Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
REVERSED BIARYL SPIROAMINOOXAZOLINE ANALOGUES AS ALPHA2C ADRENERGIC RECEPTOR MODULATORS
Document Type and Number:
WIPO Patent Application WO/2011/041181
Kind Code:
A1
Abstract:
In its many embodiments, the present invention provides a novel class of biaryl spiroaminooxazoline analogues as modulators of α2C adrenergic receptor agonists, methods of preparing such compounds, pharmaceutical compositions containing one or more such compounds, methods of preparing pharmaceutical formulations comprising one or more such compounds, and methods of treatment, prevention, inhibition, or amelioration of one or more conditions associated with the α2C adrenergic receptors using such compounds or pharmaceutical compositions.

Inventors:
MCCORMICK KEVIN D (US)
SHAO NING (US)
YU YOUNONG (US)
HUANG XIANHAI (US)
DE LERA RUIZ MANUEL (US)
PALANI ANANDAN (US)
ZHENG JUNYING (US)
BOYCE CHRISTOPHER W (US)
ASLANIAN ROBERT G (US)
CHAO JIANHUA (US)
Application Number:
PCT/US2010/049778
Publication Date:
April 07, 2011
Filing Date:
September 22, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SCHERING CORP (US)
MCCORMICK KEVIN D (US)
SHAO NING (US)
YU YOUNONG (US)
HUANG XIANHAI (US)
DE LERA RUIZ MANUEL (US)
PALANI ANANDAN (US)
ZHENG JUNYING (US)
BOYCE CHRISTOPHER W (US)
ASLANIAN ROBERT G (US)
CHAO JIANHUA (US)
International Classes:
A01N43/76; A61K31/42
Foreign References:
US20080039439A12008-02-14
US5436261A1995-07-25
US5486532A1996-01-23
US5648374A1997-07-15
Other References:
See also references of EP 2482661A4
Attorney, Agent or Firm:
SCHERING CORPORATION (Kenilworth, New Jersey, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A compound represented by Formula I

I

or a pharmaceutically acceptable salt thereof

wherein:

J is selected from the group consisting of

J1, J2, J3 and J4 are independently -N-, -N(O)-, or -C(R2 )-;

X is -C(R6)(R6')-, -N(R6)-, -O- or -S -;

Z is independently selected from the group consisting of H, -OH,

halo, -CN, -NO2, -S(O)pR7, -NR7R7 , -[C(Ra)(Rb)]qYR7 , -[C(Ra)(Rb)]qN(R7)YR7', - [C(Ra)(Rb)]qOYR7', and -(CH2)qON=CR7R7', and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5;

wherein is a single or double bond provided that it cannot form two contiguous double bonds;

R1 is a ring selected from the group consisting of cycloalkyi, cycloalkenyl, aryl, heterocyclyl, heterocyclenyl, and heteroaryl, each of which is optionally substituted with at least one R12; R2 is absent or independently selected from the group consisting of H, halo, -CN, -N02, -OH, -S(O)pR7, -NR7R7 , -[C(Ra)(Rb)]qYR7 , -[C(Ra)(Rb)]qN(R7)YR7', - [C(Ra)(Rb)]qN(R7)CN, -[C(Ra)(Rb)]qOYR7', and -(CH2)qON=CR7R7', and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5;

Y is selected from the group consisting of a bond, -C(=O)-, -C(=O)NR7-, -C(=O)O-, -C(=O)N(Rc)-O-, -C(=NR7)-, -C(=NOR7)-, -C(=NR7)NR7-, -C(=NR7)NR7O-, - C(=N-CN)-, -S(O)p-, -SO2NR7-, and -C(=S)NR7-;

wherein Ra and Rb are independently selected from the group consisting of H, alkyl, alkoxy, and halo, and

Rc is H or alkyl;

R3 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO2, -S(O)pR7, -NR7R7 , -S(O)pNR7R7', and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5, provided that when w is 3, no more than 2 of the R3 groups may be (=O);

R4 is independently selected from the group consisting of H, -OH, halo, -CN, - S(O)pR7, -NR7R7 and -S(O)pNR7R7', and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5;

R4 is independently selected from the group consisting of H, halo, -OH, and alkyl, and alkoxy; or

R4 and R4 may be taken together to form (=O), provided that when m > 1 , there is no more than 1 (=O) group;

R5 is independently selected from the group consisting of H, -OH, -CN, -NO2, halo, -NR7R7 , and -S(O)pR7, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 substituents and/or 1 or 2 (=O) groups, R6 is selected from the group consisting of H, -OH, halo, -CN, -NO2, -S(O)pR7, - NR7R7 , -S(O)pNR7R7', -C(O)-R10, -C(O)-OR10, -C(O)-N(R7)R10 and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 substituents and/or 1 or 2 (=0) groups, and -C(=O)R7, -C(=O)OR7, -C(=O)NR7R7', - SO2R7 and -SO2NR7R7';

R6' is selected from the group consisting of H, -S(O)pR7, -S(O)pNR7R7', -C(O)- R10, -C(O)-OR10, -C(O)-N(R7)R10 and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 and/or 1 or 2 (=O) groups

substituents, and -C(=O)R7, -C(=O)OR7, -C(=O)NR7R7', -SO2R7 and -SO2NR7R7';

R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R12;

R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R12; or

a) when a variable is -NR7R7 , -C(O)NR7R7' or -SO2NR7R7', R7 and R7' together with the nitrogen atom to which they are attached independently form a 3- to 8-membered heterocyclyl, heterocyclenyl or heteroaryl ring having, in addition to the N atom, 1 or 2 additional hetero atoms independently selected from the group consisting of O, N, -N(R9)- and S, wherein said rings are optionally substituted by 1 to 5 independently selected R12 moieties and/or 1 or 2 (=O) groups, or

b) when a variable is -(CH2)qON=CR7R7', R7 and R7' together with the carbon atom to which they are attached independently form a 3- to 8- membered cycloalkyi, cycloalkenyl, aryl, heterocyclyl, heterocyclenyl or heteroaryl ring, wherein said heterocyclyl, heterocyclenyl or heteroaryl rings have 1-3 heteroatoms which are independently selected from the group consisting of O, N, -N(R9)- and S, wherein said rings are optionally substituted by 1 to 5 independently selected R12 moieties and/or 1 or 2 (=0) groups, R9 is independently selected from the group consisting of H, -C(0)-R10, -C(O)- OR10, and -S(0)p-R1° and alkyl, alkenyl, alkynyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -N(R11)2, and -S(O)pR11 substituents and/or 1 or 2 (=O) groups; and

R10 is independently selected from the group consisting of H, and alkyl, alkenyl, alkynyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -N(R11)2, and - S(O)pR11 substituents and/or 1 or 2 (=O);

R1 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocydylalkyl, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO2, -N(R11')2, and -S(O)pR11' and/or 1 or 2 (=O) groups;

R11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocydylalkyl;

R12 is independently selected from the group consisting of H, halo, - OH, -CN, -NO2, -N(R 1)2 , -C(O)-OR14 , -N(R14)-C(O)-R14, -N(R 4)-C(O)2-R14, -C(O)- N(R 1)2 , -N(R14)-S(O)2-R11, -S(O)2-N(R11)2 and -S(O)pR11 and/or 1 or 2 (=0) groups, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl, heterocyclenyloxy, heterocydylalkyl, heterocyclenylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least once by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO2, -N(R11)2, and - S(0)pR11 and/or 1 or 2 (=O) groups, wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and heterocyclenyloxy when substituted are substituted one or more times by R11;

R 4 is independently H, alkyl, or aryl;

R15 is independently absent independently selected from the group consisting of H, -C(0)-R10, -C(0)-OR10, -C(O)-N(R7)(R7'), and -S(0)p-R1°, SO2-NR7R7' and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylaikyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 and/or 1 or 2 (=0) groups substituents, and -C(=O)R7, -C(=O)OR7, -C(=O)NR7R7', - SO2R7 and -SO2NR7R7';

q is independently an interger from 0-10;

o is an interger from 0-2;

n is independently an integer from 0-2;

m is independently an integer from 1-3;

p is independently an integer from 0-2; and

w is an integer from 0-3

provided that o and n cannot both be 0.

2. The compound accordin to claim 1 , which has the formula

II

or a pharmaceutically acceptable salt thereof,

wherein

Z is H, -OH, halogen,-CN, -NO2, or NR7R7 ;

X is -C(R6)(R6')-, -N(R6)-, -O- or -S -; R1 is selected from the group consisting of optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(0)-alkylamino, -C(0)-dialkylamino, -C(O)-OH, -C(O)- Oalkyl, amino-C(0)-aikyl, amino-C(0)-0-alkyl, amino-S(0)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxyl;

R2 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO2, -S(O)pR7, -NR7R7 , and alkyl and alkoxy groups optionally

substituted with at least one R5;

R3 is independently selected from the group consisting of H, halo, and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl groups optionally substituted with at least one R5, provided that when w is 3, no more than 2 of the R3 groups may be (=O);

R4 is independently selected from the group consisting of H, halo, -OH, halo, and -CN, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl groups optionally substituted with at least one R5;

R4 is independently selected from the group consisting of halo and alkyl; R5 is independently selected from the group consisting of H, halo, - OH, -CN, -NO2, -NR7R7', and -S(O)pR7, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 substituents and/or 1 or 2 (=O);

R6 is independently selected from the group consisting of H and halo, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7 , and -S(O)pR7 substituents and/or 1 or 2 (=0), and -C(=O)R7, -C(=O)OR7, -C(=O)NR7R7', -SO2R7 and -SO2NR7R7';

R6 is independently selected from g the group consisting of H, halo, and alkyl;

R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyl groups, each of which is optionally substituted one or more times by R12;

R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyl groups, each of which is optionally substituted one or more times by

R12;

R11 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO2, -N(R11')2) and -S(O)pR11 substituents and/or 1 or 2 (=0);

R11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi; R 2 is independently selected from the group consisting of H, halo, - OH, -CN, -NO2, -N(R11)2 , and -S(O)pR11, and/or 1 or 2 (=0), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl,

heterocyclenyloxy, heterocyclylalkyi, heterocyclenylalkyi, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least one by a substituent selected from the group consisting of H, alkyl, haloalkyi, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted

heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO2, -N(R11)2, and - S(O)pR11 and/or 1 or 2 (=O), wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and

heterocyclenyloxy when substituted are substituted one or more times by R 1 ;

R 4 is independently selected from the group consisting of H or alkyl; and

R15 is absent or selected from the group consisting of H and alkyl, cycloalkyl, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one halo, -OH, -CN, -NO2, -N(R 1)2, and -S(O)pR11 and/or 1 or 2 (=O);

q is 0 or 1 ;

o is 0 or 1 ; and

m is 1 or 2.

3. The compound according to claim 2, which has the formula

R 15

IV

or a pharmaceutically acceptable salt thereof

wherein: R1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(0)-alkyl, amino-

C(O)-0-alkyl, amino-S(0)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R2 is H, alkyl, halo, or alkoxy; and

X is -CH2-.

4. The compound according to claim 3, wherein

R1 is a ring selected from the group consisting of phenyl, pyrazole, pyrimidine, oxazole and isoxazole wherein said rings may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(O)-alkylamino, - C(O)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(O)-alkyl, amino-C(0)-O-alkyl, amino-S(O)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

n is 0 or 1 ; and

R 5 is H or alkyl, or a pharmaceutically acceptable salt thereof.

5. The compound according to claim 1 , which has the formula

15

(R3)w III

or a pharmaceutically acceptable salt thereof

wherein

Z is H, -OH, halogen,-CN, -NO2, or NR7R7 ;

X is -C(R6)(R6')-, -N(R6 )-, -O- or -S -;

R is selected from the group consisting of optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)-alkylamino, -C(O)-dialkylamino, -C(O)-OH, -C(O)- Oalkyl, amino-C(O)-alkyl, amino-C(O)-O-alkyl, amino-S(O)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxyl;

R2 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO2, -S(O)pR7, -NR7R7 , and alkyl and alkoxy groups optionally

substituted with at least one R5;

R3 is independently selected from the group consisting of H, halo, and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5, provided that when w is 3, no more than 2 of the R3 groups may be (=O);

R4 is independently selected from the group consisting of H, halo, -OH, halo, and -CN, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R5;

R4 is independently selected from the group consisting of halo and alkyl;

R5 is independently selected from the group consisting of H, halo, - OH, -CN, -NO2, -NR7R7 , and -S(O)pR7, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7', and -S(O)pR7 substituents and/or 1 or 2 (=0);

R6 is independently selected from the group consisting of H and halo, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO2, -NR7R7', and -S(O)pR7 substituents and/or 1 or 2 (=O), and -C(=O)R7, -C(=O)OR7, -C(=O)NR7R7', -SO2R7 and -SO2NR7R7';

R6 is independently selected from the group consisting of H, halo, and alkyl;

R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R 2; R7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyi, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyl, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R12;

R11 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyi, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyl, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO2, -N(R11')2, and -S(O)pR11 substituents and/or 1 or 2 (=0);

R11' is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyi, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyl;

R12 is independently selected from the group consisting of H, halo, -

OH, -CN, -NO2( -N(R11)2 , and -S(O)pR11, and/or 1 or 2 (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyi, cycloalkyi, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl,

heterocyclenyloxy, heterocyclylalkyl, heterocyclenylalkyi, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least one by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted

heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO2, -N(R11)2, and - S(O)pR 1 and/or 1 or 2 (=O), wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and

heterocyclenyloxy when substituted are substituted one or more times by R11;

R14 is independently selected from the group consisting of H or alkyl; and R15 is absent or selected from the group consisting of H and alkyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one halo, -OH, -CN, -NO2, -N(R11)2, and -S(O)pR11 and/or 1 or 2 (=O); q is 0 or 1 ;

o is 0 or 1 ; and

m is 1 or 2. 6. The compound according to claim 5 wherein

R is a ring selected from the group consisting of phenyl, pyrazole, pyrimidine, oxazole and isoxazole wherein said rings may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(0)-alkylamino, - C(0)-dialkylamino, -C(0)-OH, -C(O)-Oalkyl, amino-C(0)-alkyl, amino-C(O)-O-alkyl, amino-S(O)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

n is 0 or 1 ; and

R15 is absent or is H or alkyl

or a pharmaceutically acceptable salt thereof.

7. The compound according to claim 1 , which is selected from the group consisting of

or a pharmaceutically acceptable salt of each of these compounds.

8. A pharmaceutical composition comprising at least one compound of claim 1 , or a pharmaceutically acceptable salt thereof and at least one pharmaceutically acceptable carrier, adjuvant or vehicle, provided that when the composition is a liquid, aqueous composition one or more solubility enhancing components are excluded with the exception of cyclodextrin.

9. The pharmaceutical composition of claim 8, further comprising at least one additional therapeutic agents. 10. The pharmaceutical composition of claim 9, further comprising one or more additional therapeutic agents, wherein said additional therapeutic agents are selected from the group consisting of steroids, glucocorticosteroids, PDE-4 inhibitors, anti- muscarinic agents, muscle relaxants, cromolyn sodium, Hi receptor antagonists, 5- HT-i agonists, NSAIDs, angiotensin-converting enzyme inhibitors, angiotensin II receptor agonists, β-blockers, long and short acting β-agonists, leukotriene

antagonists, diuretics, aldosterone antagonists, ionotropic agents, natriuretic peptides, pain management/analgesic agents, anti-anxiety agents, anti-migraine agents, sedatives, NMDA receptor antagonists, alpha-adrenergics not including alpha-1 receptor antagonists, anticonvulsants , tachykinin (NK) antagonists, COX-2 inhibitors, neuroleptics, vanilloid receptor agonists or antagonists, beta-adrenergics, local anaesthetic, corticosteroids, serotonin receptor agonists or antagonists, PDEV inhibitors, alpha-2-delta ligands, canabinoids and therapeutic agents suitable for treating heart conditions, psychotic disorders, or glaucoma.

11. A method for treating one or more conditions associated with a2C adrenergic receptors, comprising administering to a mammal in need of such treatment a compound of claim 1 or a pharmaceutically acceptable salt thereof. 12. The method of claim 11 , wherein the conditions are selected from the group consisting of allergic rhinitis, congestion, pain, diarrhea, glaucoma, congestive heart failure, chronic heart failure, cardiac ischemia, manic disorders, depression, anxiety, migraine, stress-induced urinary incontinence, neuronal damage from ischemia, schizophrenia, attention deficit hyperactivity disorder, and symptoms of diabetes.

13. The method of claim 12, wherein the condition is congestion.

14. The method of claim 12, wherein the condition is pain.

15. The method of claim 14, wherein the pain is associated with neuropathy, inflammation, arthritis, or diabetes.

Description:
Reversed Biaryl Spiroaminooxazoline Analogues As Alpha2C Adrenergic

Receptor Modulators

Field of the Invention

The present invention relates to reverse biaryl spiroaminooxazoline analogues useful as alpha-2C (or "a2C") adrenergic receptor modulators, methods for making these compounds, pharmaceutical compositions containing the compounds, and methods of treatment and prevention using the compounds and compositions to treat disease states associated with the modulation of the alpha-2C receptor, such as congestion (including nasal), migraine, congestive heart failure, cardiac ischemia, glaucoma, stress-induced urinary incontinence, Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, pain and psychotic disorders (e.g., depression and schizophrenia).

Background of the Invention

The initial classification of adrenergic receptors into a- and β-families was first described by Ahlquist in 1948 (Ahlquist RP, "A Study of the Adrenergic Receptors," Am. J. Physiol. 153:586-600 (1948)). Functionally, the a-adrenergic receptors were shown to be associated with most of the excitatory functions (vasoconstriction, stimulation of the uterus and pupil dilation), β-adrenergic receptors were implicated in vasodilatation, bronchodilation and myocardial stimulation (Lands et al., "Differentiation of Receptor Systems Activated by Sympathomimetic amines," Nature 214:597-598 (1967)). Since this early work, a-adrenergic receptors have been subdivided into a1 - and a2-adrenergic receptors. Cloning and expression of α-adrenergic receptors have confirmed the presence of multiple subtypes of both a1 -(a1A, a1 B, a D) and α2-(α2Α, α2Β, a2C) adrenergic receptors (Michel et al., "Classification of ai -Adrenoceptor Subtypes," Naunyn-Schmiedeberg's Arch. Pharmacol, 352:1- 0 (1995); Macdonald et al., "Gene Targeting-Homing in on a2-Adrenoceptor-Subtype Function," TIPS, 18:211- 219 (1997)).

Current therapeutic uses of a-2 adrenergic receptor drugs involve the ability of those drugs to mediate many of the physiological actions of the endogenous

catecholamines. There are many drugs that act on these receptors to control W

2 hypertension, intraocular pressure, eye reddening and nasal congestion and induce analgesia and anesthesia.

a2 adrenergic receptors can be found in the rostral ventrolateral medulla, and are known to respond to the neurotransmitter norepinephrine and the antihypertensive drug clonidine to decrease sympathetic outflow and reduce arterial blood pressure (Bousquet et al., "Role of the Ventral Surface of the Brain Stem in the Hypothesive Action of Clonidine," Eur. J. Pharmacol., 34:151-156 (1975); Bousquet et al.,

"Imidazoline Receptors: From Basic Concepts to Recent Developments," 26.S1-S6 (1995)). Clonidine and other imidazolines also bind to imidazoline receptors (formerly called imidazoline-guanidinium receptive sites or IGRS) (Bousquet et al., "Imidazoline Receptors: From Basic Concepts to Recent Developments," 26:S1-S6 (1995)). Some researchers have speculated that the central and peripheral effects of imidazolines as hypotensive agents may be related to imidazoline receptors (Bousquet et al.,

"Imidazoline Receptors: From Basic Concepts to Recent Developments," 26:S1-S6 (1995); Reis et al., "The Imidazoline Receptor: Pharmacology, Functions, Ligands, and Relevance to Biology and Medicine," Ann. N.Y. Acad. Sci., 763:1-703 (1995).

Compounds having adrenergic activity are well-known in the art and are described in numerous patents and scientific publications. It is generally known that adrenergic activity is useful for treating animals of the mammalian species, including humans, for curing or alleviating the symptoms and conditions of numerous diseases and conditions. In other words, it is generally accepted in the art that pharmaceutical compositions having an adrenergic compound or compounds as the active ingredient are useful for treating, among other things, glaucoma, chronic pain, migraines, heart failure, and psychotic disorders (e.g., schizophrenia).

For example, published PCT application WO 02/076950 discloses compounds having a2 agonist activity of th la:

Other publications disclosing similar compounds includes WO 01/00586, WO

99/28300, US 6,841 ,684 B2 and US 2003/0023098 A1. Another class of compounds having a2-agonist properties is disclosed in U.S. Patent No. 5,658,938, and has the following general formula:

wherein n=1-2, R 1 -R 3 represent hydrogen, halogen hydroxy, alkyl or alkoxy, and R 5 is hydrogen or alkyl.

Another class of compounds reported to have affinity for a2 receptors includes the following two compounds (Bagley et.al., Med. Chem. Res. 1994, 4:346-364):

It is also known that compounds having adrenergic activity, such as a2A agonists, may be associated with undesirable side effects. Examples of such side effects include hyper-and hypotension, sedation, locomotor activity, psychotic disorders (e.g., schizophrenia).

Another class of compounds reported to have affinity for a2 receptors includes the following two compounds (Miller et.al., J Med. Chem. 1994, 37:2328-2333; J. Med. Chem. 1996, 39:300 -3013; J. Med. Chem. 1997, 37:3014-3024):

Another class of indane and tetrahyrdonaphthalene type compounds having a2- agonist properties is disclosed in PCT application WO 97/12874 and

WO20040506356. This class has the following general formula: W 201

4

wherein n = 0-1 , X is 1 or 2 carbon units, R 4 is H, OH, alkyl, or alkoxy, R 5 may be taken together with R 4 to form a carbonyl, and R 6 -R 8 = H, OH, SH, alkyl, alkenyl, cycloalkyl, alkoxy, hydroxyalkyl, alkylthio, alkylthiol, halo, CF 3 , NO 2 , or alkylamino. This class specifically includes M -2426 (fadolmidine) and its prodrug esters:

wherein R is optionally substituted lower alkyl, aryl, cycloalkyl, heteroaryl, lower alkylamino, and saturated 5- or 6-membered heterocyclic groups containing 1 or 2 N atoms.

Further, other classes of compounds that exhibit functional selectivity for the alpha 2C receptor have been discovered. Application USSN 11/508,458, filed August 23, 2006, discloses indoline compounds that possess this activity and application USSN 11/508,467, filed on the same date, describes morpholine compounds that are functionally selective of the alpha 2C receptor. CIP applications of these applications have been filed; the Ser. Nos. are 11/705,673 and 11/705,683, both filed on February 13, 2009.

Additional applications that have been filed by Schering-Plough and disclose alpha2C receptor agonists include applications WO 2008/100480 (PCT/US2008/ 001808); WO 2008/100459 (PCT/US2008/001770) and WO 2008/ 100456

(PCT/US2008/001765).

Compounds that act as antagonists of the alpha-2C receptor are also known in the art. Hoeglund et al. describe quinoline derivatives that are said to be potent and selective alpha 2C antagonists and said to be useful in treating "certain psychiatric disorders such as depression and schizophrenia" (Hoeglund et al., J. Med. Chem 49:6351-6363 (2006)). WO 2001/64645 to Orion Corp. also describes quinoline derivatives that are alpha-2C receptor antagonists and indicates that these compounds are useful for the treatment of conditions of the pheripheric or CNS system, including treating depression, anxiety, post traumatic stress disorder, schizophrenia, Parkinson' disease and other movement disorders, and dementias (e.g., Alzheimer's disease). WO 2003/082825, also to Orion Corp., indicates alpha-2C receptor antagonists have utility in treating symptoms of disorders and conditions with sensorimotor-gating deficits. Selliner et al., indicate that acridin-9-yl-[4-(4-methylpiperazinal-1-yl)- phenyl]amine is a highly selective alpha-2C adrenergic receptor antagonist and may be useful in treating neuropsychiatric disorders (Salliner er a/., British J. Pharmacol. 150 :391-402 (2007)).

It is also known that compounds having adrenergic activity, such as a2A agonists, may be associated with undesirable side effects. Examples of such side effects include hyper-and hypotension, sedation, locomotor activity, and body temperature variations.

Cordi er a/, in U.S. Patent Nos. 5,436,261 , 5,486,532 and 5,648,374 describe benzospiroalkene heterocyclic compounds of the general formula

that are said to be useful as a2-adrenergic agonists; in the compounds described therein the definition of X includes -(CH 2 )2-, -0-, -O-CH 2 -, and -S-CH 2 -; of Y includes - O-, -S-, and -N(R 6 )-; and of R 5 includes hydrogen or an amino group. Cordi et al. also disclose spiro[1 ,3-diazacyclopent-1-ene)5,2'-(1',2',3',4'-tetrahydronaphthyl ene)] or spiro-imidazolines compounds such as

in J. Med. Chem. 1994, 38:4056-4069 as α-adrenergic agonists. WO 2006/080890 discloses that this compound may be used in combinations with other agents to prevent biofouling organisms.

U.S. Patent 6,673,337 describes and claims an ophthalmic composition comprising an alpha-2C agonist component and a solubility enhancing component other than cyclodextrin. The patent does not specifically describe alpha-2C receptor agonists.

It has been discovered in accordance with the present invention that the inventive compounds act as modulators of the alpha-2C receptor (i.e., they can act as alpha-2C receptor agonists or as alpha-2C receptor antagonists) and are useful in treating disorders modulated by the alpha-2C receptor.

There is a need for new compounds, formulations, treatments and therapies to treat diseases and disorders associated with a2C adrenergic receptors. Further, there is a need for alpha-2C receptor modulators that minimize adverse side effects, such as those associated with the alpha-2A receptor subtype (viz., blood pressure or sedation). It is, therefore, an object of this invention to provide compounds useful in the treatment or prevention or amelioration of such diseases and disorders.

Summary of the Invention

In its many embodiments, the present invention provides a novel class of heterocyclic compounds that are modulators of the a2C adrenergic receptor, or metabolites, stereoisomers, salts, solvates or polymorphs thereof, methods of preparing such compounds, pharmaceutical compositions comprising one or more such compounds, methods of preparing pharmaceutical formulations comprising one or more such compounds, and methods of treatment, prevention, inhibition or amelioration of one or more conditions associated with a2C receptors using such compounds or pharmaceutical compositions.

In one aspect, the present application discloses a compound, or

pharmaceutically acceptable salts or metabolites, solvates, prodrugs or polymorphs of said compound, said compound having the general structure shown in Formula I

I

wherein:

J is selected from the group consisting of

J 1 , J 2 , J 3 and J 4 are independently -N-, -N(O)-, or -C(R 2 )-;

X is -C(R 6 )(R 6' )-, -N(R 6 )-, -O- or -S -;

Z is independently selected from the group consisting of H, -OH,

halo, -CN, -NO 2 , -S(O) p R 7 , -NR 7 R 7 , -[C(R a )(R b )] q YR 7 , -[C(R a )(R b )] q N(R 7 )YR 7' , - [C(R a )(R )] q OYR 7' , and -(CH 2 ) q ON=CR 7 R 7' , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one

(preferably 1 to 5, more preferably 1 to 3) R 5 ;

wherein is a single or double bond provided that it cannot form two contiguous double bonds;

R 1 is a ring selected from the group consisting of cycloalkyi, cycloalkenyl, aryl, heterocyclyl, heterocyclenyl, and heteroaryl, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) R 12 ;

R 2 is absent (i.e., position in the bicyclic ring is substituted by R 1 ) or

independently selected from the group consisting of H, halo, -CN, -NO 2 , -OH, - S(O) p R 7 , -NR 7 R 7 , -[C(R a )(R b )] q YR 7 , -[C(R a )(R b )] q N(R 7 )YR 7' , -[C(R a )(R b )] q N(R 7 )CN, - [C(R a )(R b )] q OYR 7' , and -(CH 2 ) q ON=CR 7 R 7' , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) R 5 ;

Y is selected from the group consisting of a bond, -C(=0)-, -C(=0)NR 7 -, -C(=0)0- -C(=0)N(R c )-0-, -C(=NR 7 )-, -C(=NOR 7 )-, -C(=NR 7 )NR 7 -, -C(=NR 7 )NR 7 0-, - C(=N-CN)-, -S(0)p-, -SO 2 NR 7 -, and -C(=S)NR 7 -;

wherein R a and R b are independently selected from the group consisting of H, alkyl, alkoxy, and halo, and

R° is H or alkyl;

R 3 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO 2 , -S(O) p R 7 , -NR 7 R 7' , -S(O) p NR 7 R 7' , and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) R 5 , provided that when w is 3, no more than 2 of the R 3 groups may be (=O);

R 4 is independently selected from the group consisting of H, -OH, halo, -CN, -

S(O) p R 7 , -NR 7 R 7 and -S(O) p NR 7 R 7' , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) R 5 ;

R 4 is independently selected from the group consisting of H, halo, -OH, and alkyl, and alkoxy; or

R 4 and R 4 may be taken together to form (=O), provided that when m > 1 , there is no more than 1 (=O) group;

R 5 is independently selected from the group consisting of H, -OH, -CN, -NO 2 , halo, -NR 7 R 7 , and -S(O) p R 7 , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and - S(O) p R 7 substituents and/or 1 or 2 (=O) groups,

R 6 is selected from the group consisting of H, -OH, halo, -CN, -NO 2 , -S(O) p R 7 , -

NR 7 R 7 , -S(O) p NR 7 R 7' , -C(O)-R 1Q , -C(O)-OR 10 , -C(O)-N(R 7 )R 10 and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=O) groups, and -C(=O)R 7 , -C(=O)OR 7 , -C(=O)NR 7 R 7' , -SO 2 R 7 and -SO 2 NR 7 R 7' ;

R 6' is selected from the group consisting of H, -S(O) p R 7 , -S(O) p NR 7 R 7' , -C(O)-

R 10 , -C(O)-OR 10 , -C(O)-N(R 7 )R 10 and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) of halo, -OH, -CN, -NO 2 , -NR 7 R 7' , and - S(O) p R 7 and/or 1 or 2 (=O) groups substituents, and -C(=O)R 7 , -C(=O)OR 7 , - C(=O)NR 7 R 7' , -SO 2 R 7 and -SO 2 NR 7 R 7' ;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times (preferably 1 to 5, more preferably 1 to 3) by R 12 ;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times (preferably 1 to 5, more preferably 1 to 3) by R 12 ; or

a) when a variable is -NR 7 R 7 , -C(O)NR 7 R 7' or -SO 2 NR 7 R 7' , R 7 and R 7' together with the nitrogen atom to which they are attached independently form a 3- to 8-membered heterocyclyl, heterocyclenyl or heteroaryl ring having, in addition to the N atom, 1 or 2 additional hetero atoms independently selected from the group consisting of O, N, -N(R 9 )- and S, wherein said rings are optionally substituted by 1 to 5 independently selected R 12 moieties and/or 1 or 2 (=O) groups, or

b) when a variable is -(CH 2 ) q ON=CR 7 R 7' , R 7 and R 7' together with the carbon atom to which they are attached independently form a 3- to 8- membered cycloalkyl, cycloalkenyl, aryl, heterocyclyl, heterocyclenyl or heteroaryl ring, wherein said heterocyclyl, heterocyclenyl or heteroaryl rings have 1-3 heteroatoms which are independently selected from the group consisting of O, N, -N(R 9 )- and S, wherein said rings are optionally substituted by 1 to 5 independently selected R 12 moieties and/or 1 or 2 (=0) groups, R 9 is independently selected from the group consisting of H, -C(O)-R 10 , -C(O)- OR 0 , and -S(0) p -R 1 ° and alkyl, alkenyl, alkynyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) of halo, -OH, -CN, -NO 2 , -N(R 11 ) 2 , and - S(O)pR 11 substituents and/or 1 or 2 (=O) groups; and

R 10 is independently selected from the group consisting of H, and alkyl, alkenyl, alkynyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one (preferably 1 to 5, more preferably 1 to 3) of halo, -OH, -CN, -NO 2 , -N(R 11 ) 2 , and -S(O) p R 11 substituents and/or 1 or 2 (=0);

R 11 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyl, each of which is optionally substituted by at least one (preferably 1 to 5, more preferably 1 to 3) substituent independently selected from the group consisting of halo, -OH, -CN, -NO 2 , -N(R 1 ) 2 , and -S(O) p R 11' and/or 1 or 2 (=0) groups;

R 11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyl;

R 12 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -N(R 11 ) 2 , -C(O)-OR 14 , -N(R 14 )-C(O)-R 14 , -N(R 14 )-C(O) 2 -R 14 , -C(O)- N(R 11 ) 2 , -N(R 14 )-S(O) 2 -R 11 , -S(O) 2 -N(R 1 ) 2 and -S(O) p R 11 and/or 1 or 2 (=0) groups, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl, heterocyclenyloxy, heterocyclylalkyl, heterocyclenylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least once (preferably 1 to 5, more preferably 1 to 3) by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -N0 2 , -N(R 11 ) 2 , and -S(0) p R 11 and/or 1 or 2 (=O) groups, wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and heterocyclenyloxy when substituted are substituted one or more (preferably 1 to 5, more preferably 1 to 3) times by R 11 ;

R 14 is independently H, alkyl, or aryl;

R 15 is independently absent (i.e., the nitrogen and the carbon atom form a - N=C(Z)- bond) independently selected from the group consisting of H, -C(O)-R 10 , - C(O)-OR 10 , -C(O)-N(R 7 )(R 7' ), and -S(0) p -R 1 °, S0 2 -NR 7 R 7' and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 and/or 1 or 2 (=0) groups substituents, and -C(=O)R 7 , -C(=O)OR 7 , -C(=O)NR 7 R 7' , -SO 2 R 7 and - SO 2 NR 7 R 7' ;

q is independently an interger from 0-10;

o is an interger from 0-2;

n is independently an integer from 0-2;

m is independently an integer from 1-3;

p is independently an integer from 0-2; and

w is an integer from 0-3

provided that o and n cannot both be 0.

The compounds of Formula I or a pharmaceutically acceptable salt, ester, prodrug or solvate thereof can be useful as o:2C adrenergic receptor modulators and can be useful in the treatment or prevention of one or more conditions associated with the a2C receptor by administering at least one compound of Formula I to a mammal in need of such treatment. Conditions that my be treated by modulating the a2C receptor include allergic rhinitis, congestion (including congestion associated with perennial allergic rhinitis, seasonal allergic rhinitis, non-allergic rhinitis, vasomotor rhinitis, rhinitis medicamentosa, sinusitis, acute rhinosinusitis, or chronic rhinosinusitis, congestion caused by polyps, or caused by the common cold), pain (e.g., neuropathy, inflammation, arthritis, or diabetes), diarrhea, glaucoma, congestive heart failure, chronic heart failure, cardiac ischemia, manic disorders, depression, anxiety, migraine, stress-induced urinary incontinence, neuronal damage from ischemia, schizophrenia, attention deficit hyperactivity disorder, symptoms of diabetes, post traumatic stress disorder, Parkinson's disease or a dementia (e.g., Alzheimer's disease).

Another embodiment of this invention is the treatment or prevention of one or more conditions associated with the a2C receptor by administering at least one compound of Formula I a pharmaceutically acceptable salt, ester, prodrug or solvate thereof to a mammal in need of such treatment by selectively modulating a2C adrenergic receptors in the mammal.

Another embodiment of this invention is the treatment or prevention of one or more conditions associated with the a2C receptor by administering an effective amount at least one compound of Formula I a pharmaceutically acceptable salt, ester, prodrug or solvate thereof to a mammal in need of such treatment without modifying blood pressure at the therapeutic dose.

Another embodiment of the present invention is a method for selectively modulating a2C adrenergic receptors in a cell in a mammal in need thereof, comprising contacting said cell with a therapeutically effective amount of at least one compound of Formula I or a pharmaceutically acceptable salt, ester, prodrug or solvate thereof.

Another embodiment of the present invention is a method for the treatment of congestion in a mammal in need thereof without modifying the blood pressure at therapeutic doses which comprises administering to the mammal an effective dose of at least one compound having adrenergic activity wherein said compound is a selective agonist of the a2C receptor.

Another embodiment of the present invention is the use of a compound of claim 1 or a pharmaceutically acceptable salt , ester, prodrug or solvate for manufacture of a medicament for the treatment of one or more conditions associated with a2C adrenergic receptors in a mammal.

Another embodiment of the present invention is the use of a compound of claim 1 or a pharmaceutically acceptable salt , ester, prodrug or solvate for manufacture of a medicament for the treatment of one or more conditions associated with a2C adrenergic receptors in a mammal wherein the conditions are selected from the group consisting of allergic rhinitis, congestion, pain, diarrhea, glaucoma, congestive heart failure, cardiac ischemia, manic disorders, depression, anxiety, migraine, stress- induced urinary incontinence, neuronal damage from ischemia and schizophrenia

Detailed Description

An embodiment of this invention is compounds of Formula I or a

pharmaceutically acceptable salt thereof wherein:

Z is H, -OH, halogen,-CN, -NO 2 , or NR 7 R 7 ;

R is selected from the group consisting of optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)-alkylamino, -C(O)-dialkylamino, -C(O)-OH, -C(O)- Oalkyl, amino-C(O)-alkyl, amino-C(O)-O-alkyl, amino-S(O) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxyl;

R 2 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO 2 , -S(O) p R 7 , -NR 7 R 7 , and alkyl and alkoxy groups optionally

substituted with at least one R 5 ;

R 3 is independently selected from the group consisting of H, halo, and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl groups optionally substituted with at least one R 5 , provided that when w is 3, no more than 2 of the R 3 groups may be (=0);

R 4 is independently selected from the group consisting of H, halo, -OH, halo, and -CN, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R 5 ;

R 4 is independently selected from the group consisting of halo and alkyl;

R 5 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=0);

R 6 is independently selected from the group consisting of H and halo, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=0), and -C(=O)R 7 , -C(=O)OR 7 , -C(=O)NR 7 R 7' , -SO 2 R 7 and -SO 2 NR 7 R 7' ;

R 6 is selected from the group consisting of H, halo, alkyl and alkoxy;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R 12 ;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyl, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by

R 12 ;

R 1 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO 2 , -N(R 11' ) 2 , and -S(O) p R 11 substituents and/or 1 or 2 (=O);

R 11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl;

R 12 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -N(R ) 2 , and -S(O) p R 11 , and/or 1 or 2 (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyl, heterocyclyl, heterocyclenyl,

heterocyclenyloxy, heterocyclylalkyl, heterocyclenylalkyl, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least one by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted

heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO 2 , -N(R 1 ) 2 , and - S(O)pR 11 and/or 1 or 2 (=O), wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and

heterocyclenyloxy when substituted are substituted one or more times by R 11 ;

R 14 is independently selected from the group consisting of H or alkyl; and

R 15 is absent or selected from the group consisting of H and alkyl, cycloalkyi, aryl, arylalkyi, heteroaryl, and heteroarylalkyl groups, each of which is optionally substituted with at least one halo, -OH, -CN, -NO 2l -N(R 11 ) 2 , and -S(O) p R 11 and/or 1 or 2 (=O); and

q is O or l

Another embodiment of this invention is compounds of Formula I that have the formula:

II

or a pharmaceutically acceptable salt thereof, wherein the various variables are as described above for compounds of Formula I.

Another embodiment of this invention is compounds of Formula II or their pharmaceutically acceptable salts wherein:

Z is H, -OH, halogen,-CN, -NO 2 , or NR 7 R 7 ;

X is -C(R 6 )(R 6' )-, -N(R 6 )-, -O- or -S -;

R 1 is selected from the group consisting of optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)-alkylamino, -C(O)-dialkylamino, -C(O)-OH, -C(O)- Oalkyl, amino-C(O)-alkyl, amino-C(O)-O-alkyl, amino-S(O) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxyl;

R 2 is independently selected from the group consisting of H, -OH,

halo, -CN, -NO 2 , -S(O) p R 7 , -NR 7 R 7 , and alkyl and alkoxy groups optionally

substituted with at least one R 5 ;

R 3 is independently selected from the group consisting of H, halo, and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyl groups optionally substituted with at least one R 5 , provided that when w is 3, no more than 2 of the R 3 groups may be (=O);

R 4 is independently selected from the group consisting of H, halo, -OH, halo, and -CN, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R 5 ;

R 4 is independently selected from the group consisting of halo and alkyl;

R 5 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -NR 7 R 7' , and -S(O) p R 7 , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=O);

R 6 is independently selected from the group consisting of H, -OH and halo, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=O), and -C(=O)R 7 , -C(=O)OR 7 , - C(=O)NR 7 R 7' , -SO 2 R 7 and -SO 2 NR 7 R 7' ;

R 6 is selected from the group consisting of H, halo, and alkyl;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyl groups, each of which is optionally substituted one or more times by R 12 ;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyl groups, each of which is optionally substituted one or more times by

R 12 ;

R 11 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyl, heterocyclyl, and heterocyclylalkyi, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO 2 , -N(R 11' ) 2 , and -S(O) p R 11 substituents and/or 1 or 2 (=O);

R 11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyciylalkyi;

R 12 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -N(R 1 ) 2 , and -S(O) p R 11 , and/or 1 or 2 (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl,

heterocyclenyloxy, heterocyciylalkyi, heterocyclenylalkyi, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least one by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted

heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO 2 , -N(R 11 ) 2 , and - S(O)pR 11 and/or 1 or 2 (=O), wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and

heterocyclenyloxy when substituted are substituted one or more times by R 11 ;

R 14 is independently selected from the group consisting of H or alkyl; and

R 15 is absent or selected from the group consisting of H and alkyl, cycloalkyl, aryl, arylalkyi, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one halo, -OH, -CN, -NO 2) -N(R 11 ) 2 , and -S(O) p R 11 and/or 1 or 2 (=O);

q is O or l ;

o is 1 or 2; and

m is 1 or 2.

In another embodiment of compounds of Formula II, J 1 , J 2 and J 3 are each -

C(R 2 )-.

In another embodiment of compounds of Formula II, J 2 , J 3 and J 4 are each -CH- In another embodiment of compounds of Formula II, J 1 and J 3 are -CH- and J 1 is -N-.

In another embodiment of compounds of Formula II, J 2 and J 3 are -CH- and J 2 is -N-.

In another embodiment of compounds of Formula II, J 1 , J 2 and J 3 are independently -CR 2 - or -N-.

In another embodiment of compounds of Formula II, J 1 and J 2 are -CH- and J 3 is -N-.

In another embodiment of compounds of Formula II, J 1 and J 2 are -CH- and J 3 is -N-.

In another embodiment of compounds of Formula II, n is 1 and o is 1.

In another embodiment of compounds of Formula II, n is 2 and o is 1.

In another embodiment of compounds of Formula II, n is 0 and o is 1 or 2.

In another embodiment of compounds of Formula II, q is 0 or 1

In another embodiment of compounds of Formula II, p is 1 or 2.

In another embodiment of compounds of Formula II, X is -CH 2 -.

In another embodiment of compounds of Formula II, X is -NH-.

In another embodiment of compounds of Formula II, X is -0-.

In another embodiment of compounds of Formula II, X is -S-.

In another embodiment of compounds of Formula II, X is -N(R 6 ).

In another embodiment of compounds of Formula II, X is -C(=0)-.

In another embodiment of compounds of Formula II, R 4 is H.

In another embodiment of compounds of Formula II, R 4 is H or alkyl (e.g., methyl, ethyl, propyl or butyl).

In one embodiment in compound of Formula II, R 1 is optionally substituted (preferably 1 to 5 times) aryl (preferably optionally substituted phenyl) or optionally substituted (preferably 1 to 5 times) heteroaryl, wherein the optional substituents are, for example, any of the "ring system substituents" identified below. Examples of heteroaryl rings include pyridine, pyrimidine, furan, pyrrole, thiophene, pyridazine, pyrazine, indolizine, oxazole, pyrazole, isoxazole, indole, isoindole, imidazole, indoline, benzofuran, benzothiophene, indazole, benzimidazole, benzthiazole, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, and naphthyridine. Preferred heteroaryl rings include pyridine, pyrimidine, furan, pyrrole, thiophene, pyridazine, pyrazine, indole, indoline, benzofuran, benzothiophene, benzimidazole, and benzthiazole. More preferred heteroaryl rings include pyridine, pyrimidine, pyrazole, isoxazole, and oxazole. Preferred optional substituents include alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted (preferably 1 to 5 times) cycloalkyl or cycloalkenyl ring. Examples of rings include cyclopentane, cyclohexane and cyclohexene. Examples of substituents include any of the "ring system substituents" identified below. Preferred optional substituents include alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted (preferably 1 to 5 times) heterocyclyl or heterocyclenyl ring or cycloalkenyl ring. Examples of rings include morpholine, piperazine, 2-pyrrolidine and

tetrahydrofurane. Examples of substituents include any of the "ring system

substituents" identified below. Preferred optional substituents include Preferred optional substituents include alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted pyridine ring.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted pyrimidine ring.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted oxazole ring. In another embodiment of compounds of Formula II, R 1 is an optionally substituted phenyl ring.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted napthylene ring.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted isoxazole ring.

In another embodiment of compounds of Formula II, R 1 is an optionally substituted pyrazole ring.

In another embodiment of compounds of Formula II, R 1 is bonded to J 1 ; J 2 , J 3 and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula II, R 1 is bonded to J 1 ; J 2 , J 3 and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 1 ; J 2 , J 3 and J 4 are -CH-; and X is -O-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 1 ; J 2 , J 3 and J 4 are -CH-; and X is -S-.

In another embodiment of compounds of Formula II, R is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula II, R is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -0-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -S-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula II, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula II, R is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -O-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -S-. In another embodiment of compounds of Formula II, R is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula II, R is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -0-.

In another embodiment of compounds of Formula II, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -S-.

In another embodiment of compounds of Formula II, Z is -NR 7 R 7 , wherein R 7 and R 7 are independently H, alkyl, R 12 -aryl, and R 12 -cycloalkyl.

In another embodiment of compounds of Formula II, R 4 is H, -OH, halo, -CN, - NO 2 , -NR 7 R 7' , wherein R 7 and R 7' are independently H, alkyl, R 12 -aryl, and R 12 - cycloalkyl, alkyl, or haloalkyl.

In another embodiment of compounds of Formula II, m is 1 , R 4 is H and R 4 is H or alkyl (e.g., methyl, ethyl, propyl or butyl).

In another embodiment of compounds of Formula II, m is 1 , R 4 is H and R 4 is H or alkyl (e.g., methyl, ethyl, propyl or butyl).

In another embodiment of compounds of Formula II, the spiro ring is:

In another embodiment R 5 is H, optionally substituted alkyl, optionally substituted cycloalkyi (e.g., cyclopropyl, cyclopentyl, or cyclohexyl) or, optionally substituted aryl (e.g., phenyl), wherein the optional substituents are halo, hydroxyl, amino, alkyl amino, dialkyl amino, nitro, or cyano.

In another embodiment Z is amino, alkyl amino or dialkyl amino.

In another embodiment R 15 is H or alkyl.

Another embodiment of this invention is compounds of Formula I that have the formula

III

of a pharmaceutically acceptable salt thereof, wherein the various variables are as described above for compounds of Formula I.

Another embodiment of the compounds of Formula III is compounds or their pharmaceutically acceptable salts wherein:

Z is H, -OH, halogen,-CN, -NO 2) or NR 7 R 7 ;

X is -C(R 6 )(R 6' )-, -N(R 6 )-, -O- or -S -;

R 1 is selected from the group consisting of optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)-alkylamino, -C(O)-dialkylamino, -C(O)-OH, -C(O)- Oalkyl, amino-C(O)-alkyl, amino-C(O)-O-alkyl, amino-S(O) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyi, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxyl; R 2 is independently selected from the group consisting of H, -OH, halo, -CN, -NO 2 , -S(O) p R 7 , -NR 7 R 7 , and alkyl and alkoxy groups optionally

substituted with at least one R 5 ;

R 3 is independently selected from the group consisting of H, halo, and (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R 5 , provided that when w is 3, no more than 2 of the R 3 groups may be (=O);

R 4 is independently selected from the group consisting of H, halo, -OH, halo, and -CN, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups optionally substituted with at least one R 5 ;

R 4 is independently selected from the group consisting of halo and alkyl;

R 5 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 , and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7 , and -S(O) p R 7 substituents and/or 1 or 2 (=O);

R 6 is independently selected from the group consisting of H and halo, and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyi, cycloalkoxy, aryl, aryloxy, arylalkyi, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi groups, each of which is optionally substituted with at least one of halo, -OH, -CN, -NO 2 , -NR 7 R 7' , and -S(O) p R 7 substituents and/or 1 or 2 (=O), and -C(=O)R 7 , -C(=O)OR 7 , -C(=O)NR 7 R 7' , -SO 2 R 7 and -SO 2 NR 7 R 7' ;

R 6 is selected from the group consisting of H, halo and alkyl;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R 12 ;

R 7 is independently selected from the group consisting of H and alkyl, alkenyl, alkynyl, cycloalkyi, cycloalkylalkyl, cycloclenyl, cyclocyclenylalkyl, aryl, arylalkyi, heterocyclyl, heterocyclylalkyi, hetrocyclenyl, hetrocyclenylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted one or more times by R 12 ;

R 11 is a moiety independently selected from the group consisting of H and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi, each of which is optionally substituted by at least one substituent independently selected from the group consisting of halo, -OH, -CN, -NO 2 , -N(R 1 ' ) 2 , and -S(O) p R 11 substituents and/or 1 or 2 (=O);

R 11 is independently selected from the group consisting of H, alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroarylalkyi, heterocyclyl, and heterocyclylalkyi;

R 12 is independently selected from the group consisting of H, halo, - OH, -CN, -NO 2 , -N(R 11 ) 2 , and -S(O) p R 11 , and/or 1 or 2 (=O), and alkyl, alkoxy, alkenyl, alkenyloxy, alkynyl, cycloalkyl, cycloalkenyl, cycloalkoxy, aryl, aryloxy, arylalkyl, heteroaryl, heteroaryloxy, heteroarylalkyi, heterocyclyl, heterocyclenyl,

heterocyclenyloxy, heterocyclylalkyi, heterocyclenylalkyi, arylalkoxy, heteroarylalkoxy, heterocyclylalkoxy, and heterocyclenylalkoxy groups, each of which in turn is optionally substituted by at least one by a substituent selected from the group consisting of H, alkyl, haloalkyl, halo, -OH, optionally substituted alkoxy, optionally substituted aryloxy, optionally substituted cycloalkoxy, optionally substituted

heteroaryloxy, optionally substituted heterocyclenyloxy, -CN, -NO 2 , -N(R 11 ) 2 , and - S(O)pR 11 and/or 1 or 2 (=O), wherein said optionally substituted alkoxy, aryloxy, optionally substituted cycloalkoxy, optionally substituted heteroaryloxy, and

heterocyclenyloxy when substituted are substituted one or more times by R 11 ;

R 14 is independently selected from the group consisting of H or alkyl; and R 15 is absent or selected from the group consisting of H and alkyl, cycloalkyl, aryl, arylalkyl, heteroaryl, and heteroarylalkyi groups, each of which is optionally substituted with at least one halo, -OH, -CN, -NO 2 , -N(R 11 ) 2 , and -S(O) p R 11 and/or 1 or 2 (=0);

q is 0 or 1

o is 0 or 1 ; and m is 1 or 2.

In another embodiment of compounds of Formula III, J 1 , J 2 and J 3 are each -

C(R 2 )-.

In another embodiment of compounds of Formula III, J 2 , J 3 and J 4 are each - CH-.

In another embodiment of compounds of Formula III, J 1 and J 3 are -CH- and J 1 is -N-.

In another embodiment of compounds of Formula III, J 2 and J 3 are -CH- and J 2 is -N-.

In another embodiment of compounds of Formula III, J 1 , J 2 and J 3 are independently -CR 2 - or -N-.

In another embodiment of compounds of Formula III, J 1 and J 2 are -CH- and J 3 is -N-.

In another embodiment of compounds of Formula III, J 1 and J 2 are -CH- and J 3 is -N-.

In another embodiment of compounds of Formula III, n is 1 and o is 1.

In another embodiment of compounds of Formula III, n is 2 and o is 1.

In another embodiment of compounds of Formula III, n is 0 and o is 1 or 2. In another embodiment of compounds of Formula III, q is 0 or 1.

In another embodiment of compounds of Formula III, p is 1 or 2.

In another embodiment of compounds of Formula III, X is -CH 2 -.

In another embodiment of compounds of Formula III, X is -NH-.

In another embodiment of compounds of Formula III, X is -O-.

In another embodiment of compounds of Formula III, X is -S-.

In another embodiment of compounds of Formula III, X is -N(R 6 ).

In another embodiment of compounds of Formula III, X is -(C=0)-.

In one embodiment of compounds of Formula III, R 1 is optionally substituted (preferably 1 to 5 times) aryl (preferably optionally substituted phenyl) or optionally substituted (preferably 1 to 5 times) heteroaryl, wherein the optional substituents are, for example, any of the "ring system substituents" identified below. Examples of heteroaryl rings include pyridine, pyrimidine, furan, pyrrole, thiophene, pyridazine, pyrazine, indolizine, oxazole, pyrazole, isoxazole, indole, isoindole, imidazole, indoline, benzofuran, benzothiophene, indazole, benzimidazole, benzthiazole, quinoline, isoquinoline, cinnoline, phthalazine, quinazoline, quinoxaline, and naphthyridine. Preferred heteroaryl rings include pyridine, pyrimidine, furan, pyrrole, thiophene, pyridazine, pyrazine, indole, indoline, benzofuran, benzothiophene, benzimidazole, and benzthiazole. More preferred heteroaryl rings include pyridine, pyrimidine, pyrazole, isoxazole, and oxazole. Preferred optional substituents include alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted (preferably 1 to 5 times) cycloalkyl or cycloalkenyl ring. Examples of rings include cyclopentane, cyclohexane and cyclohexene. Examples of substituents include any of the "ring system substituents" identified below. Preferred optional substituents include alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted (preferably 1 to 5 times) heterocyclyl or heterocyclenyl ring or cycloalkenyl ring. Examples of rings include morpholine, piperazine, 2-pyrrolidine and

tetrahydrofurane. Examples of substituents include any of the "ring system

substituents" identified below. Preferred optional substituents include Preferred optional substituents include alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 5, preferably 1 to 3, times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, alkoxy, amino, alkylamino, dialkylamino and haloalkoxy.

In another embodiment of compounds of Formula III, R is an optionally substituted pyridine ring.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted pyrimidine ring. In another embodiment of compounds of Formula III, R is an optionally substituted oxazole ring.

In another embodiment of compounds of Formula III, R is an optionally substituted phenyl ring.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted napthylene ring.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted isoxazole ring.

In another embodiment of compounds of Formula III, R 1 is an optionally substituted pyrazole ring.

In another embodiment of compounds of Formula III, R 1 is bonded to J 1 ; J 2 , J and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula III, R 1 is bonded to J 1 ; J 2 , J and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 1 ; J 2 , J and J 4 are -CH-; and X is -0-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 1 ; J 2 , J : and J 4 are -CH-; and X is -S-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 4 ; J 1 , J and J 3 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula III, R is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula III, R is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -O-.

In another embodiment of compounds of Formula III, R is bonded to J 4 ; J 1 , J 2 and J 3 are -CH-; and X is -S-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula III, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -0-. In another embodiment of compounds of Formula III, R 1 is bonded to J 2 ; J 1 , J 3 and J 4 are -CH-; and X is -S-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -CH 2 -.

In another embodiment of compounds of Formula III, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -NH-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -O-.

In another embodiment of compounds of Formula III, R 1 is bonded to J 3 ; J 1 , J 2 and J 4 are -CH-; and X is -S-.

In another embodiment of compounds of Formula III, Z is -NR 7 R 7 , wherein R 7 and R 7 are independently H, alkyl, R 12 -aryl, and R 12 -cycloalkyl.

In another embodiment of compounds of Formula III, R 4 is H, -OH, halo, -CN, - NO 2 , -NR 7 R 7' , wherein R 7 and R 7' are independently H, alkyl, R 12 -aryl, and R 12 - cycloalkyl, alkyl, or haloalkyl

In another embodiment of compounds of Formula III, m is 1 , R 4 is H and R 4 is H or alkyl (e.g., methyl, ethyl, propyl or butyl).

In another embodiment of compounds of Formula III, m is 1 , R 4' is H and R 4 is H or alkyl (e.g., methyl, ethyl, propyl or butyl).

In another embodiment of compounds of Formula III, the spiro ring is:

In another embodiment of compounds of Formula III, R 15 is H, optionally substituted alkyl, optionally substituted cycloalkyi (e.g., cyclopropyl, cyclopentyl, or cyclohexyl) or, optionally substituted aryl (e.g., phenyl) or optionally substituted arylalkyi (e.g., benzyl), wherein the optional substituents on the aryl ring are halo, hydroxyl, amino, alkyl amino, dialkyl amino, nitro, or cyano.

In another embodiment of compounds of Formula III, Z is amino, alkyl amino or dialkyl amino. In another embodiment of compounds of Formula HI, R 15 is H or alkyl.

In another embodiment, the present invention discloses compounds

Formula III of the formula:

IV

wherein the various variables are those provided above for Formula I or a

pharmaceutically acceptable salt thereof.

An embodiment of Formula IV is those compounds wherein:

R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(0)-OH, -C(O)-Oalkyl, amino-C(0)-alkyl, amino- C(0)-O-alkyl, amino-S(0)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy; R 2 is H, alky! (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy);

R 5 is H or alkyl (e.g., methyl or ethyl),

X is -CH 2 - ,

or a pharmaceutically acceptable salt thereof.

Another embodiment of Formula IV is those compounds wherein:

R is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(0)-alkyl, amino- C(0)-0-alkyl, amino-S(0) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy);

X is -0-; and

R 15 is H or alkyl (e.g., methyl or ethyl),

or a pharmaceutically acceptable salt thereof.

Another embodiment of Formula IV is those compounds wherein: R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(0)-OH, -C(O)-Oalkyl, amino-C(O)-alkyl, amino-

C(0)-0-alkyl, amino-S(0) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy);

X is -S-;

R 15 is H or alkyl (e.g., methyl or ethyl),

or a pharmaceutically acceptable salt thereof.

Another embodiment of Formula IV is those compounds wherein:

R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally

substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(0)-alkyl, amino- C(0)-0-alkyl, amino-S(0)2-alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy);

X is -NH 2 -; and

R 15 is H or alkyl (e.g., methyl or ethyl)

or a pharmaceutically acceptable salt thereof.

Another embodiment of the compounds of Formula IV or a pharmaceutically acceptable salt thereof is compounds wherein R is optionally substituted phenyl, optionally substituted pyridyl and optionally substituted pyrimidyl, wherein the optional substituents is (are) independently selected from the group consisting of halo, -CN, - OH, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy), amino, alkylamino or dialkylamino.

In another embodiment, the present invention discloses compounds which are represented by structural formulae V-VII or a pharmaceutically acceptable salt thereof, wherein the various variables are those described above for Formula I:

Formula V Formula VI

Formula VII

An embodiment of Formulae V-VII is those compounds wherein:

R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)- alkylamino, -C(0)-dialkylamino, -C(O)-OH, -C(O)-Oalkyl, amino-C(O)-alkyl, amino- C(0)-0-alkyl, amino-S(0) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy); and

X is -CH 2 - ,

or a pharmaceutically acceptable salt thereof.

Another embodiment of Formulae V-VII is those compounds wherein:

R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(O)- alkylamino, -C(O)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(0)-alkyl, amino- C(0)-0-alkyl, amino-S(0) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy); and

X is -O- ,

or a pharmaceutically acceptable ester, salt or solvate thereof.

Another embodiment of Formulae V-VII is those compounds wherein: R is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(O)-amino; -C(O)- alkylamino, -C(O)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(O)-alkyl, amino-

C(0)-0-alkyl, amino-S(O) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyl, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy); and

X is -S- ,

or a pharmaceutically acceptable salt thereof.

Another embodiment of Formulae V-VII is those compounds wherein:

R 1 is optionally substituted aryl, optionally substituted arylalkyl, optionally substituted arylalkoxy, optionally substituted pyridyl, optionally substituted pyrimidyl, optionally substituted furanyl, optionally substituted thiophenyl, optionally substituted quinolinyl, optionally substituted indolyl, optionally substituted pyrrolyl, and optionally substituted pyrrolidinyl, optionally substituted pyrazolyl, optionally substituted oxazolyl, optionally substituted isoxazolyl, optionally substituted imidazole, optionally substituted pyridazinyl, optionally substituted pyrazinyl, optionally substituted tetrazolyl, optionally substituted imidazopyrimidinyl, optionally substituted thiazolyl, optionally substituted isothiazolyl, optionally substituted indazolyl, optionally substituted benzofuranyl, optionally substituted benzothiphenyl, optionally substituted isoquinolyl, optionally substituted benzimidazolyl, optionally substituted benzthiazolyl, optionally substituted quinoxalinyl, wherein said groups may be optionally substituted 1 to 3 times with substitutents selected from the group consisting of alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, -C(0)-amino; -C(O)- alkylamino, -C(O)-dialkylamino, -C(0)-OH, -C(0)-Oalkyl, amino-C(O)-alkyl, amino- C(0)-0-alkyl, amino-S(0) 2 -alkyl, alkoxy, haloalkoxy, aryl, and heteroaryl, wherein said aryl and heteroaryl are optionally substituted 1 to 3 times by alkyl, haloalkyl, nitro, cyano, halo, hydroxyl, amino, alkylamino, dialkylamino, alkoxy, and haloalkoxy;

R 2 is H, alkyl (e.g., methyl, ethyl, propyl, isopropyi, butyl, isobutyl or sec-butyl), halo, or alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy); and

X is -NH 2 - ,

or a pharmaceutically acceptable salt thereof.

Another embodiment of the compounds of Formulae V-VII is compounds wherein R 1 is optionally substituted phenyl, optionally substituted pyridyl and optionally substituted pyrimidyl, wherein the optional substituents is (are)

independently selected from the group consisting of halo, -CN, -OH, alkyl (e.g., methyl, ethyl, propyl, isopropyi, buty!, isobutyl or sec-butyl), alkoxy (e.g., methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutyloxy or sec-butoxy), amino, alkylamino or dialkylamino or a pharmaceutically acceptable salt thereof.

A group of compounds falling within Formula I are those shown below:

or a pharmaceutically acceptable salt of these compounds.

In another embodiment the compound of Formula I or its pharmaceutically accept salt, solvate or ester thereof is present in its isolated and purified form.

One embodiment of the present invention is compounds that act as agonists of the a2C receptor. Alpha-2C receptor agonists can by used in the treatment or prevention of allergic rhinitis, congestion (including, but not limited to nasal

congestion), migraine, congestive heart failure, chronic heart failure, cardiac ischemia, glaucoma, stress-induced urinary incontinence, attention deficit hyperactivity disorder, neuronal damage from ischemia and psychotic disorders. Further, alpha-2C receptor agonists can be useful in the treatment of pain (both chronic and acute), such as pain that is caused by inflammation, neuropathy, arthritis (including osteo and rheumatoid arthritis), diabetes (e.g., diabetes mellitus or diabetes insipidus) or pain of an unknown origin. Examples of neuropathic pain may include but not limited to; diabetic neuropathy, neuralgia of any etiology (e.g. post-herpetic, trigeminal), chemotherapy- induced neuropathy, HIV, lower back pain of neuropathic origin (e.g. sciatica), traumatic peripheral nerve injury of any etiology, central pain (e.g. post-stroke, thalamic, spinal nerve injury). Other pain that can be treated is nociceptive pain and pain that is visceral in origin or pain that is secondary to inflammation or nerve damage in other diseases or diseases of unknown origin. Further, alpha-2C receptor agonists can be useful in the treatment of symptoms of diabetes. Examples of symptoms of diabetes may include but are not limited to: hyperglycemia, hypertriglyceridemia, increased levels of blood insulin and hyperlipidemia.

A compound is defined to be an agonist of the alpha-2c receptor if the compound's efficacy at the a2C receptor is > 30% E max (GTPyS assay).

A further embodiment of the present invention are that act selectively, and preferably even specifically, as agonists of the a2C or the a2B/a2C (hereinafter referred to as a2C or a2B/2C) receptor subtypes in preference over the a2A receptor subtype and that act functionally selectively as agonists of the a2C or the a2B/2C receptor subtype in preference over the a2A receptor subtype possess desirable therapeutic properties associated with adrenergic receptors but without having one or more undesirable side effects such as changes in blood pressure or sedation. For the purposes of the present invention, a compound is defined to be a specific or at least functionally selective agonist of the a2C receptor subtype over the a2A receptor subtype if the compound's efficacy at the a2C receptor is > 30% E max (GTPyS assay) and its efficacy at the a2A receptor is < 35% E max , (GTPyS assay).

In another embodiment of the present invention the compound acts as an antagonist of the alpha-2C receptor. Alpha-2C receptor antagonists can be used in the treatment or prevention of disease states such as depression, schizophrenia, post traumatic stress disorder, Parkinson's disease, dementias (e.g., Alzheimer's disease and neuropathic disorders.

A compound is defined to be an antagonist of the alpha-2C receptor if the compounds's efficacy at the a2C receptor is < 30% E ma x (GTPyS assay) and the binding inhibition of at the a2C receptor (K,) is < 500 nM, preferably < 200 nM, and most preferably < 20 nM. In a further embodiment of the present invention, the a2C receptor subtype antagonists possess desirable therapeutic properties associated with the a2C adrenergic receptor but without having one or more undesirable side effects associated with a2A agonism. For the purposes of this invention, compounds that act as antagonists at the a2C receptor subtype preferably do not possess an efficacy at the a2A receptor of 35% E max or more (GTPyS assay).

Alternatively, the present invention provides for a method for the treatment of congestion in a mammal in need thereof which comprises administering to a mammal an effective dose of at least one compound having adrenergic activity wherein said compound is a functionally selective agonist of the a2c receptor or the a2C/aB adrenergic receptor.

A further embodiment of the present invention is a method for the treatment of congestion in a mammal in need thereof which comprises administering to a mammal an effective dose of at least one compound having adrenergic activity wherein said compound is a functionally selective agonist of the a2C receptor or the a2C/aB adrenergic receptor, wherein the selective agonist of the a2c receptor or the a2C/aB adrenergic receptor has an efficacy that is greater than or equal to 30% E max when assayed in the GTPyS assay and its efficacy at the a2A receptor is < 35% E max (GTPyS assay).

As used above, and throughout this disclosure, the following terms, unless otherwise indicated, shall be understood to have the following meanings:

"Patient" includes both human and animals.

"Mammal" means humans and other mammalian animals.

"alpha-2C modulator" or "a2C modulator" means that a compound has affinity for (or binds to) the a2C receptor which provokes a biological response (i.e., either an agonistic or antagonistic response).

"alpha-2C receptor agonist or "a2C receptor agonist" is a compound that has affinity for the a2C receptor and elicits a biological response that mimics the response observed by the endogenous ligand (e.g., neurotransmitter) that binds to the same receptor.

"alpha-2C receptor antagonist or "a2C receptor antagonist" is a compound that has affinity for the a2C receptor and elicits a biological response that blocks or dampens the response observed by the endrogenous ligand (e.g., neurotransmitter) that binds to the same receptor.

"Congestion" refers to all type of congestion including, but not limited to, congestion associated with perennial allergic rhinitis, seasonal allergic rhinitis, non- allergic rhinitis, vasomotor rhinitis, rhinitis medicamentosa, sinusitis, acute rhinosinusitis, or chronic rhinosinusitis or when the congestion is caused by polyps or is associated with the common cold.

"Alkyl" means an aliphatic hydrocarbon group which may be straight or branched and comprising about 1 to about 20 carbon atoms in the chain. Preferred alkyl groups contain about 1 to about 12 carbon atoms in the chain. More preferred alkyl groups contain about 1 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkyl chain. "Lower alkyl" means a group having about 1 to about 6 carbon atoms in the chain which may be straight or branched. The term "substituted alkyl" means that the alkyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl, aryl, cycloalkyl, cyano, hydroxy, alkoxy, alkylthio, amino, -NH(alkyl), -NH(cycloalkyl), -N(alkyl) 2 , carboxy and -C(0)0-alkyl. Non-limiting examples of suitable alkyl groups include methyl, ethyl, n-propyl, isopropyl and t-butyl.

"Alkenyl" means an aliphatic hydrocarbon group containing at least one carbon- carbon double bond and which may be straight or branched and comprising about 2 to about 15 carbon atoms in the chain. Preferred alkenyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 6 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkenyl chain. "Lower alkenyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. "Alkenyl" may be unsubstituted or optionally substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of halo, alkyl. aryl, cycloalkyl, cyano, alkoxy and -S(alkyl). Non-limiting examples of suitable alkenyl groups include ethenyl, propenyl, n-butenyl, 3-methylbut- 2-enyl, n-pentenyl, octenyl and decenyl.

"Alkynyl" means an aliphatic hydrocarbon group containing at least one carbon- carbon triple bond and which may be straight or branched and comprising about 2 to about 5 carbon atoms in the chain. Preferred alkynyl groups have about 2 to about 12 carbon atoms in the chain; and more preferably about 2 to about 4 carbon atoms in the chain. Branched means that one or more lower alkyl groups such as methyl, ethyl or propyl, are attached to a linear alkynyl chain. "Lower alkynyl" means about 2 to about 6 carbon atoms in the chain which may be straight or branched. Non-limiting examples of suitable alkynyl groups include ethynyl, propynyl, 2-butynyl and 3- methylbutynyl. The term "substituted alkynyl" means that the alkynyl group may be substituted by one or more substituents which may be the same or different, each substituent being independently selected from the group consisting of alkyl, aryl and cycloalkyl.

"Aryl" means an aromatic monocyclic or multicyclic ring system, in which at least one of the multicyclic rings is an aryl ring, comprising about 6 to about 14 carbon atoms, preferably about 6 to about 10 carbon atoms. The aryl group can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined herein. Non-limiting examples of suitable aryl groups include phenyl and naphthyl. Non-limiting examples of aryl multicyclic ring systems include:

"Heteroaryl" means an aromatic monocyclic or multicyclic ring system, in which at least one of the multicyclic rings is aromatic, comprising about 5 to about 14 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the ring atoms is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. Preferred heteroaryls contain about 5 to about 6 ring atoms. The "heteroaryl" can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The prefix aza, oxa or thia before the heteroaryl root name means that at least a nitrogen, oxygen or sulfur atom respectively, is present as a ring atom. A nitrogen atom of a heteroaryl can be optionally oxidized to the corresponding N-oxide. Non-limiting examples of suitable heteroaryls include pyridyl, pyrazinyl, furanyl, thienyl, pyrimidinyl, isoxazolyl, isothiazolyl, oxazolyl, thiazolyl, pyrazolyl, furazanyl, pyrrolyl, pyrazolyl, triazolyl, 1 ,2,4- thiadiazolyl, pyrazinyl, pyridazinyl, quinoxalinyl, phthalazinyl, imidazo[1 ,2-a]pyridinyl, imidazo[2,1-b]thiazolyl, benzofurazanyl, indolyl, azaindolyl, benzimidazolyl,

benzothienyl, quinolinyl, imidazolyl, thienopyridyl, quinazolinyl, thienopyrimidyl, W

43 pyrrolopyridyl, imidazopyridyl, isoquinolinyl, benzoazaindolyl, 1 ,2,4-triazinyl, benzothiazolyl and the like.

Non-limiting examples of hetreroaryl multicyclic ring systems include:

"Aralkyl" or "arylalkyl" means an aryl-alkyl- group in which the aryl and alkyl are as previously described. Preferred aralkyls comprise a lower alkyl group. Non-limiting examples of suitable aralkyl groups include benzyl, 2-phenethyl and

naphthalenylmethyl. The bond to the parent moiety is through the alkyl.

"Alkylaryl" means an alkyl-aryl- group in which the alkyl and aryl are as previously described. Preferred alkylaryls comprise a lower alkyl group. Non-limiting example of a suitable alkylaryl group is tolyl. The bond to the parent moiety is through the aryl.

"Cycloalkyi" means a non-aromatic mono- or multicyclic ring system comprising about 3 to about 10 carbon atoms, preferably about 5 to about 10 carbon atoms. Preferred cycloalkyi rings contain about 5 to about 7 ring atoms. The cycloalkyi can be optionally substituted with one or more "ring system substituents" which may be the same or different, and are as defined above. Non-limiting examples of suitable monocyclic cycloalkyls include cyclopropyl, cyclopentyl, cyclohexyl, cycloheptyl and the like. Non-limiting examples of suitable multicyclic cycloalkyls include 1-decalinyl, norbornyl, adamantyl and the like.

"Halogen" and "Halo" mean fluorine, chlorine, bromine, or iodine. Preferred are fluorine, chlorine or bromine, and more preferred are fluorine and chlorine.

"Ring system substituent" means a substituent attached to an aromatic or non- aromatic ring system which, for example, replaces an available hydrogen on the ring system. Ring system substituents may be the same or different, each being independently selected from the group consisting of aryl, heteroaryl, aralkyl, alkylaryl, heteroaralkyl, alkylheteroaryl, hydroxy, hydroxyalkyl, alkoxy, aryloxy, aralkoxy, acyl, aroyl, halo, nitro, cyano, carboxy, alkoxycarbonyl, aryloxycarbonyl, aralkoxycarbonyl, alkylsulfonyl, arylsulfonyl, heteroarylsulfonyl, alkylthio, arylthio, heteroarylthio, aralkylthio, heteroaralkylthio, cycloalkyl, heterocyclyl, Y 1 Y 2 N-, YiY 2 N-alkyl-,

YiY 2 NC(O)- and Y 1 Y 2 NS0 2 -, wherein Yi and Y 2 may be the same or different and are independently selected from the group consisting of hydrogen, alkyl, aryl, and aralkyl.

"Heterocyclyl" means a non-aromatic saturated monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur, alone or in combination. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred

heterocyclyls contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. Any -NH in a heterocyclyl ring may exist protected such as, for example, as an -N(Boc), -N(CBz), -N(Tos) group and the like; such protected moieties are also considered part of this invention. The heterocyclyl can be optionally substituted by one or more "ring system substituents" which may be the same or different, and are as defined herein. The nitrogen or sulfur atom of the heterocyclyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S,S- dioxide. Non-limiting examples of suitable monocyclic heterocyclyl rings include piperidyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperazinyl, morpholinyl,

thiomorpholinyl, thiazolidinyl, 1 ,4-dioxanyl, tetrahydrofuranyl, tetrahydrothiophenyl, and the like.

Compounds of Formula I and salts, esters, solvates and prodrugs thereof, may exist in their tautomeric form (for example, as an amide or imino ether). All such tautomeric forms are contemplated herein as part of the present invention. Non- limiting examples of tautomeric forms that are part of this invention are as follows:

It should be noted that in saturated heterocyclyl containing systems of this invention, there are no hydroxyl, amino, or thiol groups on carbon atoms adjacent to a N, O or S atom. Thus, for example, in the ring:

there is no -OH attached directly to carbons marked 2 and 5. It should also be noted that this definition does not preclude (=O), (=S), or (=N) substitutions, or their tautomeric forms, on C atoms adjacent to a N, O or S. Thus, for example, in the above ring, (=O) substitution on carbon 5, or its imino ether tautomer is allowed.

Non-li s follows:

The following non-limiting examples serve to illustrate radicals not contemplated by the present invention: "Alkynylalkyl" means an alkynyl-alkyl- group in which the alkynyl and alkyl are as previously described. Preferred alkynylalkyls contain a lower alkynyl and a lower alkyl group. The bond to the parent moiety is through the alkyl. Non-limiting examples of suitable alkynylalkyl groups include propargylmethyl.

"Heteroaralkyl" means a heteroaryl-alkyl- group in which the heteroaryl and alkyl are as previously described. Preferred heteroaralkyls contain a lower alkyl group. Non-limiting examples of suitable aralkyl groups include pyridylmethyl, and quinolin-3-ylmethyl. The bond to the parent moiety is through the alkyl. "Heterocyclylalkyl" means a heterocyclyl-alkyl group in which the heterocyclyl and the alkyl are as previously described. Preferred heterocyclylalkyls contain a lower alkyl group. Non-limiting examples of suitable heterocyclylalkyl groups include piperidylmethyl, piperidylethyl, pyrrolidylmethyl, morpholinylpropyl, piperazinylethyl, azindylmethyl, azetidylethyl, oxiranylpropyl and the like. The bond to the parent moiety is through the alkyl group.

"Heterocyclenyl" (or "heterocycloalkeneyl") means a non-aromatic monocyclic or multicyclic ring system comprising about 3 to about 10 ring atoms, preferably about 5 to about 10 ring atoms, in which one or more of the atoms in the ring system is an element other than carbon, for example nitrogen, oxygen or sulfur atom, alone or in combination, and which contains at least one carbon-carbon double bond or carbon- nitrogen double bond. There are no adjacent oxygen and/or sulfur atoms present in the ring system. Preferred heterocyclenyl rings contain about 5 to about 6 ring atoms. The prefix aza, oxa or thia before the heterocyclenyl root name means that at least a nitrogen, oxygen or sulfur atom respectively is present as a ring atom. The

heterocyclenyl can be optionally substituted by one or more ring system substituents, wherein "ring system substituent" is as defined above. The nitrogen or sulfur atom of the heterocyclenyl can be optionally oxidized to the corresponding N-oxide, S-oxide or S.S-dioxide. Non-limiting examples of suitable monocyclic azaheterocyclenyl groups include 1 ,2,3,4- tetrahydropyridyl, 1 ,2-dihydropyridyl, ,4-dihydropyridyl, 1 ,2,3,6- tetrahydropyridyl, 1 ,4,5,6-tetrahydropyrimidyl, 2-pyrrolinyl, 3-pyrrolinyl, 2-imidazolinyl, 2-pyrazolinyl, 2-oxazolinyl, 2-thiazolinyl, and the like. Non-limiting examples of suitable oxaheterocyclenyi groups include 3,4-dihydro-2H-pyran, dihydrofuranyl,

fluorodihydrofuranyl, and the like. Non-limiting example of a suitable multicyclic oxaheterocyclenyi group is 7-oxabicyclo[2.2.1]heptenyl. Non-limiting examples of suitable monocyclic thiaheterocyclenyl rings include dihydrothiophenyl,

dihydrothiopyranyl, and the like.

"Heterocyclenylalkyl" means a heterocyclenyl-alkyl group in which the

heterocyclenyl and the alkyl are as previously described.

"Hydroxyalkyl" means a HO-alkyl- group in which alkyl is as previously defined. Preferred hydroxyalkyls contain lower alkyl. Non-limiting examples of suitable hydroxyalkyl groups include hydroxymethyl and 2-hydroxyethyl. "Acyl" means an organic acid group in which the -OH of the carboxyl group is replaced by some other substituent. Suitable non-limiting examples include H-C(O)-, alkyl-C(O)- , cycloalkyl-C(O)-, heterocyclyl-C(O)-, and heteroaryl-C(O)- groups in which the various groups are as previously described. The bond to the parent moiety is through the carbonyl. Preferred acyls contain a lower alkyl. Non-limiting examples of suitable acyl groups include formyl, acetyl and propanoyl.

"Aroyl" means an aryl-C(O)- group in which the aryl group is as previously described. The bond to the parent moiety is through the carbonyl. Non-limiting examples of suitable groups include benzoyl and 1-naphthoyl.

"Alkoxy" means an alkyl-O- group in which the alkyl group is as previously described. Non-limiting examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, isopropoxy and n-butoxy. The bond to the parent moiety is through the ether oxygen.

"Aryloxy" means an aryl-O- group in which the aryl group is as previously described. Non-limiting examples of suitable aryloxy groups include phenoxy and naphthoxy. The bond to the parent moiety is through the ether oxygen.

"Aralkyloxy" or "arylalkyloxy" means an aralkyl-O- group in which the aralkyl group is as previously described. Non-limiting examples of suitable aralkyloxy groups include benzyloxy and 1- or 2-naphthalenemethoxy. The bond to the parent moiety is through the ether oxygen.

"Heteroarylalkoxy" means a heteroarylalkyl-O-group in which the

heteroarylalkyl group is as previously described.

"Heterocyclylalkoxy" means a heterocyclylalkyl-O group in which the

hetrocyclylalkyl group is as previously described.

"Heterocyclenylalkoxy" means a heterocyclenylalkyl-O group in which the heterocyclenylalkyl group is as previously described.

"Alkylthio" means an alkyl-S- group in which the alkyl group is as previously described. Non-limiting examples of suitable alkylthio groups include methylthio and ethylthio. The bond to the parent moiety is through the sulfur.

"Arylthio" means an aryl-S- group in which the aryl group is as previously described. Non-limiting examples of suitable arylthio groups include phenylthio and naphthylthio. The bond to the parent moiety is through the sulfur. "Aralkylthio" means an aralkyl-S- group in which the aralkyl group is as previously described. Non-limiting example of a suitable aralkylthio group is benzylthio. The bond to the parent moiety is through the sulfur.

"Alkoxycarbonyl" means an alkyl-O-CO- group. Non-limiting examples of suitable alkoxycarbonyl groups include methoxycarbonyl and ethoxycarbonyl. The bond to the parent moiety is through the carbonyl.

"Aryloxycarbonyl" means an aryl-O-C(O)- group. Non-limiting examples of suitable aryloxycarbonyl groups include phenoxycarbonyl and naphthoxycarbonyl. The bond to the parent moiety is through the carbonyl.

"Aralkoxycarbonyl" means an aralkyl-O-C(O)- group. Non-limiting example of a suitable aralkoxycarbonyl group is benzyloxycarbonyl. The bond to the parent moiety is through the carbonyl.

"Alkylsulfonyl" means an alkyl-S(0 2 )- group. Preferred groups are those in which the alkyl group is lower alkyl. The bond to the parent moiety is through the sulfonyl.

"Arylsulfonyl" means an aryl-S(0 2 )- group. The bond to the parent moiety is through the sulfonyl.

The term "substituted" means that one or more hydrogens on the designated atom is replaced with a selection from the indicated group, provided that the

designated atom's normal valency under the existing circumstances is not exceeded, and that the substitution results in a stable compound. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds. By "stable compound' or "stable structure" is meant a compound that is sufficiently robust to survive isolation to a useful degree of purity from a reaction mixture, and formulation into an efficacious therapeutic agent.

It is noted that carbons of Formula I can be replaced with 1-3 silicon atoms, provided all valency requirements are satisfied.

The term "optionally substituted" means optional substitution with the specified groups, radicals or moieties.

The straight line as a bond generally indicates a mixture of, or either of, the possible isomers, non-limiting example(s) include, containing (R)- and

(S)- stereochemistry. For example,

A dashed line ( ) represents an optional bond.

Lines drawn into the

indicate that the indicated line (bond) may be attached to any of the substitutable ring atoms, non-limiting examples include carbon, nitrogen and sulfur ring atoms.

As well known in the art, a bond drawn from a particular atom wherein no moiety is depicted at the terminal end of the bond indicates a methyl group bound through that bond to the atom, unless stated otherwise. For example:

It should also be noted that any heteroatom with unsatisfied valences in the text, schemes, examples and Tables herein is assumed to have the hydrogen atom to satisfy the valences.

When a functional group in a compound is termed "protected", this means that the group is in modified form to preclude undesired side reactions at the protected site when the compound is subjected to a reaction. Suitable protecting groups will be recognized by those with ordinary skill in the art as well as by reference to standard textbooks such as, for example, T. W. Greene et al, Protective Groups in organic Synthesis (1991), Wiley, New York.

When any variable (e.g., aryl, heterocycle, R 2 , etc.) occurs more than one time in any constituent or formula, its definition on each occurrence is independent of its definition at every other occurrence.

Unless defined otherwise, all definitions for the variables follow the convention that the group to the right forms the point of attachment to the molecule; i.e., if a definition is arylalkyl, this means that the alkyl portion of the definition is attached to the molecule.

Further, all divalent variable are attached from left to right. For example when R 2 is -[C(R a )(R b )] q N(R 7 )YR 7' and Y is -C(=O)-, -C(=0)0- or -C(=0)NR 7 , then R 2 forms the group -[C(R a )(R b )] q N(R 7 )-C(=0)-R 7' , -[C(R a )(R b )] q N(R 7 )-C(=0)O-R 7' , or - [C(R a )(R b )] p N(R 7 )-C(=0)N(R 7 )(R 7 ).

In this application, unless otherwise indicated, whenever there is a structural formula provided, such as those of Formulae I to VII, this formula is intended to encompass all forms of a compound such as, for example, any solvates, hydrates, stereoisomers, tautomers, etc. in all of its isolated forms. For example, the phrase "a compound of the formula

R 15

or its pharmaceutically acceptable salts" would encompass any solvates, hydrates, stereoisomer, tautomers, etc. of compounds falling within the structural formula.

As used herein, the term "composition" is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from combination of the specified ingredients in the specified amounts.

Prodrugs and solvates of the compounds of the invention are also

contemplated herein. The term "prodrug", as employed herein, denotes a compound that is a drug precursor which, upon administration to a subject, undergoes chemical conversion by metabolic or chemical processes to yield a compound of formula I or a salt and/or solvate thereof. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems (1987) Volume 14 of the A.C.S.

Symposium Series, and in Bioreversible Carriers in Drug Design, (1987) Edward B. Roche, ed., American Pharmaceutical Association and Pergamon Press, both of which are incorporated herein by reference thereto. For example, if a compound of Formula I or a pharmaceutically acceptable salt, hydrate or solvate of the compound contains a carboxylic acid functional group, a prodrug can comprise an ester formed by the replacement of the hydrogen atom of the acid group with a group such as, for example, (Ci-C 8 )alkyl, (C 2 - Ci 2 )alkanoyloxymethyl, 1 -(alkanoyloxy)ethyl having from 4 to 9 carbon atoms, 1- methyl-1-(alkanoyloxy)-ethyl having from 5 to 10 carbon atoms,

alkoxycarbonyloxymethyl having from 3 to 6 carbon atoms, 1 -(alkoxycarbonyloxy)ethyl having from 4 to 7 carbon atoms, 1-methyl-1-(alkoxycarbonyloxy)etbyl having from 5 to 8 carbon atoms, N-(alkoxycarbonyl)aminomethyl having from 3 to 9 carbon atoms, 1-(N-(alkoxycarbonyl)amino)ethyl having from 4 to 10 carbon atoms, 3-phthalidyl, 4- crotonolactonyl, gamma-butyrolacton-4-yl, di-N,N-(Ci-C2)alkylamino(C 2 -C 3 )alkyl (such as β-dimethylaminoethyl), carbamoyl-(Ci-C 2 )alkyl, N,N-di (Ci-C 2 )alkylcarbamoyl-(C1- C2)alkyl and piperidino-, pyrrolidino- or morpholino(C 2 -C3)alkyl, and the like.

Similarly, if a compound of Formula I contains an alcohol functional group, a prodrug can be formed by the replacement of the hydrogen atom of the alcohol group with a group such as, for example, (Ci-C 6 )alkanoyloxymethyl, 1-((C-|- C 6 )alkanoyloxy)ethyl, 1-methyl-1-((Ci-C 6 )alkanoyloxy)ethyl, (Ci- C 6 )alkoxycarbonyloxymethyl, N-(Ci-C 6 )alkoxycarbonylaminomethyl, succinoyl, (d- C 6 )alkanoyl, a-amino(Ci-C 4 )alkanyl, arylacyl and a-aminoacyl, or a-aminoacyl-a- aminoacyl, where each a-aminoacyl group is independently selected from the naturally occurring L-amino acids, -P(O)(OH) 2 , -P(0)(0(C-i-C 6 )alkyl) 2 or glycosyl (the radical resulting from the removal of a hydroxyl group of the hemiacetal form of a

carbohydrate), and the like.

If a compound of Formula I incorporates -NH- functional group, such as in a primary or secondary amine or in a nitrogen-containing heterocycle, such as imidazole or piperazine ring, a prodrug can be formed by the replacement of a hydrogen atom in the amine group with a group such as, for example, R-carbonyl, RO-carbonyl, NRR'- carbonyl where R and R' are each independently (Ci-Ci 0 )alkyl, (C 3 -C 7 ) cycloalkyl, benzyl, or R-carbonyl is a natural α-aminoacyl or natural α-aminoacyl, -C(OH)C(0)OY 1 wherein Y 1 is H, (d-C^alkyl or benzyl, -C(OY 2 )Y 3 wherein Y 2 is (Ci-C 4 ) alkyl and Y 3 is (d-C^alky!, carboxy (Ci-C6)alkyl, amino(Ci-C 4 )alkyl or mono-N- or di-N,N-(Ci- C 6 )alkylaminoalkyl, -C(Y 4 )Y 5 wherein Y 4 is H or methyl and Y 5 is mono-N- or di-N,N- (Ci-C 6 )alkylamino morpholino, piperidin-1-yl or pyrrolidin-1-yl, and the like.

One or more compounds of the invention may exist in unsolvated as well as solvated forms with pharmaceutically acceptable solvents such as water, ethanol, and the like, and it is intended that the invention embrace both solvated and unsolvated forms. "Solvate" means a physical association of a compound of this invention with one or more solvent molecules. This physical association involves varying degrees of ionic and covalent bonding, including hydrogen bonding. In certain instances the solvate will be capable of isolation, for example when one or more solvent molecules are incorporated in the crystal lattice of the crystalline solid. "Solvate" encompasses both solution-phase and isolatable solvates. Non-limiting examples of illustrative solvates include ethanolates, methanolates, and the like. "Hydrate" is a solvate wherein the solvent molecule is H 2 O.

One or more compounds of the invention may optionally be converted to a solvate. Preparation of solvates is generally known. Thus, for example, M. Caira et al, J. Pharmaceutical Sci., 93(3), 601-611 (2004) describe the preparation of the solvates of the antifungal fluconazole in ethyl acetate as well as from water. Similar

preparations of solvates, hemisolvate, hydrates and the like are described by E. C. van Tonder et al, AAPS PharmSciTech., 5(1), article 12 (2004); and A. L. Bingham et al, Chem. Commun., 603-604 (2001). A typical, non-limiting, process involves dissolving the inventive compound in desired amounts of the desired solvent (organic or water or mixtures thereof) at a higher than ambient temperature, and cooling the solution at a rate sufficient to form crystals which are then isolated by standard methods. Analytical techniques such as, for example I. R. spectroscopy, show the presence of the solvent (or water) in the crystals as a solvate (or hydrate).

Metabolic conjugates, such as glucuronides and sulfates which can undergo reversible conversion to the compounds of Formula I are contemplated in the present invention.

"Effective amount" or "therapeutically effective amount" is meant to describe an amount of compound or a composition of the present invention effective in producing the desired therapeutic, ameliorative, inhibitory or preventative effect. The terms "purified", "in purified form" or "in isolated and purified form," as used herein, for a compound refers to the physical state of said compound after being isolated from a synthetic process (e.g. from a reaction mixture), or natural source or combination thereof. Thus, the term "purified", "in purified form" or "in isolated and purified form" for a compound refers to the physical state of said compound after being obtained from a purification process or processes described herein or well known to the skilled artisan (e.g., chromatography, recrystallization and the like) , in sufficient purity to be characterizable by standard analytical techniques described herein or well known to the skilled artisan.

"Capsule" is meant to describe a special container or enclosure made of methyl cellulose, polyvinyl alcohols, or denatured gelatins or starch for holding or containing compositions comprising the active ingredients. Hard shell capsules are typically made of blends of relatively high gel strength bone and pork skin gelatins. The capsule itself may contain small amounts of dyes, opaquing agents, plasticizers and preservatives.

"Tablet" is meant to describe a compressed or molded solid dosage form containing the active ingredients with suitable diluents. The tablet can be prepared by compression of mixtures or granulations obtained by wet granulation, dry granulation or by compaction.

"Oral gels" is meant to describe to the active ingredients dispersed or

solubilized in a hydrophilic semi-solid matrix.

"Powders for constitution" refers to powder blends containing the active ingredients and suitable diluents which can be suspended in water or juices.

"Diluent" refers to substances that usually make up the major portion of the composition or dosage form. Suitable diluents include sugars such as lactose, sucrose, mannitol and sorbitol; starches derived from wheat, corn, rice and potato; and celluloses such as microcrystalline cellulose. The amount of diluent in the composition can range from about 10 to about 90% by weight of the total composition, preferably from about 25 to about 75%, more preferably from about 30 to about 60% by weight, even more preferably from about 12 to about 60%.

"Disintegrants" refers to materials added to the composition to help it break apart (disintegrate) and release the medicaments. Suitable disintegrants include starches; "cold water soluble" modified starches such as sodium carboxymethyl starch; natural and synthetic gums such as locust bean, karaya, guar, tragacanth and agar; cellulose derivatives such as methylcellulose and sodium

carboxymethylcellulose; microcrystalline celluloses and cross-linked microcrystalline celluloses such as sodium croscarmellose; alginates such as alginic acid and sodium alginate; clays such as bentonites; and effervescent mixtures. The amount of disintegrant in the composition can range from about 2 to about 15% by weight of the composition, more preferably from about 4 to about 0% by weight.

"Binders" refers to substances that bind or "glue" powders together and make them cohesive by forming granules, thus serving as the "adhesive" in the formulation. Binders add cohesive strength already available in the diluent or bulking agent.

Suitable binders include sugars such as sucrose; starches derived from wheat, corn rice and potato; natural gums such as acacia, gelatin and tragacanth; derivatives of seaweed such as alginic acid, sodium alginate and ammonium calcium alginate;

cellulosic materials such as methylcellulose and sodium carboxymethylcellulose and hydroxypropylmethylcellulose; polyvinylpyrrolidone; and inorganics such as

magnesium aluminum silicate. The amount of binder in the composition can range from about 2 to about 20% by weight of the composition, more preferably from about 3 to about 10% by weight, even more preferably from about 3 to about 6% by weight.

"Lubricant" is meant to describe a substance added to the dosage form to enable the tablet, granules, etc. after it has been compressed, to release from the mold or die by reducing friction or wear. Suitable lubricants include metallic stearates such as magnesium stearate, calcium stearate or potassium stearate; stearic acid; high melting point waxes; and water soluble lubricants such as sodium chloride, sodium benzoate, sodium acetate, sodium oleate, polyethylene glycols and d'l-leucine. Lubricants are usually added at the very last step before compression, since they must be present on the surfaces of the granules and in between them and the parts of the tablet press. The amount of lubricant in the composition can range from about 0.2 to about 5% by weight of the composition, preferably from about 0.5 to about 2%, more preferably from about 0.3 to about 1.5% by weight.

"Glidents" means materials that prevent caking and improve the flow

characteristics of granulations, so that flow is smooth and uniform. Suitable glidents include silicon dioxide and talc. The amount of glident in the composition can range from about 0.1% to about 5% by weight of the total composition, preferably from about 0.5 to about 2% by weight.

"Coloring agents" refers to excipients that provide coloration to the composition or the dosage form. Such excipients can include food grade dyes and food grade dyes adsorbed onto a suitable adsorbent such as clay or aluminum oxide. The amount of the coloring agent can vary from about 0.1 to about 5% by weight of the composition, preferably from about 0.1 to about 1%.

"Bioavailability" refers to the rate and extent to which the active drug ingredient or therapeutic moiety is absorbed into the systemic circulation from an administered dosage form as compared to a standard or control. Conventional methods for preparing tablets are known. Such methods include dry methods such as direct compression and compression of granulation produced by compaction, or wet methods or other special procedures. Conventional methods for making other forms for administration such as, for example, capsules, suppositories and the like are also well known.

The compounds of Formula I can form salts which are also within the scope of this invention. Reference to a compound of Formula I herein is understood to include reference to salts thereof, unless otherwise indicated. The term "salt(s)", as employed herein, denotes acidic salts formed with inorganic and/or organic acids, as well as basic salts formed with inorganic and/or organic bases. In addition, when a

compound of Formula I contains both a basic moiety, such as, but not limited to a pyridine or imidazole, and an acidic moiety, such as, but not limited to a carboxylic acid, zwitterions ("inner salts") may be formed and are included within the term

"salt(s)" as used herein. Pharmaceutically acceptable (i.e., non-toxic, physiologically acceptable) salts are preferred, although other salts are also useful. Salts of the compounds of Formula I or may be formed, for example, by reacting a compound of Formula I with an amount of acid or base, such as an equivalent amount, in a medium such as one in which the salt precipitates or in an aqueous medium followed by lyophilization.

Exemplary acid addition salts include acetates, ascorbates, benzoates, benzenesulfonates, bisulfates, borates, butyrates, citrates, camphorates, camphorsulfonates, fumarates, hydrochlorides, hydrobromides, hydroiodides, lactates, maleates, methanesulfonates, naphthalenesulfonates, nitrates, oxalates, phosphates, propionates, salicylates, succinates, sulfates, tartarates, thiocyanates,

toluenesulfonates (also known as tosylates,) and the like. Additionally, acids which are generally considered suitable for the formation of pharmaceutically useful salts from basic pharmaceutical compounds are discussed, for example, by S. Berge et al, Journal of Pharmaceutical Sciences (1977) 66(1 ) 1-19; P. Gould, International J. of Pharmaceutics (1986) 33 201-217; Anderson er al, The Practice of Medicinal

Chemistry (1996), Academic Press, New York; and in The Orange Book (Food & Drug Administration, Washington, D.C. on their website). These disclosures are

incorporated herein by reference thereto.

Exemplary basic salts include ammonium salts, alkali metal salts such as sodium, lithium, and potassium salts, alkaline earth metal salts such as calcium and magnesium salts, salts with organic bases (for example, organic amines) such as dicyclohexylamines, t-butyl amines, and salts with amino acids such as arginine, lysine and the like. Basic nitrogen-containing groups may be quarternized with agents such as lower alkyl halides (e.g. methyl, ethyl, and butyl chlorides, bromides and iodides), dialkyl sulfates (e.g. dimethyl, diethyl, and dibutyl sulfates), long chain halides (e.g. decyl, lauryl, and stearyl chlorides, bromides and iodides), aralkyi halides (e.g. benzyl and phenethyl bromides), and others.

All such acid salts and base salts are intended to be pharmaceutically

acceptable salts within the scope of the invention and all acid and base salts are considered equivalent to the free forms of the corresponding compounds for purposes of the invention.

All stereoisomers (for example, geometric isomers, optical isomers and the like) of the present compounds (including those of the salts, solvates and prodrugs of the compounds as well as the salts and solvates of the prodrugs), such as those which may exist due to asymmetric carbons or sulfurs on various substituents, including enantiomeric forms (which may exist even in the absence of asymmetric carbons), rotameric forms, atropisomers, and diastereomeric forms, are contemplated within the scope of this invention. For example, if a compound of Formula I incorporates a double bond or a fused ring, both the cis- and trans-forms, as well as mixtures, are embraced within the scope of the invention. Individual stereoisomers of the

compounds of the invention may, for example, be substantially free of other isomers, or may be admixed, for example, as racemates or with all other, or other selected, stereoisomers. The chiral centers of the present invention can have the S or R configuration as defined by the lUPAC 1974 Recommendations. The use of the terms "salt", "solvate" "prodrug" and the like, is intended to equally apply to the salt, solvate and prodrug of enantiomers, stereoisomers, rotamers, tautomers, racemates or prodrugs of the inventive compounds.

Diasteromeric mixtures can be separated into their individual diastereomers on the basis of their physical chemical differences by methods well known to those skilled in the art, such as, for example, by chromatography and/or fractional crystallization. Enantiomers can be separated by converting the enantiomeric mixture into a diasteromeric mixture by reaction with an appropriate optically active compound (e.g., chiral auxiliary such as a chiral alcohol or Mosher's acid chloride), separating the diastereomers and converting (e.g., hydrolyzing) the individual diastereomers to the corresponding pure enantiomers. Also, some of the compounds of Formula I may be atropisomers (e.g., substituted biaryls) and are considered as part of this invention. Enantiomers can also be separated by use of chiral HPLC column.

Polymorphic forms of the compounds of Formula I, and of the salts, solvates and prodrugs of the compounds of Formula I, are intended to be included in the present invention.

The present invention also embraces isotopically-labelled compounds of the present invention which are identical to those recited herein, but for the fact that one or more atoms are replaced by an atom having an atomic mass or mass number different from the atomic mass or mass number usually found in nature. Examples of isotopes that can be incorporated into compounds of the invention include isotopes of hydrogen, carbon, nitrogen, oxygen, phosphorus, fluorine and chlorine, such as 2 H, 3 H, 13 C, 1 C, 15 N, 18 0, 17 0, 31 P, 32 P, 35 S, 18 F, and 36 CI, respectively.

Certain isotopically-labelled compounds of Formula I (e.g., those labeled with 3 H and 14 C) are useful in compound and/or substrate tissue distribution assays.

Tritiated (i.e., 3 H) and carbon-14 (i.e., 14 C) isotopes are particularly preferred for their ease of preparation and detectability. Further, substitution with heavier isotopes such as deuterium (i.e., 2 H) may afford certain therapeutic advantages resulting from greater metabolic stability (e.g., increased in vivo half-life or reduced dosage requirements) and hence may be preferred in some circumstances. Isotopically labelled compounds of Formula I can generally be prepared by following procedures analogous to those disclosed in the Schemes and/or in the Examples herein below, by substituting an appropriate isotopically labelled reagent for a non-isotopically labelled reagent.

The compounds according to the invention have pharmacological properties; in particular, the compounds of Formula I can be useful as a2C adrenoreceptor agonists.

A preferred dosage is about 0.001 to 500 mg/kg of body weight/day of the compound of Formula I. An especially preferred dosage is about 0.01 to 25 mg/kg of body weight/day of a compound of Formula I, or a pharmaceutically acceptable salt or solvate of said compound.

The compounds of this invention may also be useful in combination

(administered together or sequentially) with one or more therapeutic agents such as, for example, glucocorticosteroids, PDE-4 inhibitors, anti-muscarinic agents, cromolyn sodium, Hi receptor antagonists, 5-HTi agonists, NSAIDs, angiotensin-converting enzyme inhibitors, angiotensin II receptor agonists, β-blockers, β-agonists (including both long and short acting), leukotriene antagonists, diuretics, aldosterone

antagonists, ionotropic agents, natriuretic peptides, pain management/analgesic agents, anti-anxiety agents, anti-migraine agents, and therapeutic agents suitable for treating heart conditions, psychotic disorders, and glaucoma.

Suitable steroids include prednisolone, fluticasone (including all ester such as the propionate or furoate esters), triamcinolone, beclomethasone, mometasone (including any ester form such as mometasone furoate), budasamine, ciclesonide betamethasone, dexamethasone, prednisone, flunisolide, and cortisone.

Suitable PDE-4 inhibitors include roflumilast, theophylline, rolipram, piclamilast, cilomilast and CDP-840.

Suitable antiimuscarinic agents include ipratropium bromide and tiatropium bromide.

Suitable H-i antagonists include astemizole, azatadine, azelastine, acrivastine, brompheniramine, cetirizine, chlorpheniramine, clemastine, cyclizine, carebastine, cyproheptadine, carbinoxamine, descarboethoxyloratidine, diphenhydramine, doxylamine, dimethindene, ebastine, epinastine, efletirizeine, fexofenadine,

hydroxyzine, ketotifen, loratidine, levocabastine, meclizine, fexofenadine, hydroxyzine, ketotifen, loratadine, levocabastine, meclizine, mizolastine, mequitazine, mianserin, noberastine, norastemizole, picumast, pyrilamine, promethazine, terfenadine, tripelennamine, temelastine, trimeprazine or triprolidine.

Suitable anti-inflammatory agents include aspirin, diclofenac, diflunisal, etodolac, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, nabumetone, naproxen, oxaprozin, piroxicam, sulindac, and tolmetin.

Suitable aldosterone antagonists include spironolactone.

Suitable ionotropic agents include digitalis.

Suitable angiotensin II receptor agonists include irbesartan and losartan.

Suitable diuretics include spironolactone, methyclothiazide, bumetanide, torsemide, hydroflumethiazide, trichlormethiazide, hydroclorothiazide, triamterene, ethacrynic acid, methyclothiazide, hydrochlorothiazide, benzthiazide,

hydrochlorothiazide, quinethazone, hydrochlorothiazide, chlorthalidone, furosemide, indapamide, hydroclorothiazide, triamterene, trichlormethiazide, hydrochlorothiazide, amiloride HCI, amiloride HCI, metolazone, trichlormethiazide, bendroflumethiazide, hydrochlorothiazide, polythiazide, hydroflumethiazide, chlorthalidone, and metolazone.

Suitable pain management/analgesic agents include Celecoxib, amitriptyline, ibuprofen, naproxen, gabapentin, tramadol, rofecoxib, oxycodone HCI,

acetaminophenoxycodone HCI, carbamazepine, amitriptyline, diclofenac, diclofenac, etodolac, fenoprofen calcium, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac tromethamine, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, piroxicam, sulindac, tolmetin sodium, valdecoxib, diclofenac/ misoprostol, oxycontin, vicodin, darvocet, percocet, morphine sulfate, dilaudid, stadol, stadol NS, acetaminophen with codeine, acetaminophen with codeine #4, Lidoderm ® patches, ziconotide, duloxetine, roboxetine, gabapentin and pregabalin.

Suitable β-blockers include acebutolol, atenolol, atenolol/chlorthalidone, betaxolol, bisoprolol fumarate, bisoprolol/HCTZ, labetolol, metoprolol tartrate, nadolol, pindolol, propranolol, propranolol/HCTZ, sotalol, and timolol.

Suitable β-agonists include dobutamine, ritodrine, salbutamol, levalbuterol, metaproternol, formoterol, fenoterol, bambuterol, brocaterol, clenbuterol, terbutaline, tulobuteroi, epinephrine, isoprenalin, and hexoprenalin.

Suitable leucotriene antagonists include levamisole.

Suitable anti-migraine agents include rovatriptan succinate, naratriptan HCI, rizatriptan benzoate, sumatriptan succinate, zolmitriptan, almotriptan malate, methysergide maleate, dihydroergotamine mesylate, ergotamine tartrate, ergotamine tartrate/caffeine, Fioricet ® , Fiorninal ® , Depakene ® , and Depakote ® .

Suitable anti-anxiety and anti-depressant agents include amitriptyline HCI, bupropion HCI, citalopram hydrobromide, clomipramine HCI, desipramine, fluoxetine, fluvoxamine maleate, maprotiline HCI, mirtazapine, nefazodone HCI, nortriptyline, paroxetine HCI, protriptyline HCI, sertraline HCI, doxepin, and trimipramine maleate.

Suitable angiotensin converting enzyme inhibitors include Captopril, enalapril, enalapril/HCTZ , lisinopril, lisinopril/HCTZ, and Aceon ® .

The pharmacological properties of the compounds of this invention may be confirmed by a number of pharmacological assays. The exemplified pharmacological assays which are described later have been carried out with the compounds according to the invention and their salts.

This invention is also directed to pharmaceutical compositions which comprise at least one compound of Formula I, or a pharmaceutically acceptable salt or solvate of said compound and at least one pharmaceutically acceptable carrier.

For preparing pharmaceutical compositions from the compounds described by this invention, inert, pharmaceutically acceptable carriers can be either solid or liquid. Solid form preparations include powders, tablets, dispersible granules, capsules, cachets and suppositories. The powders and tablets may be comprised of from about 5 to about 95 percent active ingredient. Suitable solid carriers are known in the art, e.g., magnesium carbonate, magnesium stearate, talc, sugar or lactose. Tablets, powders, cachets and capsules can be used as solid dosage forms suitable for oral administration. Examples of pharmaceutically acceptable carriers and methods of manufacture for various compositions may be found in A. Gennaro (ed.), Remington's Pharmaceutical Sciences, 18 th Edition, (1990), Mack Publishing Co., Easton,

Pennsylvania. Liquid form preparations include solutions, suspensions and emulsions. When preparing a liquid preparation, the inclusion of one or more solubility enhancing components is excluded. Solubility enhancing components are described, for example, in U.S. 6,673,337 in column 2, line 50 to column 3, line 17 and in column 6, line 49 to line 31 ; US 6,673,337 is expressly incorporated by reference. Specific solubility enhancing agents that are excluded in the liquid form preparations include metal carboxymethylcelluloses, metal carboxymethylhydroxyethylcelloses,

hydroxypropylmethyl celluloses derivative of these compounds, and cyclodextrins. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions or suspensions for intranasal administration.

An aspect of this invention is that the pharmaceutical composition is in a solid dosage form comprising a compound of Formula I or a pharmaceutical acceptable salt, ester, solvate or prodrug thereof and a least one pharmaceutically acceptable carrier, adjuvant or vehicle.

Another aspect of this invention is a liquid, aqueous pharmaceutical

composition is comprising a compound of Formula I or a pharmaceutical acceptable salt, ester, solvate or prodrug thereof and a least one pharmaceutically acceptable carrier, adjuvant or vehicle provided that the adjuvant is not a solubility enhancing component, such as those described in US 6,673,337 (discussed above).

Another aspect of this invention is a liquid, aqueous pharmaceutical

composition is comprising a compound of Formula I or a pharmaceutical acceptable salt, ester, solvate or prodrug thereof and a least one pharmaceutically acceptable carrier, adjuvant or vehicle wherein if a solubility enhancement component is present it is cyclodextrin.

Another aspect of this invention is a pharmaceutical formulation that is a nasal spray wherein the pH is equal to or less that about 6.5, more preferably between about 6.1 to 6.2.

Another aspect of this invention the formulation is a nasal spray wherein the adjuvants include a suspending agent (e.g., AVICEL (such as AVICIL RC-58 , RC- 591 and CL-611), which are microcrystalline cellulose and carboxymethylcellulose sodium; hydroxypropylmethyl cellulose; methyl cellulose; polyvinyl alcohol; or

CARBOPOL) and a humectant (e.g., glycerin, propylene glycol; polyethylene glycol; povidone; or dextrose).

Liquid form preparations include solutions, suspensions and emulsions. As an example may be mentioned water or water-propylene glycol solutions for parenteral injection or addition of sweeteners and opacifiers for oral solutions, suspensions and emulsions. Liquid form preparations may also include solutions or suspensions for intranasal administration.

Aerosol preparations suitable for inhalation may include solutions and solids in powder form, which may be in combination with a pharmaceutically acceptable carrier, such as an inert compressed gas, e.g. nitrogen.

Also included are solid form preparations that are intended to be converted, shortly before use, to liquid form preparations for either oral or parenteral

administration. Such liquid forms include solutions, suspensions and emulsions.

The compounds of the invention may also be deliverable transdermally. The transdermal compositions can take the form of creams, lotions, aerosols and/or emulsions and can be included in a transdermal patch of the matrix or reservoir type as are conventional in the art for this purpose.

The compounds of this invention may also be delivered subcutaneously.

Preferably the compound is administered orally.

Preferably, the pharmaceutical preparation is in a unit dosage form. In such form, the preparation is subdivided into suitably sized unit doses containing

appropriate quantities of the active component, e.g., an effective amount to achieve the desired purpose.

The quantity of active compound in a unit dose of preparation may be varied or adjusted from about 1 mg to about 100 mg, preferably from about 1 mg to about 50 mg, more preferably from about 1 mg to about 25 mg, according to the particular application.

The actual dosage employed may be varied depending upon the requirements of the patient and the severity of the condition being treated. Determination of the proper dosage regimen for a particular situation is within the skill of the art. For convenience, the total daily dosage may be divided and administered in portions during the day as required.

The amount and frequency of administration of the compounds of the invention and/or the pharmaceutically acceptable salts thereof will be regulated according to the judgment of the attending clinician considering such factors as age, condition and size of the patient as well as severity of the symptoms being treated. A typical

recommended daily dosage regimen for oral administration can range from about 1 mg/day to about 500 mg/day, preferably 1 mg/day to 200 mg/day, in two to four divided doses.

Another aspect of this invention is a kit comprising a therapeutically effective amount of at least one compound of Formula I, or a pharmaceutically acceptable salt or solvate of said compound and a pharmaceutically acceptable carrier, vehicle or diluent.

Yet another aspect of this invention is a kit comprising an amount of at least one compound of Formula I, or a pharmaceutically acceptable salt or solvate of said compound and an amount of at least one therapeutic agent listed above, wherein the amounts of the two or more ingredients result in desired therapeutic effect.

In general, the compounds in the invention may be produced by a variety of processes know to those skilled in the art and by know processes analogous thereto. The invention disclosed herein is exemplified by the following preparations and examples which should not be construed to limit the scope of the disclosure.

Alternative mechanistic pathways and analogous structures will be apparent to those skilled in the art. The practitioner is not limited to these methods.

One skilled in the art will recognize that one route will be optimized depending on the choice of appendage substituents. Additionally, one skilled in the art will recognize that in some cases the order of steps has to be controlled to avoid functional group incompatibility.

The prepared compounds may be analyzed for their composition and purity as well as characterized by standard analytical techniques such as, for example, elemental analysis, NMR, mass spectroscopy and IR spectra.

One skilled in the art will recognize that reagents and solvents actually used may be selected from several reagents and solvents well known in the art to be effective equivalents. Hence, when a specific solvent or reagent is mentioned, it is meant to be an illustrative example of the conditions desirable for that particular reaction scheme and in the preparations and examples described below.

Where NMR data are presented, 1 H spectra were obtained on either a Varian VXR-400 (400 MHz, 1 H), Varian Gemini-300 (300 MHz), Varian Mercury VX-400 (400MHz), Bruker-Biospin AV-500 (500MHz) or Bruker Avance DRX-500 (500MHz), and chemical shifts are reported as ppm with number of protons and multiplicities indicated parenthetically. Where LC/MS data are presented, analyses was performed using a 1200 series Agilent 6140 Quadrupole LCMS with a 1.8 μΜ Zbrbax SB-C18 column (10-95% of MeCN-H 2 0 with 0.1% TFA over 2.7 min, 1 mL/min) or with an Applied Biosystems API-150 mass spectrometer and Gemini C18 column (50 x 4.6 mm, 10-95% CH 3 CN-H 2 0 with 0.05% TFA over 5 min, 1 mL/min).

The following solvents and reagents may be referred to by their abbreviations in parenthesis:

Me = methyl; Et = ethyl; Pr = propyl; Bu = butyl; t-Bu = ferf-butyl; Ph = phenyl, and Ac

= acetyl

μΙ = microliters

Acac = acetylacetone

AcOEt or EtOAc = ethyl acetate

AcOH or HOAc = acetic acid

ACN = acetonitrile

ADDP = azodicarbonyldipiperidine

aq = aqueous

atm = atmosphere

Bn = benzyl

Boc or BOC = tert-butoxycarbonyl

Bz = benzoyl

Boc = feri-butoxycarbonyl

BINAP = 2,2'-bis(diphenylphosphino)-1 ,1'-bisnaphthyl

cat = catalyst or catalytic

Cbz = benyzloxycarbonyl

DBU = 1 ,8-Diaza-7-bicyclo[5.4.0]undecene DEAD = diethylazodicarboxylate

DCM or CH2CI2: dichloromethane:

DMAP = 4-Dimethylaminopyridine

DIBAL = diisobutylaluminum hydride

DIPEA = diisopropylethylamine

DME = 1 ,2-dimethoxyethane

DMF = dimethylformamide

DMS = dimethylsulfide

DMSO = dimethyl sulfoxide

Dppf = 1 ,1 '-bis(diphenylphosphino)ferrocene

EDCI or DEC = 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide g = grams

h = hour

HMDS = 1 ,1 ,1 ,3,3,3-hexamethyldisilazane

HOBt = 1-hydroxybenzotriazole

Im = imidazole

LAH = lithium aluminum hydride

LDA = lithium diisopropylamide

LCMS = liquid chromatography mass spectrometry

min = minute

mg = milligrams

ml_ = milliliters

mmol = millimoles

MeOH: methanol

MS = mass spectrometry

NBS = n-bromosuccimide

NMO =N-methylmorpholine N-oxide

NMR = nuclear magnetic resonance spectroscopy

PG = protecting group

Pyr = pyridine

rac or (±) = racemic mixture or enantiomers

RT or rt = room temperature (ambient, about 25 °C) sat = saturated

SM = starting material

TBSCI = t-butyldimethylsilyl chloride

TBS = t-butyldimethyl silyl

TEA = triethylamine (Et 3 N)

TEMPO = 2,2,6,6-Tetramethylpiperidine-l-oxyl

TFA = trifluoroacetic acid

TPAP = tetrapropylammonium perruthenate

THF = tetrahydrofuran

TLC = thin layer chromatography

TMS = trimethylsilyl

Tos or Ts = p-toluenesulfonyl (tosyl)

Tol = toluene

TosMIC = Toluenesulfonylmethyl isocyanide

Tr = triphenylmethyl

EXAMPLES

The compounds of this invention can be prepared through the general approach outlined in the following schemes. These schemes are being provided to illustrate the present invention. While the schemes depict J 1 -J 4 as -CH-, wherein the hydrogen may be replaced by A, this is for exemplary purposes only and one of ordinary skill in the art would be able to prepare compounds containing one of the other definitions for J 1 -J 4 by modifying schemes using other procedures known to one in the art. To assist one in this endeavor the ordinary practitioner would have full knowledge of literature sources such as Chemical Abstracts, Beilstein, etc.

Scheme 1 shows an approach in which S1 is converted to S2 (by treatment with a cyanide source such as KCN, TMSCN etc.), reduced to S3 (R 4 = H; with a reductant such as LAH, BH 3 , PtO 2 -H2, NaBhVNiCb, Raney Ni-H 2 or other appropriate reagent), and then cyclized to a substituted oxazoline S4, using conventional techniques known to one of ordinary skill in the art. In another embodiment, S2 is converted to S3 (wherein R 4 = alkyl, aryl, or the like) by addition of an organometallic reagent, such as a Grignard or organolithium compound, followed by reduction (with a reagent such as NaBH 4 , LAH, Zn(BH 4 ) 2 , or other appropriate reagent).

In various embodiments, the amino alcohol (S3) is cyclized to provide the following moieties:

-2-aminooxazoline S4 (Z = NH 2 ) via treatment with, for example, cyanogen bromide with or without a base (such as diisopropylethylamine), or by treatment with an thioisocyanate, such as (Et0 2 C)NCS or BzNCS, followed by treatment with a base or acid or catalyst such as Hg(O), Hg(OAc) 2 or 2-chloro-3-ethylbenzoxazolium tetrafluoroborate followed by hydrolysis with LiOH);

-oxazolidinone (S4, Z = OH) by treatment with reagents known in the literature (e.g., carbonyldiimidazole, or related carbonates or chloroformates etc.); -oxazolidinethione (S4, Z = SH), by treatment with a known reagent such as lm 2 CS, CS 2 , CI 2 CS, NaSCH, or MeSC(S)OEt etc.).

-an oxazoline S4, with a carbon linkage at Z (by numerous literature methods such as treatment with RC(=NH)OEt, RCN/ZnCI 2 , RCO 2 H, RC(OMe) 3 an anhydride, RCHO with an appropriate oxidant or other methods)

The Z group may be further derivatized following cyclization.

The biaryl coupling transformation (A = halogen or activated alcohol to A = the various definitions of R 1 , such as aryl, cycloalkenyl, heterocyclenyl, or heteroaryl) occurs via a metal catalyzed or metal-facilitated process (such as Stille coupling, Suzuki coupling, Negishi coupling or nucleophilic substitution reaction) with an appropriately substituted aryl or heteroaryl partner. Installation of the biaryl group may be done at various stages in the sequence.

The functionalized R 2 and R 3 groups may exist in the starting material S1 or its precursor. Alternatively, S1 or its precursor may be functionalized with R 2 and R 3 groups at various stages in the sequence.

SCHEME 1

Scheme 2 shows an approach in which S1 is converted to S5 by treatment with a cyanamide and a hydroxylamine (HONHR, where R = Me or Bn etc.)

SCHEME 2

Scheme 3 shows an approach in which a nitro compound (R 4 CH 2 NO 2 ) is treated with an appropriate base (such as NaHMDS, Cs 2 C0 3 , LDA, PhLi, NaH, DBU or other base) and then reacted with S1. The resulting product S6 is reduced to the amino alcohol S3 (by a method known in the art, such as hydrogenation with Pd-C/H 2 , phase transfer catalysis with Pd-C/NH 4 HC0 2 , Cu(acac) 2 /NaBH 4 , ln/NH CI, SnCI 2 , Na 2 S 2 0 4 , Al-Hg, Sml 2 ,or other known method) and then further elaborated as described in Scheme 1.

Scheme 4 shows an approach in which an amide S10a is deprotonated with an appropriate base and then reacted with S1 to provide S7a, which is reduced to the amino alcohol S8a by a method known in the art (such as treatment with LAH).

Compound S8a is then cyclized to S9a in a manner similar to that described in

Scheme 1. In another embodiment, nitrile S10b is deprotonated with an appropriate base and then reacted with S1 to provide S7b (e.g. see Encyclopedia of Reagents for Org. Synth, 2001 ; Eur. J. Org Chem, 1998, (10), 2229; Liebigs Annalen der Chemie, 1989, (9), 825-32), which is reduced to the amino alcohol S8a. Alternatively, compound S7b is converted to S8b (wherein R 4 = alkyl, aryl, or the like by addition of an organometallic reagent, such as a Grignard or organolithium reagent, and reduction) and then cyclized to S9b.

SCHEME 4

Scheme 5 shows an approach in which an appropriately protected alcohol S13 is treated with an appropriate base (such tBuOK or LiHMDS) and then condensed with 11b (R = LG such as Br, synthesized from S11a with NBS or similar) to provide S12 (e.g. European J. Org. Chem., 2008, (18), 3061). Use of chiral protecting group or use of a chiral phase-transfer catalyst provides enantioselective enhancement in the condensation. Deprotection of the alcohol and reduction of the nitrile provides S3a (wherein R 4 = H), which is further elaborated as described in Scheme 1. In another embodiment, S12 is converted to S3a (wherein R 4 = alkyl, aryl, or the like, by addition of an organometallic reagent, such as a Grignard or organolithium reagent, and reduction).

SCHEME 5

S11a, R = H

S11b, R = LG Scheme 6 shows an approach in which compound S1 is converted to epoxide S14a by a method known in the literature (such as treatment with a sulfur ylide derived from dimethylsulfonium methylide or dimethyloxosulfonium methylide).

Epoxide opening with an appropriately protected amine (such as phthalimide, benzyl amine, p-methoxybenzylamine or others) or an azide and a Lewis acid (such as NH 4 CI, AIEt 3 , BF 3 OEt 2 , AIEt 2 CI) followed by deprotection or reduction provides S3c, which then is cyclized to S4a in a manner similar to that described in Scheme 1.

In another embodiment, compound S1 is converted to aziridine S14b by a method known in the literature (e.g. imine formation with acid or Lewis acid followed by treatment with dimethylsulfonium methylide, see Synlett, 2006, (6), 833; or addition of cyanide followed by alcohol activation and LAH reduction with concomitant cyclization, see Carbohydrate Research, 1986, 155, 236.) Compound S14b is then converted to S3c by addition of OH or by addition of a protected oxygen nucleophile followed by deprotection procedures.

Compounds of general formulae S4, S5, and S9 can be prepared by the general methods outlined above. Exemplary compounds were prepared as described in the examples below or from starting materials known in the art. These examples are being provided to further illustrate the present invention. They are for illustrative purposes only; the scope of the invention is not to be considered limited in any way thereby. PREPARATIVE EXAMPLE 1

Step 1

5-Bomo-tetralone 1A (30 g, 134 mmol) in DCM (200 mL) was added TMSCN (20 mL, 1.2 equiv. 160 mmol) at 0 °C followed by AICI 3 (3 g, 0.2 equiv., 26 mmol), The reaction was stirred at r.t. for 1 hr before been diluted with EtOAc (500 mL), washed with aq. NaOH (200 mL) and brine (100 mL). The organic layer was dried with Na 2 SO 4 , concentrated by roatvap and chromatographed (0% to 40% EtOAc/Hexane) to give the desired product 1B (37.4 g, 86%).

Step 2

Compound 1B (37.4 g, 116 mmol) in THF (300 mL) at 0 °C was added LAH (150 mL, 1.0M in Et 2 O, 150 mmol). The reaction was stirred at 0 °C for 0.5 hr before quenched by adding water dropwise until no gas was released: The reaction was then added aq. NaOH (1.0 M, 150 mL) and extracted with DCM thoroughly. The organic layer was separated, dried with Na 2 SO 4 and concentrated. The crude (1C, 30 g, 99%) was used in the next step without further purification.

Step 3

A solution of 1C (1.3 g, 5.4 mmol) in ethanol/DCM (10 mL/5 mL) was added

BrCN (1.5 mL, 5.0 M in CH 3 CN, 7.5 mmol) and the reaction was stirred at room temperature overnight. The mixture was diluted with aq. NaOH (1.0M, 25 mL) and extracted with DCM. The layers were separated. The combined organic layers were dried over Na 2 SO 4 , concentrated and chromatographed (2-5% of NH 3 -MeOH/DCM) to give (±)-1D (400 mg, 26%). Steps 4

A mixture of (±)-1D (250mg, 0.89 mmol), pyrimidine-5-boronic acid (200 mg, 1.7 mmol), Pd(PPh 3 ) 4 (124 mg, 0.178 mmol), Na 2 C0 3 (286 mg, 2.7 mmol) in 4:1 DME- H 2 0 (10 mL) were heated at 120 °C in a microwave for h. The reaction concentrated, diluted with aq. NaOH (1.0 M, 20 mL) and extracted with DCM (4x). The layers were separated. The combined organic layers were dried over Na 2 SO 4 , concentrated and chromatographed (2-5% of NH 3 -MeOH/DCM) to give (±)-1 (140 mg, 56%). LCMS m/z 281 (MH+).

The two enantiomers were separated by chiral HPLC (OD column, 10% EtOH in Hexane (with 0.1% Diethyl amine) to provide 1E (LCMS m/z 281 , MH+) and 1F (LCMS m/z 28 , MH+).

PREPARATIVE EXAMPLE 2

Step 1

To a solution of compound 1B (650 mg, 2 mmol) in anhydrous THF (3 mL) was added MeMgBr (2.2 mL, 1.1 equiv., 2.2 mmol) at 0 °C. The reaction was stirred at RT overnight before cooled to 0 °C. A solution of NaBH 4 in methanol (2 mL) was added and the reaction was further stirred at r.t. for 4 hr. Aq. HCI solution was added followed by stirring for another 1 hr. Aq. NaOH was added to make the pH around 9, and the reaction was extracted with DCM thoroughly. The organic layer was dried with Na 2 SO 4 and concentrated to give the crude 2A which was used without further purification. Step 2

To a solution of 2A (230 g, 1 mmol) in ethanol (3 mL) was added BrCN (0.4 mL, 5.0 M in CH 3 CN, 2.0 mmol) and the reaction was stirred at RT overnight. The mixture was diluted with aq. NaOH (1.0M, 10 mL) and extracted with DCM. The layers were separated. The combined organic layers were dried over Na 2 SO 4 , concentrated and chromatographed (2-5% of NH 3 -MeOH/DCM) to give 2B (170 mg, 57%).

Step 3

A mixture of (±)-2B (170 mg, 0.58 mmol), pyrimidine-5-boronic acid (124 mg, 1 mmol), Pd(PPh 3 ) 4 (84 mg, 0.12 mmol), Na 2 CO 3 (184 mg, 1.74 mmol) in 4:1 DME-H 2 O (5 mL) were heated at 120 °C in a microwave for 1h. The reaction concentrated, diluted with aq. NaOH (1.0 M, 20 mL) and extracted with DCM (4x). The layers were separated. The combined organic layers were dried over Na 2 SO 4 , concentrated and chromatographed (2-5% of NH 3 -MeOH/DCM). The four stereoisomers 2 (LCMS m/z 295, MH+), 2C (LCMS m/z 295, MH+), 2D (LCMS m/z 295, MH+), and 2E (LCMS m/z 295, MH+) were separated by HPLC (AD column, 15% i-PrOH/Hexane with 0.1 % DEA). PREPARATIVE EXAMPLE 3

A solution of 5-bromo-tetralone (2.25g, 10.0 mmol) in THF (100 mL) was cooled in an ice-H 2 0 bath and a solution of allymagnesium bromide in THF (1.0M, 50ml_, 50mmol) was added via a dropping funnel over a period of 25 min; stirring was continued at 0°C for 1/2h, then at RT for 16h. NH 4 CI (Sat., 100 mL) and EtOAc (200 mL) were added, the aqueous was extracted once more with EtOAc (100 mL). The combined organic was washed with brine (100 mL), dried over anhydrous MgSO 4 , and concentrated. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc-Hexane (1 :10) to obtain 3A as a yellow syrup. (2.28g). Step 2

3A 3B

A solution of 3A (1.2 g, 4.50 mmol) in mixed solvent (15 mL CH2CI2 and 7.5 mL MeOH) was cooled in a dry ice - acetone bath. Ozone was bubbled into it at a rate of 1.5/min for 10 min and the solution turned blue. Oxygen was then blown into the mixture, followed by the addition of dimethyl sulfide (1.0 mL) at -78°C. The mixture was then stirred at RT for 1 h before the addition of NaBH 4 (205 mg, 5.4 mmol). The mixture was kept stirring at RT for 2h. EtOAc (50 mL) was added, washed with H 2 O (3 x 20 mL), dried over anhydrous MgSO 4 , and concentrated. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc-Hexane (3:1) to obtain 3B as a white solid. (830 mg).

Step 3

Compound 3B (830 mg, 3.06 mmol), phthalimide (540 mg, 3.67 mmol), ADDP (1.16 g, 4.60 mmol) and PBu 3 (1.2 mL, 4.60 mmol) were mixed in THF (15 mL) at RT and the resultant mixture was kept stirring at 80°C for 16 h. The mixture was cooled to RT, the white precipitate formed was filtered and washed with EtOAc (2 x 5 mL), the filtrate was taken up in EtOAc (60 mL), washed with NaHCO 3 (sat. 40 mL), and brine (30 mL), dried over anhydrous MgSO 4 , and concentrated. The residue was purified by flash column chromatography on silica gel, eluting with EtOAc-Hexane (1 :2) to obtain 3C as a white solid (640 mg).

Step 3

Hydrazine hydrate (400 μί, 8 mmol) was added to the solution of compound 3C

(640 mg, 1.6 mmol) in mixed solvent (CH 2 CI 2 , 10 mL, and MeOH, 10 mL) and the reaction mixture was kept stirring at RT for 3h. The mixture was diluted with CH 2 CI 2 (20 mL), basified with NaHCO 3 (Sat. 15 mL). The aqueous was extracted once more with CH 2 CI 2 (20 mL). The combined organic was dried over anhydrous MgSO 4 , and concentrated to obtain 3D as a white solid (372mg). MS m/z 270/272 (MH+).

Steps 4-5

In a manner similar to that described in Example 1 , compound 3D was cyclized with BrCN and coupled with pyrimidine-5-boronic acid to provide (±)-3. LCMS m/z 295 (MH+).

PREPARATIVE EXAMPLE 4

Step 1

8-methoxy-tetralone (2.8 g, 15.9 mmol) in DCM (15 ml) was added TMSCN (2.5 ml, 20 mmol) at 0 °C followed by AICI 3 (266 mg, 2 mmol). The reaction was stirred at r.t. for 1 hr before being diluted with EtOAc (100 ml), washed with aq. NaOH (30 ml) and brine (30 ml). The organic layer was dried with Na 2 SO 4 , concentrated, and chromatographed (0% to 40% EtOAc/Hexane) to give the desired product 4B (3.76 g, 86%).

Step 2

To a solution of compound 4B (16 mmol) in THF (50 ml) at 0 °C was added

LAH (20 ml, 1.0 M in Et 2 O, 20 mmol). The reaction was stirred at 0 °C for 0.5 hr before being quenched by adding water dropwise (until no gas was released). The reaction was then treated with aq. NaOH (1.0 M, 50 ml) and extracted with DCM thoroughly. The organic layer was separated, dried with Na 2 S0 4 and concentrated. The crude product 4C (3.5 g, 99%) was used in the next step without further purification.

Step 3

A solution of 4C (3.5 g, 16 mmol) in THF (20 ml) was added EtC(=0)NCS (2.26 ml, 1.2 equiv., 20 mmol) and the reaction was stirred at room temperature for 3 hr. before concentrated under vacuum. To the crude was added Ethanol (20 ml) followed by Hg(OAc) 2 (6.5 g, 20 mmol). The dark mixture was stirred at rt overnight. The mixture was filtered off celite and the filtrate was concentrated and chromatographed (0% to 100% EtOAc/Hexane) to give 4D (3.2 g, 66%).

Step 4

A mixture of 4D (3 g, 10 mmol) and NBS (2.1 g, 12 mmol) in DMF (10 ml) was stirred at rt overnight. The mixture was concentrated and chromatographed (2-5% of NHa-MeOH/DCM) to give 4E (3 g, 80%).

Step 5

A mixture of 4E (1 g, 3.2 mmol), pyrimidine-5-boronic acid (620 mg, 5.0 mmol), Pd(PPh 3 ) 4 (420 mg, 0.6 mmol), Na 2 C0 3 (1 g, 10 mmol) in 4:1 DME-H 2 0 (20 ml_) were heated at 120 °C in a microwave for 1h. To this mixture was added NaOH (1 g) and water (10 ml). The mixture was again microwaved at 100 °C for another hour. The reaction was diluted with aq. NaOH (1.0 M, 20 ml) and extracted with DCM (4x). The layers were separated. The combined organic layers were dried over Na 2 SO 4 , concentrated and chromatographed (2-5% of NH 3 -MeOH/DCM) to give (±)-4 (500 mg, 46%). LCMS m/z 311 (MH+).

PREPARATIVE EXAMPLE 5

1A (±)-5A

To a stirred solution of 5-bromo-2-tetralone (3.1 g, 13.8 mmol) in EtOH (30 ml_) and saturated aqueous NaHC0 3 (6 ml_) was added cyanamide (0.29 g, 6.9 mmol) followed by methyl hydroxyamine hydrochloride (1.15 g, 13.8 mmol). The reaction mixture was stirred at RT for 3h, at 60°C for 3h, and then at RT for overnight. The mixture was diluted with H 2 0, extracted with DCM (3X). The combined organic phases were washed with brine, dried over Na 2 S04, filtered and concentrated. Flash chromatography (MeOH/DCM, 1 :50, then 1 :20, then 1 :10) afforded the product (±)-5A (354 mg).

Step 2

To a mixture of (±)-5A (257 mg, 0.87 mmol) in 1 ,4-dioxane (12 mL) and H 2 0 (3 mL) was added K3PO4 (460 mg, 2.17 mmol), 5-pyrimidinyl boronic acid hemihydrate (156 mg, 1.17 mmol) and PdCI 2 dppf.CH 2 Cl 2 (71 mg, 0.087 mmol). The mixture was degassed and stirred under N 2 at 80°C overnight. The reaction mixture was cooled to RT, diluted with EtOAc, filtered through a pad of celite, and concentrated in vacuo. Prep TLC (MeOH (w/7N NH 3 )/DCM, 1 :20) afforded the title product (±)-5 (148 mg). LCMS m/z 296 (MH+).

In a manner similar to that described above, the following, compounds were synthesized by sequentially reacting the appropriate bromo-2-tetralone with cyanamide and methyl hydroxylamine or benzyl hydroxylamine and then coupling the resultant oxadiazoline with an appropriate aryl boronic ester or acid:

The following compounds were prepared following procedures similar exemplified in the examples above.

(±)-119 rrvv NH2 267

N^ N

ASSAY:

Efficacy agonist activity values (Emax, GTPyS assay) for a2A and a2C were determined by following the general procedure detailed by Umland et. al ("Receptor reserve analysis of the human a 2c -adrenoceptor using [ 35 S]GTPyS and cAMP functional assays" European Journal of Pharmacology 2001, 411 , 211-221). For the purposes of the present invention, a compound is defined to be a specific or at least functionally selective agonist of the a2C receptor subtype if the compound's efficacy at the a2C receptor is > 30% Emax (GTPyS assay) and its efficacy at the a2A receptor is 35% Emax (GTPyS assay). Additionally, for the purposes of this invention, a compound is defined to be an antagonist of the a2C receptor subtype if the

compound's efficacy at the a2C receptor is < 30% Emax (GTPyS assay) and the K, at the a2C receptor subtype was < 500 nM, preferentially < 200 nM, and most

preferentially < 20 nM.

The following compounds were evaluated to be active or functionally selective agonists of the a2C receptor subtype based on the previously defined definition: (±)- 1 , 1f, (±)-4, (±)-5, (±)-5B, (±)-5F, (±)-104, (±)-108, 112, and 113.

The following compounds were evaluated to be an antagonist of the a2C receptor subtype based on the previously defined definition (K, < 200 nM): 2e.

While the present invention has been described with in conjunction with the specific embodiments set forth above, many alternatives, modifications and other variations thereof will be apparent to those of ordinary skill in the art. All such alternatives, modifications and variations are intended to fall within the spirit and scope of the present invention.