Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
RFID SYSTEM IN COMMUNICATION WITH VEHICLE ON-BOARD COMPUTER
Document Type and Number:
WIPO Patent Application WO/1998/025248
Kind Code:
A1
Abstract:
A system comprising a vehicle on-board computer; and a wireless transponder device coupled to the vehicle on-board computer. The system performs a variety of functions because of its ability to transmit and receive data from other transponders which may be remote from the vehicle or located in the vehicle at a location spaced apart from the system. Remote transponders are spaced apart from the vehicle. The remote transponders can be positioned, for example, at a gas station, toll booth, service center, dealership, parking lot, or along a roadside.

Inventors:
TUTTLE JOHN R (US)
Application Number:
PCT/US1997/022346
Publication Date:
June 11, 1998
Filing Date:
December 05, 1997
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MICRON COMMUNICATIONS INC (US)
TUTTLE JOHN R (US)
International Classes:
F02D29/02; G07B15/02; G07B15/06; G08G1/09; G07C5/00; G07C5/08; G08G1/017; G08G1/095; G08G1/0962; G08G1/0967; H04B1/59; (IPC1-7): G08G1/017; G07C5/00; G08G1/0967
Domestic Patent References:
WO1995001607A11995-01-12
WO1990012365A11990-10-18
WO1991018452A11991-11-28
WO1993004353A11993-03-04
WO1994007206A11994-03-31
Foreign References:
EP0725377A21996-08-07
DE3445668C11986-01-02
EP0456425A11991-11-13
FR2647930A11990-12-07
GB2169173A1986-07-02
GB2277844A1994-11-09
US4398172A1983-08-09
Attorney, Agent or Firm:
Grigel, George (601 West First Avenue Spokane, WA, US)
Malhotra, Deepak (St. John Roberts, Gregory & Matkin, P.S., Suite 1300, 601 W. First Avenu, Spokane WA, US)
Download PDF:
Claims:
CLAIMS
1. A system comprising: a vehicle onboard computer; and a wireless transponder device operatively coupled to the vehicle on board computer.
2. A system in accordance with claim 1 wherein the wireless transponder device comprises a radio frequency identification device.
3. A system in accordance with claim 1 wherein the system further comprises a removable common housing supporting the vehicle onboard computer and the wireless transponder device on a vehicle.
4. A system in accordance with claim 1 and further comprising a data bus, wherein the wireless transponder device is spaced apart from the vehicle onboard computer, and wherein the wireless transponder device is coupled to the vehicle onboard computer via the data bus.
5. A system for telemetry of vehicle performance data, the syst m comprising: a vehicle onboard computer system including a first microprocessor; and a radio frequency transponder in communication with the onboard computer system, the radio frequency transponder including an integrated circuit having a transmitter, a receiver, and a second microprocessor.
6. A system in accordance with claim 5 and further coniprising a common housing supporting both the vehicle onboard computer system and the radio frequency identification device, the housing being insertable and removable relative to a vehicle.
7. A method of monitoring one or more operating parameters of a vehicle, the method comprising: providing a wireless transponder device on a vehicle in communication with an onboard computer on the vehicle; and causing the wireless transponder device to transmit via radio frequency the value of a vehicle operating parameter in response to a radio frequency interrogation remote of the vehicle.
8. A method in accordance with claim 7 wherein the wireless transponder device is a radio frequency identification device.
9. An electric vehicle comprising: a battery; an electric motor coupled to the battery to receive power from the battery; a sensor measuring a parameter of the electric motor; a vehicle onboard computer; and a radio frequency transponder in communication with the vehicle on board computer and transmitting information measured by the sensor by radio frequency in response to a radio frequency interrogation by an interrogator.
10. A vehicle comprising: an internal combustion engine; a sensor measuring a parameter of the internal combustion engine; a vehicle onboard computer; and a radio frequency transponder in communication with the vehicle on board computer and transmitting information measured by the sensor by radio frequency in response to a radio frequency interrogation by an interrogator.
11. A vehicle in accordance with claim 10 wherein the sensor is an oil pressure sensor.
12. A vehicle in accordance with claim 10 wherein the sensor is an engine knock sensor.
13. A vehicle in accordance with claim 10 wherein the sensor is an engine temperature sensor.
14. A vehicle in accordance with claim 10 wherein the sensor is an exhaust gas sensor.
15. A vehicle in accordance with claim 10 wherein the sensor is a battery voltage sensor.
16. A vehicle in accordance with claim 10 wherein the sensor is an alternator current sensor.
17. A vehicle in accordance with claim 10 wherein the sensor is an engine RPM sensor.
18. A vehicle in accordance with claim 10 wherein the sensor is an oil pressure sensor, wherein the automobile further includes an engine temperature sensor measuring the temperature of the engine, and a battery voltage sensor, and wherein the radio frequency transponder transmits information measured by a selected one of the sensors by radio frequency in response to a radio frequency interrogation by an interrogator and depending on what information is requested by the interrogator.
19. A system for telemetry of vehicle performance data, the system comprising: a vehicle onboard computer system; a radio frequency identification device in communication with the on board computer system, the radio frequency identification device including an integrated circuit having a transmitter, a receiver, and a microprocessor; and a sensor adapted to measure a vehicle parameter, the sensor being in communication with the onboard computer system and communicating the vehicle parameter to the onboard computer system, the radio frequency identification device transmitting the data communicated to the onboard computer system in response to a radio frequency interrogation being received by the radio frequency identification device from an interrogator.
20. A vehicle in accordance with claim 19 wherein the sensor is an oil pressure sensor, wherein the automobile further includes an engine temperature sensor measuring the temperature of the engine, and a battery voltage sensor, and wherein the radio frequency transponder transmits information measured by a selected one of the sensors by radio frequency in response to a radio frequency interrogation by an interrogator and depending on what information is requested by the interrogator.
21. A method of logging vehicle history, the method comprising: providing a memory in a vehicle; connecting a wireless communication device to a vehicle onboard computer of the vehicle; periodically storing information from the vehicle onboard computer in the memory; and communicating with the wireless communication device and reading from the memory at a location spaced apart from the vehicle.
22. A method in accordance with claim 21 and further comprising storing data representative of engine performance in the memory and selectively reading the data representative of transmission performance from the memory via wireless communications.
23. A method in accordance with claim 21 and further comprising storing data representative of transmission performance in the memory and selectively reading the data representative of transmission performance from the memory via wireless communications.
24. A method in accordance with claim 21 and further comprising storing a vehicle maintenance record in the memory and selectively reading the vehicle maintenance record from the memory via wireless communications.
25. A method in accordance with claim 21 and further comprising storing information identifying the owner of the vehicle in the memory and selectively reading the information identifying the owner from the memory via wireless communications.
26. A method in accordance with claim 21 and further comprising storing information indicative of the purchase price of the vehicle in the memory and selectively reading the information indicative of purchase price from the memory via wireless communications.
27. A method in accordance with claim 21 and further comprising storing information indicative of the purchase date of the vehicle in the memory and selectively reading the information indicative of purchase price from the memory via wireless communications.
28. A method in accordance with claim 21 and further comprising storing information indicative of vehicle installed options in the memory and selectively reading the information indicative of vehicle installed options from the memory via wireless communications.
29. A method in accordance with claim 21 and further comprising storing information indicative of repairs made to the vehicle made and selectively reading the information indicative of repairs from the memory via wireless communications.
30. A method of logging data from rental vehicles, the method comprising: providing a system including a radio frequency transponder device, and a vehicle onboard computer in a rental vehicle, the radio frequency transponder device including a memory configured to store data identifying the vehicle; and locating a remote transponder at a controlled access point of a rental car facility, and causing the remote transponder to communicate with the wireless communication identification device so as to receive via wireless communications the identifying data when the vehicle passes the controlled access point.
31. A method in accordance with claim 30 and further comprising providing a sensor in communication with the radio frequency transponder device, and causing the remote transponder to communicate with the wireless communication identification device so as to receive via wireless communications data sensed by the sensor when the vehicle passes the controlled access point.
32. A method in accordance with claim 31 wherein the sensor is a mileage sensor.
33. A method in accordance with claim 31 wherein the sensor is a fuel level sensor.
34. A rental vehicle return system comprising: a system including an onboard vehicle computer, and a wireless communication identification device in communication with the onboard computer, the wireless communication identification device including a memory storing data identifying the vehicle; a vehicle sensor in communication with the onboard computer and adapted to measure a parameter of a vehicle supporting the onboard computer; and a remote transponder adapted to be located at a controlled access point of a rental car return facility, the remote transponder communicating with the wireless communication identification device and receiving via wireless communications the identifying data when the vehicle passes the controlled access point, and receiving via wireless communications, the measurement sensed by the sensor.
35. A rental vehicle return system in accordance with claim 34 wherein the sensor is a mileage sensor.
36. A rental vehicle return system in accordance with claim 34 wherein the sensor is a fuel level sensor.
37. A method of logging vehicle history, the method comprising: providing a memory in a vehicle; providing a system including a radio frequency transponder device and a vehicle onboard computer in the vehicle; causing the system to periodically store information from the vehicle onboard computer in the memory; and causing the radio frequency transponder to selectively transmit data from the memory via radio frequency.
38. A method in accordance with claim 37 wherein the step of providing a system including a radio frequency transponder device and a vehicle onboard computer comprises providing a radio frequency identification device including a single integrated circuit having a transmitter, receiver, memory, and microprocessor.
39. A remote access payment system for a vehicle, comprising: debit card circuitry including a memory, and circuitry restricting access to memory; and a radio frequency transponder device in communication with the debit card circuitry, the radio frequency transponder device being usable to pay for goods or services via radio frequency using the debit card circuitry.
40. A remote access payment system for a vehicle in accordance with claim 39 and further comprising a housing supporting the debit card circuitry and the radio frequency transponder device, the housing being configured for mounting to a vehicle.
41. A remote access payment system for a vehicle, comprising: a radio frequency transponder device including a memory storing credit card account information; the radio frequency transponder device being configured to pay for goods or services via radio frequency by transmitting the credit card information via radio frequency in response to a request to do so by an interrogator.
42. An automatic payment system included in a vehicle, for paying for goods and services remotely, comprising: a radio frequency transponder device, the radio frequency transponder device including a transmitter, and a receiver, and a microprocessor; a memory storing a credit balance, the system being configured to reduce the credit balance when the radio frequency transponder device receives a radio frequency communication indicating that payment is due, and the system causing the radio frequency transponder device to communicate via radio frequency that the payment was paid; and circuitry which restricts access to the memory such that the credit balance can only be increased using a password.
43. An automatic toll payment system for a vehicle, for paying toll while the vehicle moves, comprising: a radio frequency transponder device, the radio frequency transponder device including a transmitter, and a receiver, and a microprocessor; a memory storing a credit balance, the system being configured to reduce the credit balance when the radio frequency transponder device receives a radio frequency communication indicating that payment is due when the vehicle passes a toll plaza, and the system causing the radio frequency transponder device to communicate via radio frequency that the payment was paid; and circuitry which restricts access to the memory such that available credit can only be increased using a password.
44. An automatic parking fee payment system for a vehicle, for paying a parking fee and gaining access to a parking lot while the vehicle moves, comprising: a vehicle onboard computer system; a radio frequency transponder device in communication with the onboard computer system, the radio frequency transponder device including an integrated circuit having a transmitter, a receiver, and a microprocessor; a memory storing a credit balance, the system being configured to reduce the credit balance being reduced when the radio frequency transponder device receives a radio frequency communication indicating that parking payment is due, the radio frequency transponder device communicating to the parking lot that payment for parking was made; and circuitry which restricts access to the memory such that available credit can only be increased using a password.
45. A method of paying for fuel supplied to a vehicle, the method comprising: supporting a radio frequency transponder device on the vehicle, the radio frequency identification device including a single integrated circuit having a transmitter, receiver, memory, and microprocessor, the radio frequency transponder device including a memory storing a credit balance; and causing the radio frequency transponder to selectively reduce the credit balance in response to a radio frequency command from an interrogator indicating that payment is due for fuel supplied to the vehicle.
46. A method of paying for vehicle maintenance, the method comprising: supporting a radio frequency transponder device on the vehicle, the radio frequency identification device including a single integrated circuit having a transmitter, receiver, memory, and microprocessor, the radio frequency transponder device including a memory storing a credit balance; and causing the radio frequency transponder to selectively reduce the credit balance in response to a radio frequency command from an interrogator indicating that payment is due for maintenance supplied to the vehicle.
47. A method of paying for fuel supplied to a vehicle, the method comprising: supporting a radio frequency transponder device from the vehicle, the radio frequency identification device including a single integrated circuit having a transmitter, receiver, memory, and microprocessor, the radio frequency transponder device including debit card information and a memory storing a credit balance; and causing the radio frequency transponder to selectively reduce the credit balance in response to a radio frequency command from an interrogator indicating that payment is due for fuel supplied to the vehicle.
48. A method of paying for vehicle maintenance, the method comprising: supporting a radio frequency transponder device from the vehicle, the radio frequency identification device including a single integrated circuit having a transmitter, receiver, memory, and microprocessor, the radio frequency transponder device including debit card information and a memory storing a credit balance; and causing the radio frequency transponder to selectively reduce the credit balance in response to a radio frequency command from an interrogator indicating that payment is due for maintenance supplied to the vehicle.
49. A method of determining the location of a vehicle, the method comprising: providing a plurality of radio frequency interrogators at various locations; providing a radio frequency identification device in the vehicle, the radio frequency identification device including an integrated circuit having a memory, a transmitter, a receiver, and a microprocessor, and providing an identification code identifying the vehicle; causing individual interrogators to determine the identification code when the vehicle passes sufficiently close to the individual interrogators that the radio frequency identification device is within communication range; storing the time the vehicle passed a given interrogator; and predicting the present location of the vehicle based on when the radio frequency identification device communicated with individual interrogators and the locations of those individual interrogators.
50. A method of determining the location of a vehicle, the method comprising: providing a plurality of radio frequency interrogators at various locations; providing a vehicle speed sensor in the vehicle; providing a vehicle onboard computer in communication with the speed sensor; connecting a radio frequency identification device to the vehicle on board computer, the radio frequency identification device providing an identification code identifying the vehicle; causing individual interrogators to determine the identification code when the vehicle passes sufficiently close to the interrogator that the radio frequency identification device is within communication range; storing the time the vehicle passed a given interrogator; and predicting the present location of the vehicle based on when the radio frequency identification device communicated with individual interrogators, the locations of those individual interrogators, and the speed of the vehicle read by the speed sensor.
51. A vehicle system for communicating with radio frequency interrogators provided along a road or highway, the system receiving a signal indicative of vehicle speed from a speed sensor, the system comprising: a vehicle onboard computer in communication with the speed sensor; and a radio frequency identification device in communication with the vehicle onboard computer, the radio frequency identification device providing an identification code identifying the vehicle; the radio frequency identification device being operable to transmit the identification code to interrogators that the vehicle passes and receives information from the interrogator representative of the location of the interrogator; wherein the onboard computer predicts the present location of the vehicle based on when the radio frequency identification device communicated with interrogators, the locations of those interrogators, and the speed of the vehicle read by the speed sensor.
52. A vehicle system capable of communicating with radio frequency interrogators provided along a road or highway, the system comprising: a vehicle onboard computer; and a radio frequency identification device in communication with the vehicle onboard computer, the radio frequency identification device including an integrated circuit having a memory, a transmitter, a receiver, and a microprocessor and providing an identification code; wherein the radio frequency identification device transmits the identification code to interrogators that the system passes.
53. An electric vehicle comprising: an electric motor; a control system controlling the electric motor; a sensor providing a signal indicative of speed of the vehicle; a vehicle onboard computer in communication with the control system and selectively causing the control system to adjust at least one operating parameter of the electric motor; and a radio frequency transponder in communication with the vehicle on board computer, and causing the control system to adjust the operating parameter of the electric motor to reduce speed of the vehicle in response to receiving an adjustment signal from the interrogator via radio frequency.
54. A vehicle comprising: an internal combustion engine; a control system controlling the internal combustion engine; a sensor providing a signal indicative of speed of the vehicle; a vehicle onboard computer in communication with the control system and selectively causing the control system to adjust at least one operating parameter of the internal combustion engine; and a radio frequency transponder in communication with the vehicle on board computer, and causing the control system to adjust the operating parameter of the internal combustion engine to reduce speed of the vehicle in response to receiving an adjustment signal from the interrogator via radio frequency.
55. A system for remotely controlling a vehicle, the system comprising: a control system in the vehicle which selectively controls braking of the vehicle; and a radio frequency transponder in the vehicle, in communication with the control system and causing the control system to control braking of the vehicle in response to receiving a radio frequency signal from an interrogator, located remotely from the vehicle, requesting braking of the vehicle.
56. A system for remotely controlling a vehicle, the system comprising: a control system in the vehicle which selectively controls steering of the vehicle; and a radio frequency transponder in the vehicle, in communication with the control system and causing the control system to control steering of the vehicle in response to receiving a radio frequency signal from an interrogator for steering of the vehicle.
57. A vehicle comprising: an internal combustion engine; a control system controlling at least one operating parameter of the internal combustion engine; a plurality of sensors measuring a plurality of parameters of the internal combustion engine; a vehicle onboard computer in communication with the control system and selectively causing the control system to adjust the at least one operating parameter of the internal combustion engine; and a radio frequency transponder in communication with the vehicle on board computer and transmitting information measured by the sensors by radio frequency in response to a radio frequency interrogation by an interrogator, and causing the onboard computer to adjust the at least one operating parameter of the internal combustion engine in response to receiving an adjustment signal from the interrogator via radio frequency.
58. A vehicle in accordance with claim 57 and further comprising an electronic ignition system in communication with the internal combustion engine and controlling timing of the internal combustion engine, and wherein the onboard computer adjusts timing of the internal combustion engine in response to receiving an adjustment signal from the interrogator via radio frequency.
59. A vehicle in accordance with claim 57 wherein the sensors comprise an exhaust sensor.
60. A vehicle in accordance with claim 57 wherein the sensors comprise an engine knock sensor.
61. A vehicle in accordance with claim 57 wherein the sensors comprise an engine RPM sensor.
62. A vehicle adjustment system for a vehicle including an internal combustion engine, a control system controlling at least one operating parameter of the internal combustion engine, and a sensor measuring a parameter of the internal combustion engine, the system comprising: a vehicle onboard computer in communication with the control system and selectively causing the control system to adjust the at least one operating parameter of the internal combustion engine; and a radio frequency transponder in communication with the vehicle on board computer and transmitting information measured by the sensors by radio frequency in response to a radio frequency interrogation by an interrogator, and causing the onboard computer to adjust the at least one operating parameter of the internal combustion engine in response to receiving an adjustment signal from the interrogator via radio frequency.
Description:
DESCRIPTION RFID SYSTEM IN COMMUNICATION WITH VEHICLE ON-BOARD COMPUTER Technical Field The invention relates to on-board vehicle computer systems and to radio frequency identification devices.

Background Art On-board vehicle computer systems are known in the art. Such systems monitor and control operations of mechanical vehicle systems, including vehicle engine systems, transmission systems, brake systems, suspension systems, and display systems. On-board computer systems receive information from various sensors, such as engine speed sensors, manifold pressure sensors, etc. The on-board computer systems can control systems such as by controlling mixture, fluid flow, etc., by controlling electronic systems, or by controlling solenoid-actuated valves that regulate flow of hydraulic fluid. One such computerized vehicle system is described in U.S.

Patent No. 4,875,391 to Leising et al. (incorporated by reference). A system for interfacing with a vehicle computer is disclosed in U.S. Patent No.

5,459,660 to Berra (incorporated by reference); and a system for reprogramming vehicle computers is disclosed in U.S. Patent No. 5,278,759 to Berra et al. (incorporated by reference). German Patent Document DE 35 40 599 Al discloses an on-board vehicle computer having a display system that is arranged in an instrument cluster of a dashboard of a vehicle. An on-board computer for a motor vehicle is also disclosed in U.S. Patent No.

5,150,690 to Ebner et al. (incorporated by reference).

Many vehicles employ several separate microprocessor based computer systems which cooperate with one another. On-board communications systems typically include data busses to enable data communication between such vehicle computer systems. Such data bus technology is disclosed in U.S.

Patent Nos 4,706,082; 4,719,458; 4,739,323; 4,739,324; and 4,742,349 (all of which are incorporated by reference). Such communications systems may employ multiplexing so that simple wire harnesses can be employed for data transmission. In many vehicles, direct access may be provided to monitored

data on a real time basis, so that display tools and engine analyzers may be used to perform a more complete diagnosis of engine problems than can be performed by on-board computers. For example, a data terminal connected to an input/output port of the vehicle computer or to an electronic control module may be provided under a dashboard, as described in U.S. Patent No.

4,853,850 to Krass, Jr. et al. (incorporated by reference).

Because of heavy reliance on on-board computer systems, vehicles presently sold in the United States provide a standardized diagnostic interface according to a "OBDII/CARB" standards requirement. The OBDII/CARB requirement offers a choice between a J1850 specification and an 1SO9141 (International Standards Organization) specification. The OBDII requirement, the J1850 standard, and the 1SO9141 specification are incorporated herein by reference.

It is also known to use hand held display tools to display code values generated by vehicle computers. Such hand held display tools are described in U.S. Patent No. 4,602,127 to Neely et al.

Brief Description of the Drawings Preferred embodiments of the invention are described below with reference to the following accompanying drawings.

Fig. 1 is a perspective view of a vehicle embodying the invention.

Fig. 2 is a block diagram illustrating a system in accordance with one embodiment of the invention.

Fig. 3 is a block diagram illustrating a system in accordance with a more particular embodiment of the invention.

Fig. 4 is a block diagram illustrating a system in accordance with an alternative embodiment of the invention.

Best Modes for Carrying Out the Invention and Disclosure of Invention The figures show a vehicle 10 embodying the invention. The vehicle 10 includes an on-board computer (and memory) 12 in communication with wireless transponder circuitry 14 (Fig. 2). In the illustrated embodiment, the wireless transponder circuitry 14 comprises RFID circuitry including memory. In an alternative embodiment, the wireless transponder circuitry 14

comprises infrared transponder circuitry. One example of a vehicle on-board computer is disclosed in U.S. Patent No. 4,875,391 to Berra (incorporated by reference). An example of RFID circuitry is disclosed in commonly assigned U.S. Patent Application Serial No. 08/705,043, filed August 29, 1996 (incorporated by reference).

In one embodiment, the RFID circuitry 14 and vehicle on-board computer 12 are provided in a common module or housing 13 that can be easily installed in or removed from a vehicle. Thus, the combination of the vehicle on-board computer memory 12, and the RFID circuitry including memory 14, can be used to replace existing vehicle on-board computers by swapping modules. The vehicle on-board computer 12, and the RFID circuitry 14 can also be installed as new equipment in new vehicles instead of as a retrofit item. In one embodiment, the RFID circuitry 14 is provided on a common (substantially planar) substrate 15 with the vehicle on-board computer (and memory) 12.

The RFID circuitry 14 includes, in the illustrated embodiment, an integrated circuit having a transmitter, a receiver, a microprocessor, and a memory.

In one embodiment, the RFID circuitry 14 is in serial communication with the vehicle on-board computer and memory 12. More particularly, the RFID circuitry 14 includes a serial data pin. Other forms of communication; e.g., using dual-ported RAM, can be employed. In one embodiment, the vehicle on-board computer and memory 12 is spaced apart in the vehicle from the RFID circuitry 14, and the RFID circuitry communicates with the vehicle on-board computer and memory 12 via a data communications bus such as that described in U.S. Patent No. 4,853,850 to Krass, Jr. et al.

(incorporated by reference), or U.S. Patent No. 5,459,660 to Berra (incorporated by reference). The combination of the vehicle on-board computer and memory 12 and RFID circuitry 14 define a system 16.

The vehicle 10 further includes an antenna 18 connected to the RFID circuitry 14. The antenna 18 can either be supported by the system 16, or can be located at another location of the vehicle 10, and connected to the RFID circuitry 14 via a cable.

The RFID circuitry 14 communicates with a remote interrogator 20 controlled by a controller system 22.

The system 16 performs a variety of functions because of its ability to transmit and receive data from transponders 20. The transponders 20 may include remote transponders, or one or more transponders in the vehicle, but spaced apart from the system 16. The remote transponders 20 are typically interrogators which are spaced apart from the vehicle. The remote interrogators can be positioned, for example, at a gas station, toll booth, service center, dealership, parking lot, or along a roadside.

In another embodiment, the circuitry 14 defines an interrogator, and the transponders 20 define RFID circuits described in detail in U.S. Patent Application Serial No. 08/705,043, and having unique identification codes.

Thus, in this embodiment, the location of the interrogators and RFID devices is switched. In one embodiment, the RFID circuitry and an interrogator are both located on the same vehicle for data communications in the vehicle without using a standard data bus or wiring harness.

The system 16 provides for remote communication of the vehicle on- board computer for a variety of purposes.

For example, telemetry of vehicle performance data can be performed.

More particularly, as shown in Fig. 3, the vehicle 10 includes a motor or engine 24, and the system 16 communicates with a plurality of sensors measuring various parameters of the motor 24, or of the vehicle 10 in general. Such sensors are typically read by the vehicle on-board computer 12; however, in alternative embodiments, sensors which are not read by the vehicle on-board computer 12 may be read directly by the RFID circuitry 14.

In one embodiment, the vehicle 10 is an electric vehicle, and the motor 24 is an electric motor. In this embodiment, the vehicle on-board computer 12 performs such functions as controlling power applied to the motor 24 based on angle of inclination of an accelerator actuator, controlling braking, controlling operation of a flywheel that stores mechanical energy on braking, and controlling other functions typically controlled in electric vehicles.

For example, in one embodiment, the on-board computer 12 controllably

reduces power delivery to the motor during braking, so that braking in response to actuation of a brake pedal is gradual and feels like braking in a more conventional vehicle of the type including an internal combustion engine.

In another embodiment, the motor 24 is an internal combustion engine.

In the embodiment shown in Fig. 3, the sensors include any or all of the following sensors: an exhaust gas sensor 18 (or O2 sensor), an engine knock sensor 28, an oil pressure sensor 30, an engine temperature sensor 32, a battery voltage sensor 34, an alternator current sensor (or charging amps sensor) 36, an engine RPM sensor (or tachometer) 38, an accelerator pedal or throttle position sensor 40, a vehicle speed sensor 42, an odometer sensor 44, a fuel level sensor 46, an ABS braking system sensor 48, transmission sensor 60, a clock 52, and any other sensors typically employed with vehicle on-board computers, or that can be employed with vehicle on- board computers. In one embodiment, the clock 52 is incorporated in the vehicle on-board computer 12 or in the RFID circuitry 14. In one embodiment, the vehicle 10 includes, in communication with the system 16, systems and sensors such as those described in the following patents (all of which are incorporated herein by reference): U.S. Patent No. 4,168,679 to Ikeura et al; U.S. Patent No. 4,237,830 to Stivender; U.S. Patent No.

4,335,695 to Phipps; U.S. Patent No. 4,524,745 to Tominari et al.; and U.S.

Patent No. 4,552,116 to Kuroiwa et al.

Thus, the system 16 can be used to remotely convey vehicle performance data measured by the sensors. It is now possible, therefore, for a garage or service station to diagnose a problem with the vehicle 10 without needing to physically connect diagnostic equipment to the vehicle 10.

It is possible for a garage to begin to diagnose a problem with the vehicle as the vehicle is driven into the service station. In one embodiment, the system 16 includes information identifying the vehicle or the owner of the vehicle. In this embodiment, the garage or service station will know the name of the owner of the vehicle as the owner drives in to the service station, before the owner gets out of the vehicle.

In one embodiment using the system 16, vehicle history is logged in memory (either in the vehicle on-board computer 12, or in the RFID circuitry 14). For example, the vehicle on-board computer can be programmed to periodically store readings from any or all of the various sensors 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 52, 46, 48, and 50. This information can then be read remotely after the information has been logged.

In one embodiment, the system 16 is used in a rental vehicle facility.

In this embodiment a unique code identifying a vehicle is stored in memory in the system 16, and a remote transponder is located at a controlled access point of a rental car return facility. When the vehicle is returned, the remote transponder communicates with the RFID circuitry 14 so as to remotely receive the vehicle identifying data when the vehicle passes the controlled access point. In one embodiment, the remote transponder receives mileage information from the returned vehicle. In another embodiment, the remote transponder receives fuel level information from the returned vehicle.

Using such information, a bill can be calculated immediately, reducing human labor needed at car rental facilities. The system 16 can also be used to log, via remote communications with a remote transponder, when a rental vehicle leaves the rental facility (using the unique identification code), so that the start of the rental period can be determined automatically.

Further, information can be transmitted to memory (either in the vehicle on-board computer 12, or in the RFID circuitry 14) remotely. Such information can include vehicle history information including maintenance records, ownership data, purchase price for the vehicle, purchase date of the vehicle, option packages installed at the factory, options added to the vehicle after purchase, warranty records, or other information.

In one embodiment, the system 16 is used as a remote access credit or debit card. This may be particularly convenient for purchasing items associated with vehicles, such as fuel, oil, maintenance, etc., for payment of toll or parking garage payment, or for payment of cellular phone time. In this embodiment, some form of access control is provided to the portion of the memory in the system 16 which contains credits for the debit card.

These credits can be incremented remotely, by a remote transponder 20, which

possesses a password to gain access to the portion of memory containing the credits for the debit card. Such a password would normally be held, for example, by a bank, or credit union, or other service provider which accepts the debit card. In this embodiment, the system 16 i programmed to operate as a conventional debit card, except that payment cau be made remotely using the RFID circuitry 14. After payment is mad , by reducing the credit balance in the memory, the RFID circuitry 14 indicates to the remote transponder 20 seeking payment that payment his been made.

The system 16 can also be used as a credit card (such as a oil company/gasoline credit card, or a bank-issued credit card). In this embodiment, credit card account information, including a credit card number is stored in the memory of the system 16 and is transmitted by the RFID circuitry 14 to a transponder 20 to make a payment. Other information that may be stored and transmitted include expiration date, cardholder name, zip code, cardholder billing address, bank name bank phone number, etc. If the system 16 is being used as a credit card, payment history or purchase history may be stored in the memory of the system 16.

If the system 16 is used as a debit card, the appropriate programming and access control defines debit card circuitry 60. If the system 16 is used as a credit card, the account number information and programming defines credit card circuitry 62.

The system 16 is also used, in one embodiment, as an intelligent roadside communications link for intelligent highway applications, or intelligent transportation systems. For example, if the vehicle 10 approaches a stop sign having a transponder 20, the RFIJ) circuitry 14 will recognize that the vehicle is approaching a stop sign, and will sound an alarm in the vehicle 10, or may effect application of the brakes of the vehicle or reduction in vehicle speed. In this embodiment, the vehicle 10 includes a brake control system 54 (Fig. 4) that selectively applies the brakes in response to an appropriate command from a transponder 20. In one embodiment, where the vehicle 10 includes an internal combustion engine, the vehicle 10 includes an electronic ignition system 56 that selectively reduces vehicle speed in response to an appropriate command from a transponder 20. In another embodiment,

where the vehicle 10 is an electric vehicle, the vehicle includes a braking system (as described above) that selectively reduces vehicle speed in response to an appropriate command from a transponder 20 (such as by reducing power applied to the electric motor, or by transferring mechanical energy to a flywheel).

In one embodiment, the system 16 uses signal strength to determine vehicle distance relative to the transponder 20. This information is used, in one embodiment, to determine whether to merely reduce engine speed, or to apply brakes. In one embodiment, distance is used by the system to determine what level of braking should be employed, and this information is used to appropriately control the brake control system 54.

In one embodiment, the RFID circuitry 14 transmits the speed of the vehicle for monitoring by police. In an alternative embodiment, a transponder 20 transmits a signal warning of dangerous road conditions, such as fog, flooding, or an accident ahead, which signal is received by the RFID circuitry 14, and causes the vehicle on-board computer 12 to reduce the speed of the engine or limit the speed of the vehicle or limit the RPM of the engine or downshift the transmission, overriding user actuable controls (e.g.

accelerator), etc. In this embodiment, the speed of the vehicle 10 is controlled by the electronic ignition 56 (for vehicles with internal combustion engines), by a motor control system (for electric vehicles), or the vehicle 10 includes a cruise control system 66 controlling the speed of the vehicle 10.

In another embodiment, speed limit signs include transponders 20 transmitting a signal indicative of maximum speed for the road or highway, which signals are received by the RFID circuitry 14, and communicated to the vehicle on-board computer and memory 12, which limits vehicle speed to the received speed limit. Alternatively, the vehicle includes an actuator allowing the driver to set a vehicle speed relative to the speed received by the speed limit transponder.

Two tiered speed transponders can also be employed, including transponders transmitting a recommended speed (e.g., around curves, etc.), and other transponders transmitting speed limit information. In this embodiment,

the vehicle includes actuators for selecting controlling vehicle speed relative to one or the other type of speed transponders 20.

In another embodiment, transponders 20 are positioned along a roadway, and the system 16 uses these signals to determine its position and to maintain the vehicle within certain bounds; e.g., if the driver falls asleep at the wheel, or desires to relinquish steering control. In this embodiment, the vehicle 10 includes a steering control system 58 which controls steering of the vehicle. In one embodiment, the system is a safety system which overrides the user actuable control (e.g. steering wheel) when the system 16 determines that the vehicle is about to go off the road. Such a steering control system can be turned on or off by the user. For example, the user (driver) selectively turns on the steering control system 58 upon entering a highway, and turns off the steering control system 58 if he or she desires to leave the highway or to pull off the road. The steering control system 58 can also be used for completely automated steering of a passenger vehicle, receiving signals from the transponders 20 along the road to guide the vehicle 10. Such a system may be similar to the system described in U.S. Patent No. 5,189,612 (incorporated herein by reference) except that radio frequency transponders are employed instead of buried magnetic markers. In one embodiment, the vehicle may be a remotely controlled tractor or robot vehicle as opposed to a passenger vehicle.

Using a transponder 20, information from external sources can be transferred to the system 16 for various applications. In one embodiment, information is transferred to the system 16 for such applications as remote service adjustments of the engine 24, e.g., by adjusting the electronic ignition 56. In one embodiment, a transponder 20 is used for remote loading of debit card data or credits. In one embodiment, a transponder 20 is used for remote control of the brakes or steering (as described above). In one embodiment, a transponder 20 is used to transfer travel information to the vehicle (e.g., indicating what services are available at the next exit, indicating distances to various points, etc.).

In one embodiment, navigational maps or data from maps are transmitted to the system 16 by a remote transponder 20 at various locations

(e.g., upon entering a state or city). In such embodiments, the vehicle 10 includes a navigational display 64 displaying maps selected by the user or driver including maps of the particular area in which the user or driver is presently driving, and plotting items such as gasoline stations, motels, restaurants, or other providers of goods or services. The system 16, if requested, determines which map to display, determines where the vehicle 10 is located, and plots the location of the vehicle on a map or choose an appropriate map for the location of the vehicle.

More particularly, in one embodiment, transponders 20 each have their own identification codes, and the RFID circuitry 14 determines where the vehicle 10 is located (e.g., using triangulation) based on when the RFID circuitry 14 communicated with one or more particular transponders, the location of those transponders, and the speed of the vehicle 10 as read by the speed sensor (and, in one embodiment, based on signal strength or rate of change of signal strength).

Similarly, state agencies or friends or relatives can determine the position of a particular vehicle 10.

More particularly, different vehicles 10 include different unique identification codes stored in the system 16, and these identification code are transmitted to transponders 20 as the vehicles pass within communications range of these transponders 20. A system external to the vehicle can determine (e.g., using triangulation) the location of the vehicle based on when a particular vehicle's system 16 communicated with particular transponders 20, the location of those transponders 20, and the speed of the vehicle as read by the speed sensor 42 (and, in one embodiment, based on signal strength or rate of change of signal strength).

This unique identification code can also be used for other purposes, such as for informing garages or maintenance facilities of the name of the vehicle owner as the vehicle pulls into the maintenance facility. The unique identification code can also be used in toll systems, parking lots, or other pay systems in which the system 16 does not act as a debit card. More particularly, a transponder at a toll booth, parking lot, etc., reads the unique identification code and debits an account associated with that particular identification code.

Various other applications for the system 16 will readily be apparent to those of ordinary skill in the art.