Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A RESPIRATORY PROTECTIVE DEVICE OR FACE MASK HYGIENE PRODUCT, A METHOD FOR THE MANUFACTURE OF REINFORCED TEXTILE PART, NONWOVEN FABRIC PART OR THEIR COMBINATION PART, AND A FILTER
Document Type and Number:
WIPO Patent Application WO/2022/144310
Kind Code:
A1
Abstract:
A faceblank (5) for a respiratory protective device or face mask hygiene product (1), where the shape of the faceblank (5) defines a number of filter openings (2, 3, 4) and which further comprises a head harness (6) or fastening for a head harness (6) and is characterised in that the filter openings (2, 3, 4) have been implemented to comprise a tongue (7), most advantageously so that the edge of each opening (2, 3, 4) is composed of a tongue. The faceblank is used with a number of replaceable filters (10) adapted in the filter openings (2, 3, 4) of the faceblank (5), each filter (10) comprising a filter part (11) and a frame (12) that encircles the filter part (11), in which frame (12) the outer edge has been implemented to comprise a groove (13) – most advantageously so that the outer edge of each frame (12) consists of a groove (13) – so that the filters (10) are fastenable to the filter openings (2, 3, 4) of the faceblank (5) by means of a tongue-and-groove connection, in which case the tongue (7) and groove (13) form an air-tight tongue-and-groove connection. Further independent claims directed to filters and methods for the manufacture of reinforced textile part, nonwoven fabric part or their combination part.

More Like This:
Inventors:
PORANEN TANELI (FI)
KOTINIEMI SAMI (FI)
Application Number:
PCT/EP2021/087535
Publication Date:
July 07, 2022
Filing Date:
December 23, 2021
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
FORSSAN SUOJAINVALMISTUS OY (FI)
International Classes:
A41D13/11; A62B18/02
Foreign References:
US20200360645A12020-11-19
US3154073A1964-10-27
US20200360645A12020-11-19
US3153073A1964-10-13
Other References:
"Respiratory Protection for Airborne Exposures to Biohazards", #174 IN SERIES TECHNICAL DATA BULLETIN, RELEASE 5, June 2020 (2020-06-01), Retrieved from the Internet
Attorney, Agent or Firm:
GENIP OY (FI)
Download PDF:
Claims:
Claims :

1. A respiratory protective device or face mask hygiene product (1) , characterized in that:

- a reusable faceblank (5) , where the shape of the faceblank (5) defines a number of filter openings (2, 3, 4) and which further comprises a head harness (6) or fastening for a head harness (6) , and where the filter openings (2, 3, 4) have been implemented to comprise a tongue (7) , so that the edge of each opening (2, 3, 4) is composed of a tongue such that the tongue encircles the filter openings of the faceblank all around;

- a number of replaceable filters (10) adapted in the filter openings (2, 3, 4) of the faceblank (5) , each filter (10) of which comprising a filter part (11) and a frame (12) that encircles the filter part (11) , wherein the frame (12) has been fastened by moulding directly to the filter part (11) and wherein in the frame (12) the outer edge has been implemented so that the outer edge of each frame (12) consists of a groove (13) , such that the filters (10) are fastenable to the filter openings (2, 3, 4) of the faceblank (5) by means of a tongue-and-groove connection, so that the tongue (7) and groove (13) form an air-tight tongue-and-groove connection.

2. A respiratory protective device according to claim 1, wherein: the faceblank (5) comprises fastening mechanisms or protrusions that have been injection moulded to have a uniform material to fasten the head harness (6) .

3. A faceblank (5) according to claim 2, wherein: the protrusions have pins for rubber band fastening.

4. A respiratory protective device according to any one of the preceding claims, wherein: the head harness (6) has been implemented with replaceable bands, most advantageously rubber bands, which are fastened particularly advantageously to the pins of the faceblank (5) according to claim 3.

5. A respiratory protective device according to any one of the preceding claims, which further comprises: a number of nose seals (31) implemented in the faceblank (5) with a uniform material, which nose seals (31) have been formed by moulding by means of one-part mould halves (50) placed against each other, in which mould halves (50) the moulding shape (58) of the nose seal (31) has been implemented by means of electric discharge machining .

6. A respiratory protective device according to any one of the preceding claims, wherein: at least one filter (10) comprises a filter part (11) that includes textile and/or non-woven fabric as well as a frame (12) that encircles it and where the frame has been fastened by injection moulding directly to the filter part (11) , such that the filter part (11) had been stretched when the moulding of the frame (12) began.

7. A respiratory protective device or face mask hygiene product (1) according to claim 6, which further comprises: an exhalation valve adapted in one of the openings (2, 3, 4) and connected to the surrounding frame (12) .

8. A respiratory protective device according to claim 6, wherein: the filter (10) comprises several layers.

9. A respiratory protective device according to claim 8, wherein: the filter (10) comprises at least one filter layer and a number of coating layers, which protect the filter layer, arranged on its one side or both sides.

10. A respiratory protective device according to claim 9, wherein: the filter layer comprises electrically-charged filtering material, which is most advantageously a material based on polypropylene or a material containing polypropylene, and/or a mechanical filter and/or a filter that contains activated carbon.

11. A respiratory protective device according to claim 8, wherein: the filter part (11) comprises textile only in order to implement the filter (10) used in the face mask hygiene product (1) , in other words in the so-called everyman's mask.

12. A method for the manufacture of a reinforced textile part, nonwoven fabric part or their combination part (10) , characterised in that in the method:

- a part to be reinforced (11) , comprising textile, non-woven fabric or both of these, is placed into a mould (100) while stretched and stretching is maintained at the same time as a frame (12) , which encircles the part (11) , is moulded into the mould (100) , wherein the stretching is carried out by pretensioning the part to be reinforced (11) before closing the mould (100) , and by using the mould (100) to ensure that the pre-tensioning is maintained when the mould (100) closes; and wherein

- the part to be reinforced (11) is separated from a larger strip, in other words from a web (1200, 205) of textile, nonwoven fabric or both by die cutting before moulding, however, so that the part to be reinforced (11) remains in a material connection with the larger strip, in other words some of the perimeter or circumference of the part to be reinforced is not die cut .

13. A method according to claim 12, wherein: the larger strip (1200, 205) is a textile or non-woven fabric coming from a reel (202, 203) or a number of textiles and/or non-woven fabrics coming from separate reels (202, 203) .

14. A method according to claim 13, wherein: the outside remains of textile or non-woven fabric in the part to be reinforced (11) that are in a material connection are transferred in the feed direction from an opening mould (100) without breaking off.

15. A method according to any one of the claims 12 to 14, wherein: the part to be reinforced comprising textile, non-woven fabric or both of these comprises several material layers, and where material layers are pressed against each other during moulding, most advantageously by means of pins or similar arranged in the mould (100) .

16. A method according to claim 15, wherein: the pins or similar are located in the frame (12) area.

17. A method according to any one of the claims 12 to 16, wherein: several parts to be reinforced (10) are moulded in parallel and transferred in the manufacturing process while in a material connection to each other, in other words without being detached from one another, most advantageously by means of the uncut part (1201) of the web (1200, 205) .

18. A method according to any one of the preceding claims 12 to

17, wherein: the moulding is carried out as injection moulding.

19. A method according to any one of the preceding claims 12 to

18, wherein: the separation is carried out by a cutting part implemented in the mould (100) .

20. A method according to any one of the preceding claims 12 to

19, wherein: the method is used to manufacture a filter (10) for a respiratory protective device or face mask hygiene product

(1) •

21. A filter (10) for a respiratory protective device or face mask hygiene product (1) , characterized in that: the filter (10) comprises a filter part (11) that contains textile and/or non-woven fabric, and a frame (12) that encircles it, and wherein the frame (12) has been fastened by moulding directly to the filter part (11) with a method according to any one of claims 12 to 20.

22. The filter (10) according to claim 21, wherein: the moulding has been carried out using the injection moulding method.

23. The filter (10) according to claim 21 or 22, wherein: the filter part comprises several layers.

24. The filter (10) according to any one of the claims 21 to 23, wherein: the filter part comprises at least three filter material layers .

25. The filter (10) according to any one of the claims 21 to 24, wherein: in the frame (12) the outer edge has been implemented so that the outer edge of each frame (12) consists of a groove

26. The filter (10) according to any one of claims 21 to 25, wherein: polypropylene is used in the filter part (11) as filter f abric/f abrics and also in the filter frame (12) .

27. The filter according to claim 26, wherein: the filter part (11) is non-woven polypropylene and the frame (12) is moulded and of polypropylene that is hard plastic.

Description:
A respiratory protective device or face mask hygiene product, a method for the manufacture of reinforced textile part, nonwoven fabric part or their combination part, and a filter

Field of invention

The invention is related to respiratory protective devices and face mask hygiene products and their manufacture on one hand and to the manufacture of reinforced textile parts , nonwoven fabric parts or their combination parts on the other hand .

Technical background

Since February/March 2020 , many states in all parts of the world have decided to exceptionally impose restrictions on the freedom of movement of people as the COVID-19 epidemic turned into a pandemic . The use of respiratory protective devices has also been made mandatory in some countries , especially in public places or public transport .

As shops ran out of industrially-manufactured respiratory protective devices at times , instructions have been shared on the Internet on how to make textile face mas ks from fabric . Industrially-manufactured respiratory protective devices made from non-woven fabric are in practice the most commonly used type . On the basis of waste accumulating on streets , it also appears that some people have ended up using surgical face mas ks , possibly partly because there has only been a limited supply of respiratory protective devices in places .

A surgical face mask is a medical device intended to protect the patient from pathogens present in the exhalation air of medical staff . A surgical face mas k does not protect its user from airborne diseases .

Respiratory protective devices in the area of the European Union must fulfil the requirements of the personal protective equipment regulation ( EU ) 2016/425 . As indication of the fulfilment of the requirement , the protective equipment must bear the CE marking . Respiratory protective devices include medical face masks , and on the other hand different types of respiratory protective devices intended for various purposes . Medical face masks are used, for example, and in particular when treating a patient who has an airborne disease. In this case, it is typically sufficient that the respiratory protective device filters aerosols with a size of at least 5 jam. The properties required from medical face masks have been defined in the European standard EN 14683:2019 + AC:2019.

The technical requirements of respiratory protective devices and of filtering half masks that protect from particles have been presented in the European standard EN 149:2009 + Al: 2009. The main filter or filters of such respiratory protective devices and half masks constitute an inseparable part of the device. The classes of such respiratory protective devices and half masks include FFP1, FFP2, FFP3, for example.

The technical requirements of respiratory protective devices equipped with a replaceable filter and of quarter and half masks that filter particles have been presented in the European standard EN 140:1998 and in correction AC: 1999 of said standard.

As an example, the Finnish Institute for Health and Welfare, which is an independent research agency operating under the Finnish Ministry of Social Affairs and Health, states practical protection factors for respiratory protective devices on its website (in Finnish) (https://thl.fi/fi/web/infektiotaudit-ja- rokotukset/taudit- a-tor unta/ inf ektioiden-ehkaisy- j a- tor juntaohj eita/hengityksensuo j aimien-kaytto ) .

The practical protection factor of respiratory protective devices means how many times over the protective device reduces the aerosol content of the breathed air with 95% of the persons, provided that the protective device sits well and that the user has been instructed to use the protective device. The practical protection factor of a filtering half mask, the efficiency class of which is FFP1 (EN 149) , is 4. The practical protection factor of a filtering half mask, the efficiency class of which is FFP2 (EN 149) , is 10. The practical protection factor of a filtering half mask, the efficiency class of which is FFP 3 (EN 149) , is 20. Correspondingly, the practical protection factor of half mas ks equipped with a P3 filter ( EN 140 and EN 143 ) is 20 .

On the other hand, it is known in practice that respiratory protective devices ( EN 140 ) used against biohazards and equipped with a P3 filter ( EN 143 ) , for example half masks or quarter mas ks , can achieve a filtering efficiency of up to more than 99 . 95 % ( see Table A, 3M Company Personal Safety Division publication "Respiratory Protection for Airborne Exposures to Biohazards" , #174 in series Technical Data Bulletin, Release 5 , June 2020 , downloaded on 1 October 2020 from Internet address https : / /multimedia . 3m . com/mws /media/ 4099030/ re spir at or y- pro tection-against -bioha zards . pdf ) .

Even though it might be possible to achieve a considerably better filtering result in favourable circumstances with a respiratory protective device equipped with a replaceable filter than with a respiratory protective device in accordance with the European standard EN 149 : 2009 or with a filtering half mas k that protects against particles , respiratory protective devices equipped with a replaceable filter are relatively complex and their purchase price is relatively expensive .

US 2020 /0360645 Al discloses in FIG 3 a respirator . The filter that is used in the respirator consists of a rim and a particulate air filter that is placed inside the rim. The outer shield portion is stretched over the air filter to form a tight seal around the air filter .

US 3 , 153 , 073 discloses a respirator comprising a replaceable filter pad . The filter pad is provided with a plurality of peripherally spaced slots through which the tabs are inserted so as to keep the filter pad stretched tightly and to prevent relative displacement between the filter pad and frame . The frame will form a dust-tight seal between the perimeter of the filter pad and the in-turned flange portion of the respirator . Objective of invention

The objective according to the first aspect of the invention is to improve cleanability of reusable respiratory protective devices equipped with a replaceable filter. This objective is solvable by means of a respiratory protective device or face mask hygiene product according to claim 1.

The objective of the invention alternative to or supplementary to the first objective is to simplify the manufacture of a reinforced textile part, nonwoven fabric part or their combination part. This objective can be solved by means of a method according to claim 12.

A still further objective of the invention is to i) simplify the manufacture and ii) to improve comfort of filters for a respiratory protective device or face mask hygiene products.

Objective i) can be achieved with a filter according to claim 21 and objective ii) can be achieved with a filter according to claim 24.

The dependent claims describe the preferred embodiments of the respiratory protective device / face mask hygiene product, filter and method.

One of the items of the invention is a respiratory protective device and its filter, or alternatively a face mask hygiene product and its filter. The respiratory protective device or face mask hygiene product can also be a medical device.

The respiratory protective device or face mask hygiene product is most advantageously a half mask or quarter mask, particularly advantageously, for example, one specified in the European standard EN 140:1998. Alternatively, the respiratory protective device can be an unassisted filtering device. The names of the parts of the half mask and quarter mask have been presented in the European standard EN 134:1998 under item 3.1.2, and the names of the parts of the unassisted filtering device have been presented under item 3.2.1 of the same standard.

Advantages of invention The respiratory protective device or face mask hygiene product according to the first aspect of the invention comprises a reusable faceblank, the shape of which defines a number of filter openings . Moreover, the faceblank comprises a head harness or fastening for a head harness . The filter openings have been implemented to comprise a tongue , most advantageously so that the edge of each opening is formed by a tongue such that the tongue encircles the filter openings of the faceblank all around .

The respiratory protective device of face mask hygiene product further comprises a number of replaceable filters adapted in the filter openings of the faceblank, each of which filters comprises a filter part and a frame that encircles the filter part . The frame has been fastened by moulding directly to the filter part . In the frame , the outer edge has been implemented to comprise a groove - most advantageously so that the outer edge of each frame consists of a groove - so that the filters are fastenable to the filter openings of the faceblank by means of a tongue-and-groove connection .

The tongue and groove form an air-tight tongue-and-groove connection .

The selected manner of execution of the tongue-and-groove connection has its significance : When the faceblank is to be reusable and the filters are to be mainly disposable , easy cleanability requires that the faceblank does not have any recesses or slots that might gather dirt or that would be difficult to clean or dry . Easy cleanability and dryability are accomplished precisely because the tongue encircles the filter holes of the faceblank all around, in which case it is possible to implement the filter holes without inward-turned recesses or slots .

Further , this gives an opportunity to implement the respiratory protective device or face mas k hygiene product in a simple configuration . Firstly, it is not necessary to implement separate equipment connectors in the faceblank, and since a filter housing can also be omitted from the faceblank, it is possible to technically implement the faceblank in a simple manner .

Correspondingly, due to the manner of execution of the tongue- and-groove connection, the structure of the replaceable filters can also be kept simple and the replaceability of the filters can be implemented in a simple manner; however, so that the tongue-groove connection between the replaceable filters and the faceblank are gas-tight .

According to an advantageous aspect , the faceblank comprises mechanisms or protrusions that have been inj ection moulded to have a uniform material for the fastening of the head harness . Due to the uniform material , a sufficient strength is achieved in the structure so that the head harness of the respiratory protective device or face mask hygiene product remains fastened to the respiratory protective device or face mask hygiene product also when the going gets rough .

According to an advantageous aspect , the protrusions have pins for band fastening . In this case , the head harness can be implemented well as a band, such as a rubber band . This enables the reusability of the faceblank in a hygienic manner also if the next user of the faceblank is a different person . The faceblank can be washed after use most advantageously in an ordinary washing machine , for example . When the head harness ( in other words the old band) is removed and discarded before washing and when the head harness ( in other words the new band) is fastened after washing and drying, it is possible to ensure the hygiene of the part that comes against the hair and more generally against the back part of the head of the user of the head harness . The fastening of the head harness ( in other words of the bands ) to the faceblank can be implemented in a simple manner by means of pins .

According to an advantageous aspect , the head harness is implemented with replaceable bands , which are most advantageously rubber bands or comprise rubber bands . The replaceable bands are fastened particularly advantageously in the above-described manner to the pins of the faceblank . The term "rubber band" refers here and below to an elastic band, in other words elastic stretchability is a requirement , but it is not a requirement that the rubber band would contain rubber . As an example , medical rubber band does not contain rubber .

According to one advantageous aspect , the faceblank comprises a number of nose seals implemented in the faceblank in a materially uniform manner . There are most advantageously two nose seals , but the faceblank can also be implemented easily with one nose seal . The nose seal/seals has /have been formed by moulding by means of one-part mould halves placed opposite to each other , in which mould halves the moulding shape of the nose protrusion has been implemented by electric discharge machining . It is thus possible to implement the faceblank for faces and noses of several sizes so that it fits better, in other words is tighter . Moreover, the inventors have discovered that the nose seal/seals reduces /reduce the pressure exerted by the faceblank on the face , thus improving the usage comfort of the faceblank .

The respiratory protective device or face mask hygiene product can further comprise an exhalation valve adapted in one of the filter openings and connected to the surrounding frame . This enables the staying of the respiratory protective device or face mas k hygiene product more tightly against the face also during exhalation, especially when the filters are clogged to some extent , in which case the respiratory protective device or face mas k hygiene product would be pushed farther away from the face as a result of the pressure difference caused by exhalation . On the other hand, depending on the manner of execution, the valve can also relieve exhalation, which has significance in physically strenuous work, for example .

The filter for the respiratory protective device or face mask hygiene product comprises a filter part that contains textile and/or non-woven fabric, and a frame that encircles it . The frame has been fastened by moulding - most advantageously by using the inj ection moulding method - directly to the filter part using the method according to the second aspect of the invention . According to an advantageous aspect , the filter part has been stretched when the moulding of the frame begins . In this way, it is possible to reduce or even avoid the flutter of the filter part during inhalation and exhalation . Some people think that the flapping sound created by the flutter of the filter part is annoying .

The filter most advantageously comprises several layers . In this way, it is possible , depending on the manner of execution, to improve the filtering efficiency or protect the filter layer, which is possibly more sensitive to contact , and to hence improve the operating reliability of such a more delicate filter layer . In particular for this reason, the filter can be implemented so that it comprises at least one filter layer and a number of coating layers , which protect the filter layer, arranged on its one side or both sides . This is a particularly advantageous mode of operation when the filter layer comprises electrically-charged filtering material (most advantageously a material based on polypropylene or a material containing polypropylene ) . In addition to or instead of electrically- charged filtering material , it is possible to use mechanical filters and/or filters that contain activated carbon .

The inventors have discovered that the flapping sound described in the preceding paragraph may appear with two filter material layers , but the flapping sound no longer appeared in test items that comprised at least three filter material layers .

In the other extreme mode of operation, the filter part of the filter comprises textile only in order to implement the filter used in a face mas k hygiene product ( in other words in the so- called everyman' s mask ) . The filter material used can also be mechanically-filtering layers and activated carbon, for example ( or material that contains activated carbon) .

In the method for the manufacture of a reinforced textile part , nonwoven fabric part or their combination part , a part to be reinforced that comprises textile , non-woven fabric or both of these is placed in a mould while stretched and stretching is maintained at the same time as a frame , which encircles the part , is moulded - most advantageously by inj ection moulding - into the mould . In this way, it is possible to omit a possible stiffening structure , which would otherwise be required in the part , from the part .

Stretching is most advantageously carried out by pre-tensioning the part to be reinforced before closing the mould, and by using the mould to ensure that the pre-tensioning is maintained when the mould closes . Since the mould must close tightly in inj ection moulding, for example , the maintaining of the stretching or pre-tensioning due to the mould when the mould closes can be ensured in the handiest manner precisely by means of the mould .

The part to be reinforced is separated from a larger strip ( in other words from a web ) of textile , non-woven fabric or both by die cutting before moulding - most advantageously in a cutting part implemented in the mould - however , so that the part to be reinforced remains in a material connection with the larger strip , in other words some of the perimeter or circumference of the part to be reinforced is not die cut .

The larger strip is most advantageously a textile or non-woven fabric coming from a reel , or a number of textiles and/or nonwoven fabrics coming from separate reels . In this way, it is possible to implement a manufacturing line whose automation is more advantageously implementable .

Most advantageously, the outside remains of textile or non-woven fabric in the part to be reinforced that are in a material connection are transferred in the feed direction from an opening mould without breaking off . In this way, it is possible to transfer the reinforced parts , which come out of the mould, easily away from the mould, which increases the safety of operation, because the moulds used in moulding are typically hot and the opening/closing mould is dangerous .

The part to be reinforced that comprises textile , non-woven fabric or both of these most advantageously comprises several material layers . In an advantageous embodiment of the method, material layers are pressed against each other during moulding, most advantageously by means of pins or similar arranged in the mould . In this way, the material layers can be made into a denser package also at the location of the frame , which enables an increase in the strength of the part to be reinforced . The moulding compound that is squeezed between the material layers , especially in thin layers , may have an impact whereby an individual material layer comes off the frame even at a relatively small force .

The pins or similar are most advantageously located in the frame area . In this way, it is possible to use the pins or similar also after moulding for pushing the reinforced part out of the mould after the mould has been opened .

In an advantageous embodiment of the method, several parts to be reinforced are moulded in parallel and transferred in the manufacturing process while in a material connection to each other , in other words without being detached from one another . This enables an increase in the capacity of serial production .

The faceblank is most advantageously manufactured in singlecomponent moulding ( like the fastening of the head harness , which fastening is most advantageously implemented in a materially uniform manner in the faceblank, for example so that the faceblank and the f astening/f astenings is /are moulded at the same time ) . The head harness is most advantageously manufactured from a single material . In the filters , the filter part and the frame are most advantageously manufactured from the same (most preferably a single ) material . By doing so , the components can be separated from each other for recycling in a highly simple manner .

It is possible to advantageously use polypropylene in the filter part ( as filter f abric/f abrics ) and in the filter frame , for example , which enables the recycling of the filters as such when a potential ris k of contamination has been taken care of . In this case , the filters can be utilised in energy use by combustion, for example . The filter part is best non-woven ( for example polypropylene ) and the frame is moulded and of hard plastic ( for example polypropylene

List of drawings

In what follows , the implementation of the respiratory protective device or face mas k hygiene product , faceblank, filter and on the other hand also of the method according to the invention is discussed in more detail by means of the embodiments presented in the enclosed drawings . Of the drawings :

FIG 1 - 4 show a faceblank;

FIG 5 shows a filter ;

FIG 6 shows section VI-VI made at the frame of the filter of FIG 5 ;

FIG 7 shows a respiratory protective device or face mas k hygiene product ;

FIG 8 - 9 show a first part of a mould;

FIG 10 - 11 show a second part of a mould;

FIG 12 shows cutting and moulding with the mould closed, strip in closed mould;

FIG 13 and 14 show the mould opened after cutting and moulding, strip in opened mould;

FIG 15 shows equipment designed to implement the method;

FIG 16 shows three filters manufactured in parallel in a mould (more precisely : in the cutting part of mould) ;

FIG 17 shows a filter set , with three filters manufactured in parallel ;

FIG 18 shows a filter set folded together ;

FIG 19 and 20 show an advantageous embodiment of the faceblank; FIG 21 shows an electrode for the formation of the moulding shape of the nose seal of the faceblank;

FIG 22 shows the electrode shown in FIG 21 in its place in the mould; and

FIG 23 shows a part of the mould of a faceblank with a nose seal .

The same reference numbers refer to the same technical characteristics in all FIGs .

Detailed description of the invention : Faceblank , filter and respiratory protective device / face mask hygiene product

FIG 1 - 4 show a faceblank 5 . The shape of the faceblank 5 defines a number of filter openings 2 , 3 , 4 , most advantageously a right-hand side opening 2 , a left-hand side opening 3 and a bottom opening 4 . The faceblank 5 further comprises a head harness 6 or a fastening for a head harness 6 and is characterised in that the filter openings 2 , 3 , 4 have been implemented to comprise a tongue 7 , most advantageously so that the edge of each opening 2 , 3 , 4 is composed of a tongue .

FIG 2 shows a fastening 6 for a head harness : the free end of the fastening 6 is bent towards the faceblank 5 and fastened in a form-restricted manner by taking a knob or bulge into a slot , in which case the fastening 6 forms a loop or eyelet . The knob or bulge relieves the pressure exerted by the fastening 6 on the face , and the loop or eyelet can be implemented to be made by j ust one hand . The faceblank 5 is fastened into place on the user' s head so that a band ( in particular a rubber band ) or similar is fastened to the loops or eyelets , by means of which band or similar the faceblank 5 is tightened against the user' s face .

The faceblank 5 can comprise a mechanism that has been moulded to be most advantageously of uniform material , most preferably by the same moulding method ( such as inj ection moulding ) with which the faceblank 5 has been moulded, for example protrusions for the fastening of the head harness 6 ( such as bands , in particular rubber bands ) .

The faceblank 5 is manufactured most advantageously to be reusable so that replaceable filters 10 are installed in it .

The faceblank 5 consists of a piece which has the shape of a so- called half an avocado and which imitates the shape of the face . The material used in the faceblank 5 is most advantageously of elastomer ( silicone , polyurethane etc . ) , but inelastic materials are also possible .

The filter openings 2 , 3 , 4 have been implemented to comprise a tongue 7 , most advantageously so that the edge of each opening 2 , 3 , 4 is composed of a tongue 7 .

FIG 5 shows a filter 10 . Each filter comprises a filter part 11 and a frame 12 that encircles the filter part 11 , in which frame 12 the outer edge has been implemented to comprise a groove 13 - most advantageously so that the outer edge of each frame 12 consists of a groove 13 - so that the filters 10 are fastenable to the filter openings 2 , 3 , 4 of the faceblank 5 by means of a tongue-and-groove connection, in which case the tongue 7 and groove 13 form an air-tight tongue-and-groove connection . The implementation of the frame 12 of the filter 10 and the groove is shown in section VI-VI shown in FIG 6 .

FIG 7 shows a respiratory protective device or face mask hygiene product 1 , where filters 10 have been placed into place in the filter openings 2 , 3 , 4 located in the faceblank 5 . The respiratory protective device 1 or face mas k hygiene product 1 can, in addition to the filters or instead of some filter 10 , comprise an exhalation valve adapted in one of the filter openings 2 , 3 , 4 and connected to the surrounding frame 12 .

The edges of the filter openings 2 , 3 , 4 , in other words the tongue 7 , are so shaped that they sit in an air-tight manner in the groove 13 of the frame 12 of the filters 10 and so that the filters 10 with their integrated frame are replaceable . It is possible to use various replaceable moulding parts to mould symbols , logos or emblems used in marketing or communications in the faceblank 5 . Instead of this or in addition to this , it is possible to print , press or fasten symbols , logos or emblems in the faceblank 5 .

The targeted service life of the faceblank 5 is most advantageously at least 100 times of use ( number of replacements of filters ) , which enables a smaller price per time of use of the faceblank .

The frame 12 of the filters 10 is primarily of hard plastic . Polypropylene , for example , guarantees the recyclability of the filters 10 due to a homogeneous composition .

The filters 10 can be manufactured with different filtering classes , colours and additional properties . The filter part 11 consists of one or more similar or different filter material layers , which are either textile and/or non-woven fabric . Polypropylene-based, electrically-charged filtering material as well as surface layers that protect the actual filter layer are most advantageously used . Just textile without filtering properties can also be used in the frame 12 for so-called everyman' s masks .

Instead of the filter material or in addition to the filter material , an exhalation valve can be connected to one or more frames 12 , for example for the building industry .

The filters 10 are printed, most advantageously in the manufacturing process , with their filtering class , manufacturing and expiration date as well as the place of manufacture and (within the European Economic Area ) the CE marking as well as possibly also the identification of the notified body, most likely using laser technology or pad printing (Tampondruck in German) . After this , the filters 10 are packed in air-tight packaging .

The respiratory protective device or face mask hygiene product 1 is implementable as CE-certified personal protective equipment in accordance with the EU standard EN140 : 1998 ( including corrections AC : 1999 ) . In this case , the filters 10 are detachable .

Alternatively, the respiratory protective device or face mask hygiene product 1 is implementable , if desired, also as CE- certified personal protective equipment in accordance with the EU standard EN149 : 2009 . In this case , the filters 10 would not be detachable .

The targeted filtering classes include ( FFP1-FFP3 Al NR) , where : FFP1-FFP3 denotes the filtering level or class , Al a reusable frame , and NR a Not Reusable filter . Moreover, when the frame of the mas k if water-proof (primarily based on elastomer ) , splash resistance can be added to the filters , too , in which case the additional class Type HR can be sought for the type approval of the mask . Type HR is a classification that enables working in surgical conditions , and its manufacture requires the manufacturing permit of a medical device . This is why the respiratory protective device or face mas k hygiene product 1 can also be implemented in accordance with "European Medical Device Directive ( 93 /42 /EEC ) and EN 14683 : 2005 Type HR for use as a surgical mas k" .

The purpose of the best possible , tight fitting of the respiratory protective device or face mas k hygiene product 1 against different kinds of faces in various (working ) positions is to achieve a by-pass flow of a maximum of 0 - 1% . By-pass flow refers to the air that f lows/escapes in an uncontrolled manner between the respiratory protective device or face mask hygiene product and the face when breathing out or in . This can be affected directly by balancing the pressure difference by means of a maximal filtering area . The smaller the filter area, the greater the need for pressure balancing ( leak) between the edges of the respiratory protective device or face mask hygiene product 1 and the face , and the smaller the volume of air that travels per a square centimetre of the filter .

After the optimum solution, the changing of the filter material or the selection of the frame material or the stiffness of the faceblank 5 can be used for having an effect that reduces the filtering level , if that is to be desired .

II : On the possible implementation of pins or fastening mechanism

The goal in the manufacture of the respiratory protective device or face mas k hygiene product 1 is to have as few work stages as possible and an as high processing degree per work stage as possible . Primarily, this is sought by using the inj ection moulding technique and by integrating functions in the moulds .

Manufacturing process of the tightening mechanisms of the rubber bands in the moulding process .

The tightening mechanism according to the first embodiment consists of a part in the shape of the letter H, where the "transverse line of the letter H" is of the same material as the frame of the mask, while the "vertical lines of the letter H" are most advantageously of ( hard ) plastic .

Plastic is used so that elastomer would not lose its restoration ability too rapidly by the rubbing and pull of the rubber bands . Other alternatives for use as the fastening method are also examined . When this is being written, the most advantageous alternative would seem to be that the faceblank 5 is implemented as a one-part component .

The primary purpose is to guarantee the fastening of the respiratory protective device or face mas k hygiene product 1 behind the head with, for example , two rubber bands , the tightness of which can be adj usted . Moreover, it is important that the rubber band is disposable , not reusable , due to hygiene reasons . The rubber band is discarded/recycled when the filters 10 are replaced, and new rubber bands are always delivered in the packaging of the filters 10 for the respiratory protective device or face mask hygiene product .

Manufacturing process : 1. When the mould 100 (frame mould) is open, two plastic lines are pushed into place from reels on both sides of the upcoming respiratory protective device or face mask hygiene product (total quantity: four) (upcoming vertical lines of the letter H) .

2. When the mould 100 closes, the mould 100 cuts the vertical lines of the letter H to their dimension and squeezes their ends tightly against the moulding.

3. Molten frame compound is injected into the closed mould 100, into the fastening mechanism of the faceblank 5 (frame) of each respiratory protective device or face mask hygiene product 1 and at the same time hence into the fastening mechanism of the transverse line of the letter H.

4. The mould opens and ejectors drop a completed faceblank 5 (frame) of the respiratory protective device or face mask hygiene product 1 further to the process .

5. Repeat .

III: Method for the manufacture of reinforced textile part, nonwoven fabric part or their combination part

The method described here is used advantageously for the manufacture of filters 10. In addition to this or instead of this, the method can be used for the manufacture of even other reinforced textile parts, nonwoven fabric parts or their combination parts .

A mould 100, which contains a first part 101 and a second part 102, is most advantageously used in the method. FIG 12 shows the mould 100 in the closed position. FIG 8 and 9 show the first part 101 of the mould 100, and FIG 10 and 11 show the second part 102 of the mould 100. FIG 12 also shows a web 1200, which is fed into the mould 100, where the filter part 11 is first cut (die cut) so that it remains joined to the web 1200 by the uncut parts 1201, and then the frame 12 is moulded. The arrow shown in FIG 12 describes the direction in which the web 1200 is moved. In other words, the filters 10 remain joined to the remaining web 1200' , to which the filters 10 have been moulded. It is thus possible to use the remaining web 1200' in a way as a conveyor belt in serial production or as part of a conveyor belt to carry the filters 10 forward. This is also indicated in FIG 14.

Manufacturing process of filters 10:

Cutting

1. A filter web 1200 of a desired type (web refers to a continuous band) , which filter web 1200 most preferably consists of at least one but most advantageously of several layers, a continuous filter material runs between the halves 101, 102 of the mould 100.

2. (IN STARTING) The mould 100 closes for the first time while empty, in which case: a. The filter web 1200 becomes cut to the shape required by the frame 12 in the positioning so that it remains joined to the filter web 1200 by the small uncut parts 1201, or "trimmings", that are at an angle of, for example, 45 degrees, and can move with it to the next stage. In other words, the filter part 11 is separated from the filter web 1200 by means of incomplete cutting, most advantageously by pressing with a die cutting press 103 to the counter piece 104 of the die cutting press, so that that part of the web 1200 which corresponds to the middle part 106 of the die cutting press forms the filter part 11 remains joined to the filter web 1200 while the parts 105 of the die cutting press cut, in joint action with the parts 107 of the counter piece of the die cutting press, the extra pieces out of the filter web 1200 and filter part 11. The "trimmings" are formed by the areas that remain between the parts of the die cutting press; there can be one or more such areas. b. The extra pieces (in other words waste pieces) that have been cut off the filter web 1200 and filter part 11 are blown or sucked through the mould to be discarded. Air is blown or sucked through holes in the cutter, and the waste pieces fly or shift through the mould to be discarded. 3. The mould 100 closes for the second time for moulding, in which case: a. The cut filter web 1200 moves to the moulding point (described from item 2 onwards) and b. the next point on the filter web 1200 becomes cut simultaneously in positioning (described from item 4 onwards) .

This process is illustrated by the opened mould 100, FIG 13, which shows the cutting taking place in the first part 101 of the mould 100 in the drawing on the left, and the positioning and moulding taking place after transfer on the right. The positioning and moulding are described in more detail below.

Positioning and moulding

4. When the mould 100 closes: a. Guide pins 120 and guide holes 121 close slides, which form a groove to a desired depth. In addition to or instead of guide pins, it is also possible to use other mechanic closing devices, such as cylinders. The cut, aligned filter web 1200 remains in place in the mould at the desired "depth" with respect to the cross section of the frame 12. b. Potential glides close, forming the rebate of the moulding when using a groove 13 in the frame 12.

5. Plastic is injected into the mould, in which case the frame 12 is formed around the filter web 1200.

In addition to this or as an alternative to this, an exhalation valve is moulded in the filter 10 at the same time, either in the filter part 11 or the filter part 11 is replaced with it.

6. When the moulding has cooled, the mould 100 is opened and an ejector pin pushes the filter 10 out of the mould 100, transferring it forward in the process.

7. The web 1200 moves forward to the next process stage.

8. Repeat (from item 4 onwards) . It is possible to mould several filters 10 simultaneously with the method, j ust as long as this is taken into consideration in the cutting and moulding mould 100 . FIG 15 shows one round filter 100 j oined to the web .

FIG 16 - 18 show an embodiment of the parallel manufacture of several filters 10 , implemented on a corresponding manufacturing line as that shown in FIG 15 . In this case , the filters 10 form a filter set 10 ' , where the filters 10 are j oined to each other as a usage set , for example , which contains all the filters 10 needed for a use of one faceblank 5 . In this case , packing is as easy as possible , and one filter set 10 ' would follow each other throughout the process from the beginning to the end, for example to marking ( it has been described above that laser marking , for example , could be used) and packaging .

FIG 16 shows a filter set 10 ' viewed from above in a mould (more precisely : in the cutting part of a mould) before the moulding of the frames 12 . The uncut parts 1201 of the web 1200 and on the other hand the parts of the die cutting press 105 have been marked in FIG 16 . The parts of the die cutting press 105 surround the uncut parts and, on the other hand, form channels , in which the uncut parts 1201 remain . In the filter set 10 ' , such channels can be formed between individual filters 10 in order to keep the filters 10 j oined to each other . In the abovedescribed manner, this facilitates the handling and packing of the filters 10 .

FIG 17 shows correspondingly a complete set 10 ' . The filter part 11 formed from the web 1200 or webs is indicated with line shadowing . The part of the web 1200 that remains inside the frame 12 - which part does not constitute the filter part 11 - has been indicated with line shadowing in broken line . Even though this part of the web 1200 does not constitute the filter part 11 , it is needed in accordance with what has been described above to tighten the filter part 11 in the frame 12 . The uncut part 11 has also been formed from the web 1200 . However , it has not been line-shadowed in FIG 17 , because they do not constitute a functional part of the filter 10 - said parts can be torn off , for example , before installing the filter 10 to the faceblank 5 . The mode of operation described here enables the foldability of the filter set 10 ' in a handy manner .

Faceblank and replaceable filters

The filters 10 are delivered so that they are packed in a bag as a set of one mask . Hand tissues ( one or more ) intended for the disinfection of hands / the mas k are ( likely) also delivered with the bag . The first hand tissue is intended for the disinfection of hands , the second for the disinfection of the frame of the mask .

Used filters 10 are popped out or pressed out of the faceblank 5 first and recycled/discarded . After this , hands are disinfected and then the faceblank 5 .

New filters 10 are detached from each other and placed one by one in the filter openings 2 , 3 , 4 of the faceblank 5 by stretching the frame of the faceblank 5 a little so that the tongues 7 in the faceblank 5 can settle into the groove 13 in the frame 12 .

Cleanability

The frame of the faceblank 5 is shaped so that it is easily cleanable and the surface is smooth .

The natural shape of the faceblank 5 enables , for example , the flowing of washing water away from over the mask .

The faceblank 5 can also be cleaned with a cleaning tissue intended for this purpose , using a disinfectant or detergent . The frame of the faceblank 5 is intended to be dishwasher proof .

Example of a production line for the application of the manufacturing method for a reinforced textile part , nonwoven fabric part or their combination part FIG 15 shows a possible production line . The filter part 11 of the filters 10 or more generally that part of the combination part that is to be reinforced is most advantageously stored in a number of reels 202 , 203 . Some of the reels can be main reels 202 and some auxiliary reels 203 . The reels 202 , 203 are most advantageously brakable , for example by means of reel brakes

201 . Guide rolls 204 guide the material taken from the reels

202 , 203 to become a combined web 205 , which is guided into an inj ection moulding machine 206 , which contains a mould 100 . FIG 15 shows the corresponding parts of the mould 100 : the moving side 207 of the mould ( first part 101 of the mould ) and the nonmoving side 208 of the mould ( second part 102 of the mould) . The moving side of the mould 100 closes against the solid side on the side of the extrusion screw and the extrusion screw feeds the moulding compound into the mould 100 .

After moulding, the moulded pieces 210 are j oined in the combined web 205 . The moulded pieces 210 are , for example , filters 10 .

Pincher rolls 211 pull the web . Turn rolls 212 , 213 guide the webs for marking, for example to a laser marking device 214 . Laser-marked pieces are detached from the web on a detaching device 216 and the waste web is removed on a removal device 217 . A conveyor belt 218 carries the marked pieces to packing equipment 219 . After packing , the packed products 220 are ready for further delivery .

The production line is most advantageously located in a clean room . By means of the above-described arrangement of the production line , the production line is implementable as relatively short and/or in small size , which enables the use of a smaller clean room .

Faceblank with nose seal

The faceblank 5 becomes tighter for faces of various sizes and shapes when it includes a number of nose seals 31 . FIG 19 and 20 show a faceblank 5 equipped with nose seals 31 . For hygiene reasons , the nose seals 31 are implemented most advantageously so that they are integrated into the faceblank 5 , for example as fin-like protrusions . In practice , a nose seal 31 implemented as fin-like protrusions presses against the user' s face . The inventors have noticed that it reduces the pressure exerted by the respiratory protective device / face mas k hygiene product 1 on the face , because the nose seal 31 distributes the pressing directed at the face over a larger area . In this way, it is possible to improve the usage comfort of the respiratory protective device / face mas k hygiene product .

The shape of the nose seal 31 forms a hinter-cut in the mould . This is not a problem if the mould is implemented in two parts . In this case , however , a seam remains at the j oining j oint of the moulds , which seam tends to feel uncomfortable , because there are a lot of nerves in the s kin of the face . The machining of nose seals 31 in a single-part mould using a CNC machine , such as by milling, is not possible due to the moulding shape required from the mould, because the frame of the faceblank 5 would prevent the formation of a recess required for the nose seal 31 .

This is why it is more advantageous to implement the moulding shape required by the nose seal 31 by electric discharge machining ( EDM) . For this purpose , an electrode 40 that contains the moulding pattern 41 of the nose seal is used in the manufacture of the mould of the faceblank 5 . The line L marked in FIG 21 describes the edge of the moulding pattern 41 . The mould machined using a CNC machine ( for example , an aluminium mould ) is modified after machining by implementing , most advantageously by electric discharge machining , a moulding shape 58 in accordance with the moulding pattern 41 by means of an electrode and, for example , an EDM machine .

FIG 22 shows a half 50 ' of the mould of the faceblank 5 before the implementation of the moulding shape 58 of the nose seal , where the electrode in accordance with FIG 21 is already in place . An EDM machine forms the moulding shape 58 in the mould half 50 by means of electric discharge machining in the manner shown in FIG 23 . FIG 23 shows a complete mould half 50 of the faceblank 5 , into which mould half 50 the moulding shape 58 has been formed for the formation of the nose seal 31 . This mould half 50 is for the inner side of the faceblank 5 . Another mould half is needed for the outer side of the faceblank 5 , and this is implemented in a corresponding manner . In the moulding of the faceblank 5 , the mould halves are placed against each other, and material , such as silicone , used for the moulding of the faceblank 5 , is inj ection-moulded into the mould, in other words into the intermediate space defined by the mould halves .

The invention should not be understood to be limited only by the below claims , but the invention is to be understood to include all their legal equivalents and the combinations of the embodiments presented .

List of reference numbers used

1 respiratory protective device / face mask hygiene product

2 , 3 , 4 filter opening

5 faceblank

6 head harness , fastening

7 tongue

10 filter ( embodiment of respiratory protective device / face mask hygiene product ) , combination part ( embodiment of method )

10 ' filter set

11 filter part ( embodiment of respiratory protective device / face mas k hygiene product ) , part to be reinforced ( embodiment of method )

12 frame

13 groove

14 through hole

31 nose seal

40 electrode

41 moulding pattern of nose seal in electrode

50 ' mould half for inner part of faceblank 5 , before the formation of moulding shape for nose seal

50 mould half for inner part of faceblank 5 , to which mould half the moulding shape for nose seal has been implemented

51 , 52 , 53 moulding shape for filter openings 1 , 2 , 3

56 moulding shape for head harness 6

57 moulding shape for rebate

58 moulding shape for nose seal , most advantageously implemented by means of electric discharge machining

100 mould

101 mould, first part

102 mould, second part

103 die cutting press

104 counter piece of die cutting press

105 parts of die cutting press

106 middle part 107 parts of counter piece of die cutting press

108 area remaining between the parts of die cutting press

109 outlet opening

120 guide pin

121 guide hole

201 reel brakes

202 main reels

203 backup reels

204 guide rolls

205 combined web

206 inj ection moulding machine

207 moving side of mould

208 non-moving side of mould

209 extrusion screw

210 moulded pieces j oined to the web

211 pincher rolls

212 turn rolls ( for example , 45 degrees )

213 turn rolls ( for example , 90 degrees )

214 marking device for making a marking on the surface of the piece ( for example , laser marking or pad printing device )

215 marked piece

216 detaching device / detaching of pieces from the web

217 removal device / extra empty web removed

218 conveyor belt

219 packaging equipment

220 packed product

1200 web ( in other words continuous band )

1200 ' web to which the filters 10 have been moulded

1201 uncut part