending on which side of a communication the device is. It should be noted that downlink control information or specifically DCI signaling may be considered physical layer signaling, in contrast to higher layer signaling like MAC (Medium Access Control) signaling or RRC layer signaling. The higher the layer of signaling is, the less frequent/the more time/resource consuming it may be considered, at least partially due to the information contained in such signaling having to be passed on through several layers, each layer requiring processing and handling.

74256W01 29/46 A scheduled transmission, and/or transmission timing structure like a mini-slot or slot, may pertain to a specific channel, in particular a physical uplink shared channel, a physical uplink control channel, or a physical downlink shared channel, e.g. PUSCH, PUCCH or PDSCH, and/or may pertain to a specific cell and/or carrier aggregation. A corresponding configuration, e.g. scheduling configuration or symbol configuration may pertain to such channel, cell and/or carrier aggregation. It may be considered that the scheduled transmission represents transmission on a physical channel, in particular a shared physical channel, for example a physical uplink shared channel or physical downlink shared channel. For such channels, semi-persistent configuring may be particularly suitable.

Generally, a configuration may be a configuration indicating timing, and/or be represented or configured with corresponding configuration data. A configuration may be embedded in, and/or comprised in, a message or configuration or corresponding data, which may indicate and/or schedule resources, in particular semi-persistently and/or semi-statically.

A control region of a transmission timing structure may be an interval in time for intended or scheduled or reserved for control signaling, in particular downlink control signaling, and/or for a specific control channel, e.g. a physical downlink control channel like PDCCH. The interval may comprise, and/or consist of, a number of symbols in time, which may be configured or configurable, e.g. by (UE-specific) dedicated signaling (which may be single-cast, for example addressed to or intended for a specific UE), e.g. on a PDCCH, or RRC signaling, or on a multicast or broadcast channel. In general, the transmission timing structure may comprise a control region covering a configurable number of symbols. It may be considered that in general the border symbol is configured to be after the control region in time.

The duration of a symbol (symbol time length or interval) of the transmission timing structure may generally be dependent on a numerology and/or carrier, wherein the numerology and/or carrier may be configurable. The numerology may be the numerology to be used for the scheduled transmission.

74256W01 30/46 985 Scheduling a device, or for a device, and/or related transmission or signaling, may be considered comprising, or being a form of, configuring the device with resources, and/or of indicating to the device resources, e.g. to use for communicating. Scheduling may in particular pertain to a transmission timing structure, or a substructure thereof (e.g., a slot or a mini-slot, which may be considered a substructure of a slot). It may be

990 considered that a border symbol may be identified and/or determined in relation to the transmission timing structure even if for a substructure being scheduled, e.g. if an underlying timing grid is defined based on the transmission timing structure. Signaling indicating scheduling may comprise corresponding scheduling information and/or be considered to represent or contain configuration data indicating the scheduled

995 transmission and/or comprising scheduling information. Such configuration data or signaling may be considered a resource configuration or scheduling configuration. It should be noted that such a configuration (in particular as single message) in some cases may not be complete without other configuration data, e.g. configured with other signaling, e.g. higher layer signaling. In particular, the symbol configuration may be

1000 provided in addition to scheduling/resource configuration to identify exactly which symbols are assigned to a scheduled transmission. A scheduling (or resource) configuration may indicate transmission timing structure/s and/or resource amount (e.g., in number of symbols or length in time) for a scheduled transmission.

1005 A scheduled transmission may be transmission scheduled, e.g. by the network or network node. Transmission may in this context may be uplink (UL) or downlink (DL) or sidelink (SL) transmission. A device, e.g. a user equipment, for which the scheduled transmission is scheduled, may accordingly be scheduled to receive (e.g., in DL or SL), or to transmit (e.g. in UL or SL) the scheduled transmission. Scheduling transmission

1010 may in particular be considered to comprise configuring a scheduled device with resource/s for this transmission, and/or informing the device that the transmission is intended and/or scheduled for some resources. A transmission may be scheduled to cover a time interval, in particular a successive number of symbols, which may form a continuous interval in time between (and including) a starting symbol and an ending

1015 symbols. The starting symbol and the ending symbol of a (e.g., scheduled) transmission may be within the same transmission timing structure, e.g. the same slot.

74256W01 31/46 However, in some cases, the ending symbol may be in a later transmission timing structure than the starting symbol, in particular a structure following in time. To a scheduled transmission, a duration may be associated and/or indicated, e.g. in a

1020 number of symbols or associated time intervals. In some variants, there may be different transmissions scheduled in the same transmission timing structure. A scheduled transmission may be considered to be associated to a specific channel, e.g. a shared channel like PUSCH or PDSCH.

1025 In the context of this disclosure, there may be distinguished between dynamically scheduled or aperiodic transmission and/or configuration, and semi-static or semi- persistent or periodic transmission and/or configuration. The term“dynamic” or similar terms may generally pertain to configuration/transmission valid and/or scheduled and/or configured for (relatively) short timescales and/or a (e.g., predefined and/or

1030 configured and/or limited and/or definite) number of occurrences and/or transmission timing structures, e.g. one or more transmission timing structures like slots or slot aggregations, and/or for one or more (e.g., specific number) of transmission/occurrences. Dynamic configuration may be based on low-level signaling, e.g. control signaling on the physical layer and/or MAC layer, in particular in

1035 the form of DCI or SCI. Periodic/semi-static may pertain to longer timescales, e.g.

several slots and/or more than one frame, and/or a non-defined number of occurrences, e.g., until a dynamic configuration contradicts, or until a new periodic configuration arrives. A periodic or semi-static configuration may be based on, and/or be configured with, higher-layer signaling, in particular RCL layer signaling and/or RRC

1040 signaling and/or MAC signaling.

A transmission timing structure may comprise a plurality of symbols, and/or define an interval comprising several symbols (respectively their associated time intervals). In the context of this disclosure, it should be noted that a reference to a symbol for ease

1045 of reference may be interpreted to refer to the time domain projection or time interval or time component or duration or length in time of the symbol, unless it is clear from the context that the frequency domain component also has to be considered. Examples of transmission timing structures include slot, subframe, mini-slot (which also may be considered a substructure of a slot), slot aggregation (which may comprise a plurality

74256W01 32/46 1050 of slots and may be considered a superstructure of a slot), respectively their time domain component. A transmission timing structure may generally comprise a plurality of symbols defining the time domain extension (e.g., interval or length or duration) of the transmission timing structure, and arranged neighboring to each other in a numbered sequence. A timing structure (which may also be considered or

1055 implemented as synchronisation structure) may be defined by a succession of such transmission timing structures, which may for example define a timing grid with symbols representing the smallest grid structures. A transmission timing structure, and/or a border symbol or a scheduled transmission may be determined or scheduled in relation to such a timing grid. A transmission timing structure of reception may be

1060 the transmission timing structure in which the scheduling control signaling is received, e.g. in relation to the timing grid. A transmission timing structure may in particular be a slot or subframe or in some cases, a mini-slot.

Feedback signaling may be considered a form or control signaling, e.g. uplink or

1065 sidelink control signaling, like UCI (Uplink Control Information) signaling or SCI

(Sidelink Control Information) signaling. Feedback signaling may in particular comprise and/or represent acknowledgement signaling and/or acknowledgement information and/or measurement reporting.

1070 Acknowledgement information may comprise an indication of a specific value or state for an acknowledgement signaling process, e.g. ACK or NACK or DTX. Such an indication may for example represent a bit or bit value or bit pattern or an information switch. Different levels of acknowledgement information, e.g. providing differentiated information about quality of reception and/or error position in received data element/s

1075 may be considered and/or represented by control signaling. Acknowledgment information may generally indicate acknowledgment or non-acknowledgment or non- reception or different levels thereof, e.g. representing ACK or NACK or DTX. Acknowledgment information may pertain to one acknowledgement signaling process. Acknowledgement signaling may comprise acknowledgement information pertaining

1080 to one or more acknowledgement signaling processes, in particular one or more FIARQ or ARQ processes. It may be considered that to each acknowledgment signaling process the acknowledgement information pertains to, a specific number of bits of the

74256W01 33/46 information size of the control signaling is assigned. Measurement reporting signaling may comprise measurement information.

1085

Signaling may generally comprise one or more symbols and/or signals and/or messages. A signal may comprise and/or represent one or more bits, which may be modulated into a common modulated signal. An indication may represent signaling, and/or be implemented as a signal, or as a plurality of signals. One or more signals

1090 may be included in and/or represented by a message. Signaling, in particular control signaling, may comprise a plurality of signals and/or messages, which may be transmitted on different carriers and/or be associated to different acknowledgement signaling processes, e.g. representing and/or pertaining to one or more such processes. An indication may comprise signaling and/or a plurality of signals and/or

1095 messages and/or may be comprised therein, which may be transmitted on different carriers and/or be associated to different acknowledgement signaling processes, e.g. representing and/or pertaining to one or more such processes.

Signaling utilising, and/or on and/or associated to, resources or a resource structure

1 100 may be signaling covering the resources or structure, signaling on the associated frequency/ies and/or in the associated time interval/s. It may be considered that a signaling resource structure comprises and/or encompasses one or more substructures, which may be associated to one or more different channels and/or types of signaling and/or comprise one or more holes (resource element/s not

1 105 scheduled for transmissions or reception of transmissions). A resource substructure, e.g. a feedback resource structure, may generally be continuous in time and/or frequency, within the associated intervals. It may be considered that a substructure, in particular a feedback resource structure, represents a rectangle filled with one or more resource elements in time/frequency space. However, in some cases, a

1 1 10 resource structure or substructure, in particular a frequency resource range, may represent a non-continuous pattern of resources in one or more domains, e.g. time and/or frequency. The resource elements of a substructure may be scheduled for associated signaling.

74256W01 34/46 1115 It should generally be noted that the number of bits or a bit rate associated to specific signaling that can be carried on a resource element may be based on a modulation and coding scheme (MCS). Thus, bits or a bit rate may be seen as a form of resources representing a resource structure or range in frequency and/or time, e.g. depending on MCS. The MCS may be configured or configurable, e.g. by control signaling, e.g.

1 120 DCI or MAC (Medium Access Control) or RRC (Radio Resource Control) signaling.

Different formats of for control information may be considered, e.g. different formats for a control channel like a Physical Uplink Control Channel (PUCCH). PUCCH may carry control information or corresponding control signaling, e.g. Uplink Control Information (UCI). UCI may comprise feedback signaling, and/or acknowledgement

1125 signaling like HARQ feedback (ACK/NACK), and/or measurement information signaling, e.g. comprising Channel Quality Information (CQI), and/or Scheduling Request (SR) signaling. One of the supported PUCCH formats may be short, and may e.g. occur at the end of a slot interval, and/or multiplexed and/or neighbori ng to PUSCH. Similar control information may be provided on a sidelink, e.g. as Sidelink

1130 Control Information (SCI), in particular on a (physical) sidelink control channel, like a

(P)SCCH.

A code block may be considered a subelement of a data element like a transport block, e.g., a transport block may comprise a one or a plurality of code blocks.

1135

A scheduling assignment may be configured with control signaling, e.g. downlink control signaling or sidelink control signaling. Such controls signaling may be considered to represent and/or comprise scheduling signaling, which may indicate scheduling information. A scheduling assignment may be considered scheduling

1140 information indicating scheduling of signaling/transmission of signaling, in particular pertaining to signaling received or to be received by the device configured with the scheduling assignment. It may be considered that a scheduling assignment may indicate data (e.g., data block or element and/or channel and/or data stream) and/or an (associated) acknowledgement signaling process and/or resource/s on which the

1 145 data (or, in some cases, reference signaling) is to be received and/or indicate resource/s for associated feedback signaling, and/or a feedback resource range on which associated feedback signaling is to be transmitted. Transmission associated to

74256W01 35/46 an acknowledgement signaling process, and/or the associated resources or resource structure, may be configured and/or scheduled, for example by a scheduling

1 150 assignment. Different scheduling assignments may be associated to different acknowledgement signaling processes. A scheduling assignment may be considered an example of downlink control information or signaling, e.g. if transmitted by a network node and/or provided on downlink (or sidelink control information if transmitted using a sidelink and/or by a user equipment).

1 155

A scheduling grant (e.g., uplink grant) may represent control signaling (e.g., downlink control information/signaling). It may be considered that a scheduling grant configures the signaling resource range and/or resources for uplink (or sidelink) signaling, in particular uplink control signaling and/or feedback signaling, e.g. acknowledgement

1 160 signaling. Configuring the signaling resource range and/or resources may comprise configuring or scheduling it for transmission by the configured radio node. A scheduling grant may indicate a channel and/or possible channels to be used/usable for the feedback signaling, in particular whether a shared channel like a PUSCH may be used/is to be used. A scheduling grant may generally indicate uplink resource/s and/or

1 165 an uplink channel and/or a format for control information pertaining to associated scheduling assignments. Both grant and assignment/s may be considered (downlink or sidelink) control information, and/or be associated to, and/or transmitted with, different messages.

1 170 A resource structure in frequency domain (which may be referred to as frequency interval and/or range) may be represented by a subcarrier grouping. A subcarrier grouping may comprise one or more subcarriers, each of which may represent a specific frequency interval, and/or bandwidth. The bandwidth of a subcarrier, the length of the interval in frequency domain, may be determined by the subcarrier

1 175 spacing and/or numerology. The subcarriers may be arranged such that each subcarrier neighbours at least one other subcarrier of the grouping in frequency space (for grouping sizes larger than 1 ). The subcarriers of a grouping may be associated to the same carrier, e.g. configurably or configured of predefined. A physical resource block may be considered representative of a grouping (in

1 180 frequency domain). A subcarrier grouping may be considered to be associated to a

74256W01 36/46 specific channel and/or type of signaling, it transmission for such channel or signaling is scheduled and/or transmitted and/or intended and/or configured for at least one, or a plurality, or all subcarriers in the grouping. Such association may be time- dependent, e.g. configured or configurable or predefined, and/or dynamic or semi-

1185 static. The association may be different for different devices, e.g. configured or configurable or predefined, and/or dynamic or semi-static. Patterns of subcarrier groupings may be considered, which may comprise one or more subcarrier groupings (which may be associated to same or different signalings/channels), and/or one or more groupings without associated signaling (e.g., as seen from a specific device).

1190 An example of a pattern is a comb, for which between pairs of groupings associated to the same signaling/channel there are arranged one or more groupings associated to one or more different channels and/or signaling types, and/or one or more groupings without associated channel/signaling).

1195 Example types of signaling comprise signaling of a specific communication direction, in particular, uplink signaling, downlink signaling, sidelink signaling, as well as reference signaling (e.g. , SRS or CRS or CSI-RS), communication signaling, control signaling, and/or signaling associated to a specific channel l ike PUSCH, PDSCH, PUCCH, PDCCH, PSCCH, PSSCH, etc ).

1200

Throughout this disclosure, the term“user equipment” may be considered an example of a“receiving radio node”, and these terms may be used interchangeably. Feature/s assigned to a user equipment may also be implemented in a receiving radio node and vice versa, unless explicitly stated otherwise. A receiving radio node may in particular

1205 be a user equipment or terminal. However, in some scenarios, e.g. backhaul or relay scenarios, a receiving radio node may be a network node, in particular a base station and/or gNodeB and/or relay node or transmission point. The term“network node” may be considered an example for a “signaling radio node”, and the terms may be interchanged. A network node may be an example of a signaling radio node. However,

1210 in some scenarios, e.g. sidelink scenarios, the signaling radio node may be a user equipment or terminal. A signaling radio node arrangement, also referred to as network node arrangement, may comprise one or more radio nodes, in particular network nodes, which may be of the same or different types. Different nodes of the arrangement

74256W01 37/46 may be adapted for, and/or provide, different functionalities described herein. A

1215 signaling radio node arrangement may in some variants represent a radio access network, and/or a heterogenous network (HetNet), and/or provide dual (or multiple) connectivity, e.g. comprising an anchor node and a booster node, and/or one or more of each or either. The radio nodes of a node arrangement may comprise suitable interfaces for communication between them, e.g. communication interfaces and/or

1220 corresponding circuitry. There may generally be considered a signal radio node arrangement, comprising one or more node between which the features and/or functionalities of a signaling radio node as described herein may be distributed.

In this disclosure, for purposes of explanation and not limitation, specific details are set

1225 forth (such as particular network functions, processes and signaling steps) in order to provide a thorough understanding of the technique presented herein. It will be apparent to one skilled in the art that the present concepts and aspects may be practiced in other variants and variants that depart from these specific details.

1230 For example, the concepts and variants are partially described in the context of Long

Term Evolution (LTE) or LTE-Advanced (LTE-A) or New Radio mobile or wireless communications technologies; however, this does not rule out the use of the present concepts and aspects in connection with additional or alternative mobile communication technologies such as the Global System for Mobile Communications

1235 (GSM). While described variants may pertain to certain Technical Specifications (TSs) of the Third Generation Partnership Project (3GPP), it will be appreciated that the present approaches, concepts and aspects could also be realized in connection with different Performance Management (PM) specifications.

1240 Moreover, those skilled in the art will appreciate that the services, functions and steps explained herein may be implemented using software functioning in conjunction with a programmed microprocessor, or using an Application Specific Integrated Circuit (ASIC), a Digital Signal Processor (DSP), a Field Programmable Gate Array (FPGA) or general purpose computer. It will also be appreciated that while the variants

1245 described herein are elucidated in the context of methods and devices, the concepts and aspects presented herein may also be embodied in a program product as well as

74256W01 38/46 in a system comprising control circuitry, e.g. a computer processor and a memory coupled to the processor, wherein the memory is encoded with one or more programs or program products that execute the services, functions and steps disclosed herein.

1250

It is believed that the advantages of the aspects and variants presented herein will be fully understood from the foregoing description, and it will be apparent that various changes may be made in the form, constructions and arrangement of the exemplary aspects thereof without departing from the scope of the concepts and aspects

1255 described herein or without sacrificing all of its advantageous effects. The aspects presented herein can be varied in many ways.

Some useful abbreviations comprise

1260 Abbreviation Explanation

ACK/NACK Acknowledgment/Negative Acknowledgement

ARQ Automatic Repeat reQuest

CAZAC Constant Amplitude Zero Cross Correlation

CBG Code Block Group

1265 CDM Code Division Multiplex

CM Cubic Metric

CQI Channel Quality Information

CRC Cyclic Redundancy Check

CRS Common reference signal

1270 CSI Channel State Information

CSI-RS Channel state information reference signal

DAI Downlink Assignment Indicator

DCI Downlink Control Information

DFT Discrete Fourier Transform

1275 DM(-)RS Demodulation reference signal(ing)

FDM Frequency Division Multiplex

FIARQ Hybrid Automatic Repeat Request

IFFT Inverse Fast Fourier Transform

MBB Mobile Broadband

74256W01 39/46 1280 MCS Modulation and Coding Scheme

MIMO Multiple-input-multiple-output

MRC Maximum-ratio combining

MRT Maximum-ratio transmission

MU-MIMO Multiuser multiple-input-multiple-output

1285 OFDM/A Orthogonal Frequency Division Multiplex/Multiple Access

PAPR Peak to Average Power Ratio

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PRACH Physical Random Access CHannel

1290 PRB Physical Resource Block

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

(P)SCCH (Physical) Sidelink Control Channel

(P)SSCH (Physical) Sidelink Shared Channel

1295 RB Resource Block

RRC Radio Resource Control

SC-FDM/A Single Carrier Frequency Division Multiplex/Multiple Access

SCI Sidelink Control Information

SINR Signal-to-interference-plus-noise ratio

1300 SIR Signal-to-interference ratio

SNR Signal-to-noise-ratio

SR Scheduling Request

SRS Sounding Reference Signal(ing)

SVD Singular-value decomposition

1305 TDM Time Division Multiplex

UCI Uplink Control Information

UE User Equipment

URLLC Ultra Low Latency High Reliability Communication

VL-MIMO Very-large multiple-input-multiple-output

1310 ZF Zero Forcing

Abbreviations may be considered to follow 3GPP usage if applicable.

74256W01 40/46 1315

1320

74256W01 41/46