Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RESPIRATORY PROTECTION EQUIPMENT
Document Type and Number:
WIPO Patent Application WO/2014/199028
Kind Code:
A1
Abstract:
Respiratory protection hood comprising a flexible envelope (2) and a reservoir (3) of pressurized oxygen comprising an outlet orifice (3) that leads into the internal volume of the envelope (2), the outlet orifice (4) being closed off by a removable stopper (5), characterized in that the reservoir (3) of oxygen comprises, upstream of the orifice (4), a passage (6) for the pressurized gas and a needle (7) that is able to move in a given direction (A) of displacement in said passage (6), the needle (7) being subjected to two opposite forces in the direction (A) of displacement, said forces being respectively generated on the one hand by the pressure of the gas in the reservoir (3) and on the other hand by a return member (8), the needle (7) having a section with a defined profile that is variable in the direction (A) of displacement in order to modify the degree of closure of the passage depending on the position of said needle relative to the passage (6) so as to regulate the flow rate of gas allowed to escape via the passage (6) towards the orifice (4) as a function of time and the pressure of gas in the reservoir (3).

Inventors:
MAKHLOUCHE RACHID (FR)
CAZENAVE JEAN-MICHEL (FR)
DUMONT FREDDY (FR)
ROLLAND CHRISTIAN (FR)
PERRARD VINCENT (FR)
Application Number:
PCT/FR2014/051047
Publication Date:
December 18, 2014
Filing Date:
May 02, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AIR LIQUIDE (FR)
International Classes:
A62B7/02; A62B17/04; A62B7/14
Domestic Patent References:
WO2004018045A12004-03-04
Foreign References:
FR2582524A11986-12-05
Other References:
None
Attorney, Agent or Firm:
DE CUENCA, Emmanuel (FR)
Download PDF:
Claims:
REVENDICATIONS

1 . Cagoule de protection respiratoire comprenant une enveloppe (2) souple destinée à être enfilée sur la tête d'un utilisateur et un réservoir (3) d'oxygène sous pression comprenant un orifice (4) de sortie débouchant dans le volume interne de l'enveloppe (2) souple, l'orifice (4) de sortie étant obturé par un bouchon (5) amovible ou à rupture aménagée, caractérisée en ce que le réservoir (3) d'oxygène sous pression comprend, en amont de l'orifice (4), un passage (6) pour le gaz sous pression et un pointeau (7) mobile selon une direction (A) de déplacement déterminée dans ledit passage (6), le pointeau (7) étant soumis à deux efforts opposés selon la direction (A) de déplacement et générés respectivement d'une part par la pression du gaz dans le réservoir (3) et, d'autre part, par un organe (8) de rappel, le pointeau (7) ayant une section de profil déterminé variable selon la direction (A) de déplacement pour modifier le degré de fermeture du passage selon sa position relativement au passage (6) de façon à réguler le débit de gaz admis à s'échapper via le passage (6) vers l'orifice (4) en fonction du temps et de la pression de gaz dans le réservoir (3).

2. Cagoule selon la revendication 1 , caractérisée en ce que le pointeau (7) a une section de profil déterminé selon la direction (A) de déplacement pour contrôler le débit de gaz admis à s'échapper via le passage (6) vers l'orifice (4) selon une courbe prédéterminée en fonction du temps et de la pression de gaz initiale dans le réservoir (3).

3. Cagoule selon la revendication 1 ou 2, caractérisée en ce que le pointeau (7) a une section de profil déterminé selon la direction (A) de déplacement pour contrôler le débit de gaz admis à s'échapper via le passage (6) vers l'orifice (4) en fonction du temps selon une courbe comprenant une première phase délivrant un premier débit compris entre 3NI/min et 8NI/min lorsque la pression dans le réservoir (3) est compris entre 250 bar et 100bar puis une seconde phase délivrant un second débit compris entre 2 Nl/min et 5NI/min lorsque la pression dans le réservoir (3) est comprise 100 bar et 30bar.

4. Cagoule selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le pointeau (7) a une section de profil déterminé selon la direction (A) de déplacement, pour contrôler le débit de gaz admis à s'échapper du réservoir (3) via le passage (6) vers l'orifice (4) en fonction du temps selon une courbe présentant des paliers successifs sensiblement constants, c'est-à-dire que , pour un gaz initialement stocké à une pression initiale comprise entre 250 bar et 100 bar dans le réservoir, les paliers présentent une diminution de débit inférieure à 1 NI/min, lesdits paliers comprenant un premier palier de débit compris entre 3 et 6 NI (normolitre) par minute pendant une durée comprise entre une et cinq minutes après le début de l'ouverture de l'orifice (4) calibré, et un second palier de débit compris entre 1 ,6 et 3 NI par minute pendant une durée comprise entre 5 et 25 minutes après le début de l'ouverture de l'orifice (4) calibré.

5. Cagoule selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le passage (6) est formé dans une cloison (16) délimitant une chambre (31 ) intermédiaire entre l'orifice (4) calibré et le reste du volume intérieur du réservoir (3), ladite chambre (31 ) intermédiaire étant mise à la pression extérieure via l'orifice (4) calibré lors de l'ouverture du bouchon (5) d'obturation.

6. Cagoule selon la revendication 5, caractérisée en ce que le pointeau (7) comprend une extrémité (17) mobile dans la chambre (31 ) intermédiaire et en ce que l'organe (8) de rappel est logé dans chambre (31 ) intermédiaire et exerce son effort sur cette extrémité (17).

7. Cagoule selon l'une quelconque des revendications 1 à 6, caractérisée en ce que le pointeau (7) a une section de diamètre croissant.

8. Cagoule selon la revendication 7, caractérisée en ce que le pointeau (7) présente un profil de diamètre croissant et muni d'au moins un palier (77) de diamètre constant.

9. Cagoule selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le pointeau (7) comporte une capsule (27) étanche déformable contenant un gaz à une pression déterminée, notamment une capsule altimétrique, ladite capsule (27) étant en appui contre au moins une paroi du réservoir (3) et se déformant selon la pression au sein du réservoir (3) pour provoquer un déplacement déterminé du pointeau (7) selon une direction (A) de déplacement en fonction de la pression dans le réservoir (3).

10. Cagoule selon l'une quelconque des revendications 1 à 9, caractérisée en ce que l'enveloppe (2) souple est étanche.

1 1 . Cagoule selon l'une quelconque des revendications 1 à 10, caractérisée en ce que le réservoir (3) d'oxygène est solidaire de la base de l'enveloppe (2) souple.

12. Cagoule selon l'une quelconque des revendications 1 à 1 1 , caractérisée en ce que le réservoir (3) d'oxygène a une forme générale tubulaire, notamment en forme de C, pour permettre sa disposition autour du cou d'un utilisateur.

Description:
Equipement de protection respiratoire

La présente invention concerne un équipement de protection respiratoire couramment appelé cagoule.

L'invention concerne plus particulièrement une cagoule de protection respiratoire comprenant une enveloppe souple destinée à être enfilée sur la tête d'un utilisateur et un réservoir d'oxygène sous pression comprenant un orifice de sortie débouchant dans le volume interne de l'enveloppe souple, l'orifice de sortie étant obturé par un bouchon amovible ou à rupture aménagée.

Ce type de dispositif, qui doit satisfaire à la norme TSO-C-1 16a est classiquement utilisé à bord des avions lorsque l'atmosphère de la cabine est viciée (dépressurisation, fumée, agents chimiques,...).

Ces cagoules doivent notamment permettre au personnel naviguant de combattre l'avarie, porter secours aux passagers et gérer une éventuelle évacuation de l'appareil.

Les spécifications techniques de ces dispositifs sont définies selon des classes d'utilisation (avarie en vol, protection contre l'hypoxie à haute altitude, évacuation d'urgence au sol,...).

Afin de répondre aux exigences d'utilisation, le dispositif doit pouvoir fournir suffisamment d'oxygène à l'utilisateur.

La cagoule peut notamment être prévue pour à la fois empêcher une hypoxie à une altitude de 40000 pieds deux minutes après sa mise en place puis, dans les dernières minutes d'utilisation, fournir suffisamment d'oxygène pour permettre une évacuation.

Les équipements de protection respiratoire connus utilisent principalement deux types de source d'oxygène :

- un pain chimique (encore appelé « chandelle chimique) générant de l'oxygène par combustion (superoxyde de potassium - KO 2 , Chlorate de sodium - NaCIO 3 ,...), ou

- un réservoir d'oxygène comprimé associée à un orifice calibré.

Le premier type permet de fournir un débit d'oxygène qui croit jusqu'à atteindre un palier relativement constant avant de décroître rapidement en fin de combustion. Les générateurs du type à chandelle chimique correctement dimensionnés peuvent constituer une source d'oxygène permettant de remplir les conditions recherchées mais cette solution possède un inconvénient majeur : la réaction de combustion de la chandelle est fortement exothermique.

De ce fait, la température de surface extérieure du dispositif peut facilement dépasser les 200°C et enflammer un éventuel matériel combustible en contact (un accident mortel s'est déjà produit suite à l'activation accidentelle d'une telle chandelle chimique dans un container de transport dans la soute d'un avion).

Ce type de dispositif présente également l'inconvénient de nécessiter un certain temps pour la montée en débit d'oxygène au démarrage. Ceci peut nécessiter l'ajout d'une capacité d'oxygène supplémentaire pour le démarrage. Enfin, ces dispositifs nécessitent des filtres pour retirer les impuretés générées par la réaction de production d'oxygène.

Le second type (réservoir d'oxygène sous pression associé à un orifice calibré) fournit un débit d'oxygène qui décroit de façon exponentielle, proportionnellement à la pression à l'intérieur de la réserve.

Les cagoules utilisant ce second type contiennent ainsi généralement une source d'oxygène permettant d'alimenter une personne en oxygène pendant 15 min. Ces équipements possèdent également un moyen de limitation de la pression à l'intérieur de la cagoule (par exemple une soupape de surpression).

Cette technologie utilisant de l'oxygène comprimé dans une capacité scellée associée à un orifice calibré est plus sûre. Néanmoins, afin d'être en mesure de répondre à certain cas d'utilisation (consommation d'oxygène importante en fin d'utilisation correspondant par exemple à une évacuation d'urgence de l'appareil), la capacité doit avoir un volume trop important pour l'encombrement visé. Une autre solution peut être de prévoir une pression initiale élevée (supérieure à 250 bar). Ceci génère un débit initial important par exemple plus de dix normolitre par minute (Nl/min) permettant d'avoir un débit suffisant en fin d'utilisation (par exemple plus de 2NI/min à la quinzième minute d'utilisation de l'équipement). Un débit d'oxygène excessif, bien qu'avantageux pour assurer la protection contre l'hypoxie, est cependant problématique en cas d'incendie à bord de l'appareil car l'excédent d'oxygène sera évacué de l'équipement au travers de sa soupape de surpression et pourrait alimenter des flammes. De plus, cela nécessite un surdimensionnement du réservoir d'oxygène ce qui est un inconvénient majeur en terme de masse, d'encombrement et de coût.

L'invention concerne une cagoule utilisant un réservoir d'oxygène sous pression.

Un but de la présente invention est de pallier tout ou partie des inconvénients de l'art antérieur relevés ci-dessus.

Un but de l'invention peut notamment être de proposer une cagoule permettant de fournir une quantité d'oxygène relativement importante en début d'utilisation (pour empêcher une hypoxie à haute altitude) tout en permettant la fourniture d'une quantité d'oxygène suffisante en fin d'utilisation (après dix ou quinze minutes) pour permettre une évacuation.

A cette fin, la cagoule selon l'invention, par ailleurs conforme à la définition générique qu'en donne le préambule ci-dessus, est essentiellement caractérisée en ce que le réservoir d'oxygène sous pression comprend, en amont de l'orifice, un passage pour le gaz sous pression et un pointeau mobile selon une direction de déplacement déterminée dans ledit passage, le pointeau étant soumis à deux efforts opposés selon la direction de déplacement et générés respectivement d'une part par la pression du gaz dans le réservoir et, d'autre part, par un organe de rappel, le pointeau ayant une section de profil déterminé variable selon la direction de déplacement pour modifier le degré de fermeture du passage selon sa position relativement au passage de façon à réguler le débit de gaz admis à s'échapper via le passage vers l'orifice en fonction du temps et de la pression de gaz dans le réservoir.

Par ailleurs, des modes de réalisation de l'invention peuvent comporter l'une ou plusieurs des caractéristiques suivantes :

- le pointeau a une section de profil déterminé selon la direction de déplacement pour contrôler le débit de gaz admis à s'échapper via le passage vers l'orifice selon une courbe prédéterminée en fonction du temps et de la pression de gaz initiale dans le réservoir,

- le pointeau a une section de profil déterminé selon la direction de déplacement pour contrôler le débit de gaz admis à s'échapper via le passage vers l'orifice en fonction du temps selon une courbe comprenant une première phase délivrant un premier débit compris entre 3NI/min et 8NI/min lorsque la pression dans le réservoir est compris entre 250 bar et 100bar puis une seconde phase délivrant un second débit compris entre 2 Nl/min et 5NI/min lorsque la pression dans le réservoir est comprise 100 bar et 30bar,

- le pointeau a une section de profil déterminé selon la direction de déplacement, pour contrôler le débit de gaz admis à s'échapper du réservoir via le passage vers l'orifice en fonction du temps selon une courbe présentant des paliers successifs sensiblement constants, c'est-à-dire que, pour un gaz initialement stocké à une pression initiale comprise entre 250 bar et 100 bar dans le réservoir, les paliers présentent une diminution de débit inférieure à 1 Nl/min, lesdits paliers comprenant un premier palier de débit compris entre 3 et 6 NI (normolitre) par minute pendant une durée comprise entre une et cinq minutes après le début de l'ouverture de l'orifice calibré, et un second palier de débit compris entre 1 ,6 et 3 NI par minute pendant une durée comprise entre 5 et 25 minutes après le début de l'ouverture de l'orifice calibré,

- le passage est formé dans une cloison délimitant une chambre intermédiaire entre l'orifice calibré et le reste du volume intérieur du réservoir, ladite chambre intermédiaire étant mise à la pression extérieure via l'orifice calibré lors de l'ouverture du bouchon d'obturation,

- le pointeau comprend une extrémité mobile dans la chambre intermédiaire, l'organe de rappel étant logé dans la chambre intermédiaire et exerçant son effort sur cette extrémité,

- le pointeau a une section de diamètre croissant,

- le pointeau présente un profil de diamètre croissant et muni d'au moins un palier de diamètre constant

- le pointeau comporte une capsule étanche déformable contenant un gaz à une pression déterminée, notamment une capsule altimétrique, ladite capsule étant en appui contre au moins une paroi du réservoir et se déformant selon la pression au sein du réservoir pour provoquer un déplacement déterminé du pointeau selon une direction de déplacement en fonction de la pression dans le réservoir,

- l'enveloppe souple est étanche,

- le réservoir d'oxygène est solidaire de la base de l'enveloppe souple, - le réservoir d'oxygène a une forme générale tubulaire, notamment en forme de C, pour permettre sa disposition autour du cou d'un utilisateur,

- la base de l'enveloppe souple forme un diaphragme souple destiné à être monté autour du cou d'un utilisateur,

- la cagoule comprend un dispositif d'absorption du CO2 qui communique avec l'intérieur de l'enveloppe,

- l'enveloppe comporte une ouverture en travers de laquelle est disposé le dispositif d'absorption de CO2,

- la capsule est constituée d'au moins l'un des matériaux parmi : un acier, un alliage de cuivre ou de bronze,

- le pointeau est dimensionné pour que des variations de pression de 350bar dans le réservoir provoquent un déplacement en translation du pointeau selon la direction sur une distance comprise entre 1 à 10 mm et de préférence comprise entre 1 à 4 mm.

L'invention peut concerner également tout dispositif ou procédé alternatif comprenant toute combinaison des caractéristiques ci-dessus ou ci-dessous.

D'autres particularités et avantages apparaîtront à la lecture de la description ci-après, faite en référence aux figures dans lesquelles :

- la figure 1 représente une vue de face et schématique illustrant un exemple de cagoule selon l'invention,

- la figure 2 illustre en coupe d'un détail de la cagoule de la figure 1 illustrant un premier mode de réalisation du réservoir d'oxygène sous pression,

- les figures 3 et 4 représentent des vues en coupe agrandies d'un détail de réservoir de la figure 2 selon respectivement deux configurations de fonctionnement,

- la figure 5 illustre un exemple de courbes de débit d'oxygène pouvant être fourni par un réservoir selon la figure 2,

- la figure 6 représente une vue en coupe d'un détail de la cagoule de la figure 1 illustrant un second mode de réalisation du réservoir d'oxygène sous pression, les deux moitiés de la coupe correspondant respectivement à deux configurations de fonctionnement,

- les figures 7 à 9 représentent des vues partielle set schématique de trois variantes de réalisation d'un pointeau utilisable dans un réservoir selon l'invention. La cagoule illustrée à la figure 1 comprend classiquement une enveloppe 2 souple (de préférence étanche) destinée à être enfilée sur la tête d'un utilisateur. Une visière 13 transparente est prévue sur la face avant de l'enveloppe 2. La cagoule 1 comprend également un réservoir 3 d'oxygène sous pression, disposé par exemple au niveau de la base de l'enveloppe 2.

Classiquement, la base de l'enveloppe 2 souple peut comporter ou former un diaphragme souple destiné à être monté autour du cou d'un utilisateur afin d'assurer l'étanchéité.

Classiquement également, la cagoule 1 peut comporter un dispositif d'absorption du CO2 (non représenté) qui communique avec l'intérieur de l'enveloppe 2, pour retirer le CO2 de l'air expiré par l'utilisateur. Par exemple, l'enveloppe 2 peut comporter une ouverture en travers de laquelle est disposé le dispositif d'absorption de CO2. De même, une autre ouverture peut être prévue pour une soupape 14 de sécurité prévue pour éviter une surpression dans l'enveloppe 2.

Comme illustré à la figure 1 , le réservoir 3 d'oxygène peut avoir une forme générale tubulaire, notamment en forme de C, pour permettre sa disposition autour du cou d'un utilisateur.

Comme illustré à la figure 2, le réservoir 3 comprend un orifice 4 de sortie débouchant dans le volume interne de l'enveloppe 2 souple, pour délivrer de l'oxygène gazeux pur ou un gaz enrichi en oxygène à l'utilisateur. Le réservoir 3 comprend également au moins un orifice de remplissage (non représenté par soucis de simplification).

L'orifice 4 de sortie est normalement obturé par un bouchon 5 amovible ou à rupture aménagée et qui ne sera ouvert qu'en cas d'utilisation.

Par exemple lorsque le bouchon 5 est brisé/retiré, l'orifice 4 fait communiquer l'extérieur avec le volume interne du réservoir 3.

Selon une caractéristique avantageuse, le réservoir 3 d'oxygène sous pression (pur ou majoritaire) comprend, en amont du bouchon 5, un passage 6 pour le gaz sous pression et un pointeau 7 mobile selon une direction A de déplacement déterminée dans ledit passage 6. De préférence, le pointeau 7 est mobile en translation selon la direction A de déplacement. Comme visible dans l'exemple des figures 2 à 4, le passage 6 peut être formé dans une cloison 16 délimitant une chambre 31 intermédiaire entre l'orifice 4 de sortie et le reste du volume intérieur du réservoir 3. Cette cloison 16 séparatrice peut être solidaire d'un boîtier inséré au niveau d'une extrémité du réservoir 3. Ce boîtier peut intégrer le bouchon 5 frangible. Le volume de la chambre 31 intermédiaire correspond par exemple à un i o eme à 50 eme du volume total du réservoir 3.

Le pointeau 7 peut coopérer avec un joint 9 disposé au niveau du passage 6.

Le pointeau 7 est soumis à deux efforts de déplacement opposés selon la direction A et générés respectivement d'une part par la pression du gaz dans le réservoir 3 et, d'autre part, par un organe 8 de rappel.

Par exemple, la pression de gaz dans le réservoir 3 pousse le pointeau 7 en direction de l'orifice 4 de sortie tandis que l'organe 8 de rappel (par exemple un ressort de compression) repousse le pointeau 7 dans le sens opposé. Le pointeau

7 peut ainsi comprendre une extrémité 17 mobile dans la chambre 31 intermédiaire sur laquelle le ressort 8 exerce son effort.

Le pointeau 7 présente une section de profil 10 déterminé variable selon la direction A de déplacement pour modifier le degré de fermeture du passage selon sa position relativement au passage 6. Ce profil 10, qui peut comporter des rainures longitudinale selon la direction A de déplacement, est conformé pour réguler le débit de gaz admis à s'échapper via le passage 6 vers l'orifice 4 de sortie ouvert lorsque le bouchon 5 est retiré.

De cette façon, le pointeau 7 a une section de profil déterminé selon la direction A de déplacement pour contrôler le débit de gaz admis à s'échapper via le passage 6 vers l'orifice 4 calibré selon une courbe prédéterminée en fonction du temps et de la pression initiale dans le réservoir 3.

Par exemple, le pointeau 7 a une section de profil 10 déterminé selon la direction A de déplacement pour contrôler le débit de gaz admis à s'échapper selon une courbe comprenant une première phase délivrant un premier débit compris entre 3 Nl/min et 8 Nl/min (NI=normolitre) lorsque la pression dans le réservoir est compris entre 250 bar et 100 bar puis une seconde phase délivrant un second débit compris entre 2 Nl/min et 5 Nl/min lorsque la pression dans le réservoir 3 est comprise 100 bar et 30 bar.

Lorsque le bouchon 5 est en place, le réservoir 3 contient du gaz sous pression y compris dans la chambre 31 intermédiaire (cf. figure 3).

Lorsque le bouchon 5 est brisé, l'orifice 4 met en relation fluidique la chambre 31 intermédiaire avec l'extérieur. La chambre 31 intermédiaire et donc le ressort 8 se retrouvent alors à la pression extérieure. Du gaz s'échappe avec un débit contrôlé par le passage ménagé entre le profil 10 du pointeau 7 et la bordure du passage 6. Le pointeau 7 est déplacé par la pression dans le réservoir (cet effort prend le dessus sur l'effort du ressort 8 qui se trouve comprimé cf. figure 4).

A mesure que la pression de gaz diminue dans le réservoir 3, le ressort 8 déplace à nouveau le pointeau 7 à encontre de la pression de gaz (vers la gauche sur la figure 4). Selon le profil 10 d'usinage choisi pour le pointeau 7, le débit libéré peut suivre différentes évolutions prédéterminées.

Un tel exemple de variation de débit de gaz fourni (en normolitre NI c'est-à- dire en litre de gaz dans des conditions de température T=0°C et de pression P=1 atm déterminées) en fonction du temps (en seconde) est représenté par une première courbe munie de croix à la figure 5.

Cette première courbe est obtenue via un pointeau 7 ayant une section de profil déterminé selon la direction A de déplacement. Cette courbe ménage des paliers successifs sensiblement constants, c'est-à-dire que, pour un gaz initialement stocké à une pression initiale déterminée dans le réservoir 3, le débit admis à s'échapper par l'orifice 4 de sortie est d'abord sensiblement constant autour d'une première valeur déterminée (par exemple 3,2 NI par minute pendant 6 minutes environ). Puis ce débit décroît ensuite pour atteindre un second palier sensiblement constant à une valeur déterminée autour de 2NI/minute (pendant 25 minutes environ).

La figure 5 représente en trait continu une autre courbe de débit plus théorique pouvant être approchée par un dispositif selon l'invention. Cette courbe comprend un premier palier court (1 à 2 minute environ) à un débit relativement élevé (environ 5,2 NI par minute par exemple) puis une décroissance du débit jusqu'à un second palier (par exemple à environ 1 ,8 NI par minute pendant 35 minutes environ) avant de décroître. Ainsi, en choisissant le profil de la section du pointeau 7 il est possible de déterminer la forme générale de la courbe de débit de gaz par le réservoir 3. Ceci permet de configurer la vidange du réservoir 2 de gaz aux besoins de l'utilisateur selon le cas ou la classe d'utilisation de la cagoule 1 (fort débit initial pour une intervention d'urgence, puis stabilisation du débit pendant l'atterrissage d'urgence et débit élevé durant la phase d'évacuation de l'appareil).

Comme illustré à la figure 6, le pointeau 7 peut comporter une capsule 27 étanche déformable contenant un gaz à une pression déterminée, notamment une capsule altimétrique. La capsule 27 altimétrique (également appelée capsule anémométrique) peut être réalisée en inox, en acier ou tout autre matériau approprié. Cette capsule 27 constitue un volume étanche contenant un gaz à pression constante (généralement à une pression compris proche du vide, par exemple entre 0.1 bar et 1 bar) pendant toute sa durée de vie. Le gaz contenu dans la capsule 27 est par exemple de l'air.

Lorsque la pression dans le réservoir 3 est importante (150bar par exemple), la capsule 27 est comprimée (cf. la partie haute de la figure 6). En revanche, à mesure que la pression à l'intérieur du réservoir 3 diminue, le volume de la capacité augmente. Cette augmentation de volume de la capsule déplace par réaction le pointeau 7 vers une position d'ouverture plus grande (cf. partie basse de la figure 6 (et inversement).

En effet, la variation de volume de la capsule 27 déplace le pointeau 7 par rapport au corps du réservoir 1 et fait varier la distance entre le pointeau 7 et le passage 6 selon la direction A de déplacement. Le débit est donc modifié par la modification de la section ouverte au niveau du passage.

De tels mécanismes sont utilisés dans les régulateurs d'oxygène pneumatico-mécaniques pour assurer la fonction de surpression altimétrique. Ils sont également utilisés dans l'automobile pour réduire l'admission lors des phases de freinage.

Selon le profil du pointeau 7, différents types de profils de débit peuvent être obtenu.

La figure 7 illustre schématiquement un pointeau 7 dont la section est variable et présente plusieurs paliers 77 de diamètre constant différents. Un tel profil permet d'obtenir des variations de sections au niveau du passage entre trois sections de passage constantes.

La figure 8 illustre un profil de pointeau 7 ayant une section de diamètre croissant linéairement. Ceci peut permettre d'obtenir une section de passage variable selon la position par rapport au passage 6.

La figure 9 illustre un profile de pointeau 7 comprenant un diamètre croissant jusqu'à un palier de diamètre constant. Un tel profil permet d'obtenir une section de passage variable en fonction de la position selon la direction A de déplacement puis une section de passage constante.

Bien entendu, d'autres profils peuvent être envisagés (section de diamètre variable non linéairement...).

Les modes de réalisation des figures 2 et 6 peuvent comporter un seul orifice de remplissage (de préférence distinct et opposé à l'orifice 4 calibré de sortie).

Ces modes de réalisation donnés à titre d'exemple permettent un contrôle du débit fourni à l'enveloppe 2 de la cagoule avec une grande liberté de dimensionnement.

De plus, le pointeau 7 mobile ne nécessite pas de course importante selon la direction A de déplacement, quelques millimètres (1 à 4mm par exemple) peuvent suffire pour contrôler des débits sur une durée de 15 à 30 minutes par exemple pour toutes les classes (1 à 4) d'utilisations de la cagoule 1 .